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ABSTRACT 

This paper deals with representation and solution of asymmetric decision problems. We 
describe a new representation called sequential valuation networks that is a hybrid of 
Covaliu and Oliver’s sequential decision diagrams and Shenoy’s valuation networks. The 
solution algorithm is based on the idea of decomposing a large asymmetric problem into 
smaller sub-problems and then using the fusion algorithm of valuation networks to solve 
the sub-problems. Sequential valuation networks inherit many of the strengths of 
sequential decision diagrams and valuation networks while overcoming many of their 
shortcomings. We illustrate our technique by representing and solving a modified version 
of Covaliu and Oliver’s [1995] Reactor problem in complete detail. 

 Key Words: Decision analysis, sequential decision diagrams, valuation networks, 
asymmetric decision problems, influence diagrams 

1 INTRODUCTION 
The goal of this paper is to propose a new method for representing and solving asymmetric 
decision problems. The new graphical representation is called a sequential valuation network and 
is a hybrid of Covaliu and Oliver’s [1995] sequential decision diagrams [SDDs], and Shenoy’s 
[1992, 1993, 2000] valuation networks [VNs]. Sequential valuation networks adapt the best 
features from sequential decision diagrams and valuation networks and provide a fix to some of 
the major shortcomings of SDDs and VNs as described by Bielza and Shenoy [1999]. The 
algorithm for solving sequential valuation networks is based on the idea of decomposing a large 
asymmetric problem into smaller sub-problems and then using a special case of Shenoy’s fusion 
algorithm to solve the sub-problems. 



 Demirer and Shenoy 2 

 

 In a decision tree representation, a path from the root node to a leaf node is called a scenario. 
A decision problem is said to be symmetric if (i) in all its decision tree representations, the 
number of scenarios is equal to the cardinality of the Cartesian product of the state spaces of all 
chance and decision variables, and (ii) there exists a decision tree representation of the problem 
such that the sequence of variables is the same in all scenarios. A decision problem is said to be 
asymmetric if it is not symmetric. 
 There are three types of asymmetry in decision problems—chance, decision, and 
information. First, the state space of a chance variable may vary depending on the scenario. In 
the extreme, a chance variable may be non-existent in a particular scenario. For example, if a 
firm decides not to test market a product, we are not concerned about the possible results of test 
marketing. Second, the state space of a decision variable may depend on the scenario. Again, at 
the extreme, a decision variable may simply not exist for a given scenario. For example, if we 
decide not to buy a call option, the decision of exercising the option on the exercise date does not 
exist. Finally, the information constraints may depend on the scenarios. For example, in 
diagnosing a disease with two symptoms, the order in which the symptoms are revealed (if at all) 
may depend on the sequence of the tests ordered by the physician prior to making a diagnosis. A 
specific example of information asymmetry is described in Section 5. 
 Several graphical techniques have been proposed for representing and solving asymmetric 
decision problems—traditional decision trees, Call and Miller’s [1990] combination of influence 
diagrams (IDs) and decision trees, Fung and Shachter’s [1990] contingent IDs, Smith, Holtzman 
and Matheson’s [1993] IDs with distribution trees, and Qi et al.’s [1994] decision graphs within 
the ID framework, Shenoy’s [2000] asymmetric valuation network representation with indicator 
valuations, Covaliu and Oliver’s [1995] sequential decision diagrams, Liu and Shenoy’s [1995] 
configuration networks, Nielsen and Jensen’s [2000] asymmetric IDs, and Liu and Shenoy’s 
[2004] VNs with coarse valuations. Each of these methods has some advantages and 
disadvantages. For a comparison of decision trees, Smith-Holtzman-Matheson’s influence 
diagrams, Shenoy’s valuation networks, and Covaliu and Oliver’s sequential decision diagrams, 
see Bielza and Shenoy [1999]. 
 Some strengths of Shenoy’s [2000] asymmetric valuation network (VN) technique are as 
follows. The VN representation is compact in the sense that the model is linear in the number of 
variables. It is also flexible regarding the factorization of the joint probability distribution of the 
random variables in the model. The flexibility of using arbitrary probability valuations is a big 
strength of the VN representation. Some shortcomings of the VN technique are as follows. The 
VN representation technique cannot avoid the creation of artificial states that lead to an increased 
state space for some variables in the model. Some types of asymmetry cannot be captured in the 
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VN representation. Also, the asymmetric structure of a decision problem is not represented at the 
graphical level, but instead in the details of the indicator valuations. 
 Some strengths of Covaliu and Oliver’s [1995] sequential decision diagram (SDD) 
representation technique are as follows. A SDD representation is a compact and intuitive way of 
representing the structure of an asymmetric decision problem. One can think of a SDD as a 
clustered decision tree in which each variable appears only once (as in IDs and VNs). Also, 
SDDs model asymmetry without adding dummy states to variables. Some shortcomings of the 
SDD representation technique are as follows. The SDD representation depends on influence 
diagrams to represent the probability and utility models. Also, it includes a “formulation table” 
similar to Kirkwood’s [1993] algebraic method. However, preprocessing may be required in 
order to make the ID representation compatible with the SDD representation so that the 
formulation table can be constructed. One unresolved problem is that although a SDD and a 
compatible ID use the same variables, the state spaces of these variables may not be the same. 
The problem of exponential growth of rows in the formulation table is another major problem of 
this method. Not all types of asymmetry can be represented qualitatively by SDDs. Finally, this 
method is unable to cope with an arbitrary factorization of the joint utility function. It can only 
handle either a single un-decomposed utility function, or a factorization of the joint utility 
function into factors where each factor only includes a single variable (for details, see Bielza and 
Shenoy [1999]). 
 This paper presents a new graphical representation called a sequential valuation network 
(SVN) that is a hybrid of SDDs and VNs. This new graphical method combines the strengths of 
VNs and SDDs and avoids the weaknesses of either. We use the graphical ease of SDD 
representation of the asymmetric structure of a decision problem, and attach value and 
probability valuations to variables as in VNs. The resulting SVN representation is able to address 
many of the shortcomings of VNs and SDDs as follows. The state spaces of the variables do not 
include artificial states. This is a major advantage of SVNs as adding a dummy state to a non-
terminal chance node in a Bayesian network involves non-trivial computation to make sure that 
the added conditional probabilities are consistent with the Bayesian network model without 
dummy states. All three types of asymmetry discussed above can be easily represented in SVNs. 
We conjecture that these aspects (representation of all types of asymmetry without resorting to 
dummy variables and/or states) are true of all asymmetric problems1. The asymmetric structure 
of a decision problem is represented at the graphical level. A SVN does not need a separate 
graph to represent the uncertainty model. No pre-processing is required to represent a decision 

                                                
1 Essentially, if a problem can be represented by a decision tree, then we can represent it by a SVN. Of course, we don’t believe 
that one can represent all decision problems by decision trees. 
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problem as a SVN, i.e., it is not necessary to construct a formulation table prior to solving a 
SVN. Finally, a SVN can easily represent any factorization of the joint utility function. 
 To solve SVNs, we identify different sub-problems as paths from the source node to the 
terminal node. Each such path represents a collection of scenarios. Finally, we apply a special 
case of Shenoy’s [1992] fusion algorithm for each sub-problem and solve the global asymmetric 
problem by solving smaller sub-problems. The strategy of breaking down an asymmetric 
decision problem into several smaller sub-problems is also used by Liu and Shenoy [1995] and 
Nielsen and Jensen [2000]. 
 An outline of the remainder of the paper is as follows. In Section 2, we give a complete 
statement of a modified version of Covaliu and Oliver’s [1995] Reactor problem, and describe a 
decision tree, a VN, and a SDD representation of it. In Section 3, we represent the same problem 
using the SVN representation technique, and in Section 4, we describe the SVN solution 
methodology and give a complete solution of the Reactor problem. In Section 5, we describe a 
simple example called Diabetes diagnosis to illustrate the advantage of the SVN representation 
over other representations. Finally, in Section 6, we conclude by summarizing strengths and 
weaknesses of our representation as compared to the VNs and SDDs. 

