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Abstract

An important class of continuous Bayesian networks are those that have linear con-
ditionally deterministic variables (a variable that is a linear deterministic function
of its parents). In this case, the joint density function for the variables in the net-
work does not exist. Conditional linear Gaussian (CLG) distributions can handle
such cases when all variables are normally distributed. In this paper, we develop
operations required for performing inference with linear conditionally deterministic
variables in continuous Bayesian networks using relationships derived from joint cu-
mulative distribution functions (CDF’s). These methods allow inference in networks
with linear deterministic variables and non-Gaussian distributions.
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1 Introduction

Bayesian networks model knowledge about propositions in uncertain domains
using graphical and numerical representations. At the qualitative level, a
Bayesian network is a directed acyclic graph where nodes represent variables
and the (missing) edges represent conditional independence relations among
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the variables. At the numerical level, a Bayesian network consists of a factor-
ization of a joint probability distribution into a set of conditional distributions,
one for each variable in the network. Continuous Bayesian networks contain
variables whose state spaces are uncountable.

A commonly used type of Bayesian network which accomodates continuous
variables is the conditional linear Gaussian (CLG) model [5,7]. In CLG mod-
els, the distribution of a continuous variable is a linear Gaussian function of its
continuous parents. The scheme originally developed by Lauritzen [7] allowed
exact computation of means and variances in CLG networks when the con-
ditional distribution of a variable given its continuous parents has a positive
variance; however, this algorithm did not always compute the exact marginal
densities of continuous variables. A new computational scheme for CLG mod-
els was developed by Lauritzen and Jensen [8]. To find full local marginals,
this scheme places some restrictions on the construction and initialization of
junction trees.

An important class of continuous Bayesian networks are those that have linear
conditionally deterministic variables (a variable that is a deterministic function
of its parents). In this case, the joint density function for the variables in the
network does not exist. CLG models can handle such cases when all variables
are normally distributed. However, for models where continuous variables are
not normally distributed, methods for carrying out exact inference in networks
with linear deterministic relationships have not been developed.

Exact inference in hybrid Bayesian networks can be performed using mix-
tures of truncated exponentials (MTE) potentials [9,12]. General formulations
of MTE potentials which approximate the normal probability density func-
tion (PDF) exist [1]; however, these formulations cannot be used to model a
conditional distribution where the variance of a variable given values of its
continuous parents is zero. In this paper, we develop inference operations for
linear conditionally deterministic variables using relationships derived from
joint cumulative distribution functions (CDF’s). These operations allow MTE
potentials to be used for inference in any continuous CLG model, as well as
other models that have linear conditionally deterministic variables which are
non-Gaussian.

The remainder of this paper is organized as follows. Section 2 introduces no-
tation and definitions used throughout the paper. Section 3 introduces tech-
niques for using CDF’s to construct PDF’s for deterministic variables. Sec-
tion 4 introduces join tree operations for linear deterministic variables. Sec-
tion 5 contains an example of inference in a continuous Bayesian network
containing linear deterministic variables. Section 6 summarizes and states di-
rections for future research.
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X Y

Fig. 1. Graphical representation of the conditionally deterministic relationship of Y
given X determined by the CMF pY |x.

2 Notation and Definitions

This section contains notation and definitions that will be used throughout
the remainder of the paper.

2.1 Notation

Random variables in a Bayesian network will be denoted by capital letters,
e.g., A,B,C . Sets of variables will be denoted by boldface capital letters,
e.g., X. All variables in this paper are assumed to take values in uncountable
(continuous) state spaces. If X is a set of variables, x is a configuration of
specific states of those variables. The continuous state space of X is denoted
by ΩX.

MTE probability potentials are denoted by lower-case greek letters, e.g., α,
β, γ. In graphical representations, continuous nodes in Bayesian networks are
represented by double-border ovals. Variables that are deterministic functions
of their parents are represented by triple-border ovals. Shaded nodes are de-
generate, indicating that evidence has restricted the variable to one value.

