
Published in Journal of Computer and System Sciences 53 (1996), 575–582

Partition Triples: A Tool for Reduction of Data Sets

Jerzy W. Grzymala-Busse and Soe Than

Department of Electrical Engineering and Computer Science

University of Kansas

Lawrence, KS 66045

Abstract .

Data sets discussed in this paper are presented as tables with rows corresponding to examples

(entities, objects) and columns to attributes. A partition triple is defined for such a table as a triple

of partitions on the set of examples, the set of attributes, and the set of attribute values,

respectively, preserving the structure of a table. The idea of a partition triple is an extension of the

idea of a partition pair, introduced by J. Hartmanis and J. Stearns in automata theory. Results

characterizing partition triples and algorithms for computing partition triples are presented. The

theory is illustrated by an example of an application in machine learning from examples.

1. Introduction

Reduction of data is a useful way to economize on space in current computer technology.

Problems with reducing the size of data sets occur in many areas. One of them is empirical

machine learning, where large input data sets make learning difficult. This paper presents a

methodology for reduction of data sets, where the reduced data set preserves the structure of the

original data set. Two forms of data sets are discussed in this paper. First, it is assumed that a

data set is given in the form of a table, called an information system (or instance space). Rows of

the table are labeled with names of examples (entities, objects), columns with names of attributes.

Every example is characterized by a tuple of values of all attributes. For example, such an

information system may contain data about patients in a hospital. Attributes are tests, such as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213382752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

surface temperature, diastolic blood pressure, systolic blood pressure, etc. A row of the table

represents a patient, characterized by a tuple of values of all tests.

The second form of a data set discussed in this paper is a decision table. A decision table is

defined the same way as an information system, except that the table contains an additional column

called a decision. Every example is additionally characterized by a value of the decision. A

decision value is usually determined by an expert. For example, a decision table may contain

hospital patient data, where a patient is characterized as being healthy or sick with some disease by

an expert—a physician. This form of input data is common, e.g., for machine learning from

examples.

The following problem is addressed in this paper: How to reduce the original data set to a

smaller data set (containing fewer examples, attributes, and attribute values). At the same time, the

smaller data set should preserve the structure of the original data set.

The proposed method of reduction of data sets is based on the idea of a partition triple, i.e.,

a triple of three partitions: on the set of examples, attributes, and attribute values. Every such

partition clusters elements (examples, attributes, and attribute values) into blocks of elements.

Additionally, examples, attributes, and attribute values are reduced into corresponding blocks in

such a way that in the reduced table, where examples, attributes and attribute values are replaced by

corresponding blocks, the block containing v is a value of the attribute block containing a for the

example block containing x if and only if v is a value of attribute a for example x in the original

table. This way the blocks of examples and attributes are transformed into blocks of attribute

values in the same way that their members are transformed in the original table.

Also, a triple algebra theory, which is a basic algebraic structure for partition triples, is

developed. An algorithm for computing partition triples is presented as well.

The idea of a partition triple is an extension of the idea of a partition pair, introduced by J.

Hartmanis and R. Stearns in automata theory [5]. The special case of a partition triple was studied

in [1]. Some preliminary results on partition triples were presented in [3, 4].

3

The theory of partition triples has many potential applications. One of the most obvious is

relational data bases. Another application, machine learning from examples, is briefly illustrated in

this paper. In this domain the input data sets are presented as decision tables. Large input data

sets, representing examples, make learning difficult. This paper includes an example showing

how partition triples may be used for inducing simpler rules from examples. The induced rule set

represents the same knowledge as the rule set induced from the original data set.

2. Preliminary Definitions

Originally we will assume that the data are collected in the table, called an information

system, and defined as follows [8, 9]. The information system S is a fourtuple (E, A, V, ρ),

where

E is a finite nonempty set of examples,

A is a finite nonempty set of attributes,

V is a finite nonempty set of attribute values,

and ρ is a function, ρ: E × A → V.

An example of such an information system is presented in Table 1.

Let X be a nonempty finite set. A partition π on X is a family of disjoint subsets of X

whose set union is X. Elements of partition π will be called blocks of π. If elements x and y are

both members of the same block of π, it will be denoted by x ≡ y (π). There are two trivial

partitions 0X and 1X, where 0X is the partition on X in which all blocks are one-element subsets of

X and 1X is the partition on X which contains only one block.

If π and τ are partitions on X, then the product of π and τ, denoted by π ⋅ τ, is a partition

on X such that x ≡ y (π ⋅ τ) if and only if x ≡ y (π) and x ≡ y (τ). The sum of π and τ, denoted by

π + τ, is a partition on X such that x ≡ y (π + τ) if and only if there exists a sequence x = x1,

x2,..., xn = y of elements of X such that xi ≡ xi+ 1(π) or xi ≡ xi+ 1(τ) for i = 1, 2,..., n – 1.

