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Abstract.
Data sets discussed in this paper are presented as tables with rows corresponding to examples
(entities, objects) and columns to attributes. A patrtition triple is defined for such a table as a triple
of partitions on the set of examples, the set of attributes, and the set of attribute values,
respectively, preserving the structure of a table. The idea of a patrtition triple is an extension of the
idea of a partition pair, introduced by J. Hartmanis and J. Stearns in automata theory. Results
characterizing partition triples and algorithms for computing partition triples are presented. The

theory is illustrated by an example of an application in machine learning from examples.

1. Introduction
Reduction of data is a useful way to economize on space in current computer technology.

Problems with reducing the size of data sets occur in many areas. One of them is empirical
machine learning, where large input data sets make learning difficult. This paper presents a
methodology for reduction of data sets, where the reduced data set preserves the structure of the
original data set. Two forms of data sets are discussed in this paper. First, it is assumed that a
data set is given in the form of a table, called an information system (or instance space). Rows of
the table are labeled with names of examples (entities, objects), columns with names of attributes.
Every example is characterized by a tuple of values of all attributes. For example, such an

information system may contain data about patients in a hospital. Attributes are tests, such as
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surface temperature, diastolic blood pressure, systolic blood pressure, etc. A row of the table
represents a patient, characterized by a tuple of values of all tests.

The second form of a data set discussed in this paper is a decision table. A decision table is
defined the same way as an information system, except that the table contains an additional column
called a decision. Every example is additionally characterized by a value of the decision. A
decision value is usually determined by an expert. For example, a decision table may contain
hospital patient data, where a patient is characterized as being healthy or sick with some disease by
an expert—a physician. This form of input data is common, e.g., for machine learning from
examples.

The following problem is addressed in this paper: How to reduce the original data set to a
smaller data set (containing fewer examples, attributes, and attribute values). At the same time, the
smaller data set should preserve the structure of the original data set.

The proposed method of reduction of data sets is based on the idea of a partition triple, i.e.,
a triple of three partitions: on the set of examples, attributes, and attribute values. Every such
partition clusters elements (examples, attributes, and attribute values) into blocks of elements.
Additionally, examples, attributes, and attribute values are reduced into corresponding blocks in
such a way that in the reduced table, where examples, attributes and attribute values are replaced by
corresponding blocks, the block containinig a value of the attribute block containapr the
example block containingif and only ifv is a value of attributa for examplex in the original
table. This way the blocks of examples and attributes are transformed into blocks of attribute
values in the same way that their members are transformed in the original table.

Also, a triple algebra theory, which is a basic algebraic structure for partition triples, is
developed. An algorithm for computing partition triples is presented as well.

The idea of a partition triple is an extension of the idea of a partition pair, introduced by J.
Hartmanis and R. Stearns in automata theory [5]. The special case of a partition triple was studied

in [1]. Some preliminary results on partition triples were presented in [3, 4].
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The theory of partition triples has many potential applications. One of the most obvious is
relational data bases. Another application, machine learning from examples, is briefly illustrated in
this paper. In this domain the input data sets are presented as decision tables. Large input data
sets, representing examples, make learning difficult. This paper includes an example showing
how patrtition triples may be used for inducing simpler rules from examples. The induced rule set

represents the same knowledge as the rule set induced from the original data set.

2. Preliminary Definitions

Originally we will assume that the data are collected in the table, calledcamation
system and defined as follows [8, 9]. The information syst®m a fourtuple E, A, V, p),
where

E is a finite nonempty set examples

A'is a finite nonempty set attributes

Vis a finite nonempty set attribute values

andp is a functionp: ExA - V.

An example of such an information system is presented in Table 1.

Let X be a nonempty finite set. partition Tt on X is a family of disjoint subsets of
whose set union iX. Elements of partitiom will be calledblocksof 1t If elementsx andy are
both members of the same blockmofit will be denoted by =y (). There are two trivial
partitions ¢ and %, where § is the partition orX in which all blocks are one-element subsets of

X and k is the partition orX which contains only one block.

