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Abstract 

The goal of this study is to bring the discussion of ethnic heterogeneity and the racial/ethnic classification 

of students for research purposes into the education policy arena. We focus in particular on the relationship between 

race and ethnicity and academic achievement.  We demonstrate the heterogeneity of academic performance in 

reading and math between subgroups of Hispanic and Asian/Pacific Island students using the National Educational 

Longitudinal Study of 1988 (NELS ’88).  In the case of both the Hispanic and Asian/Pacific Island aggregate groups 

we find substantial, though not always statistically significant, academic performance differences among ethnic 

subgroups, with a range of math performance among Hispanic subgroups of 10.7 points (mean score = 34.4) 

between Cuban and Puerto Rican students and a range of math performance among Asian/Pacific Island students of 

15.3 points (mean score = 41.0) between West Asian and Pacific Island students.  

 

 

 

 

Key Words: Race, Ethnicity, Academic Achievement 
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Historical Perspective 

The relationship between race/ethnicity and academic achievement has been studied extensively for years 

(Gibson & Ogbu, 1991; Neisser, 1986; Sleeter & Grant, 1993; Weinberg, 1977).  Over the past four decades, there 

has been a gradual evolution toward refining research definitions of racial/ethnic groups, and more specifically, 

toward disaggregating ethnic subgroups to the extent possible.  This evolution, however, has not always progressed 

consistently toward greater disaggregation. In the 1960's and 1970's, most researchers used the term "minority 

students" to describe students who were not White.  Because the majority of these "minority students" were Black 

students, researchers typically classified students according to a Black/White dichotomy (Sellars & Weis, 1997).  In 

the early 1980's, education researchers began to identify Hispanic students as a separate group (Marin & Marin, 

1991).  Students of other national origins, including Chinese, Filipino or Native Hawaiian students were typically 

combined with White students (Dawson, 1987) or excluded from analyses altogether.  American Indian and Alaskan 

Native students were largely absent from the education literature before 1990, except as discussed in a limited 

number of federal or state-sponsored reports (Reyhner, 1989).  

In the last two decades, increased sensitivity of researchers to racial and ethnic diversity in public schools 

has led to frequent use of five standard groups: White, Black, Asian/Pacific Island, Hispanic and American 

Indian/Alaskan Native.  Most recently, researchers interested in ethnic diversity have begun to explore differences 

within these groups, focusing on specific ethnic subgroups, including Puerto Rican students as members of the 

larger Hispanic group (Donato & Wojtkiewicz, 1996), and Vietnamese students in the Asian/Pacific Island context 

(Wilson, 1994).  These studies extensively discuss heterogeneity among Hispanic students and Asian/Pacific Island 

students, raising concerns regarding potentially misleading stereotypes attached to aggregate groups, including the 

perception of Asian/Pacific Island students as a "model minority" and Hispanic students as "low achievers" (Lai, 

1990; Nieto, 1991; Sellars & Weis, 1997; Suzuki, 1995; Vigil, 1997).  While examples of disaggregation of Black 

and American Indian/Alaskan Native students in education research are less common, others have noted that they 

are no less important (Gibson & Ogbu, 1991; Nieto, 1991; Sellars & Weis, 1997).   

 

Race and Ethnicity in Education Policy Research 

 With a few notable exceptions (Klein et al., 1997) recent education policy research rarely addresses racial 

and ethnic issues as a central question, but rarely discounts them altogether either.  Most recent policy research in 
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education ascribes to the five group classification system (Asian, White, Black, Hispanic, Native American), taking 

one step back along the disaggregation continuum (Klein et. al, 1997; Raudenbush, Fotiu, & Cheong, 1998; 

Gamoran et al., 1997).  Still others in policy research choose to take two steps back, continuing to apply 

dichotomous specifications (Taylor, 1997; Wang, 1998), often de-emphasizing the aggregations by tucking them 

away as “well accepted” control variables to be discussed as necessary among policy implications.  