4

Table 1

a1 a2 a3 a4

x1 0 0 2 2

x2 0 1 2 2

x3 1 1 2 3

x4 1 1 3 3

x5 4 3 4 4

A partition π is said to be smaller than or equal to another partition τ, denoted by π ≤ τ, if

and only if for every block B of π there exists a block B' of τ such that B ⊆ B'. Obviously, the

product of π and τ may be defined as the greatest lower bound (g. l. b.) of π and τ, and the sum of

π and τ may be defined as the least upper bound (l. u. b.) of π and τ, see, e.g., [5].

3. Partition Triples and MMm triples

The idea presented here of reduction data, in its special case, was originally developed in

automata theory, under the name of partition pairs, see e.g. [5]. Later on this idea, extended to

input data of machine learning systems, was presented in [1]. In this paper the idea of a partition

triple from [1] is generalized. In [1], in any triple of partitions, the partition on the set of all

attributes was constant. Some preliminary results were discussed in [3, 4].

Definition. For a (E, A, V, ρ), let π be a partition on E, let τ be a partition on A, and let λ be a

partition on V. A partition triple on an information system S = (E, A, V, ρ) is an ordered triple of

partitions (π, τ, λ) such that for all x, y ∈ E and a, b ∈ A

x ≡ y (π) and a ≡ b (τ) implies that ρ(x, a) ≡ ρ(y, b) (λ).

The set of all partition triples on S will be denoted by L(S).

5

Table 2

{a1} {a2} {a3, a4}

{x1, x2} {0, 1} {0, 1} {2, 3}

{x3, x4} {0, 1} {0, 1} {2, 3}

{x5} {4} {2, 3} {4}

Definition . Let (π, τ, λ) be a partition triple on an information system S = (E, A, V, ρ). The

(π, τ, λ)-image of S is the information system (π, τ, λ, ρ') such that for all Bπ ∈ π, Bτ ∈ τ, and

Bλ ∈ λ

ρ'(Bπ, Bτ) = Bλ if ρ(x, a) = v,

where x, a, and v are arbitrary members of Bπ, Bτ, and Bλ, respectively.

An example of a partition triple of the information system from Table 1 is

({{ x1, x2}, { x3, x4}, { x5}}, {{ a1}, { a2}, { a3, a4}}, {{0, 1}, {2, 3}, {4}}).

The (π, τ, λ)-image of S from Table 1 is presented in Table 2.

Lemma 3.1. Let (π, τ, λ) and (π', τ ', λ ') be partition triples on S = (E, A, V, ρ), then

(i) (π ⋅ π', τ ⋅ τ', λ ⋅ λ ')

and

(ii) (π + π', τ + τ ', λ + λ ')

are also partition triples on S = (E, A, V, ρ).

Proof. Let x, y ∈ E and a, b ∈ A.

(i) x ≡ y (π ⋅ π') and a ≡ b (τ ⋅ τ') implies x ≡ y (π), x ≡ y (π'), a ≡ b (τ), and a ≡ b (τ ').

Since (π, τ , λ) and (π', τ ', λ ') are partition triples on S, ρ(x, a) ≡ ρ(y, b) (λ), ρ(x, a) ≡

ρ(y, b) (λ '), i.e., ρ(x, a) ≡ ρ(y, b) (λ ⋅ λ '). Therefore (π ⋅ π', τ ⋅ τ', λ ⋅ λ') is a partition

triple on S.

(ii) Without loss of generality let us assume that x ≡ y (π + π') implies that there exists a

6

sequence x = x0, x1, x2, ..., xn = y such that xi ≡ xi+1 (π) for even i and xi ≡ xi+1 (π') for odd i,

where i ∈ {0, 1, ..., n – 1} and a ≡ b (τ + τ ') implies that there exists a sequence a = a0, a1, a2,

..., am = b such that aj ≡ aj+1 (τ) for even j and aj ≡ aj+1 (τ ') for odd j, where j ∈ {0, 1, ..., m –

 1}. As (π, τ, λ) and (π', τ ', λ ') are partition triples on S, ρ(xi, a0) ≡ ρ(xi+1, a0) (λ), for even i,

and ρ(xi, a0) ≡ ρ(xi+1, a0) (λ '), for odd i. Therefore ρ(x0, a0) ≡ ρ(xn, a0) (λ + λ '), i.e., ρ(x, a) ≡

ρ(y, a) (λ + λ '). As (π, τ, λ) and (π', τ ', λ ') are partition triples on S, ρ(y, aj) ≡ ρ(y, aj+1) (λ),

for even j, and ρ(y, aj) ≡ ρ(y, aj+1) (λ '), for odd j. Therefore ρ(y, a0) ≡ ρ(y, am) (λ + λ '), i.e.,

ρ(y, a) ≡ ρ(y, b) (λ + λ '). So, ρ(x, a) ≡ ρ(y, a) ≡ ρ(y, b) (λ + λ '), i.e., (π + π', τ + τ ', λ +

λ') is a partition triple on S.