2.2 Conditional Mass Function (CMF)

When relationships between continuous variables are deterministic, the joint
PDF does not exist. If Y is a deterministic relationship of variables in X, i.e.
Y = g(X), the conditional mass function (CMF) for {Y | x} is defined as

pY |x = 1{y = g(x)} , (1)

where 1{A} is the indicator function of the eventA, i.e. 1{A}(B) = 1 ifB = A
and 0 otherwise. Graphically, the conditionally deterministic relationship of
Y given X is represented in a Bayesian network model as shown in Figure 1,
where X consists of a single continuous variable X.
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2.3 Mixtures of Truncated Exponentials

A mixture of truncated exponentials (MTE) potential [9,12] has the following
definition.

MTE potential. Let X = (X1, . . . , Xn) be an n-dimensional random variable.
A function φ : ΩX �→ R+ is an MTE potential if one of the next two conditions
holds:

(1) The potential φ can be written as

φ(x) = a0 +
m∑

i=1

ai exp{ n∑
j=1

b
(j)
i xj} (2)

for all x ∈ ΩX, where ai, i = 0, . . . , m and b
(j)
i , i = 1, . . . , m, j = 1, . . . , n

are real numbers.
(2) The domain of the variables, ΩX, is partitioned into hypercubes

{Ω1
X, . . . ,Ω

k
X} such that φ is defined as

φ(x) = φi(x) if x ∈ ΩXi , i = 1, . . . , k , (3)

where each φi, i = 1, ..., k can be written in the form of equation (2).

In the definition above, k is the number of pieces and m is the number of
exponential terms in each piece of the MTE potential. In this paper, all MTE
potentials are equal to zero in unspecified regions.

Moral et al. [10] proposes an iterative algorithm based on least squares approx-
imation to estimate MTE potentials from data. Moral et al. [11] describes a
method to approximate conditional MTE potentials using a mixed tree struc-
ture. Cobb et al. [4] describes a nonlinear optimization procedure used to fit
MTE parameters for approximations to standard PDF’s, including the uni-
form, exponential, gamma, beta, and lognormal distributions.

Inference in continuous Bayesian networks where all conditional probabil-
ity distributions are approximated by MTE potentials is performed using
the operations of restriction, combination, and marginalization, as defined
by Moral et al. [9] and further described by Cobb and Shenoy [1]. Restric-
tion involves substituting real numbers representing evidence into a potential.
Combination of two MTE potentials is pointwise multiplication. If two MTE
potentials for X are denoted by φ and ψ, the combination of these two po-
tentials is denoted by φ ⊗ ψ. Marginalization of a variable from an MTE
potential is closed-form integration. If an MTE potential for X is denoted
by φ, the marginalization of a variable X ∈ X from φ is denoted by φ−X .
Operations used to marginalize a variable from the combination of an MTE
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potential and a CMF are defined later in the paper.

3 Using CDF’s to Construct PDF’s for Deterministic Variables

This section contains standard results from probability theory which describe
methods of constructing CDF’s and their corresponding PDF’s for variables
that are deterministic functions of their parents. These results are re-stated
here for completeness.

3.1 Monotonically Increasing Functions

Consider a random variable Y which is a monotonically increasing determin-
istic function of a random variable X. A Bayesian network representing this
relationship is shown in Figure 1. The joint CDF for {X, Y } represents the
following probability:

FX,Y (x, y)=P [X ≤ x, Y ≤ y]

=P [X ≤ x]P [Y ≤ y | X ≤ x]

=FX(x)P [Y ≤ y | X ≤ x]

for any x ∈ ΩX such that FX(x) > 0.

When Y is a monotonically increasing function of X, X = g−1(Y ) and P [Y ≤
y | X ≤ x] = 1, thus FX,Y (x, y) = FX(g−1(y)). Allowing x go to infinity
in both sides of this expression gives FX,Y (∞, y) or FY (y) = FX(g−1(y)).
Differentiating both sides of this expression with respect to y (using the chain
rule on the right-hand side) yields

fY (y) = fX(g−1(y))
d

dy
(g−1(y)) . (4)

Thus, the Bayesian network where X = g−1(Y ) and fY (y) meets the above
condition will have the same CDF of the original Bayesian network and the
Bayesian networks are equivalent, as stated in the following proposition.

