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Abstract
This paper presents a new axiomatic decision theory for choice un-

der uncertainty. Unlike Bayesian decision theory where uncertainty
is represented by a probability function, in our theory, uncertainty is
given in the form of a likelihood function extracted from statistical ev-
idence. The likelihood principle in statistics stipulates that likelihood
functions encode all relevant information obtainable from experimental
data. In particular, we do not assume any knowledge of prior probabil-
ities. Consequently, a Bayesian conversion of likelihoods to posterior
probabilities is not possible in our setting. We make an assumption
that defines the likelihood of a set of hypotheses as the maximum like-
lihood over the elements of the set. We justify an axiomatic system
similar to that used by von Neumann and Morgenstern for choice un-
der risk. Our main result is a representation theorem using the new
concept of binary utility. We also discuss how ambiguity attitudes are
handled. Applied to the statistical inference problem, our theory sug-
gests a novel solution. The results in this paper could be useful for
probabilistic model selection.
Keywords : decision theory; choice under uncertainty; likelihood; sta-
tistical inference, ambiguity attitude.
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1 Introduction

Various formal decision theories for choice under risk and uncertainty have
been studied since the seminal work by von Neumann-Morgenstern (vNM)
[37] where the expected utility maximization principle was formally estab-
lished. With few exceptions, a common feature in these theories is the use of
probability to express uncertainty in decision situations. As the value of an
axiomatic model is based on the acceptability of its assumptions, the debate
on the value of the vNM theory started almost immediately with their pub-
lication [2]. As the result of this ongoing debate, axiomatic systems that are
weaker than vNM but still possess the expected utility representation have
been investigated [16, 32, 31]. There is also a recognition that the uncer-
tainty that one usually associates with the words “ambiguity”, “vagueness”
and “fuzziness” are not the same kind as that associated with “risk.” The
latter is captured by standard numerical probability.

In this paper1, we consider a class of choice problems where uncertainty is
characterized by likelihood functions. This class includes a typical statistical
inference problem that is formulated as follows. Suppose we are to analyze a
statistical experiment on a random variable Y given (i) Y follows one of the
distributions in F = {Pθ|θ ∈ Ω} parameterized by θ; and (ii) the outcome
of the experiment is Y = y. The question is: what can we conclude about
the true value of parameter θ?

There is consensus among statisticians about what information sample y
brings to the unknown parameter. According to the likelihood principle, one
of the fundamental principles of statistics [8, 5, 4], all relevant information
of the sample is encoded in the likelihood function on the parameter space.
And the consensus also ends at this point. The statistical inference problem
is treated differently by different approaches [3].

According to the decision-theoretic approach advocated by Wald [38],
the inference problem is viewed as a choice problem. For example, in the
context of a hypothesis testing problem, the choice is to either accept or
reject a hypothesis. Within the decision-theoretic approach there are several
variations. Wald’s maximin decision rule selects an action that delivers the
most favorable worst-case outcome. A Bayesian treatment of the problem
suggests a calculation of posterior probability function on Ω via Bayes’s
theorem from the likelihood function by assuming a prior distribution. Given
the posteriors, actions are compared on the basis of their expected utility.

1A preliminary version of this work has appeared in the Proceedings of 18th Conference
on Uncertainty in Artificial Intelligence (UAI 2002) [20].
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In this paper, we proposes a third alternative. We construct a decision
theory that works directly with likelihood information. We choose to treat
likelihood as uncertainty in its own right for a simple reason: priors are not
known in many situations.

The problem of probabilistic model selection in the areas of AI, machine
learning, pattern recognition and data mining is an example of the statistical
inference problem. Given a (training) data set y, researchers construct a
probabilistic model P (e.g., a Bayesian net) that generates/fits the data
and then use this model for inference with future observations. Because
there are, almost always, more than one models that emerge as plausible
candidates, model selection is an essential part of model construction.

This paper is organized as follows. In the next section, we discuss ex-
tending likelihood functions to an uncertainty measure—a function on the
set of subsets of possible worlds. In the main part (section 3), we develop
a decision theory for likelihood uncertainty. We begin by proposing a set of
five axioms. They are justified by intuition as well as by stochastic domi-
nance principle. Next, we introduce the concept of binary utility and prove
the expected utility theorem for likelihood lotteries. That is followed by
comments on related works. In section 4, we apply our decision theory for a
problem of statistical inference. Finally, section 5 contains some concluding
remarks.

2 Likelihood as Uncertainty Measure

Let us consider the statistical inference problem as described earlier. Al-
though the phenomenon under study is described probabilistically (by a set
of probability functions F), the uncertainty pertaining to the choice prob-
lem is not. It is a likelihood function. The term ‘likelihood’ used in modern
statistics was coined by R. A. Fisher who mentioned it as early as 1922
[17]. Fisher used likelihoods to measure “mental confidence” in competing
scientific hypotheses as a result of a statistical experiment (see [13] for a
detailed account). Likelihood has a puzzling nature. For each θ ∈ Ω, there
is a likelihood quantity that by magnitude equals Pθ(y) – the probability
(or probability density in case of infinite Ω)2 of observing y if θ is in fact the
true value of the parameter. However, if we view the set of likelihood quan-

2One can write Pθ0(y) in the form of a conditional probability: P (Y = y|θ = θ0). The
latter notation implies that there is a probability measure on parameter space Ω. This is
the case for the Bayesian approach. In this paper, we do not assume such a probability
measure. So we will stick with the former notation.
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tities as a function on the parameter space, we have a likelihood function.
A likelihood function is not a probability function. For a simple reason, the
sum of all likelihood values (over the parameter space) may not add to unity.
Moreover, likelihood functions are equivalent up to a proportional constant.

To emphasize the fact that a likelihood function is tied to data y and has
θ as the variable, the notation liky(θ) is used instead of Pθ(y). Technically,
probability and likelihood are two kinds of animals, but they are as close
as mule and donkey. This proximity is the reason for an intertwining rela-
tionship. Obviously, (posterior) probability is derived from likelihood and
priors via Bayes theorem. Since such priors are supposed to summarize the
information about the parameter before the experiment is conducted, the as-
sumption of its existence is beyond the realm of science as many statisticians
contend. Although in certain situations prior probability comes naturally,
there is no compelling argument why it must always be known to an exper-
imenter in all situations.

Another path from likelihood to probability, that bypasses the issue of
priors, was started by Fisher himself. He suggested to compute what he
called fiducial probabilities by normalizing the likelihoods (dividing by the
sum of likelihoods). Fisher’s idea has been shown to work for isolated ex-
amples and but it faces a serious difficulty when applied to general cases.
Some statisticians now believe that the fiducial probability is a mistake [3].

Belief function theory was proposed by Dempster [9] in an attempt to
overcome the difficulty of the fiducial argument. Shafer [34] is mainly re-
sponsible for turning Dempster’s idea into a full-fledged theory of evidence.
A basic construct in Dempster-Shafer theory is basic probability assignment
(BPA)

m : 2Ω → [0, 1] such that m(∅) = 0 and
∑
A⊆Ω

m(A) = 1 (1)

Value m(A) for A ⊆ Ω is called probability mass of A. If m(A) > 0 then A
is called a focus. A standard probability function is a belief function whose
foci are singletons. From a BPA, one can derive a plausibility function

Pl(A) def=
∑

B∩A �=∅
m(B) for all ∅ �= A ⊆ Ω (2)

BPA and plausibility have the same information content since the original
m can be recovered from Pl.

Shafer [34] proposes to represent statistical evidence by a belief function
with nested foci (consonant belief function or CBF ) such that plausibilities

4



on singletons are proportional to the likelihood values. Given a likelihood
function likx, the corresponding CBF is constructed as follows. Suppose likx

partitions Ω into {Ωi} according to its values Ωi = {ω|likx(ω) = ai} with
a1 > a2 . . . > ak. Then there are k foci (Ai) and k masses

Ai = ∪i
j=1Ωi and m(Ai) =

(ai − ai+1)
a1

(3)

where ak+1
def= 0.

A consequence of nested-focus structure is that plausibility function is
union decomposable i.e., for A,B ⊆ Ω

Pl(A ∪ B) = max(Pl(A), Pl(B)) (4)

A crucial argument in favor of Shafer’s original3 proposal is that like-
lihood treatment in CBF is in agreement with the maximum likelihood
method (ML) of statistics. In ML, the likelihood assigned to a set of hy-
potheses is taken to be the maximum of the likelihoods of individual hy-
pothesis in the set. The idea of taking the maximum individual likelihood
as the likelihood for a set has been a standard practice since the publication
of seminal papers [29] by Neyman and Pearson (1928). ML is not only in-
tuitively appealing, but it is also backed by various asymptotic optimality
properties [25, 26].