Lemma 3.2. For any partition π on E, for any partition τ on A, and for any partition λ on V,

(π, τ, 1V) and (0E, 0A, λ) are partition triples on S.

Proof. Let π be any partition on E, and τ be any partition on A. Let x and y be any elements of E

such that x ≡ y (π) and a and b be any elements of A such that a ≡ b (τ). Then ρ(x, a) ≡ ρ(y, b)

(1V) because the partition 1V has only one block which is the whole set V. Therefore, (π, τ, 1V) is

a partition triple on S.

Let λ be any partition on V. Let x and y be any elements of E such that x ≡ y (0E) and a

and b be any elements of A such that a ≡ b (0A). Since each block of partitions 0E and 0A contains

only one element, x = y and a = b. Therefore, ρ(x, a) = ρ(y, b), i.e., ρ(x, a) and ρ(y, b) are

identical element in V, and hence they are in the same block of any partition on V, i.e., ρ(x, a) ≡

ρ(y, b) (λ). Therefore, (0E, 0A, λ) is a partition triple on S.

Lemma 3.3. The set L(S) of all partition triples on S = (E, A, V, ρ) is a lattice.

Proof. The proof follows directly from Lemma 3.1.

Definitions. For a given partition π on E, the minimal partition λ on V such that (π, 0A, λ) is a

partition triple on S = (E, A, V, ρ) will be denoted mev(π). It is obvious that

7

mev(π) = Π {λ | (π, 0A, λ) ∈ L(S)}.

Similarly, for a given partition τ on A, the minimal partition λ on V such that (0E, τ, λ) is a

partition triple on S = (E, A, V, ρ) will be denoted mav(τ), and

mav(τ) = Π {λ | (0E, τ, λ) ∈ L(S)}.

For a given partition λ on V we may ask what are maximal partitions π on E and τ on A

such that (π, 0A, λ) and (0E, τ, λ) are partition triples on S = (E, A, V, ρ). Such partitions will be

denoted M ev(λ) and M av(λ), where

M ev(λ) = Σ {π | (π, 0A, λ) ∈ L(S)}

and

M av(λ) = Σ { τ | (0E, τ, λ) ∈ L(S)}.

In the preceding definitions, m stands for minimum and M for maximum. Partitions

mev(π) and mav(τ) represent the largest amount of information about blocks of attribute values

which can be drawn from the information about blocks of π and τ, respectively. Partitions Mev(λ)

and M av(λ) represent the least amount of information about blocks of examples and attributes

which must be supplied to identify blocks of λ.

A partition triple (π, τ, λ) on S = (E, A, V, ρ) will be called a MMm triple if and only if

π = M ev(λ), τ = M av(λ), and λ = mev(π) + mav(τ).

The set of all MMm triples of S = (E, A, V, ρ) will be denoted K(S). An example of a

MMm triple of the information system from Table 1 is

({{ x1, x2, x3, x4}, { x5}}, {{ a1}, { a2}, { a3, a4}}, {{0, 1}, {2, 3}, {4}}).

4. Triple Algebra

We can study properties of partition triples and MMm triples by analyzing the underlying

algebraic structure, called a triple algebra. The results of the abstract structure can be applied not

only to the partition triples but also to other, not yet discovered, interpretations. Let L1, L2, and L3

8

be finite lattices. Then a subset ∆ of L1 × L2 × L3 is a triple algebra on L1 × L2 × L3 if and only if

the following postulates hold:

P1. (x1, y1, z1) and (x2, y2, z2) are in ∆ implies that (x1 ⋅ x2, y1 ⋅ y2, z1 ⋅ z2) and

(x1 + x2, y1 + y2, z1 + z2) are in ∆,

P2. For any x in L1, y in L2, and z in L3, (x, y, 1L3) and (0L1, 0L2, z) are in ∆.

For (x, y, z) and (x', y', z') in L1 × L2 × L3, we define (x, y, z) ≤ (x', y', z') if and only if

x≤ x', y ≤ y', and z ≤ z'.

Lemma 4.1. If ∆ is a triple algebra on L1 × L2 × L3 and (x, y, z) is in ∆, then x' ≤ x, y' ≤ y,

and z' ≥ z implies that (x', y', z') is in ∆.

Proof. Suppose that (x, y, z) is in ∆ and x' ≤ x, y' ≤ y, and z' ≥ z. By the property P2,

(x', y', 1L3) is in ∆. Hence (x ⋅ x', y ⋅ y', z ⋅ 1L3) is in ∆, by the property P1. Since x' ≤ x

and y' ≤ y, (x', y', z) is in ∆ . By the property P2, (0L 1, 0L 2, z') is in ∆ and hence

(x' + 0L1, y' + 0L2, z + z') is in ∆ . Since z' ≥ z, (x', y', z') is in ∆ .