Interestingly, despite de-emphasis of race in many studies, race-related conclusions and policy implications 

often surface in discussions of findings. A less than random sampling of recent (1997 to present) issues of a popular 

education policy journal yielded the following race-related findings:  

• Using data from the National Educational Longitudinal Study of 1988 (NELS '88), researchers found 

that Hispanic students do less well than White students in spatial-mechanical reasoning, comparable to 

White students in quantitative science, and less well than White students in basic knowledge reasoning 

on the multiple choice components of National Assessment of Educational Progress (NAEP) math and 

science tests (Hamilton, 1998).  

• Using NAEP data, Asian students were found to be more likely than White students, and Hispanic 

students less likely than White students to attend a school where algebra is offered and where math 

teachers majored in math (Raudenbush, Fotiu & Cheong, 1998).  

• Using the High School and Beyond (HSB) dataset, researchers concluded that Black men experience 

13% lower earnings than White men, and Black women have 22% lower earnings than White women.  

There were no significant differences between Latinos and Whites for either gender (Miller, 1998) 

Not coincidentally, each of these studies uses popular national datasets developed by the National Center 

for Education Statistics (NCES). These datasets contain varied degrees of specificity regarding race/ethnicity, with 

NELS '88 disaggregating four subgroups of Hispanic students and ten of Asian/Pacific Island students, but most 

other datasets containing only the standard five group classification. Thus, one might argue that in many cases 

researchers are constrained by the available data. We find it particularly intriguing, however, that some researchers 

choose not to take advantage of disaggregated classifications where available, especially given the presumption of 

within group heterogeneity discussed in research outside of education policy.  One rationale for aggregating, even 

with large datasets like NELS ’88, is the issue of subgroup sample size to be addressed in more detail with respect to 

our own analysis.  Trading likelihood of statistical significance for the meaningfulness of the measure, however, is 
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certainly questionable. For example, what meaningful inferences can be drawn from Hamilton’s finding that the 

Hispanic aggregate group of NELS ’88 students does not perform well on spatial-mechanical reasoning activities 

where the aggregate group consists of distinctly different subgroups of Cuban, Mexican, Puerto Rican and Other 

Hispanic students?  

 

Purpose of the Study 

The goal of this study is to bring the discussion of ethnic heterogeneity and the racial/ethnic classification 

of students for research purposes into the education policy arena. While we expect students to be heterogeneous in a 

variety of ways, we focus in particular on their academic achievement, as academic achievement differences are of 

critical interest in education policy research and have not been comprehensively documented.   We demonstrate the 

heterogeneity of academic performance in reading and math between subgroups of Hispanic and Asian/Pacific 

Island students using NELS ‘88. We choose NELS '88 for is prevalence in policy research in recent years.  

Our analyses are designed to test the extent to which commonly applied ethnic/racial classifications (White, 

Black, Asian/Pacific islander, Hispanic and Native American) appropriately represent their constituent subgroups 

with respect to academic achievement and the extent to which disaggregating adds explanatory value to statistical 

models of student achievement.  Hispanic subgroups investigated include Mexican1, Cuban, Puerto Rican and other 

Hispanic, while Asian subgroups include Chinese, Filipino, Japanese, Korean, Southeast Asian, Pacific islander, 

South Asian, West Asian, Middle Eastern and Other Asian.  Data limitations inhibit our ability to explore 

heterogeneity among White, Black and Native American students.  

While the primary emphasis of this article is the relationship between aggregate and disaggregate racial and 

ethnic classifications and math and reading performance measures, we must also consider major confounding 

factors.  Socioeconomic status (SES) differences between both aggregate and disaggregate racial and ethnic groups 

and the relationship between these SES differences and student performance are well known (Coleman, 1966).  