We will use different notation than one in [34]. We want to emphasize
the nature of likelihood and avoid belief function connotations. While Shafer
is mainly interested in representing and reasoning with evidence, our goal is
decision making. Let us define an extended likelihood function Liky : 2Ω →
[0, 1] as follows.

Liky(θ) def=
liky(θ)

supω∈Ω liky(ω)
=

liky(θ)
liky(θ̂)

for θ ∈ Ω (5)

where θ̂ is the maximum likelihood estimate of θ.

Liky(A) def= sup
ω∈A

Liky(ω) for A ⊆ Ω (6)

3Shafer [35] later renounces his idea on the ground that the set of CBFs is not closed
under Dempster’s rule of combination, which is the standard rule to combine two distinct
pieces of evidence. It implies that representation of compound evidence is not the same
as the combination of individual evidences. However, later Walley [39] shows that Demp-
ster’s rule is not compatible with the likelihood principle, and therefore is not suitable
for combining statistical evidence. He also shows that set of CBFs is closed under an
alternative combination rule. With respect to conditioning Dempster’s rule and Walley’s
alternative are identical.
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After learning that the true value of parameter is in a subset of the parameter
space B ⊆ Ω such that Liky(B) > 0, one should condition the extended
likelihood function by the following equation.

Liky(A|B) def=
Liky(A ∩ B)

Liky(B)
(7)

This definition of likelihood conditioning is derived from Dempster’s rule of
combination applied for a consonant belief function in plausibility form. It
also conforms to the likelihood principle as the following example demon-
strates.

We use the convention Liky(∅) = 0. Some properties of Lik follow directly
from its definitions.

Lemma 1
(i) Liky(Ω) = 1
(ii) Liky(A ∪ B) = max{Liky(A), Liky(B)}
(iii) max{Liky(A), Liky(Ā)} = 1 where Ā is the complement of A in Ω
(iv) If A ⊆ B then Liky(A) ≤ Liky(B)

Example: A r.v. Y is known to have a normal distribution. It is also
known that mean µ ∈ {0, 1} and standard deviation σ ∈ {1, 1.5}. Suppose
that value y = 1.4 is observed. We want to calculate the extended like-
lihood function representing uncertainty about unknown parameters. The
unknown parameter θ = (µ, σ). Ω = {ω1, ω2, ω3, ω4} with ω1 = (0, 1), ω2 =
(0, 1.5), ω3 = (1, 1), ω4 = (1, 1.5). Let A denote event µ = 0, B denote
µ = 1, C denote σ = 1 and D denote σ = 1.5. That means A = {ω1, ω2},
B = {ω3, ω4}, C = {ω1, ω3} and D = {ω2, ω4}. In the first row are

ω1 ω2 ω3 ω4 A B C D
lik1.4(∗) 0.1497 0.1721 0.3683 0.2567 n.a. n.a. n.a. n.a.
Lik1.4(∗) 0.4065 0.4673 1.0000 0.6970 0.4673 1 1 0.6970
Lik1.4(∗|D) 0.0000 0.6704 0.0000 1.0000 0.6704 1 0 1.0000

Table 1: Likelihood, extended likelihood and conditioning

densities at 1.4 of normal probability density function given a configu-
ration of mean µ and standard deviation σ: f(1.4|µ, σ). For example,
f(1.4|µ = 0, σ = 1) = 0.1497. Obviously, density is not defined for a set of
configurations (A,B,C or D). Eq. 6 is used to calculate the second row.

Suppose in addition to that, it becomes known that σ = 1.5. From
a statistical point of view, in the new situation mean µ is the unknown
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parameter of interest. The likelihoods of µ = 0 and µ = 1 are 0.1721
and 0.2567 respectively. The likelihood ratio is 0.6704. In terms of ex-
tended likelihood, the new situation is coded by conditional Lik1.4(·|D). This
yields Lik1.4(ω1|D) = Lik1.4(ω3|D) = Lik1.4(C|D) = 0 and Lik1.4(A|D) =
Lik1.4(ω2)/Lik1.4(D) = 0.6704 and Lik1.4(B|D) = Lik1.4(ω4)/Lik1.4 = 1.
The ratio of extended likelihoods of µ = 0 and of µ = 1 is 0.6704. Keeping
in mind that the likelihood principle holds that the ratio of likelihoods is
what matters, we see that our definition of conditioning of extended likeli-
hoods conforms to the standard practice in statistics.

It is worth noting that while our derivation of the extended likelihood
(CBF) is motivated by statistical considerations, the properties listed in
Lemma 1 are also the defining properties of a possibility measure [40, 12].
What distinguishes a possibility function from a CBF is its fuzzy set seman-
tics and, consequently, the notion of ordinal conditioning :

π(A|B) =

{
1 if π(A ∩ B) = π(A)
π(A ∩ B) otherwise

(8)

Technically, possibility theory can entertain both notions of conditioning:
the ordinal (Eq. 8) and the numerical one specified by Eq. 7. In this sense,
extended likelihood is a possibility measure equipped with numerical con-
ditioning.4 It is not difficult to check (using the previous example) that if
Lik was updated using ordinal conditioning then the result would not be
consistent with the likelihood principle.

3 A Decision Theory with Likelihood Uncertainty

Let us formalize the decision problem we will study. We assume a decision
situation that includes a set Ω of simple hypotheses (parameter space); a set
X of consequences/rewards and an observation y. The uncertainty about
hypotheses is expressed by an extended likelihood function π calculated from
y. An action a is a mapping Ω → X i.e., the consequence of an action is
determined by which hypothesis is true. It should be noted that the states
on which rewards are dependent on are not observable. The set of actions
is denoted by A. For the sake of clarity, we assume that X is finite and its
elements are denoted by x1, x2, . . . xr.

4Dubois, Moral and Prade [11] show that a possibility measure is the result of tak-
ing supremum on a family of likelihood functions. On that semantics, the min rule for
combination of possibility measures is justified.
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A simple likelihood lottery is an action coupled with a likelihood mea-
sure. Each lottery is a mechanism that delivers rewards with associated
likelihoods. Formally, a lottery L induced by π and a is a mapping from
X → [0, 1] such that L(x) = π(a−1(x)) for x ∈ X where a−1 is a set-
valued inverse mapping of action a. For the remainder of this paper, we
denote a simple lottery by [L(x1)/x1, L(x2)/x2, . . .] with convention that
those xj for which L(xj) = 0 are omitted. In this notation, a consequence
x ∈ X is identified with a unary lottery [1/x]. Notice that for any lottery
[Li/xi]mi=1, ∪1≤i≤ma−1(xi) = Ω. Since π is an extended likelihood function
and Li = π(a−1(xi)), therefore, max1≤i≤m Li = 1.

We also consider compound lotteries whose rewards are other lotteries.
The set of lotteries is denoted by L.

3.1 Axioms

We study preference relation 
 on the set of lotteries L (
 ⊆ L2). Indif-
ference ∼ and strict preference � relations are derived from 
. L1 ∼ L2

iff L1 
 L2 & L2 
 L1. L1 � L2 iff L1 
 L2 & L2 �
 L1. We postulate
that 
 satisfies five axioms similar to those proposed by von Neumann and
Morgenstern for the classical linear utility theory (in the form presented in
[28]). They are as follows.

(A1) Order. 
 is reflexive, transitive and complete.

Since the consequences in X are special lotteries, 
 is also the order on
consequences. We can assume that x1 
 x2 
 . . . 
 xr with x1 � xr.
In some cases to make clear we are dealing with the best and the worst
consequences, special notations are used for x1 and xr namely, x ≡ x1 and
x ≡ xr. A lottery that involves only the best x and the worst consequences
x as potential outcomes is called a canonical lottery. The set of canonical
lotteries is denoted by Lc.

(A2) Reduction of compound lotteries.
Let L = [δ1/L1, δ2/L2 . . . δk/Lk] and Li = [κi1/x1, κi2/x2, . . . κir/xr]
then L ∼ [κ1/x1, κ2/x2, . . . κr/xr] with κj = max1≤i≤k{δi.κij}

(A3) Substitutability.
If Li ∼ L′

i then [δ1/L1, . . . δi/Li . . . δk/Lk] ∼ [δ1/L1, . . . δi/L
′
i . . . δk/Lk]

(A4) Existence of equivalent canonical lottery.
For each x ∈ X there is a s ∈ Lc such that x ∼ s.
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(A5) Qualitative monotonicity.

[λ/x, µ/x] 
 [λ′/x, µ′/x] iff (λ ≥ λ′)&(µ ≤ µ′) (9)

Among the axioms, A1 and A3 are standard assumptions about a preference
relation.