Definitions. Let ∆ be a triple algebra on L1 × L2 × L3. For any x in L1, y in L2, and z in L3, we

define

m13(x) = Π {z | (x, 0L2, z) ∈ ∆},

m23(y) = Π {z | (0L1, y, z) ∈ ∆},

M 13(z) = Σ {x | (x, 0L2, z) ∈ ∆},

M 23(z) = Σ {y | (0L1, y, z) ∈ ∆},

m123(x, y) = m13(x) + m23(y),

M 123(z) = (M 13(z), M 23(z)).

Lemma 4.2. For any x in L1 and y in L2, m123(x, y) = Π {z | (x, y, z) ∈ ∆}.

Proof. Let us define the following sets

R(x, y) = {z | (x, y, z) ∈ ∆},

9

R1(x) = {z | (x, 0L2, z) ∈ ∆},

and

R2(y) = {z | (0L1, y, z) ∈ ∆}.

Then z ∈ R(x, y) ⇒ (x, y, z) ∈ ∆

⇒ (x, 0L2, z) ∈ ∆ and (0L1, y, z) ∈ ∆, because 0L2≤ y and 0L1≤ x,

 ⇒ z ∈ R1(x) and z ∈ R2(y).

Therefore R(x, y) ⊆ R1(x) and R(x, y) ⊆ R2(y).

Consequently,

Π {z | z ∈ R(x, y)} ≥ Π {z | z ∈ R1(x)}

and

Π {z | z ∈ R(x, y)} ≥ Π {z | z ∈ R2(y)},

i.e., Π {z | z ∈ R(x, y)} ≥ Π {z | z ∈ R1(x)} + Π {z | z ∈ R2(y)}, or, Π {z | z ∈ R(x, y)} ≥

m 123(x, y). Let z1 = Π {z | z ∈ R1(x)} and z2 = Π {z | z ∈ R2(y)}. For any z ∈ R1(x),

(x, 0L2, z) ∈ ∆. By the property P1, Π {(x, 0L2, z) | z ∈ R1(x)} ∈ ∆, i.e., (x, 0L2, z1) ∈ ∆.

Similarly, (0L1, y, z2) ∈ ∆ . By the property P1, (x + 0L1, 0L2 + y, z1 + z2) ∈ ∆, i.e.,

(x, y, z1 + z2) ∈ ∆ , or z1 + z2 ∈ R(x, y). Therefore z1 + z2 ≥ Π {z | z ∈ R(x, y)}, i.e.,

m123(x, y) ≥ Π {z | z ∈ R(x, y)}. Therefore m123(x, y) = Π { z | (x, y, z) ∈ ∆}.

Lemma 4.3. For any z in L3, M 123(z) = Σ {(x, y) | (x, y, z) ∈ ∆}.

Proof is similar to the proof of Lemma 4.2.

Definition . For any two elements (x, y, z) and (x', y', z') in L1 × L2 × L3, we define (x, y, z) ≤

(x', y', z') if and only if x ≤ x' in L1, y ≤ y' in L2, and z ≤ z' in L3.

Lemma 4.4. Any triple algebra ∆ on L1 × L2 × L3 is a lattice under the above ordering with zero

element (0, 0, 0), unit element (1, 1, 1), and component-wise g.l.b. and l.u.b. operations.

10

Definition . An element (x, y, z) in a triple algebra ∆ is called a MMm triple if and only if x =

M 13(z), y = M 23(z), and z = m13(x) + m23(y). The set of all MMm triples of ∆ will be denoted

Q∆.

Theorem 4.1. Let ∆ be a triple algebra on L1 × L2 × L3. For any x in L1, y in L2, and z in L3,

(1) (M 13(z), 0L2, z), (0L1, M 23(z), z), (M 13(z), M 23(z), z),

(x, 0L2, m13(x)), (0L1, y, m23(y)), and (x, y, m123(x, y)) are in ∆.

(2) x1 ≤ x2 implies m13(x1) ≤ m13(x2), y1 ≤ y2 implies m23(y1) ≤ m23(y2), and

x1 ≤ x2 and y1 ≤ y2 imply m123(x1, y1) ≤ m123(x2, y2).

(3) m13(x1 + x2) = m13(x1) + m13(x2), m23(y1 + y2) = m23(y1) + m23(y2), and

m123(x1 + x2, y1 + y2) = m123(x1, y1) + m123(x2, y2).

(4) m13(x1 ⋅ x2) ≤ m13(x1) ⋅ m13(x2), m23(y1 ⋅ y2) ≤ m23(y1) ⋅ m23(y2), and

m 123(x1 ⋅ x2, y1 ⋅ y2) ≤ m 123(x1, y1) ⋅ m 123(x2, y2).

(5) z ≥ m13(x) if and only if (x, 0L2, z) ∈ ∆, z ≥ m23(y) if and only if (0L1, y, z) ∈ ∆, and

z ≥ m123(x, y) if and only if (x, y, z) ∈ ∆.

(6) z1 ≤ z2 implies that M 13(z1) ≤ M 13(z2) and M 23(z1) ≤ M 23(z2).