Proposition 1. Suppose we have a Bayesian network with two variables X
and Y with an arrow from X to Y where Y is a conditionally deterministic,
monotonically increasing function of X. Then, the equivalent Bayesian net-
work with an arrow from Y to X where X is a conditionally deterministic
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Fig. 2. Graphical representation of the conditionally deterministic relationship of
X on Y before and after performing an “arc reversal” on the Bayesian network of
Figure 1.

function of Y meets the conditions that fY (y) = fX(g−1(y)) d
dy

(g−1(y)) and

X = g−1(Y ).

When Y is a monotonically increasing (and therefore invertible) deterministic
function of X, Proposition 1 gives a shortcut to finding the PDF of Y from
the PDF of X that does not require the CDF of Y to be computed. We refer
to using the operation in Proposition 1 as performing an “arc reversal” on
the Bayesian network. After the operation is performed, the Bayesian network
appears as in Figure 2.

Example 1.
Suppose that a random variable X has PDF

fX(x) =

⎧⎪⎨
⎪⎩

3x2 if 0 < x < 1

0 elsewhere ,

and we want to find fY (y) if Y = g(X) = 4X2.
Note that fX(g−1(y)) = 3y/4 and d

dy
(g−1(y)) = 1/(4

√
y). Using Proposi-

tion 1, we compute

fY (y) =

⎧⎪⎨
⎪⎩

3y
4
· 1

4
√

y
=

3
√

y

16
if 0 < y < 4

0 elsewhere .
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3.2 Monotonically Decreasing Functions

Consider a random variable Y which is a monotonically decreasing function
of a random variable X. A Bayesian network representing this relationship is
shown in Figure 1. The joint CDF for {X, Y } represents the following proba-
bility:

FX,Y (x, y)=P [X ≤ x, Y ≤ y]

=P [X ≤ x] − P [x ≤ g−1(y)]

=FX(x) − FX(g−1(y)).

for any x ∈ ΩX such that FX(x) > 0.

When Y is a monotonically decreasing function of X, X = g−1(Y ), thus
FX,Y (x, y) = FX(x)−FX(g−1(y)). Allowing x go to infinity in both sides of the
last line of the expression above gives FX,Y (∞, y) or FY (y) = 1−FX(g−1(y)).
Differentiating both sides of this expression with respect to y (using the chain
rule on the right-hand side) yields

fY (y) = −fX(g−1(y))
d

dy
(g−1(y)) . (5)

Thus, the Bayesian network where X = g−1(Y ) and fY (y) meets the above
condition will have the same CDF of the original Bayesian network and the
Bayesian networks are equivalent, as stated in the following proposition.

Proposition 2. Suppose we have a Bayesian network with two variables X
and Y with an arrow from X to Y where Y is a conditionally deterministic,
monotonically decreasing function of X. Then, the equivalent Bayesian net-
work with an arrow from Y to X where X is a conditionally deterministic
function of Y meets the conditions that fY (y) = −fX(g−1(y)) d

dy
(g−1(y))

and X = g−1(Y ).

When Y is a monotonically decreasing (and therefore invertible) deterministic
function of X, Proposition 2 gives a shortcut to finding the PDF of Y from
the PDF of X that does not require the CDF of Y to be computed. As in the
monotonically increasing case, we refer to use of the operation in Proposition
2 as an arc reversal.

Example 2.
Let X have the uniform PDF over the unit interval, i.e. X ∼ U(0, 1).