A2 is an implication of the conditioning operation. Suppose that the
unknown parameter θ is a vector. We can think, for example, θ = (γ, σ).
Let us consider a compound lottery L = [δ1/L1, δ2/L2, . . . , δk/Lk] where
Li = [κi1/x1, . . . , κir/xr] for 1 ≤ i ≤ k. Underlying L, in fact, is a two-stage
lottery. The first stage is associated with a scalar parameter γ. It accepts
values γ1, γ2, . . . γk with likelihoods δ1, δ2, . . . δk respectively. If γi is the true
value, the holder of L is rewarded with simple lottery Li that, in turn, is
associated with scalar parameter σ that accepts σoi(1), σoi(2), . . . σoi(r) with
likelihoods κi1, κi2, . . . κir where oi is a permutation of (1, 2, 3, . . . r). When
σoi(j) obtains, the holder is rewarded with consequence xj.

Let us consider another one-stage lottery L′ that delivers xj in case tuple
< γiσoi(j) > is the true value of θ for 1 ≤ i ≤ k. Because of conditioning
equation 7, we have

Lik(γiσoi(j)) = Lik(γi)Lik(σ = σoi(j)|γ = γi) = δi.κij (10)

The set of tuples for which xj is delivered is {<γiσoi(j) > |1 ≤ i ≤ k}. Thus,
the extended likelihood associated with consequence xj in lottery L′

Lik({γiσoi(j)|1 ≤ i ≤ k}) = max{δi.κij |1 ≤ i ≤ k} (11)

Since L and L′ have the property that no matter what is the true value of θ,
the consequences they deliver are always the same, we require L ∼ L′ which
is axiom A2. Figure 1 shows an example where k = 2 and r = 2, o1(1) = 1,
o1(2) = 2, o2(1) = 2 and o2(2) = 1.

Axiom A4 requires that for any consequence x ∈ X there is a canonical
lottery c = [λ1/x, λ2/x] such that x ∼ c. For clarity, let us assume that
x = 1, x = 0 (the argument remains valid for any real values of x and x
as long as x > x). For any x ∈ [0, 1], we need to find a canonical lottery c
equivalent to x. We will describe a likelihood gamble for this purpose.

There are three parties in this game: the Arbiter, the House and the
Player. The goal of the game is to gauge binary utility function for the
Player. The game plays as follows. The Arbiter preselects a single parameter
probability distribution fθ. She also predetermines 2 values {θ1, θ2} that she
will use for the unknown parameter. Probability distribution fθ as well as
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Figure 1: Two-stage L and one-stage L′ are equivalent

the possible values of the parameter are revealed to all parties. For example,
a normal distribution5 with given standard devision σ = 1 can be used as
fθ where θ is unknown mean and θ ∈ {−1,+1}.

The Arbiter secretly picks a value θ in {θ1, θ2} then generates a value y
from fθ. The mechanism used by the Arbiter to pick the value θ is unknown
to both the Player and the House. Both the Player and the House are told
about the data y. The House offers a gamble that pays x to the Player if
the value actually used by the Arbiter to generate the observation is θ1 and
x if it is θ2. What is the highest price the Player would be willing to pay
for this gamble? If the answer is x, then for the Player,

x ∼ [Liky(θ1)/x,Liky(θ2)/x] (12)

where Liky(θ1) ∝ fθ1(y) and Liky(θ2) ∝ fθ2(y).
One can repeat this gamble any number of times to get a table of cor-

respondence between xi and [Likyi(θ1)/x,Likyi(θ2)/x]. What we assume in
A4 is that we can make the table rich enough so that for any x ∈ X we can
look up the table for an equivalent [Liky(θ1)/x,Liky(θ2)/x].

Comparing the likelihood gamble with a probabilistic gamble6 used in
practice to extract decision maker’s (unary) utility, we see a number of
important differences. First, instead of r.v. with a known distribution, e.g.,
tossing a fair coin or rolling a dice, a partially specified probability model
is used. Second, the rewards for the Player in the likelihood gamble are
dependent, not on an observation (y) but on the unobservable true value of

5Any other distribution will work as fine.
6Suppose u($0) = 0 and u($1) = 1, and d the price a decision maker is willing to pay

for a gamble that pays $1 if a toss of a fair coin turns Head and $0 if it turns Tail, then
u(d) = 0.5
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the parameter (θ). In this sense, a likelihood gamble is a simple hypothesis
testing problem because the Player needs to decide which of two hypotheses
θ = θ1 or θ = θ2 is true. The relationship is made clear in Figure 5.

What kind of betting behavior should be expected from a rational de-
cision maker? Certain patterns should be excluded as irrational. In the
example of a likelihood gamble that uses a normal distribution with known
s.d. σ = 1 and pays $1 if mean is −1 and 0 if it is 1, paying $0.20 for
the gamble if y = −3 and paying $0.70 if y = 1 would be irrational. Intu-
itively, observation y = −3 lends more support to hypothesis θ = −1 than
observation y = 1. Let us formalize this intuition. We impose a mild con-
straint in the form of monotonicity axiom (A5). Basically, we require that
the price for lottery [λ/1, µ/0] is greater or equal to the price for [λ′/1, µ′/0]
if the likelihood of getting 1 in the former is higher than that of the latter
(λ ≥ λ′) and likelihood of getting 0 in the former is less than that of the
latter (µ ≤ µ′).

We justify A5 on the basis of first order stochastic dominance (FSD).
Not being strictly Bayesian, we won’t assume to know the prior probability
of P (θ = θ1), but we will assume that such a prior exists. This situation
can be modeled by viewing the prior of θ = θ1 as a r.v. ρ taking value in
the unit interval. The distribution of ρ is unknown to us. We calculate the
posterior of θ = θ1 given y and ρ.

Pρ(θ = θ1|y) =
ρ · Liky(θ1)

ρ · Liky(θ1) + (1 − ρ) · Liky(θ2)
(13)

The expected payoff of the likelihood gamble

Vy(ρ) = Pρ(θ = θ1|y) · x + Pρ(θ = θ2|y) · x (14)
= x + Pρ(θ = θ1|y) · (x − x) (15)

With x−x > 0, Vy(ρ) is a strictly increasing function of Pρ(θ = θ1|y). When
x = 1 and x = 0, Eq. 15 is further simplified to Vy(ρ) = Pρ(θ = θ1|y). Being
a function of ρ, Vy(ρ) is a r.v.

The concept of stochastic dominance (SD) has been used extensively
in economics, finance, statistics [27]. Suppose X and Y are two distinct
r.v. with the cumulative distributions F and G respectively. We say that
X stochastically dominates (to the first degree) Y (written as XD1Y ) iff
F (x) ≤ G(x) ∀x. Since X and Y are distinct, strict inequality must hold for
at least one value x. FSD is important because of the following equivalence:
X stochastically dominates (first order) Y iff the expected utility of X is
greater than or equal to the expected utility of Y for all non-decreasing
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utility functions i.e., XD1Y iff E(u(X)) ≥ E(u(Y )) ∀u ∈ U where U the
class of non-decreasing utility functions and E(.) is the expectation operator.

In the immediately following discussion, we will assume x = 1 and x = 0
for the sake of clarity without any loss on generality.

Lemma 2 For ρ ∈ (0, 1)

Vy(ρ) > Vy′(ρ) iff [Liky(θ1)/1, Liky(θ2)/0] � [Liky′(θ1)/1, Liky′ (θ2)/0] (16)

Proof: By Eq. 15, Vy(ρ) > Vy′(ρ) iff Pρ(θ = θ1|y) > Pρ(θ = θ1|y′). By
Eq. 13, Pρ(θ = θ1|y) > Pρ(θ = θ1|y′) iff

Liky(θ1)
Liky(θ2)

>
Liky′(θ1)
Liky′(θ2)

(17)

Because max(Liky(θ1), Liky(θ2)) = max(Liky′(θ1), Liky′(θ2)) = 1, there are 4
cases to consider. Eq. 17 excludes the case where Liky(θ2) = Liky′(θ1) = 1.
For 3 remaining cases, we have (a) If Liky(θ1) = Liky′(θ1) = 1, Eq. 17
holds iff Liky(θ2) < Liky′(θ2); (b) If Liky(θ2) = Liky′(θ2) = 1, Eq. 17 holds
iff Liky(θ1) > Liky′(θ1); (c) If Liky(θ1) = Liky′(θ2) = 1, Eq. 17 holds iff
either Liky(θ2) < 1 or Liky′(θ1) < 1. By Eq. 9, we have Eq. 17 holds iff
[Liky(θ1)/1, Liky(θ2)/0] � [Liky′(θ1)/1, Liky′ (θ2)/0].