Similarly, language proficiency has been shown to display a strong relationship to student performance and is likely 

related to aggregate and disaggregate racial and ethnic classifications.2  While there are many other likely covariates 

with racial classification and student performance, we limit our analyses to these two additional factors, SES and 

language proficiency, so as to focus more clearly on differences between aggregated and disaggregated analyses.   
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Methods 

Data 

This study uses data from the public use version of the NELS '88, a nationally representative, multipurpose 

study of the educational status of approximately 25,000 students collected by the National Center for Education 

Statistics (NCES).  A sample of 14,596 8th grade students was used in this study.  Exclusions were made for missing 

or incomplete data on variables of interest.  As previously noted, NELS ’88 is among the few large data sets that 

contain detailed subgroup classifications for both Hispanic and Asian/Pacific Island students.  And, despite 

relatively small subgroup sample sizes, NELS ’88 provides the best available opportunity to explore differences 

among disaggregated groups. 

In order to insure adequate representation, NELS ’88 involved a complex stratified sampling procedure. In 

particular, NELS '88 oversampled private schools and schools with high enrollments of Asian/Pacific Island 

students and Hispanic students.  As a result, student level weights provided within the dataset must be applied to all 

analyses to correct for generalizability against the population of U.S. schools and students.  In addition, the stratified 

sampling method employed by NCES results in nesting of students into groups, or schools, such that statistical 

measures including standard errors tend to be more variable than if the sampling were simply random. Consideration 

is given to NELS ’88 design effects when discussion statistical significance of findings.3  

There are a variety of problematic issues regarding our research with NELS '88. We argue, however, that 

ignoring the uniqueness of disaggregate ethnic groups, or simply accepting the aggregate as meaningful either as a 

variable of interest or a control to be tucked into the background is at least equally problematic.  One issue regarding 

the analyses herein, and perhaps a reason why NELS '88 has apparently not previously been used to demonstrate our 

main point is that the 14,596 students being investigated are unevenly distributed by racial and ethnic characteristics 

into nested groups in approximately 1000 schools.  Thus, it becomes difficult to discriminate between student level 

effects on student performance as related to the variables of interest and peer group effects on student performance. 

One common resolution to this problem is to group (school) mean-center each analysis.4  This approach, however, is 

problematic when the variable(s) of interest, in this case RACE or racial subgroup, is not randomly distributed 

across organizations.5  For example, mean centering of a predominantly Black, lower SES organization would create 

inflated estimates of performance due to depression of the organization level mean by exogenous but correlated 

factors (RACE and in turn, SES). 
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An additional problem with the data being investigated is the relatively small sample sizes of the various 

racial subgroups within organizations, which excludes the possibility of developing meaningful, reliable separate 

within school models.  Thus, for simplicity, but recognizing the shortcomings of the method, all regressions reported 

herein are simple single level, OLS (Ordinary Least Squares) regressions.6 

 

Comparison of Mean SES and Mean Performance 

 Preliminary analyses involved determining means and standard errors for the socio-economic status 

composite variable and for 8th grade math and reading IRT (item response theory) estimated number correct for 

students by aggregate racial classification and disaggregate subgroup.  While student level weights (BYQWT) were 

used to determine means for purposes of generalizability, reported standard errors for the means are understated due 

to the complex sampling design. The purpose of this analysis is merely to provide a cursory descriptive overview of 

the SES and performance characteristics of the aggregate and disaggregate groups.  

 

Are there significant differences between subgroups? 

 The first set of regression analyses were designed to compare the academic achievement differences among 

the five standard aggregate groups in math and reading.  In each case, regression models were constructed where the 

math or reading achievement measure was the dependent variable, race or subgroup classifications were the 

independent variables of interest, and controls were included for socioeconomic status and language proficiency.7 

Subsequently, comparable analyses were performed to assess the academic achievement differences between the 

disaggregated groups of Hispanic and Asian/Pacific Island students.8  

  

What does disaggregation contribute to modeling achievement? 

 The final analysis involves additively replacing aggregate Hispanic then Asian/Pacific Island classifications 

with disaggregated classifications in separate analyses, using the full sample (n = 14,596).  The objective of this 

analysis is to determine whether including disaggregated subgroups in a larger model of student achievement adds to 

the explanatory power of the model in addition to revealing performance differences among subgroups. We argue, 

however, that even if disaggregation does contribute significantly to improved model fit, the fact that disaggregation 

reveals differences between subgroups remains pertinent.  We begin this set of analyses at the same point as our 
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previous set of analyses, with a regression of the aggregate groups on the student achievement measures. 