Find fY (y) if Y = g(X) = − lnX
λ

.
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Note that fX(g−1(y)) = 1 and d
dy

(g−1(y)) = −λe−λy. Using Proposition
2, we compute

fY (y) =

⎧⎪⎨
⎪⎩

(−1) · −λe−λy = λe−λy if 0 < y <∞
0 elsewhere ,

3.3 Linear CDF Marginalization Operator

Suppose Y is a conditionally deterministic linear function of X, i.e. Y =
g(X) = aX + b, a �= 0. The following operation will be used to determine the
marginal PDF for Y :

fY (y) = (fX ⊗ pY |x)−X (y) =
1

|a| · fX

(
y − b

a

)
. (6)

In this operation, X is marginalized from the combination of the PDF for X
and the CMF for Y givenX. The definition of the Linear CDF Marginalization
Operator follows directly from the expressions in Propositions 1 and 2.

Example 3.
Suppose that a random variable X has PDF

fX(x) =

⎧⎪⎨
⎪⎩

6x(1 − x) if 0 < x < 1

0 elsewhere.

Find fY (y) if the deterministic relationship Y = g(X) = 2X + 1 is repre-
sented by the CMF pY |x = 1{y = 2x + 1}.

Note that fX(y−b
a

) = fX(y−1
2

) = 6(y−1
2

) · (1 − (y−1
2

)) = −3
2
y2 + 6y − 9

2
.

Using the operation in (6), we find the PDF for Y as

fY (y) = (fX ⊗ pY |x)−X(y) =

⎧⎪⎨
⎪⎩
−3

4
y2 + 3y − 9

4
if 1 < y < 3

0 elsewhere.

The following theorem is required for inference using MTE potentials in Bayesian
networks with linear conditionally deterministic variables.

Theorem 3. If φ1(x) is an MTE potential for X and Y is a condition-
ally deterministic linear function of X represented by the CMF pY |x, then
φ2(y) = (φ1 ⊗ pY |x)−X (y) is an MTE potential.
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YX

Z

( )Xf x | ( )Y xf y

1{ ( , )}z g x y=

Fig. 3. Graphical representation of a Bayesian network where Z is a deterministic
function of X andY .

Proof. Multiplication by 1/a or −1/a is multiplication by a constant. MTE
potentials are closed under multiplication by constants (the constants a0 and
ai, i = 1, ..., m in (2) are revised). Exponential terms of the form exp{x} in
φ1(x) are revised to be of the form exp{1

a
y − b

a
} in φ2(y). Since exp{1

a
y −

b
a
} = exp{ 1

a
y} · exp{ − b

a
} and exp{ − b

a
} is a constant, the result is an

MTE potential of the form in (2).

3.4 Method of Convolutions

Let us consider a case where a conditionally deterministic variable has more
than one parent. Let Z be a deterministic function of random variables X
and Y where X has PDF fX(x) and {Y | x} has density fY |x(y). A Bayesian
network representation of this case is shown in Figure 3.

Suppose Z = g(X, Y ) is invertible in Y . Then by arguments similar to those
used in Propositions 1 and 2, we can show that the Bayesian network in
Figure 3 is equivalent to the Bayesian network in Figure 4 where X has PDF
fX(x), {Z | x} has density

fZ|x(z) =

∣∣∣∣∣ ∂∂zg−1(x, z)

∣∣∣∣∣ · fY |x
(
g−1(x, z)

)
,

and Y = g−1(X,Z) is a conditionally deterministic function of X and Z.

We can consider the Bayesian network in Figure 4 as being the network ob-
tained from the Bayesian network in Figure 3 by reversing the arc (Y, Z). We
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Fig. 4. Graphical representation of the Bayesian network in Figure 3 after reversal
of the arc (Y, Z).

can now compute the marginal density of Z as follows:

fZ(z) =

∞∫
−∞

fX(x) · fZ|x(z) dx

=

∞∫
−∞

(
fX(x) ·

∣∣∣∣∣ ∂∂zg−1(x, z)

∣∣∣∣∣ · fY |x
(
g−1(x, z)

))
dx .

(7)

The formula in (7) is called the method of convolutions in probability theory.
The following theorem will be required for join tree operations when a variable
is a linear conditionally deterministic function of its parents.