If Ttandt are partitions oiX, then the product aft andt, denoted byt [T, is a partition
on X such thak =y (rt [) if and only ifx =y (1) andx =y (1). The sum oftandt, denoted by
T+ 1, is a partition orX such thatk =y (1t + 1) if and only if there exists a sequence X,

X2,..., Xn =y Of elements oK such that; = x4+ 1(17) or x; = X+ 1(1) fori = 1, 2,...n— 1.



A partitionTtis said to be smaller than or equal to another partitiodenoted byt< 1, if
and only if for every blociB of 1t there exists a blocB' of T such thaB [J B'. Obviously, the
product ofrtandt may be defined as the greatest lower bound (g. |. maafit, and the sum of

mandt may be defined as the least upper bound (l. u. br)awidt, see, e.g., [5].

3. Partition Triples and MMm triples

The idea presented here of reduction data, in its special case, was originally developed in
automata theory, under the name of partition pairs, see e.g. [5]. Later on this idea, extended to
input data of machine learning systems, was presented in [1]. In this paper the idea of a partition
triple from [1] is generalized. In [1], in any triple of partitions, the partition on the set of all

attributes was constant. Some preliminary results were discussed in [3, 4].

Definition. For a E, A, V, p), lettt be a partition ork, lett be a partition o\, and letA be a
partition onV. A partition triple on an information systef®= (E, A, V, p) is an ordered triple of
partitions (T, T, A) such that for alk, y [0 E anda, b 0 A

x=y (m anda=b (1) implies thatp(x, a) = p(y, b) (A).

The set of all partition triples ddwill be denoted by (S).

Table 1
ai az as as
X1 0 0 2 2
X2 0 1 2 2
X3 1 1 2 3
X4 1 1 3 3
X5 4 3 4 4




Definition. Let (T, T, A) be a partition triple on an information syst&w (E, A, V, p). The
(Tr, T, A)-imageof Sis the information systenTi(T, A, p') such that for alB, 0 1, B; O T, and
By O A

P'(Br B) =By if p(x, @) =V,

wherex, a, andv are arbitrary members 8f; B, andB),, respectively.

An example of a partition triple of the information system from Table 1 is
({ x2, %2}, {x3, xa}, { xs}}, {{ as}, { @z}, {as, aq}}, {{0, 1}, {2, 3}, {4}}).
The (T, 1, A)-image ofSfrom Table 1 is presented in Table 2.
Lemma 3.1 Let (T, 1, A) and (T, T', A") be partition triples ois = (E, A, V, p), then
(i) (m Ottt O, A ON)
and
() (m+1, T+T,A+AY)
are also partition triples dd= (E, A, V, p).
Proof. Letx,y [ E anda, b O A.
() x=y (t O) anda=b (1 [It'") impliesx=y (M), x=y (1), a=b (1), anda=Db (1).
Since (T, T, A) and (T, T, A") are partition triples org, p(x, a) = p(y, b) (A), p(x, a) =
p(y, b) (A", i.e.,p(x, @) = p(y, b) (A ON'). Therefore §t Ort, T [Ot', A 0A") is a partition
triple onS.

(i) Without loss of generality let us assume thaty (11 + 11) implies that there exists a

Table 2

{ai} {a2} {as, a4}

{xu,x2} | {0,1} {0,1} {2,3}
{xa, xa} | {0,1} {0,1} {2,3}
{xs} {4} {23} {4




sequencex = Xg, X1, X2, ...,Xn =Y such thatx; = x;+1 (1) for eveni andx; = x4+ (17) for oddi,
wherei 0 {0, 1, ...,n— 1} anda=b (t + 1) implies that there exists a sequeaceay, a, ay,
..., am = b such thaty = aj.+1 (1) for evenj anda; = a+1 (') for oddj, wherej O {0, 1, ....m—
1}. As (m 1, A) and t, T, \") are partition triples o, p(x;, ag) = p(Xi+1, a) (A), for eveni,
andp(x, ag) = p(Xj+1, ag) (A"), for oddi. Thereforep(xg, ag) = p(Xn, ag) (A +A"), i.e.,p(x, a) =
p(y,a) (A +A). As (T, T, A) and (T, T', \') are partition triples o1, p(y, &) = p(Y, gj+1) (A),
for evenj, andp(y, aj) = p(y, aj+1) (A"), for oddj. Thereforep(y, ag) = p(y, am) A +A’), i.e.,
p(y. @) =p(y, b) (A +A). So,p(x,a) =p(y,a) =p(y,b) A +A), e, T+, T+T, A+
A") is a partition triple ors

Lemma 3.2. For any partitiormt on E, for any partitiont on A, and for any partitioA onV,
(T, T, 1y) and (@, Oa, A) are partition triples ofs.