Subsequently, we “unfold” so-to-speak the aggregate groups into the four Hispanic subgroups, followed by the ten 

Asian/Pacific Island subgroups.9   
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Results 

Comparison of Mean SES and Mean Performance 

 Table 1 displays the means and standard errors of the socioeconomic status composite and math and 

reading scores for the aggregate race groups.  There are no surprises in the analysis of the aggregate groups, with 

White and Asian students having generally higher socioeconomic status composite values and higher math and 

reading performance scores.  

Insert Table 1 

Table 2 displays the mean SES composite values and math and reading scores for Asian/Pacific Island 

subgroups. This cursory analysis suggests that some subgroups may stand out as different both with respect to their 

SES and academic performance.  For example, Chinese students appear to have relatively low average SES with 

relatively high average math performance while Korean students have both high SES and high math performance. 

Presuming low SES to deflate performance we might expect the math performance of Chinese students to be even 

higher when adjusted for SES differences and that of Korean students to be lower, hence the need to control for SES 

in subsequent analyses. Pacific Island students appear to have both low SES and low performance relative to other 

subgroups. 

Insert Table 2 

Table 3 provides means and standard errors for SES and performance variables for the Hispanic subgroups. 

Among the Hispanic subgroups, Cuban students appear to stand out in terms of their relatively high SES and 

performance compared to other Hispanic subgroups.  

 

Are there significant differences between subgroups? 

 Table 4 displays the results of the first set of regression models with math scores as the dependent variable, 

and Table 5 displays the comparable analysis of Reading performance. In the first models, where aggregate race 

classifications are used, there are again no surprises. SES effects are strong and positive, Asian students outperform 

White students in math, but not in reading, and all other groups (Black, Hispanic and Native American) perform 

poorly in both math and reading achievement relative to White students.   

As noted previously, statistical significance is overstated in OLS analysis of NELS’88 data due to the 

assumption of random sampling. Design effects reported in the NELS’88 User’s Manual may be used to correct, or 

- 10 - 



Two steps forward, one step back 

upwardly adjust standard errors, and are generally considered conservative for adjusting standard errors of 

regression coefficients. Standard error adjustments are made by multiplying the simple random standard error times 

the Mean Root Design Effect. 10 Mean Root Design Effects reported for student performance scores in reading and 

math are 2.284 and 2.379 respectively.11 In the case of the aggregate groups, performance differences generally 

remain statistically significant, even at the p<.01 level.  

Insert Table 4 

Insert Table 5 

 Looking at the within group analysis of the Hispanic subgroups, we find that Cuban students significantly 

outperform their Mexican counterparts in math, while Puerto Rican students perform slightly less well than their 

Mexican counterparts in math, though neither is significant when adjusted for design effects. No significant 

differences appear among Hispanic subgroups for reading performance.  Among the Asian/Pacific Island subgroups, 

Pacific Island students perform particularly poor relative to Chinese students in Math, even when adjusted for design 

effects. Pacific Island students perform slightly better, but still significantly lower than Chinese students in reading. 

Filipino students perform less well than their Chinese peers in math, but outperform their Chinese peers in reading.  

An interesting feature of this analysis is that language proficiency plays a significant role in differentiating 

performance among Asian subgroups while SES differences do not.  Note that despite the substantially reduced 

sample size, the within group analysis of the Asian/Pacific Island category yields a much higher r-squared than 

either the aggregate model or the within group analysis of the Hispanic category. Altogether the within group 

analyses suggest that there are some subgroups that may not be appropriately represented by their common 

aggregate classification.    

 

What does disaggregation contribute to modeling achievement? 