Proposition 4. Let X and Y be continuous, possibly dependent random
variables with joint PDF fX,Y and let Z = a1 ·X + a2 · Y + b, a2 �= 0. The
un-normalized joint PDF for {X,Z} can be found as

fX,Z(x, z) ∝ fX,Y

(
x, z−a1·x−b

a2

)
.

Proof. Follows directly from the method of convolutions in probability theory.

We can replace X and a1 in Proposition 4 with a vector of variables and a
vector of non-zero constants, respectively, and the result holds. A transforma-
tion of the form in Proposition 4 is referred to as a convolution of the function
fX,Y (x, y) [6]. To use the convolution formula in Proposition 4 to find PDF’s
for linear conditionally deterministic variables in hybrid Bayesian networks
with MTE potentials, the following theorem is required.
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φ |X', 
iXp

Fig. 5. A join tree for a Bayesian network with a deterministic variable.

Theorem 5. If φ1 is a joint MTE potential for {X, Y } and Z = a1 ·X + a2 ·
Y + b, a2 �= 0, the un-normalized joint PDF φ2 for {X,Z} calculated from
the convolution of φ1 is an MTE potential.

Proof. Follows directly from the proof of Theorem 3.

4 Join Tree Operations with Linearly Deterministic Variables

Suppose we have a node in a join tree for a continuous Bayesian network
containing a set of variables X = (X1, ..., XN). Assume a variable Xi ∈ X is a
linear deterministic function of the remaining variables X′ = X \Xi, i.e.

Xi = g(X1, . . . , Xi−1, Xi+1, . . . , XN ) = W + b ,

where

W = a1 ·X1 + . . .+ ai−1 ·Xi−1 + ai+1 ·Xi+1 + . . .+ aN ·XN

with a1, ..., ai−1, ai+1, ..., aN and b defined as real numbers, with at least one of
the slope coefficients in the linear equation not equal to zero. The joint PDF
of X′ is denoted by φ. The joint PDF for X does not exist; however, we can
find the marginal PDF for Xi by using the operations defined in Section 3.

Consider the join tree in Figure 5. The message passed from {X} to {X \Xk}
(where Xk ∈ X and Xk �= Xi) is calculated using Proposition 4 as

ψ(x′′, xi) =
(
φ⊗ pXi\X′

)−Xk
(x′′, xi) = φ

⎛
⎜⎜⎝
⎛
⎜⎜⎝xi −

N∑
j=1

j /∈{i,k}

ajxj

⎞
⎟⎟⎠ /aj

⎞
⎟⎟⎠ ,

where x = (x′′, xi, xk). The message from {X} to {X\Xk} to {Xi} is calculated
as

ϕ(xi) =
∫

ΩX′′

ψ(x′′, xi) dx
′′ .
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YX

Z

Fig. 6. The Bayesian network for Example 5.

{X,Y,Z}X {X,Y} Z

Y

Xf

Yf

|{x,y}Z p

Fig. 7. The join tree for Example 5.

The potential ϕ is normalized to find the posterior marginal for Xi. If φ is
initially an MTE potential, ϕ is an MTE potential because the first message
results in an MTE potential according to Theorem 5 and the second message
results in an MTE potential because the class of MTE potentials is closed
under marginalization.

The next example utilizes the MTE approximation to the normal PDF for
join tree operations with a deterministic variable in order to compare answers
to Hugin software.

Example 5.
Consider the Bayesian network depicted in Figure 6. Suppose X ∼ N(0, 1),

Y ∼ N(1, 1), and Z is a conditionally deterministic function of its parents,
Z | x, y ∼ N(2 + x− y, 0). We can calculate the marginal distribution of Z
by passing messages in the join tree shown in Figure 7.

The PDF’s forX and Y , denoted by fX and fY , respectively, are combined
to form the joint PDF for {X, Y } and sent to {X, Y, Z} in the join tree. We
next calculate the PDF for Z = X − Y + 2 using Proposition 4 as follows:

fZ(z) =

∞∫
−∞

fX,Y (x, x− z + 2) dx .