Theorem 1 Suppose ρ is a r.v. taking values in the unit interval. Then
Vy(ρ) stochastically dominates (first degree) Vy′(ρ) iff

[Liky(θ1)/1, Liky(θ2)/0] � [Liky′(θ1)/1, Liky′ (θ2)/0]

Proof: (⇒): For any v ∈ (0, 1), let us denote the roots of equations Vy(ρ) =
v and Vy′(ρ) = v by ρv and ρ′v respectively i.e., Vy(ρv) = v and Vy′(ρ′v) = v. If
[Liky(θ1)/1, Liky(θ2)/0] � [Liky′(θ1)/1, Liky′ (θ2)/0] then by Eq. 16 Vy(ρv) >
Vy′(ρv). Therefore, Vy′(ρ′v) > Vy′(ρv). Because Vy′(ρ) is strictly increasing,
we infer ρv < ρ′v. Since Vy(ρ) and Vy′(ρ) are increasing, P (Vy(ρ) ≤ v) =
P (ρ ≤ ρv) and P (Vy′(ρ) ≤ v) = P (ρ ≤ ρ′v). Because ρv < ρ′v, P (Vy(ρ) ≤
v) ≤ P (Vy′(ρ) ≤ v). This last inequality means Vy(ρ) D1 Vy′(ρ).
(⇐): If for all 0 < x < 1, Vy(x) ≤ Vy′(x), then assumption Vy(ρ)D1Vy′(ρ) is
violated. Otherwise, Eq. 16 implies that

[Liky(θ1)/1, Liky(θ2)/0] � [Liky′(θ1)/1, Liky′ (θ2)/0]

The order on canonical lotteries stipulated by axiom A5 is the order by
first degree stochastic dominance of their expected payoffs if the prior is
r.v. In Figure 2, the lower curve is the graph for V0.60(ρ) (at Y = .6, the
corresponding lottery is [.3011/1, 1/0]) and the upper curve is the graph for
V0.26(ρ) ([.5945/1, 1/0]). This completes our justification for the five axioms.
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Figure 2: Expected payoff functions for y = .60 (lower curve) and y = .26
(upper curve)

3.2 Binary Utility

We will now proceed to study the preference relation satisfying the axioms.
The following lemma shows that the set of lotteries divided by the indiffer-
ence relation (L/ ∼) is isomorphic to the set of canonical lotteries (Lc).

Lemma 3 If the preference relation 
 on the set of lotteries L satisfies
axioms A1 though A5, then for each lottery there exists one and only one
canonical lottery indifferent to it.

Proof: We prove the existence of indifferent canonical lottery by induction
on the depth of lottery trees. For a constant lottery (of depth 0), because of
A4, each consequence xi is indifferent to a canonical lottery si. Let assume
xi ∼ si = [κi1/x, κir/x] for 1 ≤ i ≤ r.

A lottery of depth 1 is a simple lottery. If it is a canonical lottery, by
reflexivity, a canonical lottery is indifferent to itself. For a simple lottery L =
[π1/x1, π2/x2, . . . , πr/xr], by A3, L ∼ L1 where L1 = [π1/s1, π2/s2, . . . , πr/sr].
L1 can be reduced to a canonical lottery L2 such that L1 ∼ L2 as follows.
Let us write a canonical lottery si in the form [κi1/x, κi2/x2, . . . , κir/x] with
κij = 0 for 2 ≤ j ≤ r−1. By A2, L1 ∼ L2 where L2 = [κ1/x, κ2/x2, . . . , κr/x]
with κj = max{πi.κij |1 ≤ i ≤ k}. Since κij = 0 for 2 ≤ j ≤ r − 1, we have
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κj = 0 for 2 ≤ j ≤ r − 1. Thus, L2 is a canonical lottery. By transitivity,
L ∼ L2.

Suppose for any lottery of depth not greater than n, there is a canonical
lottery indifferent to it. For a lottery L of depth n + 1. This lottery is a
compound lottery whose consequences are lotteries of depth not greater than
n. Because of induction hypothesis, each consequence of L is indifferent to a
canonical lottery. By substitutability, L is indifferent to a compound lottery
of depth 2 which, in turn, is indifferent to a canonical lottery by induction
hypothesis. By transitivity, L is indifferent to some canonical lottery.

Finally, we have to show that there is only one canonical lottery indiffer-
ent to a given lottery. Suppose there are two canonical lotteries s1, s2 ∈ Lc

such that s1 ∼ L and s2 ∼ L. By A1, we have s1 ∼ s2. But by A5, this is
possible only if s1 = s2.

The significance of Lemma 3 is that it reduces a comparison of lotteries to
one of canonical lotteries that have a simple structure and a straightforward
interpretation. We want to represent 
 by a utility function so that a
comparison of lotteries can be done through the calculation of their utilities.
Our main idea here is to use as a utility scale a set that is isomorphic to the
set of canonical lotteries. Let us define

U def= {〈a, b〉|a, b ∈ [0, 1] and max(a, b) = 1}. (18)

In words, U is the set of pair of numbers in the unit interval such that one
of them is 1. A linear order —� on U (to distinguish from the order ≥ on
scalars) is defined as

〈a, b〉 —� 〈a′, b′〉 iff

⎧⎪⎨
⎪⎩

a = a′ = 1 & b ≤ b′, or
a = 1 & a′ ≤ 1, or
a ≥ a′ & b = b′ = 1

(19)

Strict preference ( � ) and indifference (=) derivatives are also used. The
special structure of U allows a simplification of order definition given in
Eq. 19. The proof of the following lemma is straightforward and is therefore
omitted.

Lemma 4 For 〈a, b〉, 〈a′, b′〉 ∈ U

〈a, b〉 � 〈a′, b′〉 iff (a > a′) ∨ (b < b′) (20)
〈a, b〉 —� 〈a′, b′〉 iff (a ≥ a′) ∧ (b ≤ b′) (21)

〈a, b〉 = 〈a′, b′〉 iff (a = a′) ∧ (b = b′) (22)

14
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Figure 3: Binary utility scale U .

We refer to U equipped with order —� as the binary utility scale. Roughly,
we can interpret two components in a utility value as indices of goodness
(first) and badness (second). One binary utility value is better than an-
other if the goodness index of the former is higher than that of the latter or
the badness index of the former is smaller than badness index of the latter.
Note that this binary utility is a special case of the lexicographic utility
[15]. Lemma 4 shows that two indices have symmetrical roles, no one has
precedence over the other. One index is used as tie breaking in case equality
holds for the other index.

To operate on binary utilities, we extend7 product and max operations
to work with pairs as follows. For scalar α, β, π and γ

α.〈β, γ〉) def= 〈α.β, α.γ〉 (23)

max(〈α, β〉, 〈γ, π〉) def= 〈max(α, γ),max(β, π)〉 (24)

We have some properties of the extended max operation. The proof is
straightforward and is therefore omitted.

Lemma 5 (i) U is closed under max i.e., u, u′ ∈ U then max(u, u′) ∈ U .
(ii) max is monotone on each argument, for example, max(u, v) —� max(u, v′)
if v ≥ v′.

3.3 Representation Theorem

A utility function is a mapping from the set of lotteries into the utility scale
U : L → U . We say that a preference relation 
 is represented by a utility
function U whenever L 
 L′ iff U(L) —� U(L′). For a function f defined on
set X, we let f(X) denote {f(x)|x ∈ X}. We have the following theorem.

7We have decided in favor of “overloading” operations product and max instead of cre-
ating new symbols. Hopefully, this slight abuse of notation does not lead to any confusion
because the type of arguments will indicate which rule to apply.
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Theorem 2 
 on L satisfies axioms A1 through A5 if and only if there
exists a utility function QU : L → U representing 
 such that 〈1, 0〉, 〈0, 1〉 ∈
QU(X) and

QU([π1/L1, . . . , πk/Lk]) = max
1≤i≤k

{πi.QU(Li)} (25)

Proof:
(⇒) Suppose 
 satisfies the axioms. We will show that there exists a func-
tion QU : L → U that satisfies Eq. 25 and represents 
 . We construct func-
tion QU as follows. For a canonical lottery, define QU([λ/x, µ/x]) = 〈λ, µ〉.
Obviously, 〈1, 0〉, 〈0, 1〉 ∈ QU(X). For any lottery L, by Lemma 3, there
exists a unique canonical s such that L ∼ s, we set QU(L) = QU(s). Obvi-
ously, QU is well defined. By Eqs. 9 and 19, for canonical lotteries s, s′ we
have s 
 s′ iff QU(s) —� QU(s′). That fact together with Lemma 3 and the
way by which QU is defined allow us to conclude QU represents 
 .