(7) M 13(z1 + z2) ≥ M 13(z1) + M 13(z2) and M 23(z1 + z2) ≥ M 23(z1) + M 23(z2).

(8) M 13(z1 ⋅ z2) = M 13(z1) ⋅ M 13(z2) and M 23(z1 ⋅ z2) = M 23(z1) ⋅ M 23(z2).

(9) x ≤ M 13(z) if and only if (x, 0L2, z) ∈ ∆, y ≤ M 23(z) if and only if (0L1, y, z) ∈ ∆, and

x ≤ M 13(z) and y ≤ M 23(z) if and only if (x, y, z) ∈ ∆.

(10) M 13(m13(x)) ≥ x, M 23(m23(y)) ≥ y, M 13(m123(x, y)) ≥ x, and M 23(m123(x, y)) ≥ y.

(11) m123(M 13(z), M 23(z)) ≤ z, m13(M 13(z)) ≤ z, and m23(M 23(z)) ≤ z.

(12) M 13(m13(M 13(z))) = M 13(z), M 23(m23(M 23(z))) = M 23(z),

M 13(m123(M 13(z), M 23(z))) = M 13(z), and

M 23(m123(M 13(z), M 23(z))) = M 23(z).

(13) m13(M 13(m13(x))) = m13(x), m23(M 23(m23(y))) = m23(y), and

m123(M 13(m123(x, y)), M 23(m123(x, y))) = m123(x, y).

11

(14) (M 13(z), M 23(z), m123(M 13(z), M 23(z))) and

(M 13(m123(x, y)), M 23(m123(x, y)), m123(x, y)) are in Q∆.

(15) If (x1, y1, z1) and (x2, y2, z2) are in Q∆, then x1 ≤ x2 and y1 ≤ y2 if and only if z1 ≤ z2.

(16) The set Q∆ under the ordering on ∆ is a lattice in which

g.l.b.{(x1, y1, z1), (x2, y2, z2)} = (x1 ⋅ x2, y1 ⋅ y2, m123(x1 ⋅ x2, y1 ⋅ y2)) and

l.u.b.{(x1, y1, z1), (x2, y2, z2)} = (M 13(z1 + z2), M 23(z1 + z2), z1 + z2).

Proof

(1) By the definitions of M 13 and M 23, (M 13(z), 0L2, z) and (0L1, M 23(z), z) are in ∆. By

the property P1, (M 13(z) + 0L1, 0L2 + M 23(z), z + z) is in ∆, i.e., (M 13(z), M 23(z), z) is

in ∆. Similarly, (x, 0L2, m13(x)) and (0L1, y, m23(y)) are in ∆ and so is their sum,

i.e., (x + 0L1, 0L2 + y, m13(x) + m23(y)) is in ∆, i.e., (x, y, m123(x, y)) is in ∆.

The proofs of (2) – (16) are either similar to the proof of (1) or straightforward.

The following result gives characterization of ∆ in terms of Q∆.

Theorem 4.2. Let ∆ be a triple algebra on L1 × L2 × L3. Let x in L1, y in L2, and z in L3. Then

(x, y, z) is in ∆ if and only if there exists (x', y', z') in Q∆ such that x ≤ x', y ≤ y', and z ≥ z'.

P r o o f . Suppose that (x , y , z) is in ∆ . Let x ' = M 1 3(z), y ' = M 2 3(z), and z' =

m123(M 13(z), M 23(z)). By Theorem 4.1.9, x ≤ M 13(z) and y ≤ M 23(z), i.e., x ≤ x' and y ≤

y'. By Theorem 4.1.11, m123(M 13(z), M 23(z)) ≤ z, i.e., z' ≤ z. By Theorem 4.1.14, (x', y',

z') is in Q∆. Therefore, there exists (x', y', z') in Q∆ such that x ≤ x', y ≤ y', and z ≥ z'.

Now, suppose that there exists (x', y', z') in Q∆ such that x ≤ x', y ≤ y', and z ≥ z'. Since

Q∆ ⊆ ∆, (x', y', z') is in ∆ and hence (x, y, z) is in ∆, by Lemma 4.1.

Lemma 4.5. If (x1, y1, z1) and (x2, y2, z2) are in Q∆, then the following three statements are

equivalent:

(1) (x1, y1, z1) ≥ (x2, y2, z2),

(2) x1 ≥ x2 and y1 ≥ y2,

12

(3) z1 ≥ z2.

Proof. By Theorem 4.1.15, statement (2) and statement (3) are equivalent. By the definition of

ordering relation in L1 × L2 × L3, statement (1) is equivalent to the combination of

statements (2) and (3). Therefore, the three statements are equivalent.

Lemma 4.6. If (x, y, z) is in ∆, then (M 13(z), y, z) and (x, M 23(z), z) are also in ∆.