2 THE REACTOR PROBLEM 
In this section, we give a complete statement of a modified version of the reactor problem. The 
original reactor problem is described in Covaliu and Oliver [1995]. The modified version is 
taken from Bielza and Shenoy [1999] that also describes a decision tree, an influence diagram, a 
VN, and a SDD, representation and solution of the problem. 
 The reactor problem is as follows. An electric utility firm must decide whether to build (D2) 
a reactor of advanced design (a), a reactor of conventional design (c), or no reactor (n). If the 
reactor is successful, i.e., there are no accidents, an advanced reactor is more profitable, but it is 
also riskier. Experience indicates that a conventional reactor (C) has probability 0.980 of being 
successful (cs), and a probability 0.020 of a failure (cf). On the other hand, an advanced reactor 
(A) has probability 0.660 of being successful (as), probability 0.244 of a limited accident (al), 
and probability 0.096 of a major accident (am). If the firm builds a conventional reactor, the 
profits are $8B if it is a success, and −$4B if there is a failure. If the firm builds an advanced 
reactor, the profits are $12B if it is a success, −$6B if there is a limited accident, and −$10B if 
there is a major accident. The firm’s utility is linear in dollars. 
 Before making the decision to build, the firm has the option to conduct a test (D1 = t) or not 
(nt) of the components of the advanced reactor. The test results (R) can be classified as bad (b), 
good (g), or excellent (e). The cost of the test is $1B. The test results are highly correlated with 
the success or failure of the advanced reactor (A). Figure 1 shows a causal probability model for 
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A and R in the Reactor problem. Notice that if A = as, then R cannot assume the state b. If the test 
results are bad, then as per the probability model, an advanced reactor will result in either a 
limited or a major accident, and consequently, the Nuclear Regulatory Commission will not 
license an advanced reactor. 

Figure 1. A Probability Model for A and R in the Reactor Problem 
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2.1 Decision Tree Representation and Solution 
Figure 2 shows the pre-processing of probabilities, and Figure 3 shows a decision tree 
representation and solution of this problem. The optimal strategy is as follows. Do the test; build 
a conventional reactor if test results are bad or good, and build an advanced reactor if test results 
are excellent. The maximum expected profit is $8.130B. 

Figure 2. The Pre-Processing of Probabilities in the Reactor Problem 

al, 0.244
A

as, 0.660

am, 0.096

b, 0.288

g, 0.565

e, 0.147

.070

.138

.036

R

b, 0.313

g, 0.437

e, 0.250

.030

.042

.024

R

g, 0.182

e, 0.818

.120

.540

R

g, 0.300

A

as, 0.900

al, 0.060

am, 0.040

R

b, 0.100

e, 0.600

A

as, 0.400

al, 0.460

am, 0.140

.120

.138

.042

.540

.036

.024

A
al, 0.700

am, 0.300

.070

.030

 



 Demirer and Shenoy 6 

 

Figure 3. A Decision Tree Representation and Solution of the Reactor Problem. 
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 The decision tree representation given in Figure 3 successfully captures the asymmetric 
structure of the Reactor problem. The product of the cardinalities of the state spaces of the 
decision and chance variables is 108, but there are only 21 possible scenarios in this problem. 
The decision tree is shown using coalescence, i.e., repeating sub-trees are shown only once. With 
coalescence, the number of endpoints is reduced to 12. Notice that before we can complete the 
decision tree representation, we need to compute the required probabilities as is done in Figure 2. 
 Notice that the Reactor problem exhibits all three kinds of asymmetry discussed in the 
introduction. There is chance asymmetry in the probability model (shown in Figure 1) since R = 
b is not possible when A = as. There is decision asymmetry since D2 = a is not allowed if D1 = t 
and R = b. And there is information asymmetry since the true state of R is revealed prior to D2 
only when D1 = t. 

2.2 Valuation Network Representation 
A valuation network representation consists of a collection of decision nodes, chance nodes, 
utility valuations, probability valuations, and indicator valuations. Figure 4 shows a valuation 
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network for the reactor problem. Decision nodes correspond to decision variables and are 
depicted by rectangles. The Reactor problem contains two decision nodes, D1 and D2. D1 
represents the test decision and has two states: ‘nt’ (no test), and ‘t’ (test). D2 represents the 
choice of the reactor type and has three states: ‘a’ (advanced reactor), ‘c’ (conventional reactor), 
and ‘n’ (no reactor). 

Figure 4. A Valuation Network Representation of the Reactor Problem 
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 Chance nodes correspond to chance variables and are depicted by circles. The Reactor 
problem has three chance nodes, R, A, and C. R represents the test results and has four states: ‘b’ 
(bad), ‘g’ (good), ‘e’ (excellent), and ‘nr’ (no result if D1= ‘nt’). A represents the outcome of the 
advanced reactor and has three states: ‘as’ (no accidents), ‘al’ (limited accident), and ‘am’ 
(major accident). C represents the outcome of the conventional reactor and has two states: ‘cs’ 
(success) or ‘cf’ (failure). Note that an artificial state R = nr is created in order to account for 
chance asymmetry for the case when D1 = nt. 
 Indicator valuations are shown as triangular nodes with a double border. The indicator 
valuations encode the structural asymmetry of the decision problem. By structural asymmetry, 
we mean the qualitative aspects of chance, decision, and information asymmetry represented 
graphically in a decision tree representation. The Reactor problem has two indicator valuations, 
δ1, and δ2. δ1 represents all allowable states of {D1, R, D2}. Of the 2×4×3 = 24 possible states of 
these three variables, the indicator valuation δ1 rules out 13 states, leaving 11 allowable states 
defined in δ1. Thus, if D1 = nt, R is restricted to state nr (i.e., 9 states ruled out), if D1 = t, then R 
cannot assume the state nr (i.e., 3 states ruled out), and if D1 = t and R = b, D2 cannot assume the 
state a (i.e., 1 state ruled out). δ2 rules out the combination A = as, R = b that has zero 
probability. Notice that the irrelevance of C in the case D2 = a, the irrelevance of A in the case 
D2 = c, and the irrelevance of C and A in the case D2 = n is not represented in the VN 
representation. 
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 Utility valuations represent additive factors of the joint utility function and are depicted by 
diamond-shaped nodes. The set of variables directly connected to a utility valuation by 
undirected edges constitutes the domain of the utility valuation. In the Reactor problem, there are 
three utility valuations labeled υ1, υ2, and υ3. υ3’s domain is {D1}, υ2’s domain is {D2, A}, and 
υ1’s domain is {D2, C}. 
 Finally, probability valuations (together with indicator valuations) represent multiplicative 
factors of the family of joint probability distributions of the chance variables in the problem (one 
for each strategy of the decision maker), and are depicted by triangular nodes with a single 
border in the valuation network. The set of all variables directly connected to a probability 
valuation by directed or undirected edges constitutes the domain of the probability valuation. In 
the Reactor problem, there are three probability valuations labeled χ, α, and ρ. χ’s domain is 
{C} and it represents the prior probability distribution for the state of conventional reactor. α’s 
domain is {A} and it represents the prior probability distribution for the state of advanced 
reactor. Finally, ρ’s domain is {R, A} and it represents the numerical factor of the conditional for 
R given D1 and A (see Bielza and Shenoy [1999] for details). Since χ and α are conditionals, this 
is represented by making the edge to the head of the conditional directed. This tells us, for 
example, that if we marginalize the probability valuations by summing out the variables in the 
head of the conditional, then the probability valuation that remains is a vacuous valuation, i.e., a 
valuation that is identically one for all possible states of its marginalized domain. Notice that ρ is 
not a conditional for R since marginalizing R out of the valuation ρ results in a non-vacuous 
valuation for A (since R has a dummy state nr and there are two distributions for R, one given T 
= t, and another given T = nt, the numerical details of ρ are given in Bielza and Shenoy [1999]). 
 Compared to the decision tree in Figure 3, the VN representation is compact and grows 
linearly in the number of variables in the model. It can represent any probability model, and not 
just Bayes nets. However, it captures asymmetry by creating dummy states for some variables in 
the model. This approach leads to increased state space for some variables in the model. Some 
asymmetry in the problem is not represented in the model leading to unnecessary computation. 
For example, the irrelevance of A when D2 = c, the irrelevance of C when D2 = a, and the 
irrelevance of A and C when D2 = n is not represented the VN model. The modeling of the joint 
probability distribution is not as intuitive as in influence diagrams. Finally, the asymmetric 
structure of the problem is not evident from the graphical description of the problem. Instead, it 
is specified in the details of the indicator valuations. 

2.3 Sequential Decision Diagram Representation 
A sequential decision diagram [SDD] is a directed graph with the same set of nodes as in the 
influence diagram representation. However, its paths show all possible scenarios in a compact 
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way. One can think of the SDD representation as a clustered decision tree. In fact, this property 
of SDDs provides a big advantage in the representation of asymmetric problems. Figure 5 shows 
a SDD representation of the reactor problem. 
 An SDD representation models a decision problem using two directed graphs—an ID to 
represent the probability and utility models, and a sequential decision diagram to capture the 
asymmetric structure of the problem. Each directed edge in the sequential decision diagram is 
associated with a subset of the state spaces of the variables on the paths from the source node to 
the node at the tail of the directed edge. For example, in the Reactor problem, we have a directed 
arc from D1 to D2 that is associated with D1 = nt. This means that when the decision D1 = nt is 
taken, the next relevant variable in all scenarios is D2. If there are any constraints on choices 
available at a decision node, then such constraints are also indicated on the edges emanating 
from the decision node. For example, the first part of the annotation “D2 = a | D1 = nt or (D1 = t 
& R ≠ b)” on the directed edge from D2 to A says that whenever D2 = a (regardless of how we 
arrived at D2), the next variable in the scenarios is A. The second part of the annotation “D2 = a | 
D1 = nt or (D1 = t & R ≠ b)” tells us that the choice D2 = a is only available if D1 = nt, or D1 = t 
and R ≠ b. Unconstrained choices are indicated by omitting the constraints. Also, lack of an 
annotation on an edge simply means that regardless of how one arrived at the tail node, the next 
node in the scenarios is the node at the head of the edge. Thus, in the Reactor problem, the edge 
from R to D2 has no annotation meaning that regardless of how one arrived at R and regardless of 
the observed state of R, the next variable in the scenarios is D2. 