Proof. Letttbe any partition o, andt be any partition oA. Letx andy be any elements &
such thatx =y (M) anda andb be any elements & such that=b (1). Thenp(x, a) = p(y, b)
(1y) because the partition, has only one block which is the whole $etTherefore, 1, 1, 1y) is
a partition triple or&.

Let A be any partition oV. Letx andy be any elements & such thak =y (Og) anda
andb be any elements @f such that=b (0a). Since each block of partitiong @nd @ contains
only one elementx =y anda =b. Thereforep(x, a) = p(y, b), i.e.,p(x, a) andp(y, b) are
identical element itv, and hence they are in the same block of any partitio, ae.,p(x, a) =

p(y, b) (A). Therefore, (B, Oa, A) is a partition triple ors.

Lemma 3.3. The setl (S of all partition triples or&= (E, A, V, p) is a lattice.

Proof. The proof follows directly from Lemma 3.1.

Definitions. For a given partitiom on E, the minimal partitiorh onV such that1, Oa, A) is a

partition triple onS= (E, A, V, p) will be denotedne(17). It is obvious that



MeW(T) =1 {A | (I, Oa, A) O L(S)}

Similarly, for a given partitiom onA, the minimal partitior\ onV such that (g, T, A) is a

partition triple onS= (E, A, V, p) will be denotedn,(1), and
May(t) =M {A | (G, 1, A) OL(S}

For a given partitioh onV we may ask what are maximal partitionen E andt onA
such thatxt, Oa, A) and (@, T, A) are partition triples o6 = (E, A, V, p). Such partitions will be
denotedM ¢\(A) andM (M), where

MeA) =2 {mt| (it Oa, A) O L(S)}
and
Mav() =2 {1 | (G, T,A) O L(S}.

In the preceding definitionsn stands for minimum anil for maximum. Partitions
MeW(T) andmy,(T) represent the largest amount of information about blocks of attribute values
which can be drawn from the information about blocka ahdt, respectively. Partitionsl ¢\(A)
andM ,(A) represent the least amount of information about blocks of examples and attributes
which must be supplied to identify blocksof

A partition triple T, T, A) onS= (E, A, V, p) will be called aMMm tripleif and only if

TT=MefA), T=Mgy(A), andA = mey(T0) + My (T).
The set of all MMm triples 06 = (E, A, V, p) will be denotedK(S). An example of a

MMm triple of the information system from Table 1 is

({ x1. %2, X3, xa}, {xs}}, {{ aa}, { @2}, {as, aa}}, {{0, 1}, {2, 3}, {4}}).

4. Triple Algebra
We can study properties of partition triples and MMm triples by analyzing the underlying
algebraic structure, called a triple algebra. The results of the abstract structure can be applied not

only to the partition triples but also to other, not yet discovered, interpretationk;, LgtandLs



be finite lattices. Then a subgebf L1 x L, x L3 is atriple algebraonL; x Ly x L3 if and only if
the following postulates hold:
P1. (1, Y1, Z1) and ko, Yo, o) are inA implies that X1 (X, y1 Oy, 21 o) and

(X1 + X2, Y1 + Y2, Z1 + 2) are inA,

P2.  ForanwinlLyyinly andzinls, (x,y, 1 5) and (Q,, O_,, 2) are inA.