Note that in this case, sinceX and Y are independent, fX,Y (x, y) = fX(x)fY (y).
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Fig. 8. The marginal PDF for Z in Example 5.

Thus, if fX and fY are maintained as decomposed potentials in the message
from {X, Y } to {X, Y, Z} the calculation above can be simplified to

fZ(z) =

∞∫
−∞

fX(x)fY (x− z + 2) dx .

The marginal PDF for Z (shown in Figure 8) was created by approximating
the normal PDF’s in this example with the MTE approximation to the
normal PDF presented in Cobb and Shenoy [1]. The expected value and
variance of this marginal PDF are 1.0000 and 1.9638. These answers are
comparable with exact results obtained using Hugin software, which gives
an expected value and variance of 1.0000 and 2.0000, respectively.

Suppose we obtain evidence that Z = 3 and pass this evidence as a
message from {Z} to {X, Y, Z}. Since the existing potential for Z states
that Z = 2+X−Y , the evidence dictates the new deterministic relationship
X = Y +1, which is expressed as the CMF pX |y and sent from {X, Y, Z} to
{X, Y } in the join tree.

The variables X and Y are no longer independent and now have a linear
conditionally deterministic relationship. The revised Bayesian network is
depicted in Figure 9. To calculate the revised marginal distribution for X
we combine fX(x) with the distribution created by applying the linear CDF
marginalization operator in (6) to the prior distribution for Y (the latter is
the message from {X, Y } to {X}) as follows:

fXev(x) = K · fX(x) · (fY ⊗ pX |y)−Y (x) = K · fX(x) · fY (x− 1) .

In this calculation, K is a normalization constant. The expected value and
variance of the posterior marginal PDF for X are calculated as 1.0000 and
0.5004, respectively. These answers are comparable with exact results ob-
tained using Hugin software, which gives an expected value and variance of
1.0000 and 0.5000, respectively.

To calculate the revised marginal distribution for Y we combine the prior
distribution for Y with the distribution created by applying the linear CDF

13



Z

YX

Fig. 9. The revised Bayesian network for Example 5 after observing evidence on Z.

marginalization operator in (6) to the prior distribution for X (the latter is
the message from {X, Y } to {Y }) as follows:

fYev(y) = K · fY (y) · (fX ⊗ pY |x)−X(y) = K · fY (y) · fX(y + 1) .

In this calculation, K is a normalization constant. Propositions 1 and 2
allow us to use either pX |y or pY |x as equivalent expressions of the deter-
ministic relationship between Y and X. The expected value and variance of
the posterior marginal PDF for Y are calculated as 0.0000 and 0.5004, re-
spectively. These answers are comparable with exact results obtained using
Hugin software, which gives an expected value and variance of 0.0000 and
0.5000, respectively.

5 Example

The Bayesian network in this example (shown in Figure 10) contains one vari-
able (A) which follows a beta distribution, one variable (C) with a Gaussian
potential, and one variable (B) which is a linear conditionally determinis-
tic function of its parent. All probability potentials are approximated in the
calculations by MTE potentials.

5.1 Representation

The probability distribution for A is a beta distribution with parameters α =
2.7 and β = 1.3, i.e. £(A) ∼ Beta(2.7, 1.3). The PDF for A is approximated

14



CA B

Fig. 10. The Bayesian network for the example problem.

(using the methods described in [4]) by an MTE potential as follows:

α(a) = P (A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−5.951669 + 5.573316 exp{0.461388a} − 0.378353 exp{ − 6.459391a}

if 0 < a < d−

0.473654 − 6.358483 exp{ − 2.639474a} + 2.729395 exp{ − 0.331472a}

if d− ≤ a < m

1.823067 − (5.26E − 12) exp{26.000041a} + 0.035775 exp{0.529991a}

if m ≤ a < 1

0 elsewhere.

where m = (1 − α)/(2 − α − β) = 0.85 and

d− =
(α−1)(α+β−3)−

√
(β−1)(α−1)(α+β−3)

(α+β−3)(α+β−2)
= 0.493.