Now, we will show that QU satisfies Eq. 25. Consider depth-one lottery
L = [π1/x1, . . . , πr/xr]. By A4, each consequence xi is indifferent to a
canonical lottery, say si = [κi1/x, κir/x]. Therefore, QU(xi) = 〈κi1, κir 〉.
Consider lottery L′ = [π1/s1, π2/s2, . . . , πr/sr]. From A3, L ∼ L′. Using
A2 and the argument in the proof of Lemma 3, we have L′ is indifferent to
canonical lottery s = [κ1/x, κr/x] where

κl = max
1≤i≤r

{πi.κil} where l ∈ {1, r} (26)

Therefore, on one hand QU(L) = QU(L′) = QU(s) = 〈κ1, κr〉. On the other
hand,

max
1≤i≤r

{πi.QU(xi)} = max
1≤i≤r

{πi.〈κi1, κir〉} = max
1≤i≤r

{〈πi.κi1, πi.κir〉}
= 〈 max

1≤i≤r
{πi.κi1}, max

1≤i≤r
{πi.κir}〉 = 〈κ1, κr〉

Thus, we show QU(L) = max1≤i≤r{πi.QU(xi)}. By induction on lot-
tery’s depth, we can prove this property for any lottery.
(⇐) Suppose 
q is represented by QU that satisfies Eq. 25 and 〈1, 0〉, 〈1, 0〉 ∈
QU(X) i.e., L 
q L′ iff QU(L) —� QU(L′). We show that 
q satisfies axioms
A1 through A5. A1 is satisfied because relation —� defined on U by Eq. 19
is reflexive, complete and transitive.
Let L = [π1/L1, . . . , πi/Li . . . , πk/Lk] and L′ = [π1/L1, . . . , πi/L

′
i, . . . , πk/Lk].

Assume Li ∼q L′
i. By definition of 
q, it means QU(Li) = QU(L′

i). Apply
Eq. 25 twice for compound lotteries L,L′. We see that the right-hand sides
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are identical. So the left-hand sides which are QU(L) and QU(L′) must be
equal. By definition of 
q, we have L ∼q L′. Thus, A3 is satisfied.

Let L = [π1/L1, π2/L2, . . . , πk/Lk] where Li = [κi1/x1, κi2/x2, . . . , κir/xr]
for 1 ≤ i ≤ k. Let us assume QU(xj) = 〈λj, µj 〉 for 1 ≤ j ≤ r. Apply Eq. 25
for Li and then L,

QU(Li) = max
1≤j≤r

{κij .〈λj , µj〉} = max
1≤j≤r

{〈κij .λj , κij .µj 〉}
= 〈 max

1≤j≤r
{κij .λj}, max

1≤j≤r
{κij .µj}〉

QU(L) = max
1≤i≤k

{πi.〈 max
1≤j≤r

{κij .λj}, max
1≤j≤r

{κij .µj}〉}
= max

1≤i≤k
{〈πi. max

1≤j≤r
{κij .λj}, πi. max

1≤j≤r
{κij .µj}〉}

= 〈 max
1≤i≤k

{πi. max
1≤j≤r

{κij .λj}}, max
1≤i≤k

{πi. max
1≤j≤r

{κij .µj}}〉
= 〈 max

1≤i≤k
{ max
1≤j≤r

{πi.κij .λj}}, max
1≤i≤k

{ max
1≤j≤r

{πi.κij .µj}}〉
= 〈 max

1≤j≤r
max
1≤i≤k

{πi.κij .λj}, max
1≤j≤r

max
1≤i≤k

{πi.κij .µj}〉

Let us consider the simple lottery mentioned in A2: Ls = [κ1/x1, . . . , κr/xr]
where

κj = max
1≤i≤k

{πj .κij}
Apply Eq. 25 for Ls, we have

QU(Ls) = max
1≤j≤r

{κj .〈λj , µj 〉} = max
1≤j≤r

{〈κj .λj , κj .µj〉}
= max

1≤j≤r
{〈 max

1≤i≤k
{πj .κij .λj}, max

1≤i≤k
{πj.κij .µj}〉}

= 〈 max
1≤j≤r

max
1≤i≤k

{πj .κij .λj}, max
1≤j≤r

max
1≤i≤k

{πj .κij .µj}〉

Comparing the last expressions, we have QU(L) = QU(Ls). By definition of

q, L ∼q Ls. Thus, A2 is satisfied.

Denote by x, x the elements of X such that QU(x) = 〈1, 0〉 and QU(x) =
〈0, 1〉. By Eq. 19 and definition of 
q, we have x 
q x and x 
q x for all x ∈
X. For any canonical lottery [λ/x, µ/x] where max{λ, µ} = 1, by Eq. 25 we
have QU([λ/x, µ/x]) = max{λ.〈1, 0〉, µ.〈0, 1〉} = max{〈λ, 0〉, 〈0, µ〉} = 〈λ, µ〉.
Thus, by Eq. 19 we conclude that A5 is satisfied.

Finally, for x ∈ X, let assume QU(x) = 〈λ, µ〉. By above argument, we
have QU(x) = QU([λ/x, µ/x]). By definition of 
q we infer x ∼q [λ/x, µ/x].
Thus, A4 is satisfied.

While proposing axioms A1 through A5, we argue the rationale for each
axiom separately, but not the consistency of the axiom system as a whole.
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Figure 4: Qualitative utility calculation.

The fact that the axiom system is represented by a well defined utility
function proves that it is free from inconsistency. In particular, when L is a
simple lottery, Eq. 25 can be rewritten as

QU([π1/x1, . . . , πr/xr]) = max
1≤i≤r

{πi.QU(xi)} (27)

The form of QU in (27) resembles the vNM expected utility expression.
The expected utility of a probabilistic lottery p on X is defined as U(p) def=∑

1≤i≤r p(xi).U(xi).
Maximization in (27) plays the same role as its counterpart – addition –

in the vNM expected utility. This similarity leads us to refer to QU also as
expected qualitative utility function.

Figure 4 illustrates QU calculation for a two-stage lottery. Assuming
QU(x1) = 〈1, 0〉, QU(x2) = 〈1, .8〉 and QU(x3) = 〈0, 1〉, a roll-back calculation
shows that

QU([1/[.4/x1 , .7/x2, 1/x3], .5/[1/x1, .2/x3]]) = 〈.7, 1〉
Although qualitative and vNM utilities share fundamental structure, it

is important to emphasize that the qualitative utility is not just a simple
translation of vNM utility in a new language. Not all properties of vNM
utility hold for the qualitative version. Notably, the qualitative utility only
satisfies weaker versions of independence and Archimedian properties [24].

Theorem 3
(a) Suppose L1, L2, L3 ∈ L, λ, µ ∈ [0, 1] and max(λ, µ) = 1. If L1 
 L2,
then [λ/L1, µ/L3] 
 [λ/L2, µ/L3].
(b) Suppose L1, L2, L3 ∈ L such that L1 � L2 � L3. Then there exists
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λ, µ, λ′, µ′ ∈ [0, 1], max(λ, µ) = max(λ′, µ′) = 1 and 〈 λ, µ 〉, 〈 λ′, µ′ 〉 �∈
{〈0, 1〉, 〈1, 0〉} such that [λ/L1, µ/L3] � L2 and L2 � [λ′/L1, µ

′/L3].

Proof: Let us assume QU(Li) = 〈λi, µi〉 for i = 1, 2, 3.
(a) If L1 ∼ L2, then the conclusion is a result of substitutability. Suppose
L1 � L2. This means λ1 ≥ λ2 & µ1 ≤ µ2 and at least one of them is a strict
relation. Applying Theorem 2, we have

QU([λ/L1, µ/L3]) = 〈max(λ.λ1, µ.λ3),max(λ.µ1, µ.µ3)〉
QU([λ/L2, µ/L3]) = 〈max(λ.λ2, µ.λ3),max(λ.µ2, µ.µ3)〉

So, max(λ.λ1, µ.λ3) ≥ max(λ.λ2, µ.λ3), max(λ.µ1, µ.µ3) ≤ max(λ.µ2, µ.µ3).
This means QU([λ/L1, µ/L3]) —� QU([λ/L2, µ/L3]). By representation the-
orem

[λ/L1, µ/L3] 
 [λ/L2, µ/L3].

(b) L1 � L2 � L3 means λ1 ≥ λ2 ≥ λ3 & µ1 ≤ µ2 ≤ µ3 and for indices
1 ≤ i < j ≤ 3 either λi > λj or µi < µj. We will identify λ, µ ≥ 0 satisfying
max(λ, µ) = 1 such that [λ/L1, µ/L3] � L2. Since QU([λ/L1, µ/L3]) =
〈 max(λ.λ1, µ.λ3),max(λ.µ1, µ.µ3)〉, the requirement will satisfied if either
max(λ.λ1, µ.λ3) > λ2 or max(λ.µ1, µ.µ3) < µ2. If λ1 > λ2, choosing λ = 1
will satisfy the former inequality. Otherwise λ1 = λ2, we have then µ1 <
µ2. We choose λ = 1 and µ strictly positive and small enough so that
µ.µ3 < µ2. Thus max(λ.µ1, µ.µ3) < µ2. Similarly, we can choose λ′, µ′ so
that L2 � [λ′/L1, µ

′/L3].
Note that property (a) does not hold for strict preference. That is, in

general, we don’t have [λ/L1, µ/L3] � [λ/L2, µ/L3] if L1 � L2.