Figure 5. A Sequential Decision Diagram and an Influence Diagram for the Reactor Problem 
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 The conditionals for each node in the ID are organized in a formulation table. The 
formulation table contains the problem’s functional and numerical information [Covaliu and 
Oliver 1995]. However, the requirement of a compatible ID representation might lead to 
preprocessing of probabilities. Also, the problem of combinatorial explosion of the number of 
rows in a formulation table is another drawback of this representation. 
 The SDD solution method is unable to cope with an arbitrary factorization of the joint utility 
function. It can only handle either a single un-decomposed utility function, or a factorization of 
the joint utility function into factors where each factor only includes a single variable. For the 
Reactor problem, the joint utility valuation υ shown in Figure 5 is a combination of the additive 
factors in Figure 4. Notice that this precludes a local solution of the problem. In large problems, 
the SDD solution method would be intractable. 
 Not all asymmetry can be represented qualitatively by SDDs. In the reactor problem, the 
probability model for {A, R} tells us that when A = as, R = b has zero probability. This is not 
qualitatively represented in the SDD representation (except by the zero probability in the details 
of the conditional for R given A). Of course, in this particular problem, it is a small matter that 
can be ignored. In other problems, where many joint states of a set of variables may be 
impossible, we may want an explicit qualitative representation of this to avoid unnecessary 
computation with zero probabilities. 

3 SEQUENTIAL VALUATION NETWORK REPRESENTATION 
In this section, we define a new hybrid representation, which we call a sequential valuation 
network. The new representation combines the best features of SDDs and VNs. We make use of 
the graphical features of SDDs in order to represent the structural asymmetry in the problem and 
we make use of the compactness of valuation networks by attaching valuations to nodes in the 
SDD. First we start with some notation. 
 Valuation Fragments. Suppose α is a utility valuation for h, i.e., α: Ωh → R, where Ωh 
denotes the state space of the variables in h, and R denotes the set of real numbers. We shall refer 
to h as the domain of α. Suppose g ⊆ h, and suppose Γ ⊆ Ωg. Then α|Γ is a function  
α|Γ: Γ×Ωh–g → R such that (α|Γ)(xg, xh–g) = α(xg, xh–g) for all xg ∈ Γ, and all xh–g ∈ Ωh–g. We 
call α|Γ a restriction of α to Γ. We will also refer to α|Γ as a fragment of α. We will continue to 
regard the domain of α|Γ as h. Notice that α|Ωg = α. 
 Often, Γ is a singleton subset of Ωg, Γ = {xg}. In this case, we write α|Γ as α|xg. For 
example, suppose α is a valuation for {A, B} where ΩA = {a1, a2} and ΩB = {b1, b2, b3}. Then, α 
can be represented as a table as shown in the left hand side of Table 1. The restriction of α to a1, 
α|a1, is shown in the right hand side of Table 1. In practice, valuation fragments will be specified 
without specifying the full valuation. In the case of utility valuations, the unspecified values can 
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be regarded as zero utilities (assuming an additive factorization of the joint utility function), and 
in the case of probability valuations, the unspecified values can be regarded as zero probabilities. 

Table 1. An Example of a Valuation Fragment 

Ω{A, B} α  {a1}×ΩB α|a1 

a1, b1 α(a1, b1)  a1, b1 α(a1, b1) 
a1, b2 α(a1, b2)  a1, b2 α(a1, b2) 
a1, b3 α(a1, b3)  a1, b3 α(a1, b3) 
a2, b1 α(a2, b1)    
a2, b2 α(a2, b2)    
a2, b3 α(a2, b3)    

 

Figure 6. A SVN Graphical Representation of the Reactor Problem 
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 A SVN representation consists of three parts—a graphical part consisting of a network with 
chance and decision variables and their state spaces, a qualitative part that describes details of 
indicator valuations, and a quantitative part consisting of the numerical details of the utility and 
probability valuations. A SVN representation of the reactor problem is given in Figure 6, Table 
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2, and Table 3. The SVN graph consists of six types of nodes—chance, decision, terminal, 
indicator, utility and probability. Chance nodes are shown as circles and they represent random 
variables. In the Reactor problem representation, there are three chance nodes, R, A, and C. 
Decision nodes are shown as rectangles and represent decision variables. In the Reactor problem 
representation, there are two decision nodes, D1 and D2. The state spaces of decision and chance 
nodes are as follows: ΩD1

 = {t, nt}, ΩR = {b, g, e}, ΩD2
 = {a, c, n}, ΩA = {as, al, am}, and ΩC = 

{cs, cf}. Notice that the state space of R does not include the dummy state nr. The terminal node 
is shown as an octagon and is a compact version of the end points of a decision tree. The 
terminal node is labeled T in the reactor problem representation. Indicator valuations are shown 
as triangles with a double border, probability valuations are shown as triangles with a single 
border, and utility valuations are shown as diamonds. 
 The sub-graph on the set of decision, chance, and terminal nodes is a directed graph with one 
source node2 and the terminal node as the sink node. This sub-graph is similar to the SDD 
graphical representation (with minor differences in the terminal node and the annotations 
associated with the directed edges). Thus, each directed path from the source node to the sink 
node represents a set of scenarios. The directed graph may have directed cycles, but these 
directed cycles must be broken by the annotations on the edges and the constraints in the 
indicator valuations. An example is given in Section 5. In SDDs, all constraints on decision 
nodes are expressed through annotations on arcs emanating through the decision variables. In 
SVNs, we have the flexibility of expressing such constraints using indicator valuations. The 
annotations on arcs can be used to describe the natural sequencing of variables in scenarios. 
 The dashed edges connecting indicator, probability, and utility valuation to chance and/or 
decision nodes represent the domains of the respective valuations. This part of the graph has the 
same semantics as valuation networks. 
 In the qualitative part, we specify the details of the indicator valuations. The indicator 
valuation δ1 with domain {R, D2} is a constraint on the choices available to the decision-maker 
at D2. This constraint can be specified by listing all states in Ω{R, D2} that are allowed. Thus, the 
states that are allowed by δ1 are {(b, c), (b, n), (g, a), (g, c), (g, n), (e, a), (e, c), (e, n)}. Similarly, 
the indicator valuation δ2 with domain {R, A} can be regarded as a constraint on the state space 
Ω{R, A}. δ2 rules out the state (b, as) that has zero probability. In this paper, we will regard an 
indicator valuation as a subset of the state space of its domain. For example, δ1 ⊂ Ω{R, D2}, and 

                                                
2 SVNs can represent any decision problem that can be represented by a decision tree. In case there are several chance variables 
that precede the first decision variable, any one of these chance variables can be chosen as the source node. In a decision tree 
representation, one needs to start with a root node. The SVN representation maintains this same requirement. In this respect, 
SVNs inherit the weakness of decision trees of being unable to represent partial order information constraints. Like decision 
trees, partial order information constraints must be made complete and this may have consequences on the computational effort 
required during the solution phase as described in Shenoy [1994]. 
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δ2 ⊂ Ω{R, A}. During the solution phase, the computations in some sub-problems are done on the 
relevant state space (determined by the valuations that are being processed) constrained by the 
indicator valuations that are associated with the sub-problem. 
 In the quantitative part, we specify the numerical details of the probability and utility 
valuations. The numerical specifications have to be consistent with the graphical and qualitative 
specifications in the following senses. First, each valuation’s domain is specified in the graphical 
part. For example, the domain of χ is C. Therefore, we have to specify the values of χ for each 
state in ΩC. Second, since the edge from χ to C is directed, this means the probability valuation χ 
is a conditional for C given the empty set, i.e., the marginal of χ for the empty set is a vacuous 
probability valuation. Third, if we have probability or utility valuations specified on domains for 
which we have indicator valuations, then it is only necessary to specify the values of the 
valuations for the states permitted by the indicator valuations. For example, probability valuation 
ρ has domain {R, A}. Since we have indicator valuation δ2 with the same domain, it is sufficient 
to specify the values of ρ for the states in δ2. Thus, we can regard ρ as a valuation fragment. 
Also, since the edge from ρ to R is directed, the values of ρ have to satisfy the condition ρ↓A = ιA 
where ιA is the vacuous probability valuation with domain {A}, i.e., a valuation whose values are 
identically one. Unlike the asymmetric VN model shown in Figure 4, the variable R in Figure 6 
has no dummy state. Thus, there is exactly one probability distribution for R for each value of A. 
The first three conditions are the same as in Shenoy’s [2000] asymmetric valuation networks. 
Fourth, it is sufficient to specify values of utility or probability valuations for those states that are 
allowed by the annotations on the edges between variables. For example, consider the utility 
valuation fragment υ2|a. The domain of this valuation is {D2, A}. However, the annotation on the 
edge from D2 to A tells us that all scenarios that include variable A have D2 = a. Therefore, it is 
sufficient to specify υ2 for all states in {a}×ΩA. Similarly, it is sufficient to specify υ3|c for 
{c}×ΩC. Utility valuation υ4|n is only specified for D2 = n. Notice that when D2 = n, the next 
node in the SVN is the terminal node T. Therefore, υ4|n cannot include either A or C in its 
domain. The SVN graph dictates for what fragments of the domain utility valuations need to be 
defined. All such utility valuation fragments should be completely specified. 