 Tables 6 and 7 display the results of the regression analyses where Hispanic and Asian/Pacific Island 

subgroups were unfolded within the context of the larger models of student math (Table 6) and reading (Table 7) 

performance. The tables begin by displaying estimates for the racial aggregate groups only, subsequently adding the 

SES and LEP controls, then substituting the Hispanic subgroups for the Hispanic aggregate classification and finally 

substituting the Asian/Pacific Island subgroups for their aggregate classification. As with previous analyses, the 

coefficients on the aggregate classifications reveal no surprises.  
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Given the larger sample size relative to the within group analyses, and the change in baseline comparison 

group to White students for all comparisons, several additional coefficients appear significant. Only a few 

coefficients, however, remain significant when adjusted for design effects.  The relative positions of the subgroups 

remain consistent with the previous analysis.  Unfolding the Hispanic aggregate group into its subgroups seems to 

add no explanatory power to either the math or reading performance model. Consistent with the within group results, 

we find that Mexican12, Puerto Rican and Other Hispanic students perform significantly less well than their White 

peers in math and reading, though less so in reading. Cuban students perform comparably to their White peers.  

Unfolding the Asian/Pacific Island aggregate group seems to provide a slight advantage to the explanatory 

power of the model of math achievement, as expressed in terms of adjusted r-squared.  Beyond the slight 

improvement in model fit we find that Chinese students outperform their White peers by over 6 (15.5%) points on 

average in mathematics, while Pacific Island students perform more than 6 points below their White peers.  The 

Asian/Pacific Island aggregate coefficient suggests that this group of students, on average, outperforms their White 

peers in mathematics by 2.35 points. Only Korean students possess a coefficient, though non-significant, that is 

comparable to this value, with math performance differences for other subgroups as high as 8.45 (21.9%) points 

(West Asian) above White means and as low as 6.83 (Pacific Island) below White means, calling into question the 

meaningfulness of the aggregate group coefficient. All significant coefficients for Asian subgroups, however, are 

negated when conservatively adjusted for design effects.  
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Conclusions and Implications 

The analyses herein, though not yielding overwhelming statistical significance, do raise questions about the 

meaningfulness of aggregate racial classifications of students of diverse ethnic and cultural origins. For example, it 

is difficult to lend credence to a coefficient that suggests that Hispanic students perform, on average, 3.85 points 

below their White peers in math, when more refined analysis suggests that Cuban students perform 3.80 points 

above their White peers, and Mexican and Puerto Rican students perform 3.57 and 6.88 points below their White 

peers in math, respectively.  Similarly it is difficult to forward the perception of the aggregate Asian/Pacific Island 

student group as a “model minority” on the basis that they outperform their White peers in math by an average of 

2.35 points, when the point differential between disaggregated groups is as high as 15.28 points (Pacific Island 

students 6.83 points below White students and West Asian students 8.45 points above White students).  

While greater disaggregation can be a useful step in developing more meaningful classifications of 

students, our analyses also indicate the importance of including related variables such as English language 

proficiency and socioeconomic status in explaining academic achievement.  Statistically, when these variables are 

used in addition to the disaggregated race/ethnicity variables, the ability to predict student academic achievement 

improves.  Conceptually, including such variables allows us to develop a more complete picture of the student, 

beyond skin color or point of geographic origin of their ancestors.  But, even including these variables, over 90 

percent of the variance in academic achievement remains unexplained, suggesting that our limited models of student 

background fall well short of comprehensively explaining academic achievement. Generational status and the 

differences between voluntary and involuntary migration are among the additional delineations that have been 

discussed as useful descriptors of student background in recent literature (Fuller, 1994; Kim, 1997; Marin, 1991; 

Gibson & Ogbu, 1991; Trueba, 1992).  