Proof. Assume that (x, y, z) is in ∆. Then (0L1, y, z) is in ∆, by Lemma 4.1. By Theorem

4.1.1, (M 13(z), 0L2, z) is in ∆ . Therefore, (0L1 + M 13(z), y + 0L2, z + z) is in ∆ , i.e.,

(M 13(z), y, z) is in ∆. Similarly, (x, M 23(z), z) is in ∆.

Lemma 4.7. M 13(m23(M 23(z))) ≤ M 13(z) and M 23(m13(M 13(z))) ≤ M 23(z).

Proof. By Theorem 4.1.11, m23(M 23(z)) ≤ z. By Theorem 4.1.6, M 13(m23(M 23(z))) ≤

M 13(z). Similarly, M 23(m13(M 13(z))) ≤ M 23(z).

Lemma 4.8. m13(M 13(m23(y))) ≤ m23(y) and m23(M 23(m13(x))) ≤ m13(x).

Proof. By Theorem 4.1.11, m 13(M 13(z)) ≤ z, for any z in L3. Since m 23(y) is in L3,

m13(M 13(m23(y))) ≤ m23(y). Similarly, m23(M 23(m13(x))) ≤ m13(x).

Theorem 4.3. The set L(S) of all partition triples on S = (E, A, V, ρ) is a triple algebra and,

hence, satisfies the above propositions.

Proof. By Lemma 3.2 and by Lemma 3.1, the set L(S) satisfies the properties P1 and P2,

respectively, of the triple algebra.

Therefore, L(S) is a triple algebra. The definitions mev, mav, M ev, and M av of the partitions are

analogous to the definitions m13, m23, M 13, and M 23, respectively, of the triple algebra. So all

the results on the triple algebra can be applied to partition triples by replacing m13, m23, M 13,

M 23, ∆, and Q∆ with mev, mav, M ev, M av, L(S), and K(S), respectively.

13

Thus, by Theorem 4.2, any partition triple on S can be computed from an MMm triple on S by

refining the first two partitions and coarsening the third partition of the MMm triple. Also, it is

sufficient to compute set K(S) and then compute L(S) from K(S).

5. Algorithm for computing K(S)

An algorithm to determine all MMm triples is an extension of the algorithm to determine

Mm pairs for automata [5]. Let πx, y denote the partition on E such that all blocks of πx, y except

one are singletons, and the only block of πx, y that is not a singleton contains two elements: x and

y. Similarly, let τa, b denote the partition on A such that all blocks of τa, b except one are

singletons, and the only block of τa, b that is not a singleton contains two elements: a and b. Our

algorithm is based on the following result:

Theorem 5.1. If (π, τ, λ) is a MMm triple then

λ = Σ {mev (πx, y) | πx, y ≤ π} + Σ {mav (τa, b) | τa, b ≤ τ}.

Proof. First, π ≥ πx, y and τ ≥ τa, b, hence (πx, y, 0A, λ) and (0E, τa, b, λ) are partition triples,

m e v(πx , y) ≤ λ , and m a v(τ a , b) ≤ λ . Then Σ {m e v (πx , y) | πx , y ≤ π} ≤ λ and

Σ { mav (τa, b) | τa, b ≤ τ } ≤ λ . Hence

Σ {mev (πx, y) | πx, y ≤ π} + Σ {mav (τa, b) | τa, b ≤ τ} ≤ λ.

On the other hand, (Σ {πx, y | πx, y ≤ π}, 0A, Σ {mev (πx, y) | πx, y ≤ π}) and (0E, Σ { τa,

b | τa, b ≤ τ}, Σ {mav (τa, b) | τa, b ≤ τ}) are partition triples and so is

(Σ {πx, y | πx, y ≤ π}, Σ { τa, b | τa, b ≤ τ}, Σ {mev (πx, y) | πx, y ≤ π} + Σ {mav (τa, b) | τa, b ≤

τ}) = (π, τ, Σ {mev (πx, y) | πx, y ≤ π} + Σ {mav (τa, b) | τa, b ≤ τ}). Therefore,

Σ {mev (πx, y) | πx, y ≤ π} + Σ {mav (τa, b) | τa, b ≤ τ} ≥ mav(π) + mav(τ) = λ,

and the result is proved.

14

Since πx, y and τa, b are the smallest nontrivial partitions on E and A, respectively,

partitions mev(πx, y) and mav(τa, b) are the smallest m-type partitions on V.

In the first stage of the algorithm sets R1 = {mev (πx, y) | (x, y) ∈ E × Ε} and R2 =

{ mav (τa, b) | (a, b) ∈ A × Α} are computed. For computation of R1 only |E| ⋅ (|E| – 1)/2 steps

are required, because mev(πx, y) = mev(πy, x) and mev(πx, x) = 0V, where |X| denotes the

cardinality of the set X. Similarly, computation of the set R2 requires only |A| ⋅ (|A| – 1)/2 steps.