For (x,y,2) and ', y',z) inLyx Ly x L3, we defineX,y, 2) < (X, Y, Z) if and only if
X< xX,y<y, andz< Z.
Lemma 4.1. If A is a triple algebra oh1 % Ly x Lz and &, Yy, z) is inA, thenx'< x,y' <y,
andz = z implies that X, y', Z) is inA.
Proof. Suppose thatx(y, z) isinA andx'<x,y'<y, andz =z By the property P2,
(X, Yy, 1) isinA. Hence X Lk, y 0¥, z [ ) is inA, by the property P1. Since < X
andy'<vy, (X',y', z) isinA. By the property P2, (Q, 0_,, Z) is inA and hence

(X'+0,,y+0,z+Z)isinA. Sincez 2z, (X,y', Z) is inA.

Definitions. LetA be a triple algebra ol x Ly x L3. For anyxin Ly, yinLy, andzin Lz, we
define

mag(x) = {z| &, O_,, 2 O A},

maay) =1 {z| (O, v, 2) 0 A},

M13@) = Z {x| & 0., 2 O A},

M23(2) =2 {y | (O, ¥, 2 O A},

M123(X, y) = M13(X) + mag(y),

M123(2) = (M 13(2), M 23(2)).

Lemma 4.2. For anyx in L1 andy in Ly, myo3(x, y) =1 {z] Yy, 2 O A}.
Proof. Let us define the following sets

R(x,y) ={z| & y,2) O A},



Ri(x) = {z| &, O_,, 2) O A},
and
Ra(y) = {z| (Q.,, ¥, 2 O A}
ThenzOR(x,y) O (x,y,2 0A
0 0,2 0Aand (@Y, 2 UA, becauseQsy and Q <X,
0 z 0O Ry(X) andz [0 Ry(y).
ThereforeR(X, y) O Ry(x) andR(x, y) O Rx(y).
Consequently,
M{z|zORX, y)} 21 {z|z0 Ry(x)}
and
M{z|zORX y)} =M {z|zORx(y)},
e, M{z|zORX, Y} =M {z|zOR(X)} + N {z|zO Rx(y)}, or, 1 {z|zO R(x, y)} =
mqo3(X,y). Letzy =11 {z|z0O Ry(X)} and z, =11 {z |z O Rx(y)}. For any z O Ry(x),
(X, OL,, 2) O A. By the property PAT {(x, O, 2 [zORi(X)} OA, e, & O, z1) UA.
Similarly, (0L, y,z2) O A. By the property P1,x(+ O,, O, +y,z1 +23) U A, i.e,
(X,Y,21 +2) OA , orz; +z, 0 R(X,y). Thereforezy +z, 211 {z|z0O R(x, y)}, i.e.,
m1io3(X, y) =1 {z|z0O R(x, y)}. Thereforemqio3(x,y) =11 {z| (X, y, 2) O A}.

Lemma 4.3. For anyzin L3, M123(2) =2 {(X, V) | &, v, 2) O A}.

Proof is similar to the proof of Lemma 4.2.

Definition. For any two elementx,(y, z2) and &', y', Z) in L1 X Lo x L3, we define X, y, 2) <

(x,y,Z)ifand only ifx< X inLy,y<y'inLy, andz< Z inLs.

Lemma 4.4. Any triple algebral onL; X L, x L3 is a lattice under the above ordering with zero

element (O, 0, 0), unit element (1, 1, 1), and component-wise g.l.b. and l.u.b. operations.
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Definition. An elementX, y, z) in a triple algebra is called aviMm triple if and only ifx =

M13(2), y = M 23(2), andz = mj3(x) + mo3(y). The set of all MMm triples oA will be denoted
Qa.

Theorem 4.1. LetA be a triple algebra oo, x L, x L. For anyxin Ly, yin Ly, andzin Lg,

(1)  (Ma3(2), O, 2), (OL;, M23(2), 2), (M 13(2), M 25(2), 2),
(X, O, M13(X)), (OLy, Y, M23(y)), and &y, mi23(X, y)) are inA.

(2)  xa<x2 impliesmig(Xy) < M13(X2), y1 < y2 impliesmaz(y1) < mag(y2), and
X1 < X2 andyy < yz imply mazg(Xq, y1) < Mi23(X2, Y2).

(3)  mua(xa +X2) = mMag(Xe) + Mag(Xz), M2s(ys +Y2) = Mag(y1) + Mas(y2), and
M123(X1 + X2, Y1 +Y2) = M123(X1, Y1) + M123(X2, Y2).