3.4 Related Work

In the AI literature, a number of decision models that do not assume prob-
ability have been studied [36, 7, 23]. Brafman and Tennenholtz [7] charac-
terize qualitative decision rules: maximin, minimax regret and competitive
ratios and maximax. They show that these different decision criteria are
equivalent in terms of representation power. These purely qualitative rules
ignore the uncertainty relevant to choice problem. Smets [36] proposes a
two-level decision model for Dempster-Shafer belief functions. At the credal
level, an agent uses belief functions to represent and reason with uncertainty.
When she needs to make decision she will translate a belief function into
probability using pignistic transformation. Basically, this transformation
allocates the probability mass that assigned to a focus equally to each of
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its element. Smets’ model is not able to handle ambiguity attitudes. For
example, when applied for Ellsberg’s paradox [14], this model produces an
unintuitive solution. Halpern [23] studies a very general uncertainty measure
called the plausibility measure. To make decisions, he defines an operation
that maps the product of consequence domain and plausibility domain into
a valuation domain. The order on valuation domain is defined by a decision
rule. In [19], we also study a decision making model for Spohn’s theory of
epistemic beliefs. This uncertainty measure is closely related to extended
likelihood, and can be interpreted as order-of-magnitude approximation of
probabilities or as degrees of plain beliefs.

More relevant to this work is an approach to decision making with pos-
sibility theory proposed by Dubois et al [10]. As noted earlier, a possibility
function satisfies equations (5, 6) that define an extended likelihood function.
The main difference is about the conditioning operation. Dubois et al use
the ordinal conditioning defined by Eq. 8. The likelihood conditioning (or
the numerical conditioning) is defined in Eq. 7. They distinguish two deci-
sion criteria: pessimistic and optimistic. For each decision criterion, there is
an axiom system and a qualitative utility functional representing preference
relation that satisfies the axioms. A detailed comparative analysis between
our approach vs the approach argued by Dubois et al is presented in [21].
We show that our approach, modified for ordinal conditioning, generalizes
and unifies pessimistic and optimistic decision criteria.

In our framework, a decision maker’s attitude toward ambiguity shows
itself in her basic utility assignment for consequences in X. Recall that the
indifference between a consequence and a (binary) utility value is determined
through a likelihood gamble. We will see that her betting behavior encodes
an interesting information, namely, her attitude toward ambiguity.

Suppose that our decision maker equates payoff x with canonical lottery
[λ/1, µ/0]. From the Bayesian decision theory point of view, this indif-
ference means that the expected payoff Vy(ρ) (with respect to prior ρ) of
the likelihood gamble is equal to x. Substitute x for Vy(ρ) and λ, µ for
Liky(θ1), Liky(1) into Eq. 13 and solve for ρ we find

ρ =
xµ

(1 − x)λ + xµ
(28)

We call ρ calculated by Eq. 28 an implicit prior8 for the obvious reason.
8It is necessary to note that the implicit prior value is unique for a single bet. A

betting behavior that implies different implicit priors for different likelihood gambles can
still be consistent with A5. For more details on the range of permissible priors, readers
are referred to [18].
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Figure 5: Risk and ambiguity in transformation from money to binary utility

When λ = µ = 1 we have ρ = x. Therefore, ρ can be interpreted as the
price the decision maker pays for a “fair” likelihood lottery [1/1, 1/0].

Recall that in the context of a likelihood gamble, ρ is the probability,
in Player’s judgment, that the Arbiter selects θ1 (on which x is contracted)
as the parameter value to generate the given observation. Thus inequality
ρ < 0.5 can be interpreted as that the Player a priori deems the bad outcome
is more likely than the good one. English language has a specific name for
the mental attitude that tends to emphasize adverse aspects – pessimism.
Similarly, the opposite ρ > 0.5 can be argued as a manifestation of optimism.
This definition of pessimism (optimism) is very different than the notion of
pessimism (optimism)9 put forward by Dubois et al. [10] where it is a
property of an axiom system attributed to a decision maker. In this paper,
however, pessimism (optimism) is a property attributed to a basic utility
assignment by a decision maker.

Another sensible terminology can be used for pessimism and optimism.
A betting behavior is said to exhibit ambiguity averse (ρ < 0.5), ambiguity
neutral (ρ = 0.5) or ambiguity seeking (ρ > 0.5) attitudes. It is useful to
analyze similarity as well as distinction between the notion of ambiguity
attitude and the established notion of risk attitude. The latter is a property
of a utility function (money-to-utility conversion). Risk averse, risk neutral
and risk seeking attitudes correspond to concavity, linearity and convexity of
utility functions. In this paper, we do not explicitly consider the risk attitude
issue. However, risk attitude could be easily incorporated in our framework
by assuming that elements of X in utility unit i.e., x = u(d) where d has
dollar unit and u is a dollar-to-utility function. Figure 5 illustrates the roles
of risk and ambiguity attitudes in the transformation from monetary unit
to binary utility via unary utility.

In Economics and Statistics literature, a prominent axiomatic decision
theory without (additive) probability has been studied by Schmeidler [32]
and extended by Gilboa [22] and Sarin and Wakker [31]. Schmeidler consid-
ers a preference relation 
 on acts (functions from Ω to X) and assumes it

9The definition of pessimism (optimism) by Dubois et al. requires that possibilistic
lottery π is preferred to (less preferred than) lottery π′ if the possibility of getting any
consequence in π′ is greater or equal to the possibility of getting that consequence in π
i.e., π �pes π′ (π′ �opt π) if π′ ≥ π.
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satisfies following axioms. Suppose f, g, h are acts.

S1 Weak order. f 
 g or g 
 f ; If f 
 g and g 
 h then f 
 h.

S2 Co-monotonic independence. If f, g, h are pairwise co-monotonic and
α ∈ [0, 1], f � g implies αf + (1 − α)h � αg + (1 − α)h.

S3 Continuity. If f � g and g � h then there are α, β ∈]0, 1[ such that
αf + (1 − α)h � g and g � βf + (1 − β)h

S4 Monotonicity. If f(s) 
 g(s) for all s ∈ Ω then f 
 g

S5 Non-degeneracy. Not for all f and g f 
 g.

Two acts f and g are co-monotonic if for no two states s1, s2 f(s1) � f(s2)
and g(s2) � g(s1). Schmeidler proves a representation theorem: 
 satisfies
the axioms S1 − S5 iff there is a unique capacity measure v on 2Ω and

f 
 g iff CEUv(f) ≥ CEUv(g)

A real-valued function v : 2Ω → [0, 1] is called capacity function if v(∅) = 0,
v(Ω) = 1 and for A ⊆ B ⊆ Ω v(A) ≤ v(B). CEUv(f) - Choquet expected
utility of act f with respect to capacity v - is defined as follows. For sim-
plicity, we assume that X is a set of reals, interpreted as utilities, and is
ordered x0 > x1 > . . . > xm. For an act f , Af

k
def= {s ∈ Ω|f(s) ≥ xk} - set of

states where f delivers xk or better consequence. Obviously Af
i are nested

i.e., Af
0 ⊆ Af

1 ⊆ . . . ⊆ Af
m = Ω

CEUv(f) def= x0v(Af
0 ) +

k∑
i=1

xi(v(Af
i ) − v(Af

i−1))

The major difference from von Neumann-Morgenstern’s approach is in axiom
S2 that stipulates that independence is applicable for co-monotonic acts
only.

Since likelihood functions satisfy the requirements for a capacity func-
tion, it makes sense to compare our approach with Schmeidler’s. Notice
also that both approaches have representation theorems. Therefore, the dis-
cussion could be either in terms of the axioms or in terms of the utility
functions.

First, CEU is a real-valued function while QU is not. In our setting,
consequences are bounded (by x and x). Schmeidler’s setting has no such
restriction. It is easy to show that preference relation 
QU, represented by
QU, satisfies S1, S4 and S5 but not S2 and S3.
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Let us examine the preference relation 
CEU, represented by CEU, in
relation to our axioms A1 − A5. Clearly, since A1 is the same as S1, 
CEU

satisfies A1.
Strictly speaking, likelihood functions, which satisfy requirements for a

capacity measure, are not a special case of capacity function. The most
important difference is that while conditioning is well defined for likelihood
function, it is not clear if and how such an operation could be defined for
capacity functions. Suppose (for the sake of an argument) that such an oper-
ation exist. Then reduction of compound lotteries axiom A2 is a reasonable
requirement. However, it is unlikely that would be the case. Here is the ev-
idence. In Schmeidler’s approach, each act is a two-stage lottery. The first
stage is a horse lottery whose uncertainty is described by a capacity func-
tion. The rewards of a horse lottery are roulette lotteries. The uncertainty
pertaining to the roulette lotteries is described by a probability function.
In [31], Sarin and Wakker consider one-stage setting where the event alge-
bra for lotteries contains a sub-algebra of “unambiguous” events for which
uncertainty is probability. They are able to retain Choquet expected util-
ity representation. Sarin and Wakker show [31] that their approach and
Schmeidler’s one are irreconcilable. This result implies that preference rela-
tion represented by CEU does not satisfy property like A2.