Table 2. Utility Valuation Fragments in the Reactor Problem 

ΩD1
 υ1  {a}×ΩA υ2|a  {c}×ΩC υ3|c  {n} ⊂ ΩD2

 υ4|n 

nt 0  a, as 12  c, cs 8  n 0 
t –1  a, al –6  c, cf –4    
   a, am –10       
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 An SVN is well-defined if the SVN graph is well-defined (in the sense of SDDs), if the 
utility and indicator valuation fragments are consistent with the SVN graph and if the 
combination of all probability and indicator valuations results in a well-defined joint distribution 
for the chance variables in the problem for every strategy of the decision maker. 
 The SVN solution method, like other methods in the literature, is designed to provide correct 
answers only if the problem is completely specified. Utility valuations υ1, υ2|a, υ3|c, and υ4|n are 
additive factors of the joint utility function, and probability and indicator valuations χ, α, ρ, δ1, 
and δ2 are multiplicative factors of the family of joint probability distributions, one for each 
strategy of the decision maker. In the Reactor problem, the probability valuations are 
conditionals, i.e., we have a Bayes net model. But this is not a requirement of the sequential 
valuation network representation. As we will see in the next section, the SVN solution technique 
will work for any multiplicative factorization of the joint probability distribution. 

Table 3. Probability Valuation Fragments in the Reactor Problem 

ΩC χ  ΩA α  δ2 ρ 

cs 0.98  as 0.660  b, al 0.288 
cf 0.02  al 0.244  b, am 0.313 
   am 0.096  g, as 0.182 
      g, al 0.565 
      g, am 0.437 
      e, as 0.818 
      e, al 0.147 
      e, am 0.250 

 
 Typically, a decision tree representation only includes “relevant” chance variables, i.e., 
chance variables that are in the domain of some utility valuation, or chance variables that are 
information predecessors of decision variables and that are dependent on other chance variables 
that are in the domain of some utility valuation. Often, in the process of modeling the distribution 
of a chance variable, we may include chance variables that do not satisfy the criteria stated 
above. In this case, we could either include these unobserved variables in a decision tree 
representation but we would have to pick an arbitrary information sequence of these chance 
variables following the last decision node, or we could choose to marginalize these chance 
variables out of the probability model and not include them in the decision tree representation. 
The latter strategy would involve pre-processing the probability model, which is not desirable 
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from a modeler’s viewpoint. Since SVN representation follows the decision tree representation, 
it inherits the weakness of decision trees in representing such unobserved chance variables. 

4 SOLVING A SVN REPRESENTATION 
 The main idea of the SVN solution method is to recursively decompose the problem into 
smaller sub-problems until the sub-problems cannot be decomposed further, then to solve the 
sub-problems, using a special case of the symmetric fusion algorithm [Shenoy 1992]. Finally, the 
solutions to the sub-problems are recursively combined to obtain the solution to the original 
problem. We begin with some notation. 

4.1 Combination 
Consider two utility valuations ψ1 for h1 and ψ2 for h2. As defined in Shenoy [1992], we 
combine utility valuations using pointwise addition assuming an additive factorization of the 
joint utility function, i.e.,  

 (ψ1⊗ψ2)(x) = ψ1(x↓h1) + ψ2(x↓h2) for all x ∈ Ωh1∪h2
. 

where x↓h1 denotes the projection of x to the states of h1. In the SVN method, each sub-problem 
deals with valuation fragments that are relevant to the sub-problem. We start with defining 
combination of utility fragments. 
 Case 1. [Combination of utility fragments] Suppose g1 ⊆ h1, and g2 ⊆ h2, and consider two 
utility fragments ψ1|Γ1 and ψ2|Γ2 where Γ1 ⊆ Ωg1

, and Γ2 ⊆ Ωg2
. Let Γ denote 

((Γ1×Ωh1∪h2−g1
)∪(Γ2×Ωh1∪h2−g2

))↓g1∪g2. The combination of ψ1|Γ1 and ψ2|Γ2, written as 
(ψ1|Γ1)⊗(ψ2|Γ2), is a utility valuation ψ for h1∪h2 restricted to Γ given by 

 (ψ|Γ)(y) = (ψ1|Γ1)(y↓g1, y↓h1–g1) + (ψ2|Γ2)(y↓g2, y↓h2–g2) if y↓g1 ∈ Γ1 and y↓g2 ∈ Γ2 

  = (ψ1|Γ1)(y↓g1, y↓h1–g1) if y↓g1 ∈ Γ1 and y↓g2 ∉ Γ2 

  = (ψ2|Γ2)(y↓g2, y↓h2–g2) if y↓g1 ∉ Γ1 and y↓g2 ∈ Γ2 

for all y ∈ Γ×Ω(h1∪h2)–(g1∪g2). 

 Example. Consider a utility fragment υ4|{t}×{a} for {D1, R, D2} and another utility 
fragment υ5|{t}×{c} for {D1, D2}. Then the combination of υ4|{t}×{a} and υ5|{t}×{c} is a 
utility valuation for {D1, R, D2} restricted to {t}×{a, c}. See Table 8 for a numerical example. 
 Next we define combination of a utility and a probability fragment. First, let us recall the 
definition from [Shenoy 1992] in the case of full valuations. Let ψh1

 be a utility valuation and 
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ψh2
 be a probability valuation for h1 and h2, respectively. The combination of ψh1 and ψh2

, 
denoted by ψh1

⊗ψh2
 or ψh2

⊗ψh1
, is a utility valuation for h1∪h2 defined as 

 (ψh1
⊗ψh2

)(x) = ψh1
(x↓h1) ψh2

(x↓h2) for all x ∈ Ωh1∪h2
. 

In the case of fragments, the definition is as follows where the missing values are regarded as 
zeros. 
 Case 2. [Combination of a utility fragment and a probability fragment] Suppose g1 ⊆ h1, and 
g2 ⊆ h2, and consider utility fragment ψ1|Γ1 and probability fragment ψ2|Γ2 where Γ1 ⊆ Ωg1

, and 
Γ2 ⊆ Ωg2

. Let Γ denote ((Γ1×Ωh1∪h2−g1
)∩(Γ2×Ωh1∪h2−g2

))↓g1∪g2. The combination of ψ1|Γ1 and 
ψ2|Γ2, written as (ψ1|Γ1)⊗(ψ2|Γ2), is a utility valuation ψ for h1∪h2 restricted to Γ given by 

 (ψ|Γ)(y) = (ψ1|Γ1)(y↓g1, y↓h1–g1)(ψ2|Γ2)(y↓g2, y↓h2–g2) if y↓g1 ∈ Γ1 and y↓g2 ∈ Γ2 

for all y ∈ Γ×Ω(h1∪h2)–(g1∪g2). See Table 5 for a numerical example. 
 Finally we define combination of two probability fragments. First, let us recall the definition 
from [Shenoy 1992] in the case of full valuations. Let ψh1

 and ψh2
 be probability valuations for 

h1 and h2, respectively. The combination of ψh1 and ψh2
, denoted by ψh1

⊗ψh2
 or ψh2

⊗ψh2
, is a 

probability valuation for h1∪h2 defined as 

 (ψh1
⊗ψh2

)(x) = ψh1
(x↓h1) ψh2

(x↓h2) for all x ∈ Ωh1∪h2
. 