(4)  maa(xq Ox2) < mag(xq) Omag(xz), mas(yr Oy2) < mag(y:) Omos(yz), and
M123(X1 (X2, y1 Oy2) < Maza(Xq, Y1) Omaas(Xz, Y2).

(5) zz2mg(x) if and only if &, O_,, 2) O A, z=ma3(y) if and only if (Q,,y,2) DA, and
z=mqp3(x,y) if and only if §,y, z) O A.

(6) z1 < 7, implies thatM 13(z1) £ M 13(22) andM 23(z1) £ M 23(20).

(7)  Mu3(zs +22) 2 M13(z1) + M13(22) andM 23(z1 + 22) 2 M 23(21) + M 23(22).

(8)  Mu3(z1 (o) = M13(z1) OMa3(z2) andM 23(z1 [22) = M2g(z1) UM 23(22).

(9) X< Mi3(2) if and only if &, O_,, 2) 0 A,y < M23(2) if and only if (Q ,, y, 2) U A, and
X< M13(2) andy < M 23(2) if and only if &, y, z) O A.

(10)  Ma3(ma3(x)) = X, M23(M23(y)) 2y, M 13(M123(X, ¥)) = X, andM 23(M123(X, y)) 2 Y.

(11) m123M13(2), M 23(2) <z m13(M 13(2) < z, andmz3(M 23(2)) < z.

(12)  Ma13(Mm13(M13(2)) = M 13(2), M 23(M23(M 23(2))) = M 23(2),
M 13(M123(M 13(2), M 25(2))) = M 15(2), and
M 23(M123(M 13(2), M 25(2))) = M 23(2).

(13) m13(M13(m13(x))) = mM13(x), M23(M 23(M23(y))) = mM2s(y), and

M123(M 13(M123(X, ¥)), M 23(M123(X, ¥))) = M123(X, y).
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(14) M 13(2), M23(2), m123(M 13(2), M 25(2))) and
(M 13(M123(X, ¥)), M 23(M123(X, ¥)), M123(x, y)) are in Q.
(15) If (X1, y1, z2) and ko, Yo, 20) are in Q, thenxy < X andy; <y if and only ifz; < z.
(16) The set @under the ordering ohis a lattice in which
g.1.b.{(x1, Y1, 21), (X2, Y2, 22)} = (X1 DXz, y1 Oy2, m123(x1 [k, y1 Oy2)) and
Lu.b.{(x1, y1, 1), (X2, Y2, Z2)} = (M13(z1 + 22), M 23(21 + 22), 71 + 2).

Proof
(2) By the definitions oM 13 andM 23, (M13(2), OL,, 2) and (Q ,, M23(2), 2) are inA. By

the property P1,M13(2) + OL,, O, +M23(2), z+2) isinA, i.e., M13(2), M23(2), 2) is
in A. Similarly, &, O,, m13(x)) and (Q,, y, m23(y)) are inA and so is their sum,
i.e., k+ O, O, +Y, mq3(X) + mog(y)) is in4, i.e., &, y, mia3x(X, y)) is in A.

The proofs of (2) — (16) are either similar to the proof of (1) or straightforward.

The following result gives characterization/oin terms of Q.
Theorem 4.2. LetA be a triple algebra oim x Ly x L3. LetxinLq, yinLy, andzin Lz Then
(x,y,2) isinA if and only if there existsx{ y', Z) in Qa such thak< x',y<y', andz>7Z.
Proof. Suppose thatx(y, z) isinA. Letx' =M 13(2), Yy =M 33(z), andz' =
M123(M 13(2), M 23(2)). By Theorem 4.1.9x < M 13(2) andy < M »3(2), i.e.,x < X" andy <
y'. By Theorem 4.1.11m1,3(M 13(2), M 23(2)) < z, i.e.,Z < z. By Theorem 4.1.14x{( y',
Z) isin Qu. Therefore, there existg'(y', Z) in Qa such thak< X', y<y', andz>Z.

Now, suppose that there exists, {', Z) in Qa such thak< x',y<y', andz>7Z. Since

Qa UA, (X,y,Z)isinA and hencexy, 2) is inA, by Lemma 4.1.