In the second stage of the algorithm, the set

R(1) = {λ + λ ' | λ ∈ R1, λ ' ∈ R2}

is computed. Obviously, R1 ⊆ R(1) and R2 ⊆ R(1), because 0V ∈ R1 and 0V ∈ R2. Then the set

R(2) = {λ + λ ' | λ ∈ R(1), λ ' ∈ R(1)}

should be computed. Also, R(1) ⊆ R(2). Similarly, the set R(k + 1) is computed from R(k) by

R(k + 1) = {λ + λ ' | λ ∈ R(k), λ ' ∈ R(k)}.

The process stops when, for some k, R(k) = R(k + 1) = R. Thus, the set R(1) is the set of

generators for R. Every m-type partition λ ∈ R determines two unique M-type partitions on E and

A, respectively. These M-type partitions are M ev(λ) and M av(λ), respectively. Moreover, for

any λ ∈ R, Mev(λ) and Mav(λ) may be computed using the following formulas

M ev(λ) = Σ {πx, y | mev(πx, y) ≤ λ},

and

M av(λ) = Σ { τa, b | mav(τa, b) ≤ λ}.

Finally, the set K(S) of all MMm triples is

{(M ev(λ), M av(λ), λ) | λ ∈ R}.

6. Decision Tables

15

Table 3

Attributes Decision

a1 a2 a3 a4 d

x1 0 0 2 2 0

x2 0 1 2 2 0

x3 1 1 2 3 1

x4 1 1 3 3 1

x5 4 3 4 4 1

In this section we will assume that the data sets are presented in the form of a decision

table. The following definition of a decision table is a slightly modified version of the definition

introduced by Z. Pawlak [8, 9]. The decision table T is a sixtuple (E, A, V, d, W, ρ), where

E is a finite nonempty set of examples,

A is a finite nonempty set of attributes,

V is a finite nonempty set of attribute values,

d is a variable called a decision,

W is a finite nonempty set of decision values,

ρ: E × (A ∪ {d}) → V ∪ W, where if ρ is restricted to E × A it has values from V, and if ρ

is restricted to E × {d} it has values from W.

For the sake of simplicity, restrictions of ρ to E × A and to E × {d} will also be denoted ρ.

An example of the decision table is presented in Table 3.

Definition . For a decision table (E, A, V, d, W, ρ), let π be a partition on E, let τ be a partition

on A, and let λ be a partition on V. A partition triple on a decision table T = (E, A, V, d, W, ρ)

is an ordered triple of partitions (π, τ, λ) such that for all x, y ∈ E and a, b ∈ A

x ≡ y (π) and a ≡ b (τ) implies that ρ(x, a) ≡ ρ(y, b) (λ) and ρ(x, d) = ρ(y, d).

The set of all partition triples on T will be denoted by L(S).

16

Definition . Let (π, τ, λ) be a partition triple on a decision table T = (E, A, V, d, W, ρ). The

(π, τ, λ)-image of T is the decision table (π, τ, λ, d, W, ρ') such that for all Bπ ∈ π, Bτ ∈ τ, and

Bλ ∈ λ

ρ'(Bπ, Bτ) = Bλ and ρ'(Bπ, d) = ρ(x, d) if ρ(x, a) = v,

where x, a, and v are arbitrary members of Bπ, Bτ, and Bλ, respectively.

Lemma 6.1. Let (π, τ, λ) and (π', τ ', λ ') be partition triples on T = (E, A, V, d, W, ρ), then

(i) (π ⋅ π', τ ⋅ τ', λ ⋅ λ ')

and

(ii) (π + π', τ + τ ', λ + λ ')

are also partition triples on T = (E, A, V, d, W, ρ).

Proof is a straightforward extension of the proof of Lemma 3.1.

Lemma 6.2. For any partition π on E such that π ≤ {d} * , for any partition τ on A, and for any

partition λ on V, (π, τ, 1V) and (0E, 0A, λ) are partition triples on S.

Proof is a straightforward extension of the proof of Lemma 3.2.

Lemma 6.3. The set L(T) of all partition triples on T = (E, A, V, d, W, ρ) is a lattice.

Proof follows directly from Lemma 6.1 .

Operators mev, mav, Mev, and Mav for decision tables may be defined in the same way as

for information systems. Moreover, all previous results of the triple algebra are valid for decision

tables as well. In particular, the algorithm for computing the set K(S) of all MMm triples for

information systems may be used for decision tables with little changes.

17

Table 4

Attributes Decision

Quantitative Analytical Advanced Grammar Reading Admission

x1 High Excellent High Excellent Excellent Accept

x2 Excellent High Excellent High High Accept

x3 Excellent High Excellent High Excellent Accept

x4 High Excellent Medium Excellent High Accept

x5 Excellent High Low High Excellent Accept

x6 Excellent High Medium Medium Low Reject

x7 High Excellent Low Low Medium Reject

x8 Low Medium Medium Excellent High Reject

x9 Medium Low Low High Excellent Reject

7. Applications—An Example

There are many possible applications of the theory presented. In any area where

information systems or decision tables are used, the obvious benefits of simplification can be

utilized. One of the evident areas of applications is relational data bases. Another area, less

evident, is machine learning from examples.