In the case of fragments, the definition is as follows where the missing values are regarded as 
zeros. 
 Case 3. [Combination of probability fragments] Suppose g1 ⊆ h1, and g2 ⊆ h2, and consider 
probability fragments ψ1|Γ1 and ψ2|Γ2 for h1 and h2, respectively, where Γ1 ⊆ Ωg1

, and Γ2 ⊆ Ωg2
. 

Let Γ denote ((Γ1×Ωh1∪h2−g1
)∩(Γ2×Ωh1∪h2−g2

))↓g1∪g2. The combination of ψ1|Γ1 and ψ2|Γ2, 
written as (ψ1|Γ1)⊗(ψ2|Γ2), is a probability valuation ψ for h1∪h2 restricted to Γ given by 

 (ψ|Γ)(y) = (ψ1|Γ1)(y↓g1, y↓h1–g1)(ψ2|Γ2)(y↓g2, y↓h2–g2) if y↓g1 ∈ Γ1 and y↓g2 ∈ Γ2 

for all y ∈ Γ×Ω(h1∪h2)–(g1∪g2). The reactor problem described in this paper does not require this 
case of combination. 
 Note that, the combination of two utility valuations is a utility valuation; the combination of 
two probability valuations is a probability valuation; and the combination of a utility and a 
probability valuation is a utility valuation. 

4.2 Marginalization 
Suppose that h is a subset of variables, and suppose X ∈ h. The marginalization operator, 
↓h−{X}, reduces a valuation with domain h to a valuation with domain h−{X} by eliminating 
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variable X. Suppose ψ is a valuation with domain h. We will denote the marginal of ψ for h−{X} 
by either ψ↓h−{X} or ψ−X. We will use the former notation when we wish to focus on the domain 
of the marginal, and we will use the latter notation when we wish to focus on the variable that is 
being eliminated. The definition of marginalization depends on the type of variables being 
eliminated —decision or chance. 
 Case 1. [Marginalization over a chance variable] Suppose that h is a subset of variables that 
contains chance variable C, and suppose that ψ|Γg is a valuation with domain h that is restricted 
to Γg ⊆ Ωg where g ⊆ h. The marginal of ψ|Γg for h−{C}, denoted by (ψ|Γg)−C, is a valuation 
with domain h−{C} defined as 

 (ψ|Γg)−C(x) = ∑{ψ(x, c) | c ∈ ΩC such that (x, c) ∈ Γg×Ωh−g} 

for all x ∈ (Γg×Ωh−g)↓h−{C}. 
 Case 2. [Marginalization over a decision variable] Suppose that h is a subset of variables 
that contains decision variable D, and suppose that ψ|Γg is a utility valuation with domain h that 
is restricted to Γg ⊆ Ωg where g ⊆ h. The marginal of ψ|Γg for h−{D}, denoted by (ψ|Γg)−D, is a 
utility valuation with domain h−{D} defined as 

 (ψ|Γg)−D(x) = Max{ψ(x, d) | d ∈ ΩD such that (x, d) ∈ Γg×Ωh−g} 

for all x ∈ (Γg×Ωh−g)↓h−{D}. Notice that the maximization in the definition above is restricted to 
the values d of D that are present in the utility fragment. 

4.3 Division 
Suppose that ψ is a probability valuation for subset h, and suppose X ∈ h. The operation, ψ/ψ−X, 
called ψ divided by ψ−X, is then defined to be a valuation for h defined as 

 (ψ/ψ−X)(x) = ψ(x)/ψ−X(x↓h−{X}) for all x ∈ Ωh. 

Notice that if ψ−X(x↓h−{X}) = 0, then ψ(x) = 0. In such cases, we can simply define (ψ/ψ−X)(x) = 
0. A numerical example of division appears in Table 4. 

4.4 Tagging 
The recursive algorithm of solving lower level sub-problems and sending the results to an upper 
level sub-problem requires the use of a concept that we call tagging. Suppose ψ is a utility 
valuation with domain h, and suppose X ∉ h. Tagging ψ by X = x is denoted by ψ⊗(ιX|x), where 
ιX|x is the vacuous utility valuation with domain {X} restricted to X = x. A vacuous utility 
valuation is a valuation that is identically zero. This operation extends the domain of ψ from h to 
h∪{X} without changing the values of ψ. An example of tagging can be found in Table 11. 
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Tagging is only performed on utility valuations that are passed from one node to another in the 
decomposition tree. 

4.5 The Fusion Algorithm 
This section aims to give a brief explanation of how the fusion algorithm as defined by Shenoy 
[1992] works. In the context of sequential valuation networks, the fusion algorithm is the same 
as rollback in decision trees since the probability valuations will have already been processed (as 
described in the next sub-section) to provide the appropriate conditionals as in a decision tree 
representation. 
 Fusion. The algorithm eliminates the chance and decision variables one at a time. The order 
of deletion is governed by the information constraints imposed on the problem. The operation 
depends on the type of variable being eliminated at that iteration. Let Π = {π1, …, πj} be the set 
of utility valuations and let Ρ = {ρ1, …, ρk} be the set of probability valuations. Then the 
function FusX{Π, Ρ} denotes the collection of valuations after the valuations in Π∪Ρ are fused 
with respect to variable X. There are two cases that need to be considered in the application of 
the fusion operation. These two cases correspond to the “averaging out” (when marginalizing a 
chance variable) and “folding back” (when marginalizing a decision variable) operations when 
solving a decision tree. 
 Case 1. [Fusion with respect to decision variable D] Suppose Π is a collection of utility 
valuations with D in their domains. Then the fusion with respect to D is a utility valuation 
defined as 

 FusD{Π} = {π−D} 

where π = ⊗{πi | i = 1, …, j}. If there is an indicator valuation ι present, then the combination of 
the πi’s is done on the appropriate state space as restricted by the indicator valuation ι, and the 
marginalization of D from π is also constrained by the indicator valuation ι. 
 All utility valuations (which include D in their domains) are combined and then the resulting 
utility valuation π is marginalized such that D is eliminated from its domain. This operation is 
similar to the “folding back” operation in decision trees [Raiffa 1968]. 
 Case 2. [Fusion with respect to chance variable C] Suppose Π is a collection of utility 
valuation with C in their domains, and Ρ is a collection of probability valuations with C in their 
domains. Then the fusion with respect to C is defined as 

 FusC{Π, Ρ} = {(π⊗ρ)−C} 

where π = ⊗{πi | i = 1, …, j}, ρ = ⊗{ρi | i = 1, …, k}. If there is an indicator valuation ι present, 
then the combination of the πi’s and ρi’s is done on the appropriate state space as restricted by 
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the indicator valuation ι, and the marginalization of C from π⊗ρ is also constrained by the 
indicator valuation ι. 
 In this case, all the probability and utility valuations (which include C in their domains) are 
combined and then the resulting utility valuation, π⊗ρ, is marginalized such that C is eliminated 
from its domain. This operation is similar to the “averaging out” operation in decision trees 
[Raiffa 1968].  
 In both cases, the fusion operation for SVNs results in a single utility valuation (as is the case 
in solving decision trees). Also, there are no divisions required as these will already have been 
done during the decomposition phase as described in the next sub-section. 