Lemma 4.5. If (X1, Y1, Z1) and &, Y2, 22) are in Q, then the following three statements are
equivalent:

(1) X1, Y1, Z1) = (X2, Y2, 22),

(2) X1 2 %2 andyy =y,
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(3) z12 2.
Proof. By Theorem 4.1.15, statement (2) and statement (3) are equivalent. By the definition of
ordering relation inL1 X Ly X L3, statement (1) is equivalent to the combination of

statements (2) and (3). Therefore, the three statements are equivalent.

Lemma 4.6. If (X,y, 2) is InA, then M13(2), y, 2) and &, M 23(2), 2) are also im.
Proof. Assume thatx y, z) isinA. Then (@,,Y, 2) isinA, by Lemma 4.1. By Theorem

411, M13(2), O, 2) isinA. Therefore, (0, +M13(2),y +0,,z+2)isinA, ie,

(M13(2),y, 2) is iInA. Similarly, &, M23(2), 2) is inA.

Lemma 4.7. M 13(m23(M 23(2))) < M 13(2) andM 23(m13(M 13(2))) < M 23(2).
Proof. By Theorem 4.1.11m»3(M 23(2)) < z. By Theorem 4.1.6M 13(m23(M 23(2))) <
M 13(2). Similarly, M 23(m13(M 13(2))) < M 23(2).

Lemma 4.8. m3(M 13(m23(y))) < mz3(y) andmzz(M 23(mM13(x))) < my3(X).
Proof. By Theorem 4.1.11m13(M 13(2)) < z, for anyz in L3. Sincem3(y) is in Lg,

m13(M 13(M23(Y))) < M23(y). Similarly, ma3(M 23(m13(X))) < My3(x).

Theorem 4.3. The setL(S) of all partition triples orS= (E, A, V, p) is a triple algebra and,
hence, satisfies the above propositions.
Proof. By Lemma 3.2 and by Lemma 3.1, the k£$) satisfies the properties P1 and P2,

respectively, of the triple algebra.

Therefore L(S) is a triple algebra. The definitionssy, M4y, Mey, andM 4, of the partitions are
analogous to the definitiomais, m»3, M 13, andM »3, respectively, of the triple algebra. So all

the results on the triple algebra can be applied to partition triples by rephagngizs, M 13,
M3, A, and Q with Mgy, May, Mey, M4y, L(S), andK(S), respectively.
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Thus, by Theorem 4.2, any partition triple Sican be computed from an MMm triple &by
refining the first two partitions and coarsening the third partition of the MMm triple. Also, it is

sufficient to compute s&(S) and then computgS) from K(S).

5. Algorithm for computing K(S)

An algorithm to determine all MMm triples is an extension of the algorithm to determine
Mm pairs for automata [5]. Let y denote the partition o such that all blocks afy y except
one are singletons, and the only blockigf, that is not a singleton contains two elemexisnd
y. Similarly, lett, , denote the partition oA such that all blocks of; , except one are
singletons, and the only block of , that is not a singleton contains two elemeatsndb. Our

algorithm is based on the following result:

Theorem 5.1. If (11, T, A) is a MMm triple then
A=3 {Mey (M y) [T y< T+ Z {May (Tab) [Ta b < T).
Proof. First,t> 1 y andt =14 p, hence (i y, Oa, A) and (@, 14, b, A) are partition triples,
Mey(Tyx, y) <A, andmay(Ta,p) < A. Then X {mey (Tly,y ) [Tk, y< T} < A and
Z{may (Tap)|Tap =T} <A. Hence
% {Mev (M y ) Ty < T+ 5 {May (Tap) [Ta b ST} <A,
On the other hand2({Ty y | T y< T, 0a, 2 {Mey (T y ) | T y< T3) and (G, 2 {14,
b |Tab <1} 2 {May (Tab) | Ta b < T}) are partition triples and so is
(2 {mxy ITy<T}, 2 {Tab |Tab < T} Z {Mey (Tx,y) [T y< TG + 2 {May (Ta,b) [Ta b <
H=(MT, 2 {Mey (M y) [T y< T} + 2 {May (Ta,b) | Ta,b <T}). Therefore,
2 {mey (Ti,y) [T y< TG + 2 {May (Ta,b) [ Ta,b < T} 2 May(T) + May(T) =A,

and the result is proved.
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Since Tty y andt, b are the smallest nontrivial partitions &andA, respectively,
partitionsme\(Tt y) andmay(Ta, 1) are the smallest m-type partitions\én