CEU also violates qualitative monotonicity axiom (A5). Let us calculate
CEU for canonical acts with respect to likelihood function π assuming for
simplicity x = 1 and x = −1. For a canonical act a that delivers the best
consequence (x) if A occurs and the worst consequence (x) otherwise (A
occurs). This means Aa

0 = A and Aa
1 = Ω.

CEUπ([A/x,A/x]) = π(A) − (1 − π(A)) = 2π(A) − 1

First we observe that CEU for a canonical act does not depend on the
capacity of event that leads to worst consequence. v(A) �= 1 − v(A) be-
cause a capacity measure is non-additive. In the case of likelihood function
π, equality π(A) = 1 does not imply any information about the value of
π(A). CEU equalizes canonical acts which have the same capacity on the
best consequence. A5 requires a comparison of capacities of getting worst
consequence when the capacities of getting the best consequence are equal.

Schmeidler’s CEU representation is the result of considering (i) sepa-
ration of “utility” from “probability” and (ii) “functional representations
which are the sum of products of two numbers; one number has a “probabil-
ity” interpretation and the other has a “utility” interpretation” ([32] p.584).
The resulting capacity function is implicit and its updating operation is not

23



explicitly considered. In contrast, our approach starts with an uncertainty
calculus with its properly defined updating rules and then develops a deci-
sion theory where utility is derived from “probability”.

This observation seems to suggest that CEU is not appropriate for ex-
isting (non-probabilistic) uncertainty calculi such as Dempster-Shafer belief
functions [34], fuzzy possibility [40] and plausibility measures [23] that have
well-defined updating rules.

The lack of an updating rule for capacity subjects CEU to the follow-
ing criticism. Suppose v is a capacity measure, one can define its dual by
v′(A) def= 1− v(A) ∀A ⊆ Ω. It is not difficult to see that v′ is also a capacity
measure. It is arguable that v and v′ contain the same information because
v is recoverable from v′. Despite visible symmetry between v and v′, rank-
ings of acts by CEUv and by CEUv′ are different. In this sense, CEU is not
sensitive to information.

Such criticism is void for uncertainty calculi with well defined updating
rules. The dual of a probability measure is itself. The dual of a possibil-
ity measure is a necessity measure but their updating rules are different.
The same is also true for the dual pair of belief (Bel) and plausibility (Pl)
functions in Dempster-Shafer theory. Thus, from a decision making point
of view, the measures are not symmetric despite being duals of each other.

4 Likelihood Solution to Statistical Inference

4.1 Decision-theoretic approach to statistical inference

We will review the decision-theoretic approach to statistical inference. We
assume as given the set of alternative actions denoted by A, and the sample
space of Y by Y. A loss V (a, θ) measures the loss that arises if we take action
a and the true value of the parameter is θ10.A decision rule is a mapping
δ : Y → A, that is for an observation y the rule recommends an action δ(y).
The risk function of a decision rule δ at parameter value θ is defined as

R(δ(Y ), θ) def= EθV (δ(Y ), θ) =
∫
Y

V (δ(y), θ)pθ(y) (29)

The risk function measures the average loss by adopting the rule δ in case
θ is the true value.

The further use of risk functions depends on how much information we
assume is available. For each point in the parameter space, there is a value

10In terms of the decision problem definition (section 3), any superset of V (A, Ω), the
set of possible loss values, could be the set of consequences X.

24



of the risk function. In case no a priori information about parameter exists,
Wald [38] advocated the use of minimax rule which minimizes the worst risk
that could be attained by a rule.

δ∗minimax = arg min
δ∈∆

max
θ∈Ω

R(δ, θ) (30)

where ∆ is the set of decision rules. δ∗ is called the minimax solution.
If we assume, as the Bayesian school does, the existence of a prior distri-

bution for the parameter, then the risk could be averaged out to one number
called Bayes risk

r(δ) = EρR(δ, θ) =
∫
Ω

R(δ, θ)ρ(θ) (31)

where ρ is prior distribution for θ. Then the optimal rule is one that mini-
mizes the Bayes risk which is called the Bayes solution.

δ∗Bayes,ρ = arg min
δ∈∆

r(δ) (32)

Wald [38] pointed out there exists a prior distribution ρ∗ called “the least
favorable” for which the Bayes solution is the minimax solution. The term
“Bayes” is justified by the fact that the solution is also obtained via a more
intuitive route using Bayes theorem and the principle of minimizing expected
loss. Given prior probability distribution ρ on Ω, for each data y ∈ Y a
posterior probability on Ω is obtained via Bayes theorem

p(θ|y) ∝ pθ(y)ρ(θ) (33)

Denote by ap(y) the action that minimizes the expected loss given data y

ap(y) = arg min
a∈A

∫
Ω

V (a, θ)p(θ|y) (34)

Let us define a rule δ∗P (y) �→ ap(y) i.e., for each data y, rule δ∗P delivers the
action that minimizes the expected loss.

Lemma 6 δ∗P is a Bayes solution i.e., r(δ∗P ) = r(δ∗Bayes,ρ)

Proof: We need to show that the Bayes risk for δ∗P is minimal i.e.,

∀δ ∈ ∆ r(δ∗P ) ≤ r(δ) (35)

Substitute Eq. 29 into Eq. 31, we have

r(δ) =
∫
Ω

∫
Y

V (δ(y), θ)pθ(y)ρ(θ) =
∫
Y

∫
Ω

V (δ(y), θ)pθ(y)ρ(θ) (36)
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It would be enough to show that ∀y ∈ Y,∫
Ω

V (δ∗P (y), θ)pθ(y)ρ(θ) =
∫
Ω

V (ap(y), θ)pθ(y)ρ(θ) ≤
∫
Ω

V (δ(y), θ)pθ(y)ρ(θ)

The last inequality is an implication of Eqs. 33 and 34.

4.2 Likelihood solution

Without knowing prior ρ, we propose the following solution based on the
logic that leads to δ∗P . For each y ∈ Y, there is an associated extended like-
lihood function Liky . An action together with a likelihood function induce
a likelihood lottery. For an action a and an observation y, denote by La(y)
the lottery that is generated. Likelihood lotteries are compared by QU. The
selected action given observation y is

aLik(y) = arg sup
a∈A

QU(La(y)) (37)

where sup11 is the operation taking maximum element according to the
binary order —� . We define a decision rule δ∗Lik(y) �→ aLik(y) which assigns
for each point in the sample space an action that maximizes the (qualitative)
utility. We call such decision rule a likelihood solution.

There are two dimensions in which solutions δ∗minimax, δ∗Bayes and δ∗Lik

can be compared. The first one concerns information. How much informa-
tion is assumed to be available to the decision maker and how it is utilized.
In order to apply the Bayes solution, we must know the prior distribution
of the unknown parameter. As mentioned earlier, in many situations, such
an assumption is not realistic. However, if the prior is known, the posterior
probability could be calculated, and the Bayes solution makes full use of
this extra-experiment information as well as the information provided by
experimental results (likelihood). In Wald’s proposal, the risk function has
no special role for the actually observed data, thus, it ignores information
about the parameter obtainable from the data. One can argue that the min-
imax rule reflects a cautious attitude. But it is, in our opinion, too cautious.
The likelihood solution does not assume knowing the prior, but it does make
use of likelihood information provided by data in identifying the best action.

The concept of stochastic dominance provides another dimension for
comparing the three solutions. Apart from FSD, stochastic dominance of
second and higher degree are defined. For simplicity, following [6], assume

11In contrast to max defined in Eq. 24 that operates on scalars ≥.
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r.v. are non-negative, i.e., cumulative distribution functions satisfy F (0) =
0. For cumulative distribution function F , define for any natural n

Fn(z) =
∫ z

0
Fn−1(x)dx (38)

with notation F1 = F. Suppose X,Y are two r.v. (we use the same symbols
for their cumulative distribution function), we say X is preferred to Y ac-
cording to n-degree stochastic dominance (write XnSDY ) if Xn(z) ≤ Yn(z)
for z ≥ 0. It is well known that (i) n-degree dominance implies all higher
degree dominance and (ii) higher the degree, the greater relative importance
is assigned to small value of r.v. Borch [6] shows that Wald’s minimax rule
is equivalent to stochastic dominance of infinite degree. The order satisfying
vNM axioms can be viewed as “zero degree” stochastic dominance because it
boils down to the comparison of numbers – expected utility values – that are,
of course, singular r.v. Thus, we can arrange Bayes, likelihood and minimax
solutions in an increasing order according to their SD degrees.