The MTE potential for A is shown graphically in Figure 11, overlayed on the
actual Beta(2.7, 1.3) distribution.

The probability distribution for B is defined as £(B | a) ∼ N(2a+ 1, 0). The
conditional distribution for B is represented by a CMF as follows:

β(a, b) = pB|a(a, b) = 1{b = 2a + 1}(a, b) .

The probability distribution for C is defined as £(C | b) ∼ N(2b+ 1, 1). This
distribution is modeled with the MTE approximation to the normal PDF
(denoted by δ) from [1].
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Fig. 11. The MTE potential for A overlayed on the actual Beta(2.7, 1.3) distribution.

B {B,C} CA {A,B}

Ceα β δ

Fig. 12. The join tree for the example problem.

5.2 Computing Messages

The join tree for the example problem is shown in Figure 12.

The messages required to calculate prior marginals for each variable in the
network without evidence are as follows:

1) α from {A} to {A,B}
2) (α ⊗ β)−A from {A,B} to {B} and {B} to {B,C}
3) ((α ⊗ β)−A ⊗ δ)−B from {B,C} to {C}

5.3 Prior Marginals

The prior marginal distribution for B is the message sent from {A,B} to
{B,C}. The expected value and variance of this distribution are calculated
as 2.3488 and 0.1758, respectively. The prior marginal distribution for C is
the message sent from {B,C} to {C}. The expected value and variance of
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Fig. 13. The prior marginal distributions for B (left) and C (right).
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Fig. 14. The posterior marginal distribution for B considering the evidence C = 6.

this distribution are calculated as 5.6975 and 1.6851, respectively. The prior
marginal distributions for B and C are shown graphically in Figure 13.

5.4 Entering Evidence

Assume evidence exists that C = 6 and define eC = 6. Define η = (α ⊗ β)−A

and ϑ(a, b) = pA|b(a, b) = 1{a = 0.5b − 0.5}(a, b) as the potentials resulting
from the reversal of the arc between A and B . The evidence eC = 6 is passed
from {C} to {B,C} in the join tree, where the existing potential is restricted
to δ(b, 6). This likelihood potential is passed from {B,C} to {B} in the join
tree.

Denote the unnormalized posterior marginal distribution for B as ξ′(b) = η(b)·
δ(b, 6). The normalization constant is calculated as K =

∫
b(η(b) · δ(b, 6)) db =

0.2344. Thus, the normalized marginal distribution for B is found as ξ(b) =
K−1 · ξ′(b). The expected value and variance of this distribution (which is
displayed in Figure 14) are calculated as 2.5049 and 0.0771, respectively.
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Fig. 15. The posterior marginal distribution for A considering the evidence (c = 6).

Using the results of Proposition 1, we determine the posterior marginal dis-
tribution for A. Define θ = (ξ ⊗ ν)−B as:

θ(a) =
1

0.5
ξ (2a + 1) .

The CMF ν(a, b) = pB|a(a, b) = 1{b = 2a + 1}(a, b) is obtained by reversing
the arc between A and B in Figure 10. The expected value and variance of this
distribution are calculated as 0.7525 and 0.0193, respectively. The posterior
marginal distribution for A considering the evidence is shown graphically in
Figure 15.

6 Summary and Conclusions

This paper has described operations required for inference in continuous Bayesian
networks containing variables that are linear conditionally deterministic func-
tions of their parents. Since the joint PDF for a network with deterministic
variables does not exist, the operations presented are derived from the method
of convolutions in probability theory. Similar operations to those presented in
this paper are incorporated in an inference algorithm for hybrid Bayesian net-
works (containing discrete and continuous variables) in [3]. This algorithm
requires a “mixed potential” representation to accommodate mixed distribu-
tions. Nonlinear deterministic relationships can be accommodated in continu-
ous Bayesian networks by extending the operations in this paper to piecewise
linear functions which approximate nonlinear functions, as shown in [2].
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