In the first stage of the algorithm seRs = {mey (T y ) | & y) D E x E} and R, =
{may (ta,p) | @ b) O A x A} are computed. For computation Bf only [E| L{|E| — 1)/2 steps
are required, becaus®e\ (T, y) = Mey(Tly, x) andme(Ty, x) = Oy, where X| denotes the
cardinality of the seX. Similarly, computation of the sBp requires onlyjA| [{|A| — 1)/2 steps.

In the second stage of the algorithm, the set

RO ={A +\|[AORy, N'ORy}
is computed. Obvioush®; 0 RM andR, 00 R(1), because W Ry and @ O Ry. Then the set
R@ = {A + A" |A ORM, \' O R}
should be computed. AlsB®) 0 R(2). Similarly, the seRk* 1) is computed fronRK by
Rk+1)={A + A" |A OR®K, A" O RK}.

The process stops when, for soR&R(K = Rk+1) =R, Thus, the seR(l) is the set of
generators foR. Every m-type partitioA [ R determines two unique M-type partitions®and
A, respectively. These M-type partitions &e(A) andM 4,(A), respectively. Moreover, for
anyA O R, Mgy(A) andM 4(A) may be computed using the following formulas

MeA) = Z {Thy | Meu(T, ) < A},
and
May(A) =2 {Ta,b | May(Ta b) < A}
Finally, the seK(S) of all MMm triples is
{(Mev(A), May(A), A) [N TR}

6. Decision Tables
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In this section we will assume that the data sets are presented in the form of a decision
table. The following definition of a decision table is a slightly modified version of the definition
introduced by Z. Pawlak [8, 9]. The decision tablis a sixtuple E, A, V, d, W, p), where

E is a finite nonempty set examples

A'is a finite nonempty set attributes

Vis a finite nonempty set attribute values

dis a variable called @ecision

W is a finite nonempty set of decision values,

p: Ex (AD {d}) - VOW, where ifp is restricted t& x A it has values fronv, and ifp
is restricted tde x {d} it has values fronW.

For the sake of simplicity, restrictions @to E x A and toE x {d} will also be denoteg.

An example of the decision table is presented in Table 3.
Definition. For a decision tabld&( A, V, d, W, p), lett be a partition oI, lett be a partition
on A, and letA be a partition oV. A partition triple on a decision tabl€ = (E, A, V, d, W, p)
is an ordered triple of partitions,(t, A) such that for alk, y [0 E anda, b 0 A

x=y (m) anda=b (1) implies thatp(x, a) = p(y, b) (A\) andp(x, d) = p(y, d).

The set of all partition triples ohwill be denoted by.(S).

Table 3
Attributes Decision

ai az as ay d
X1 0 0 2 2 0
X2 0 1 2 2 0
X3 1 1 2 3 1
X4 1 1 3 3 1
X5 4 3 4 4 1




Definition. Let (T, T, A) be a partition triple on a decision tafdle= (E, A, V,d, W, p). The
(Tt, T, A)-imageof T is the decision tablat(t, A, d, W, p’) such that for alB,; 1, B; O T, and
By O A

P'(Br, Br) =By andp'(Br, d) = p(x, d) if p(x, a) =V,

wherex, a, andv are arbitrary members &, B, andB,, respectively.

Lemma 6.1 Let (T, T, A) and (T, T, A") be patrtition triples o = (E, A, V, d, W, p), then
(i) (mOm,t O, AON)

and
() (m+1m, T+T,A+A)

are also patrtition triples oh = (E, A, V, d, W, p).

Proof is a straightforward extension of the proof of Lemma 3.1.