As mentioned in the introduction, statistical inference, via its manifes-
tation as probabilistic model selection, should be of interest for researchers
in AI, machine learning, pattern recognition and data mining. However,
most works in these areas continue to select a model using simple crite-
ria such as maximum likelihood (ML) or maximum a posteriori probability
(MAP). From a decision theoretic point of view, the use of these criteria
is equivalent to assuming equal utilities (costs) for all models under con-
sideration. Clearly, it is a gross simplification. For example, between two
models of approximately the same likelihoods, most researchers would go
for a simpler one and justify this choice by invoking Occam’s razor principle
(principle of parsimony). In the statistics literature, models are selected by
using Akaike Information Criterion (AIC) [1] or Schwarz’s criterion (also
known as Bayesian Information Criterion or BIC) [33]. The idea under-
lying both AIC and BIC is to penalize model’s likelihood by an amount
depending on its number of parameters. Poland and Shachter [30] suggest
the “effectiveness ratio” criterion where the penalty has an explicit compu-
tational interpretation. Clearly, the concern on complexity can be viewed
as a cost associated with a model. In broader terms, an implication that
can be drawn from these works is that different models are associated with
different costs. And therefore, these costs must be taken into account in a
model selection process.
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4.3 An Illustrative Example

The following example is adapted from [3]. The manufacturer of small travel
clocks which are sold through a chain of department stores agrees to service
any clock once only if it fails to operate satisfactorily in the first year of
purchase. For any clock, a decision must be made on whether to merely
clean it or replace the works, i.e., the set of actions A = {a1, a2} where a1

denotes “clean the clock then replace the work if needed”, and a2 denotes
“immediately replace the works”.

Let us assume that there are only two possible faults i.e., Ω = {θ1, θ2}
where θ1 means there is the need for cleaning and θ2 means the clock has
been physically damaged and the works need replacement. Utility and loss
functions are given in the following table. The relationship between utility
(u) and loss (V ) is through equation V = 1 − u.

u(a, θ) θ1 θ2

a1 .8 .3
a2 .5 .5

V (a, θ) θ1 θ2

a1 .2 .7
a2 .5 .5

The loss table is roughly estimated from the fact that cleaning a clock costs
$0.20 and replacing the works costs $0.50. If the policy is to replace the
works for every clock needing service then the cost is $0.50 no matter which
problem is present. If the policy is to clean a clock first, if the state is θ1

then the service costs $0.20, however in the case of physical damage then
cleaning alone obviously does not fix the problem and the manufacturer ends
up replacing the works also. Thus the total cost is $0.70.

The manufacturer can ask the customer to provide a symptom of mal-
function when a clock is sent to the service center. The symptom can be
viewed as observation. Assume the sample space Y = {y1, y2, y3} where y1

means “the clock has stopped operating”, y2 - “the clock is erratic in time-
keeping and y3 - “clock can only run for a limited period”. Such information
gives some indication about θ that is expressed in terms of likelihood

liky(θ) or pθ(y) y1 y2 y3

θ1 .1 .4 .5
θ2 .7 .2 .1

For each point in the sample space, you can either choose a1 or a2, so
there are 8 possible decision rules in total. Each decision rule specifies an
action given an observation.
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δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

y1 a1 a1 a1 a1 a2 a2 a2 a2

y2 a1 a1 a2 a2 a1 a1 a2 a2

y3 a1 a2 a1 a2 a1 a2 a1 a2

We calculate the risk function values for each rule and parameter value
in the following table

Rij δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

θ1 .2 .35 .32 .47 .23 .38 .35 .50
θ2 .7 .68 .66 .64 .56 .54 .52 .50

Notice that there is no rule which is superior to all other for both values
of θ. Wald’s minimax solution is δ8.

If we assume prior distribution of θ then we can calculate the Bayes risks
for the rules. For example if prior probability p(θ1) = .7, then Bayes risks
r.7(δi) are

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

.35 .449 .442 .541 .329 .428 .401 .50

In this case, the Bayes solution is δ5. Since the Bayes solution depends on
prior p(θ1), a sensitivity analysis shows Bayes solutions for different values
of prior.

Bayes solution When
δ1 p(θ1) ≥ .824
δ5 .250 ≤ p(θ1) ≤ .824
δ7 .118 ≤ p(θ1) ≤ .250
δ8 p(θ1) ≤ .118

In our approach, suppose monetary values are translated into binary utilities
according to the following table. The table is obtained assuming ambiguity
neutrality. For example, to find a binary utility equivalent to 0.8, plugging
x = 0.8 and implicit prior ρ = 0.5 into Eq. 28 we have

0.5 =
(

(1 − 0.8)λ
0.8µ

+ 1
)−1

(39)

From that we find λ/µ = 4. Since max(λ, µ) = 1 we have λ = 1 and µ = .25.
Thus 0.8 ∼ 〈1, 0.25〉.
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Unary utility Binary utility
.8 〈1, .25〉
.5 〈1, 1〉
.3 〈.43, 1〉

Given observation y1, the likelihood function is Liky1(θ1) = .14 and Liky1(θ2) =
1. Action a1 corresponds to lottery La1(y1) = [.14/〈1, .25〉, 1/〈.43, 1〉] whose
qualitative expected utility is

QU(La1(y1)) = max{.14〈1, .25〉, 1〈.43, 1〉}
= max{〈.14, .035〉, 〈.43, 1〉} = 〈.43, 1〉

Action a2 is associated with lottery La2(y1) = [.14/〈1, 1〉, 1/〈1, 1〉] whose
qualitative expected utility QU(La2(y1)) = 〈1, 1〉. Thus, given y1, we have
a2 �y1 a1 i.e., a2 is strictly preferred to a1. Given observation y2, the
extended likelihood function is Liky2(θ1) = 1 and Liky2(θ2) = .5. We cal-
culate qualitative expected utility for a1 is QU(La1(y2)) = 〈1, .5〉 and for
a2 QU(La2(y2)) = 〈 1, 1 〉. Thus, a1 �y2 a2. Given observation y3, the
extended likelihood function is Liky2(θ1) = 1 and Liky2(θ2) = .2. Qualita-
tively expected utility for a1 is QU(La1(y3)) = 〈1, .25〉 and for a2 remains
QU(La2(y3)) = 〈1, 1〉. Thus, a1 �y3 a2. In summary, our approach suggests
δ5 as the likelihood solution.

Let us make an informal comparison of likelihood solution with minimax
and Bayes solutions. In this example, likelihood solution δ5 while the mini-
max solution is δ8. It is because, as we noted, minimax solution ignores the
uncertainty generated by an observation while likelihood solution does not.
In this sense, likelihood solution is more information efficient.

If the prior probability p(θ1) = .7, then the Bayes solution is δ5 the same
as the likelihood solution. If prior probability is available, one can argue that
Bayes solution is the optimal one. However, the “optimality” of the Bayes
solution does not come without cost. The requirement of prior probability
can be satisfied either at some monetary cost (doing research, or buying
from those who have). Alternatively, the decision maker can just assume in
an ad hoc manner some prior distribution. This however would compromise
the claimed optimality of a Bayes solution. One can extend the concept
of Bayes solution by including a sensitivity analysis. This certainly helps
decision maker by providing a frame of reference. But sensitivity analysis
itself does not constitute any basis for knowing the prior probability.

One should be careful not to draw too much from the coincidence of
the likelihood solution (δ5) and the Bayes solution that corresponds to the
largest prior interval. It is a result of several factors some of those are ad
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hoc (e.g., unary-binary utility conversion). However, as we pointed out,
axioms A1 to A5 on which likelihood solution is based, are structurally
similar to those used by Luce and Raiffa [28] to justify the expected utility
maximization principle which ultimately is the basis for Bayes solutions.
Thus, at the foundational level, optimality of likelihood solution could be
justified in the same way as the optimality for Bayes solution although the
two optimality concepts are obviously different. It can be argued that the
question of which optimality has precedence over the other depends on how
much information is available.

5 Summary and Conclusion

In this paper, we develop a decision theory that utilizes likelihood infor-
mation without assuming the existence of prior probability. We extend
likelihood function as the uncertainty measure pertaining to the statistical
inference problem. The extension, conforming to the practice of maximum
likelihood methods, defines the likelihood for a set of parameter values to
be the maximum likelihood over elements of the set.

Our approach is axiomatic. The axioms considered are similar in spirit
to those used by von Neumann-Morgenstern for the linear utility theory, but
strictly different in several important aspects. We describe a betting behav-
ior based on likelihood rather than on probability. This behavior satisfies the
stochastic dominance principle. We prove a representation theorem for pref-
erence relation over likelihood lotteries using the newly developed concept
of binary utility.

Applied to the statistical inference problem, our theory suggests a new
solution that picks an action by maximizing expected qualitative utility.
This solution is sandwiched between Wald’s minimax solution and the Bayes
solution in terms of information use/demand. It makes use of uncertainty
information that is ignored by the minimax solution but does not require a
prior probability as the Bayes solution does.

We are investigating potential applications of the results of this work for
the problem of probabilistic model selection.
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