4.6 Decomposition of the Problem 
Starting from the SVN graphical representation, we decompose the decision problem into sub-
problems. The sub-problems are identified by enumerating all distinct directed paths and sub-
paths from the source node to the terminal node in the SVN graphical representation. 
 First, we will describe the variables included in a sub-problem. Next, we will describe the 
utility and indicator valuations associated with a sub-problem. Finally, we will describe the 
probability valuations associated with a sub-problem. 
 Variables. We start with the root node, say S. Next we identify all directed arcs in the SVN 
that lead out of the source node S. For each directed arc, say to variable X, we create a new sub-
problem consisting of variables S and X on the path from the source node to variable X. We 
retain the annotation on the edges. We recursively proceed in this manner until all paths and sub-
paths have been enumerated. Clearly, the order in which the variables are included in the sub-
problems is important. Notice that the terminal node is not a variable and we do not include it in 
any sub-problem. The resulting directed tree is called a “decomposition tree.” Figure 7 shows the 
decomposition tree that is constructed for the reactor problem. Next, we describe how the sub-
problems are populated with indicator, utility, and probability valuations. Notice that the method 
for determining utility and indicator valuations for sub-problems is quite different from the 
method for determining probability valuations. 
 Utility and Indicator Valuations. We start at the root node, say S, of the decomposition tree 
with the set of all utility and indicator valuation fragments included in the SVN representation. 
All valuation fragments whose domains are included in the set of variables associated with the 
sub-problem are associated with this sub-problem. The remaining valuations are passed on to the 
child sub-problems suitably decomposed as per the annotation on the edges leading to the child 
sub-problems. This is recursively repeated. 
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Figure 7. The Decomposition Tree for the Reactor Problem 
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 In the Reactor problem, we start with utility and indicator valuations υ1, υ2|a, υ3|c, υ4|n, δ1, 
and δ2. Valuation υ1 with domain {D1} is associated with sub-problem 8. Of the remaining 
valuations, none have D1 in their domain. Sub-problem 7 receives valuations υ2|a, υ3|c, υ4|n, δ1 
and δ2. Sub-problem 6 receives valuations υ2|a, υ3|c, υ4|n, δ1, and δ2. 
 Next, consider Sub-problem 7. It receives valuation fragments υ2|a, υ3|c, υ4|n, δ1, and δ2. 
Since there are no valuation fragments whose domains are included in {D1, R}, there are no 
valuations associated with it at this stage. All valuation fragments are passed on to Sub-problem 
5. 
 Next, consider Sub-problem 6. It receives valuations υ2|a, υ3|c, υ4|n, δ1, and δ2. Since υ4|n 
has domain D2 that is included in {D1, D2}, υ4|n is associated with Sub-problem 6. Furthermore, 
υ2|a, δ1, and δ2 are passed on to Sub-problem 3, and υ3|c, δ1, and δ2 are passed on to Sub-
problem 4. 
 Sub-problem 3 receives υ2|a, δ1, and δ2. υ2|a with domain {D2, A} is associated with Sub-
problem 3 and the remaining valuations δ1 and δ2 are discarded. Similarly, υ3|c is associated 
with Sub-problem 4, and δ1 and δ2 are discarded. 
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 This process of associating utility and indicator valuations with sub-problems continues 
recursively as above. The resulting distribution of utility and indicator valuations in the sub-
problems is shown in Figure 7. 
 Probability Valuations. We start by assuming that we have a factorization of the joint 
probability distribution for all chance variables in the problem. In the reactor problem, for 
example, the joint probability distribution τ for {C, A, R} is given by τ = χ⊗α⊗ρ. 
 We recursively compute the probability valuation associated with a leaf sub-problem that 
ends with a chance variable, say Cm, as follows. Let Γ = {C1, …, Cm} denote the chance 
variables on a path from the source node to the leaf node whose last variable is Cm, and let P = 
{π1, …, πk} denote the set of probability valuations with domains h1, …, hk, respectively, such 
that (π1⊗…⊗πk)

↓Γ is the joint distribution for the chance variables in Γ. The probability 
valuation associated with the leaf sub-problem whose last variable is Cm is given by 
π↓Γ/π↓Γ−{Cm}, where π = ⊗{πj | Cm ∈ hj}. Furthermore, the set of probability valuations 
associated with the set of chance variables Γ−{Cm} is ∪{πj | Cm ∉ hj}∪{π↓Γ−{Cm}}, i.e., 
(⊗{πj | Cm ∉ hj}⊗π

↓Γ−{Cm})↓Γ−{Cm} is the joint distribution for the chance variables in Γ−{Cm}. 
Thus, we can recursively compute the probability valuations associated with the other sub-
problems whose last variable is a chance node. It follows from Lauritzen and Spiegelhalter 
[1988] that π↓Γ/π↓Γ−{Cm} is the conditional probability distribution for Cm given the variables in 
Γ−{Cm}. 
 In the special case where each probability valuation is a conditional distribution as in a Bayes 
net model, then this method is equivalent to computing conditionals by a series of arc-reversals. 
However, the method described above works whether the probability valuations are conditionals 
or not, and whether Γ includes all chance variables or not. All that is needed for the above 
algorithm to work is that the probability valuations specified in the model are factors of the joint 
distribution for all chance variables (see Lauritzen and Spiegelhalter [1988, Section 9.2] for 
further details). 
 As an illustration of the above procedure, consider the reactor problem. We associate 
probability valuations only with Sub-problems 1, 2, 3, 4 and 7 (since these are the only ones with 
a chance variable as the last variable). Consider the path from Sub-problem 8 to Sub-problem 1 
in Figure 7. The chance variables on this path are R and A. First, (χ⊗α⊗ρ)↓{R, A} = α⊗ρ is the 
joint distribution for {R, A}. The probability valuation associated with Sub-problem 1 is 
(α⊗ρ)/(α⊗ρ)↓R. The computation of (α⊗ρ)/(α⊗ρ)↓R is shown in Table 4. Next, we have 
probability valuations χ and (α⊗ρ)↓R associated with chance variable {R}. Thus, the probability 
valuation associated with Sub-problem 7 is (α⊗ρ)↓R/(α⊗ρ)↓∅ = (α⊗ρ)↓R (since (α⊗ρ)↓∅ is the 
constant 1). In a similar way, we can see that the probability valuation associated with Sub-
problem 2 is χ, with Sub-problem 3 is α, and with Sub-problem 4 is χ. 
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Table 4. The Details of Computation of Probability Valuation (α⊗ρ)/(α⊗ρ)↓R 

δ2 α ρ α⊗ρ (α⊗ρ)↓R (α⊗ρ)/(α⊗ρ)↓R 

b, al 0.244 0.288 0.070 0.100 0.700 
b, am 0.096 0.313 0.030  0.300 
g, as 0.660 0.182 0.120 0.300 0.400 
g, al 0.244 0.565 0.138  0.460 
g, am 0.096 0.437 0.042  0.140 
e, as 0.660 0.818 0.540 0.600 0.900 
e, al 0.244 0.147 0.036  0.060 
e, am 0.096 0.250 0.024  0.040 

 
 This completes the decomposition of the decision problem into sub-problems. In the next 
section, we describe the solution of the sub-problems. 

4.7 Solving the Sub-Problems 
 We start with solving the leaf sub-problems. After solving a sub-problem, we pass the 
resulting utility valuation fragment to its parent sub-problem and delete the sub-problem. In 
passing the utility valuation fragment to the parent sub-problem, if the domain of the utility 
valuation fragment does not include any variables in the parent sub-problem, we tag the utility 
valuation with the value of the last variable in the parent sub-problem that is in the annotation. 
We recursively continue this procedure until all sub-problems are solved. 
 What does it mean to solve a sub-problem? We fuse the valuation fragments with respect to 
the last variable in the sequence of variables at the sub-problem as per the definition of fusion 
stated in section 4.5. After fusion, the resulting utility valuation fragment is passed on to the 
parent sub-problem appropriately tagged if necessary. The SVN representation is completely 
solved when we have solved all sub-problems including the root sub-problem. We will now 
demonstrate the solution technique by solving the Reactor problem in complete detail. 
 Consider the decomposition of the Reactor problem into the eight sub-problems as shown in 
Figure 7. Consider Sub-problem 1 consisting of valuation fragments υ2|a, (ρ⊗α)/(ρ⊗α)↓R, and 
δ2. We fuse the valuation fragments with respect to A using the definition of fusion given in 
section 4.5: 

 FusA{υ2|a, (α⊗ρ)/(α⊗ρ)↓R} = {[(υ2|a)⊗(α⊗ρ)/(α⊗ρ)↓R]−A} = {υ5|a}. 
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The resulting utility valuation υ5|a is sent to parent sub-problem 5. Since υ5|a includes D2 in its 
domain, there is no need for tagging. All computations are done on relevant state spaces as 
constrained by indicator valuation δ2. The details of the computation are shown in Table 5. 

Table 5. The Details of Solving Sub-Problem 1 

{a}×δ2 υ2|a (α⊗ρ)/(α⊗ρ)↓R (υ2|a)⊗(α⊗ρ)/(α⊗ρ)↓R = ϕ ϕ−A = υ5|a 

a, b, al −6 0.700 −4.200 −7.200 
a, b, am −10 0.300 −3.000  
a, g, as 12 0.400 4.800 0.649 
a, g, al −6 0.460 −2.760  
a, g, am −10 0.140 −1.400  
a, e, as 12 0.900 10.800 10.043 
a, e, al −6 0.060 −0.360  
a, e, am −10 0.040 −0.400  

 
 Next, we solve Sub-problem 2 by fusing the valuation fragments {υ3|c, χ} with respect to C: 

 FusC{υ3|c, χ} = {((υ3|c)⊗χ)−C} = {υ6|c}. 

Details are shown in Table 6. The resulting utility fragment υ6|c is passed on to parent sub-
problem 5. Since υ6|c includes D2 in its domain, there is no need for tagging. 

Table 6. The Details of Solving Sub-Problem 2 

{c}×ΩC υ3|c χ (υ3|c)⊗χ ((υ3|c)⊗χ)−C = υ6|c 

c, cs 8 0.98 7.840 7.760 
c, cf −4 0.02 −0.080  

 
 Next in Sub-problem 3, we fuse the valuation fragments in {υ2|a, α} with respect to A: 

 FusA{υ2|a, α} = {((υ2|a)⊗α)−A} = {υ7|a}. 