In policy literature we often speak of the subtle distinction between statistical significance and policy 

significance. Such discussions are usually confined to finding reasons to discuss coefficients that do not quite meet 

the stringent requirements of statistical significance (p < .05), but appear important to policy. The analyses herein 

take this discussion in a slightly different, but related direction, in that we can typically meet the statistical 

significance requirement by aggregating students to achieve sufficient sample sizes. In fact, many of the 

aggregations that occur in policy data appear to be done for just this purpose. For example, why would a researcher 

using NELS ’88 choose to derive a control variable of “percent minority peers,” where the minority classification 
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consists of the sum of Black, Hispanic and Native American students(Taylor, 1997, p. 92)? Would Asian students 

not be equally qualified for this category, based purely on a probabilistic definition? Perhaps including a group 

perceived to outperform their peers in the minority group would put the expected negative, statistically significant 

coefficient at risk. If this is the underlying rationale, why not exclude Cuban students and replace them with Pacific 

Island students to solidify the statistical significance? While tucked deep in the background of this study, the 

implication of this variable, as validated by its significant coefficient, is that students who attend school with Black, 

Hispanic and Native American students are likely to do less well academically than those who do not.  The policy 

significance of this variable, however, is highly questionable and the social implications somewhat disturbing.13 

Where race and ethnicity are brought nearer the surface in the policy literature even greater caution is 

warranted. For example, in a study of standardized tests, Wang (1998) investigated whether or not the opportunity to 

study the topics represented in tests influenced students' test scores.  Wang found that the aggregate group of Black 

and Hispanic students (combined as a single category) received far lower levels of exposure, coverage and quality of 

instruction compared to their White and Asian peers (combined as a single category).  Wang’s findings leave the 

reader to infer that policymakers should take appropriate actions to insure that the aggregate group of Black and 

Hispanic students receive more comprehensive coverage of material covered on standardized tests, or that 

standardized tests must be more specifically tailored to these aggregate groups.  Similarly, Raudenbush, Fotiu and 

Cheong (1998) paint a picture of vast disparity of mathematics opportunities for Black, Hispanic and Native 

American students relative to White and Asian students, implying that policymakers and school personnel should 

take action to design racially targeted policies to remedy these disparities.  Our own analyses, however, would 

suggest that these targets are less well defined than some may presume. 

Our intent is not to suggest that taking one or more steps forward along the disaggregation continuum is a 

panacea for understanding the relationship between student background and academic performance.  It may be only 

slightly more rational to design an academic intervention policy for Mexican students as a specific subgroup than to 

design an intervention policy for the aggregate of Hispanic students. However, the more crude our specifications are, 

the less efficient and effective our policy efforts will be.  For example, designing intervention policies, such as 

curriculum or assessment modification that focus on Hispanic students as an aggregate group because of their 

apparent disadvantage, but not on Asian students because of their apparent advantage will be inefficient because 
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many Hispanic students are unlikely to need the assistance offered by such a policy and ineffective by 

disadvantaging those Asian students who do not "live up to" their aggregate group statistical profile.  

We conclude with a plea to those involved in the design and development of the increasingly prevalent 

national datasets. These datasets, including NELS ’88, TIMSS (Third International Math and Science Study) and the 

most recent Early Childhood Longitudinal Study, Kindergarten Class of 1998 – 99 are fast becoming the primary 

source of reliable and comprehensive data for education policy researchers across the country, and throughout the 

world.  While international analyses raise entirely different sets of issues, datasets focused on our own culturally 

diverse education system in the United States should provide researchers the opportunity to paint as rich a portrait of 

student background as is technically feasible. NELS ’88 in particular, has helped us to take two steps forward. In the 

future, we hope not to be asked to take one step back. 
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Two steps forward, one step back 

Table 1.  
Descriptive Statistics by Aggregate Racial Classification 
 
 Socio-Economic Status 8th Grade Reading  8th Grade Math    
   Performance Performance 
Aggregate Group N Mean SE Mean SE Mean SE 
Asian/Pacific Islander 979  0.12 0.09 29.8 0.52 41.0 0.55 
Hispanic 2169 -0.50 0.09 27.5 0.43 34.4 0.43 
Black 1645 -0.46 0.06 25.7 0.47 31.5 0.46 
White 9273  0.01 0.01 29.8 0.15 38.6 0.16 
Native American 530 -0.31 0.03 24.5 0.50 31.2 0.51 
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Table 2. 
Descriptive Statistics by Asian, Pacific Island Disaggregate Group 
 