Lemma 6.2. For any partitionrt on E such thatt< {d}*, for any partitiomt on A, and for any
partitionA onV, (1T, T, 1y) and (@, O, A) are partition triples of.

Proof is a straightforward extension of the proof of Lemma 3.2.

Lemma 6.3. The seL(T) of all partition triples ol = (E, A, V, d, W, p) is a lattice.

Proof follows directly from Lemma 6.1 .
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Operatorang,, M4y, Mgy, andM ,, for decision tables may be defined in the same way as

for information systems. Moreover, all previous results of the triple algebra are valid for decision

tables as well. In particular, the algorithm for computing thek¢s) of all MMm triples for

information systems may be used for decision tables with little changes.
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7. Applications—An Example

There are many possible applications of the theory presented. In any area where
information systems or decision tables are used, the obvious benefits of simplification can be
utilized. One of the evident areas of applications is relational data bases. Another area, less
evident, is machine learning from examples.

Reduction of input data sets in machine learning from examples may be considered a kind
of preprocessing. Other known approaches to preprocessing of input data in machine learning

include selecting the most representative examples [6, 7] and a kind of refinement [10].

Let us illustrate the application of partition triple theory to machine learning from examples

using the example of input data in the form of a decision table from Table 4.

Using machine learning system LERS [2], the following rules were induced:

(Quantitative, Excellent) & (Reading, Excellent) — (Admission, Accept),

Table 4
Attributes Decision
Quantitative Analytical Advanced Grammar Reading Admission
X1 | High Excellent  High Excellent Excellent | Accept
X2 | Excellent High Excellent High High Accept
x3 | Excellent High Excellent High Excellent | Accept
X4 | High Excellent Medium Excellent High Accept
X5 | Excellent High Low High Excellent | Accept
Xg | Excellent High Medium Medium  Low Reject
X7 | High Excellent Low Low Medium Reject
Xg | Low Medium Medium Excellent High Reject
Xg | Medium Low Low High Excellent Reject
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(Grammar, Excellent) & (Quantitative, High) — (Admission, Accept),
(Advanced, Excellent) - (Admission, Accept),
(Grammar, Medium) - (Admission, Reject),

(Grammar, Low) - (Admission, Reject),
(Quantitative, Low) - (Admission, Reject),

(Quantitative, Medium) - (Admission, Reject).

One of the partition triples of the decision table from Table 4 is

({{ x1, X2, X3}, { X4, x5}, { X6, X7}, {X8, Xo}},

{{Quantitative, Analytical}, {Advanced}, {Grammar, Reading}},

{{Excellent, High}, {Medium, Low}}).
After assigning new names for the blocks of attributes and for the blocks of attribute values, the
corresponding reduced decision table is presented in Table 5.

The rules induced by LERS from the reduced decision table are:

(Aptitude, Above_avg) & (Language, Above_avg) - (Admission, Accept),
(Aptitude, Below_avg) - (Admission, Reject),

(Language, Below_avg) - (Admission, Reject).

Table 5
Attributes Decision
Aptitude Advanced Language Admission
X1 | Above_avg Above_avg Above_avg | Accept
X4 | Above_avg Below_avg Above_avg | Accept
Xe | Above_avg Below_avg Below_avg | Reject
Xg | Below_avg Below_avg Above_avg | Reject
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The above set of rules represents exactly the same knowledge as the set of rules induced

from the original decision table, yet this set is much simpler and more evident.

8. Conclusions

The theory of partition triples of data sets is presented in the paper mostly for information
systems, resembling relational databases. However, all results, with respective changes, are valid
for decision tables as well. The theory may be used in an obvious way—for computing simpler
data sets, while preserving the structure of the original data sets. The main idea is to compute the
setK of all MMm triples of a data set. Any partition triple may be computed from a suitable
member oK by refining the first two partitions and coarsening the third partition. The theory is
illustrated by an example of application from the area of machine learning, showing that induced
rules from the simplified data are more evident.

The disadvantage of the presented algorithms is their computational complexity. In
general, the worst case time computational complexity for the algorithms to compute all MMm
partitions is exponential. Therefore, new, less complex algorithms should be developed,

producing only some patrtition triples, perhaps even only one good partition triple.
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