Details are shown in Table 7. The resulting utility fragment υ7|a is passed on to parent Sub-
problem 6. Since υ7|a includes D2 in its domain, there is no need for tagging. 
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Table 7. The Details of Solving Sub-Problem 3 

{a}×ΩA υ2|a α (υ2|a)⊗α ((υ2|a)⊗α)−A = υ7|a 

a, as 12 0.660 7.920 5.496 
a, al −6 0.244 −1.464  
a, am −10 0.096 −0.960  

 
 Next we solve Sub-problem 4 by fusing the valuation fragments {υ3|c, χ} with respect to C: 

 FusC{υ3|c, χ} = {((υ3|c)⊗χ)−C} = {υ6|c}. 

Details of the computation are exactly as those for Sub-problem 2 shown in Table 6. The 
resulting utility fragment υ6|c is passed on to parent sub-problem 6. Since υ6|c includes D2 in its 
domain, there is no need for tagging. 
 Next, we solve Sub-problem 5 as it is now a leaf sub-problem in the pruned tree. Initially this 
sub-problem has utility valuation υ4|n with domain {D2} and indicator valuation δ1 with domain 
{R, D2}. It receives valuation υ5|a from Sub-problem 1 with domain {D2, R}, valuation υ6|c 
from Sub-problem 2 with domain {D2}. Since we don’t have any probability or utility valuations 
that include D1 in their domain, all computations in this sub-problem are done on state space δ1, 
and we fuse the valuations with respect to D2: 

 FusD2
{υ4|n, υ5|a, υ6|c} = {((υ4|n)⊗(υ5|a)⊗(υ6|c))−D2} = {υ8} 

Details of the computation are shown in Table 8. The resulting utility valuation υ8 with domain 
{R} is passed on to parent Sub-problem 7. Since υ8 includes R in its domain, there is no need for 
tagging. 

Table 8. The Details of Solution to Sub-Problem 5 

δ1
 υ4|n υ5|a υ6|c (υ4|n)⊗(υ5|a)⊗(υ6|c) ((υ4|n)⊗(υ5|a)⊗(υ6|c))−D2 = υ8 

b, c   7.76 7.760 7.760 
b, n 0   0  
g, a  0.649  0.649  
g, c   7.76 7.760 7.760 
g, n 0   0  
e, a  10.043  10.043 10.043 
e, c   7.76 7.760  
e, n 0   0  
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 Next, we solve Sub-problem 6. Initially, Sub-problem 6 has utility fragment υ4|n associated 
with it. It receives utility fragment υ7|a from Sub-problem 3 and utility fragment υ6|c from Sub-
problem 4. We solve this sub-problem by fusing the three valuations with respect to the last 
variable in the sequence, D2, as follows:  

 FusD2
{(υ4|n, υ7|a, υ6|c} = {((υ4|n)⊗(υ7|a)⊗(υ6|c))−D2} = {υ9}. 

Details are shown in Table 9. The resulting utility valuation υ9 with domain ∅ is passed on to 
parent sub-problem 8. Since υ9 does not include D1 in its domain, we tag it with D1 = nt, i.e., 
utility fragment υ9⊗(ιD1

|nt) is passed on to parent Sub-problem 8. 

Table 9. The Details of Solving Sub-Problem 6 

ΩD2 
υ4|n υ7|a υ6|c (υ4|n)⊗(υ7|a)⊗(υ6|c) ((υ4|n)⊗(υ7|a)⊗(υ6|c))−D2 = υ9 

a  5.496  5.496  
c   7.760 7.760 7.760 
n 0   0  

 
 Next, we solve Sub-problem 7. Initially, this sub-problem has probability valuation (α⊗ρ)↓R. 
It receives utility valuation υ8 with domain {R} from Sub-problem 5. We fuse these two 
valuations with respect to R: 

 FusR{υ8, (ρ⊗α)↓R} = {(υ8⊗(ρ⊗α)↓R)−R} = {υ10}. 

Details are shown in Table 10. Since υ10 does not include D1 in its domain, we tag it with D1 = t, 
i.e., utility fragment υ10⊗(ιD1

|t) is passed on to parent Sub-problem 8. 

Table 10. The Details of Solving Sub-Problem 7 

ΩR υ8 (α⊗ρ)↓R υ8⊗(ρ⊗α)↓R (υ8⊗(α⊗ρ)↓R)−R = υ10 

b 7.760 0.100 0.776 9.130 
g 7.760 0.300 2.328  
e 10.043 0.600 6.026  

 
 Finally, we solve Sub-problem 8. Initially, this sub-problem has utility valuation υ1 and it 
receives utility fragment υ9⊗(ιD1

|nt) from Sub-problem 6, and utility fragment υ10⊗(ιD1
|t) from 

Sub-problem 7. We solve this sub-problem by fusing the three utility valuations with respect to 
D1: 

 FusD1
{υ1, υ9⊗(ιD1

|nt), υ10⊗(ιD1
|t)} = {(υ1⊗(υ9⊗(ιD1

|nt))⊗(υ10⊗(ιD1
|t)))−D1}. 
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Details are shown in Table 11. 

Table 11. The Details of Solving Sub-Problem 8 

 
ΩD1 

 
υ1 

 
υ9⊗(ιD1

|nt) 
 

υ10⊗(ιD1
|t) 

υ1⊗(υ9⊗(ιD1
|nt))⊗ 

(υ10⊗(ιD1
|t)) 

(υ1⊗(υ9⊗(ιD1
|nt))⊗ 

(υ10⊗(ιD1
|t)))−D1 

t  –1  9.130 8.130 8.130 
nt 0 7.760  7.760  

 
 In summary, solving a SVN representation involves the following steps: 
 Step 1: Decompose the problem into a tree of sub-problems based on the SVN graph, and 
populate each sub-problem with probability, utility, and indicator valuation fragments as 
described earlier; 
 Step 2: Solve a leaf sub-problem by fusion with respect to the last variable in the sub-
problem and pass on the resulting utility valuations to the parent sub-problem, with tagging if 
necessary. The fusion operation is done on the union of the domains of the utility and probability 
valuation fragments in that sub-problem as constrained further by indicator valuations, if any. 
After passing the results of the fusion operation to the parent sub-problem, we delete the sub-
problem from the decomposition tree, and repeat step 2. When no sub-problems remain, the 
problem is solved. The utility valuation resulting from the fusion operation in the root sub-
problem is the expected utility of the optimal strategy. The optimal strategy can be constituted 
from the decision functions at sub-problem with a decision node as the last variable. 

4.8 Proof of Correctness 
In this section, we sketch why the method for solving SVNs provides a correct answer to the 
decision problem. 
 First notice that our method is closely related to the solution technique of decision trees. The 
probabilities associated with sub-problems with a chance node as the last node are the same as in 
decision trees—we compute the conditionals for the chance variable given all other variables that 
precede the chance variable. The fusion algorithm for the special case of SVNs is exactly the 
same as Raiffa’s averaging out (for deleting chance nodes) and folding back (for deleting 
decision nodes). The main difference between our solution technique and that of decision trees is 
that the computations are done locally and not on the entire space of all scenarios. Thus given a 
syntactically correct and complete SVN representation, one can deduce an equivalent decision 
tree representation. The SVN solution technique will then provide exactly the same answers as 
averaging out and folding back method for decision trees, albeit with fewer computations. 
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 The analogy with decision trees can be seen in the solution for the reactor problem. The 
results of solving each sub-problem can be related to the solution of the decision tree shown in 
Figure 3. 

5 AN ILLUSTRATIVE EXAMPLE 
In this section, we present a simple example to illustrate the advantages of the SVN 
representation over other representations proposed in the literature. 
 The main advantage of the SVN technique is that we do not need to introduce dummy states 
for chance or decision variables. The introduction of dummy states to handle asymmetry can 
complicate the representation of a problem and especially when large Bayes nets are considered, 
dummy states make it hard to determine what the right probabilities are at different nodes. For 

example, regarding Smith-Holtzman-Matheson’s distribution trees, when larger probability 

models are considered, it may require extensive effort to determine what distributions should be 

used in some of the distribution trees. Similarly, regarding Shenoy’s asymmetric VN 

representation, introducing dummy states to the problem may require preprocessing of 

probabilities to determine the right valuations for some of the variables in the problem. 
To illustrate this point, we will describe a simple example called Diabetes diagnosis. 