Reduction of input data sets in machine learning from examples may be considered a kind

of preprocessing. Other known approaches to preprocessing of input data in machine learning

include selecting the most representative examples [6, 7] and a kind of refinement [10].

Let us illustrate the application of partition triple theory to machine learning from examples

using the example of input data in the form of a decision table from Table 4.

Using machine learning system LERS [2], the following rules were induced:

(Quantitative, Excellent) & (Reading, Excellent) → (Admission, Accept),

18

Table 5

Attributes Decision

Aptitude Advanced Language Admission

x1 Above_avg Above_avg Above_avg Accept

x4 Above_avg Below_avg Above_avg Accept

x6 Above_avg Below_avg Below_avg Reject

x8 Below_avg Below_avg Above_avg Reject

(Grammar, Excellent) & (Quantitative, High) → (Admission, Accept),

(Advanced, Excellent) → (Admission, Accept),

(Grammar, Medium) → (Admission, Reject),

(Grammar, Low) → (Admission, Reject),

(Quantitative, Low) → (Admission, Reject),

(Quantitative, Medium) → (Admission, Reject).

One of the partition triples of the decision table from Table 4 is

({{ x1, x2, x3}, { x4, x5}, { x6, x7} , {x8, x9}},

{{Quantitative, Analytical}, {Advanced}, {Grammar, Reading}},

{{Excellent, High}, {Medium, Low}}).

After assigning new names for the blocks of attributes and for the blocks of attribute values, the

corresponding reduced decision table is presented in Table 5.

The rules induced by LERS from the reduced decision table are:

(Aptitude, Above_avg) & (Language, Above_avg) → (Admission, Accept),

(Aptitude, Below_avg) → (Admission, Reject),

(Language, Below_avg) → (Admission, Reject).

19

The above set of rules represents exactly the same knowledge as the set of rules induced

from the original decision table, yet this set is much simpler and more evident.

8. Conclusions

The theory of partition triples of data sets is presented in the paper mostly for information

systems, resembling relational databases. However, all results, with respective changes, are valid

for decision tables as well. The theory may be used in an obvious way—for computing simpler

data sets, while preserving the structure of the original data sets. The main idea is to compute the

set K of all MMm triples of a data set. Any partition triple may be computed from a suitable

member of K by refining the first two partitions and coarsening the third partition. The theory is

illustrated by an example of application from the area of machine learning, showing that induced

rules from the simplified data are more evident.

The disadvantage of the presented algorithms is their computational complexity. In

general, the worst case time computational complexity for the algorithms to compute all MMm

partitions is exponential. Therefore, new, less complex algorithms should be developed,

producing only some partition triples, perhaps even only one good partition triple.

Acknowledgement

The authors thank the anonymous referee for many valuable comments on the presentation.

References

1. J. W. GRZYMALA -BUSSE, On the reduction of instance space in learning from examples,

in "Proceedings, 5th International Symposium on Methodologies for Intelligent Systems,

Knoxville, TN, October 1990", North Holland, New York, pp. 388–395.

20

2. J. W. GRZYMALA -BUSSE, LERS—A system for learning from examples based on rough

sets, in "Intelligent Decision Support. Handbook of Applications and Advances of the

Rough Set Theory", R. Slowinski (ed.), Kluwer Academic Publishers, Dordrecht, The

Netherlands, 1992, pp. 3–18.

3. J. W. GRZYMALA -BUSSE AND S. THAN, Reduction of instance space in machine learning

from examples, in "Proceedings, 5th International Symposium on Artificial Intelligence,

Cancun, Mexico, December 1992", pp. 303–309.

4. J. W. GRZYMALA -BUSSE AND S. THAN, Data compression in machine learning applied to

natural language, Behavior Research Methods, Instruments, & Computers 25 (1993),

318–321 .

5. J. HARTMANIS AND R. E. STEARNS, "Algebraic Structure Theory of Sequential

Machines", Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966.

6. D. KIBLER AND D. W. AHA, Learning representative exemplars of concepts: An initial

case study, in "Proceedings, 4th International Workshop on Machine Learning, Irvine,

CA, June 1987", pp. 24–30.

7. R. S. MICHALSKI AND R. L. CHILAUSKY , Knowledge acquisition by encoding expert

rules versus computer induction from examples: A case study involving soybean

pathology, Int. J. Man-Machine Studies 12 (1980), 63–87.

8. Z. PAWLAK , Rough sets, Int. J. Computer and Information Sci., 11 (1982), 341–356.

9. Z. PAWLAK , Rough classification, Int. J. Man-Machine Studies 20 (1984), 469–483.

21

10. W. VAN DE VELDE, Learning through progressive refinement, in "Proceedings, EWSL

88, 3rd European Working Session on Learning, Glasgow, United Kingdom, October

1988", pp. 211–226.