Consider a physician who is trying to diagnose whether or not a patient is suffering from 
Diabetes. Diabetes has two symptoms, glucose in urine, and glucose in blood. Assume we have a 
Bayes net model for the three variables—Diabetes (D), glucose in blood (B) and glucose in urine 
(U)—in which the joint distribution for the three variables P(D, B, U) factors into three 
conditionals, P(D), P(B | D), and P(U | D, B). Furthermore, assume that D has two states, d for 
Diabetes is present, and ~d for Diabetes is absent, U has two states, u for elevated glucose levels 
in urine, and ~u for normal glucose level in urine, and B has two states, b for elevated glucose 
levels in blood, and ~b for normal glucose level in blood. The physician first decides (FT) 
whether to order a urine test (ut) or a blood test (bt) or neither (nt). After the physician has made 
this decision and observed the results (if any), she next has to decide whether or not to order a 
second test (ST). The choices available for the second test decision depend on the decision made 
at FT. If FT = bt, then the choices for ST are either ut or nt. If FT = ut, then the choices for ST are 
either bt or nt. Finally, after the physician has observed the results of the second test (if any), she 
then has to decide whether to treat the patient for Diabetes or not. As described so far, one model 
of the problem has three chance variables, D, U, B, and three decision variables FT (first test), ST 
(second test), and TD (treat for Diabetes).  
 As can be seen from the above description, this is a problem in which the information 
constraints depend on the scenarios, i.e. the order in which the symptoms are revealed (if at all) 
may depend on the sequence of the tests ordered by the physician prior to making a diagnosis. If 
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the physician decides to first do a blood test, then the results of the blood test are revealed prior 
to ordering the second test—whether to order a urine test or not. This asymmetry requires the use 
of dummy states if we are modeling this problem using SHM’s distribution trees or Shenoy’s 
asymmetric VN representation. In a small problem of this size (with three chance variables), the 
introduction of dummy states may not be impractical. However when larger Bayes nets are 
concerned, adding dummy states to a non-terminal chance node will involve completing the 
conditional distributions for successor chance nodes, and this may be impractical. We will make 
this point clearer at the end of this section. 
 Using the SVN technique, one can represent this problem easily without introducing any 
more variables or any dummy states. A SVN graphical representation is shown in Figure 8. In 
this figure, the indicator valuation fragment ι|FT = {bt, ut} represents a constraint on ST as 
described above, namely: {(bt, nt), (bt, ut), (ut, nt), (ut, bt)}. The utility valuations κ1, κ2, and κ3 
represents a factorization of the total cost of diagnosing and treating the patient for Diabetes, and 
the probability valuations δ = P(D), β = P(B | D), and υ = P(U | B, D) represent a factorization of 
the joint probability distribution into conditionals specified by the Bayes net model. Notice that 
the SVN graphical representation has several directed cycles. However, these directed cycles are 
disallowed by the annotations on the directed edges and the indicator valuation ι, which forbids, 
e.g., FT = bt, ST = bt, and also FT = ut, ST = ut. 
 Representing this problem using Smith-Holtzman-Matheson’s [1993] asymmetric influence 
diagrams or Shenoy’s [2000] asymmetric valuation networks is possible but only after either 
introducing additional variables or introducing dummy states for the existing variables. This is 
because if one uses the existing variables, the modeling of information constraints would depend 
on the FT decision. If FT = bt, then the true state of B is revealed prior to making the ST 
decision, and the true state of U is unknown when the ST decision is made. However if FT = ut, 
then the true state of U is known prior to making the ST decision and the true state of B is 
unknown when the ST decision is made. We call this aspect of the decision problem information 
asymmetry. Using either influence diagrams or valuation networks, it is not possible to model 
this information asymmetry without either introducing additional variables or introducing 
dummy states for existing variables. In either of these cases, the modeling will need to adapt the 
Bayes net to a model that includes additional variables or dummy states or both. 
 However, when larger Bayes nets are concerned, determining the right probabilities for 
certain nodes might require extensive effort. In fact, in the case of asymmetric VNs, this might 
require preprocessing of probabilities. One other advantage of avoiding dummy states in the 
SVN representation is that it is flexible enough to handle different probability models in which 
information asymmetry exists. For example, in the Diabetes diagnosis problem the probability 
model described suggests that glucose in blood (B) and glucose in urine (U) are independent 
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given Diabetes (D). Now consider a different problem in which this independence structure does 
not exist, i.e. different conditional distributions become relevant depending on the information 
set. Representing this case with methods proposed in the literature would be a challenge. Note 
that one would need to calculate the required conditional distributions relevant to different 
scenarios at the representation phase, even before we start the solution. However, the SVN will 
easily handle this new probability structure by adjusting the probability valuations without 
changing the graphical structure. We leave the details of representing the Diabetes diagnosis 
problem using either influence diagrams or valuation networks or some other technique to the 
ingenuity of the reader. Recently, Jensen and Vomlelova [2002] have defined a new graphical 
structure called “unconstrained influence diagrams” (UIDs) to represent problems such as the 
Diabetes diagnosis problem in which the sequence of tests to be done is unspecified. UIDs are 
appropriate only for a special class of asymmetric decision problems, and not for all asymmetric 
decision problems. 

Figure 8. A SVN Representation of the Diabetes Diagnosis Problem (the state spaces of 
variables are omitted). 
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6 SUMMARY AND CONCLUSIONS 
The main goal of this paper is to propose a new representation and solution technique for 
asymmetric decision problems. The new representation, called sequential valuation network 
(SVN), combines the best features of two graphical methods—valuation networks [Shenoy 1992, 
1993, 2000], and sequential decision diagrams [Covaliu and Oliver 1995]—while improving on 
both methods. 
 The advantages of SVNs over VNs are as follows. SVNs represent most of the asymmetric 
structure of the problem at the graphical level in SVNs (some of it is represented in indicator 
valuations) whereas they are represented in the details of the indicator valuations in VNs. The 
state spaces of chance and decision nodes in SVNs do not include dummy states. All types of 
asymmetry can be represented in SVNs whereas VNs cannot represent some types of asymmetry. 
For example, the irrelevance of A when D2 = c, the irrelevance of C when D2 = a, and the 
irrelevance of A and C when D2 = n is represented in SVNs whereas it cannot be represented by 
VNs. 
 The advantages of SVNs over SDDs are as follows. SVNs do not require a separate influence 
diagram to represent the uncertainty model. SVNs can represent a more general uncertainty 
model than SDDs, which like influence diagrams assume a Bayes net model of uncertainties. In 
SVNs, one has the flexibility of representing constraints on the graphical structure by using 
annotations on edges or by using indicator valuations. Thus, simple constraints involving a single 
variable can be represented by annotations and complex constraints involving several variables 
can be represented by indicator valuations. In SDDs, only annotations are available for 
representing constraints. All asymmetries that can represented by decision trees can be 
represented in SVNs. This is not true for SDDs. For example, in the Reactor problem, the 
impossibility of R = b when A = as is not represented in a SDD representation of the problem. 
SVNs do not require a separate formulation table representation as in SDDs. Finally, SVNs can 
handle any factorization of the joint utility function whereas SDDs as currently described can 
only be used with either an undecomposed joint utility function or with a factorization of the 
joint utility function into singleton factors. 
 We solve a SVN representation by first decomposing it into smaller sub-problems, and then 
solving the smaller sub-problems. This strategy of decomposing an asymmetric problem into 
smaller sub-problems has also been proposed by Liu and Shenoy [1995], and Nielsen and Jensen 
[2000]. The solution of the sub-problems in SVNs is similar to the traditional rollback method of 
decision trees. 
 Some weaknesses of the SVN method are as follows. The decomposition of SVNs into 
smaller sub-problems involves processing of the probability valuations similar to the arc 
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reversals required by SDDs. We have described a local computational technique for computing 
the probability valuations associated with sub-problems based on Lauritzen and Spiegelhalter’s 
[1988] method. The SVN solution technique as currently described does not recognize 
coalescence. Thus, there is some duplication of computation. For example, in the reactor 
problem, the computations in sub-problem 2 and 4 are identical and are unnecessarily repeated. 
However, we could incorporate a routine in which if we have more than one sub-problem with 
the same last variable, we check the valuations to see if the sub-problems are identical avoiding 
unnecessary repetition. 
 Since we do not propagate the indicator valuations (as we do in the asymmetric VNs [Shenoy 
2000]), there are some unnecessary computations in SVNs. For example, in the reactor problem, 
in Sub-problem 1, we do some computation for states (a, b, al) and (a, b, am) (see Table 5) 
although these are disallowed by indicator valuation δ1. However, since indicator valuation δ1 
does not enter the picture until Sub-problem 5, these unnecessary computations are done in our 
technique. We could avoid these unnecessary computations by propagating the indicator 
valuations as is done in Shenoy’s [2000] asymmetric valuation networks. Since the indicator 
valuations are idempotent, double counting of indicator valuations poses no problem. However, 
propagating indicator valuations does add some overhead to the computation and this needs to be 
compared to the subsequent savings in computation by the elimination of some unnecessary 
computation. 
 Finally, as can be seen from Figure 8, the SVN representation can be complex. While most of 
the asymmetric structure is evident from the graph, some are hidden in the details of indicator 
valuations. 
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