 
Asian/Pacific Island Socio-Economic Status 8th Grade Reading  8th Grade Math    
Subgroup   Performance Performance  
 N Mean SE Mean SE Mean SE 
Chinese 181 -0.01 0.07 29.0 0.94 44.9 1.05 
Filipino 196  0.24 0.05 31.9 1.40 39.8 1.38 
Japanese 58  0.41 0.07 31.6 1.91 44.2 2.07 
Korean 107  1.11 0.82 31.7 1.07 45.9 1.30 
Southeast Asian 177 -0.47 0.06 28.4 1.22 40.5 1.26 
Pacific Islander 65 -0.21 0.09 23.9 2.24 31.6 2.10 
South Asian 65  0.52 0.10 31.3 1.05 45.9 1.77 
West Asian 23 -0.20 0.17 34.7 4.39 46.9 4.18 
Middle Eastern 34  0.47 0.14 26.0 1.58 37.9 2.21 
Other Asian 57  0.04 0.10 30.9 2.62 39.1 2.61 
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Table 3. 
Descriptive Statistics by Hispanic Disaggregate Group 
 
  Socio-Economic Status 8th Grade Reading  8th Grade Math    
Hispanic Subgroup    Performance Performance 
 N Mean SE Mean SE Mean SE 
Mexican 1571 -0.56 0.12 27.8 0.52 34.5 0.52 
Cuban 35  0.24 0.13 33.4 4.05 42.6 3.82 
Puerto Rican 148 -0.54 0.05 26.8 1.48 31.2 1.37 
Other Hispanic 387 -0.32 0.04 27.2 0.89 34.8 0.95 
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Table 4 
Math Performance by Aggregate and Disaggregate Groups 
 
 All by Race 

(n = 14,596) 
Hispanic by Subgroup 

(n = 2,169) 
Asian by Subgroup 

(n = 979) 
Estimate SE Estimate SE Estimate SE

White -    - -     
Black -6.78         

         
         

        
          
         
         

        
        
         
         
          
          
          
         
          
          
          

         
         

 R

*** 0.43
Native American -7.10 *** 0.69
Hispanic -3.85 ***

 
0.43

 Mexican - -
Cuban 8.31 **

 
3.82

Puerto Rican -3.12 *
 

1.87
Other 0.56 1.13

 Asian/Pacific Isl. 2.35 ***
 

0.70
 Chinese - -

 
-

Filipino -3.36 *
 

1.73
Japanese 0.80 2.58

Korean 2.26 2.25
Southeast Asian -2.16 1.92
Pacific Islander -10.96 ***

 
2.22

South Asian 2.72 2.43
West Asian 3.83 3.07

Middle Eastern -5.64 * 2.96
Other Asian -4.04 *

 
2.37

SES 0.79 ***
 

0.07 0.07 0.10 0.28 0.21
LEP -0.07 0.16 1.16 * 0.68 -3.38 *** 0.93

2= .037 
Adj. R2= .037  

R2= .005 
Adj. R2= .003 

R2= .065 
Adj. R2= .055 

     

*p<.10, **p<.05, ***p<.01 
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Table 5 
Reading Performance by Aggregate and Disaggregate Groups 
 
 All by Race 

(n = 14,596) 
Hispanic by Subgroup 

(n = 2,169) 
Asian by Subgroup 

(n = 979) 
Estimate  SE Estimate SE Estimate SE

White -         - -
Black -3.86 *** 0.41       

       
       

         
         

         
        

        
          
         
          
          
          
         
          
         
          

          
         

 R

Native American -5.13 *** 0.67
Hispanic -2.01 *** 0.41

Mexican -  -
Cuban 5.93  3.82

Puerto Rican    -0.78  1.88    
Other -0.36  1.13

 Asian/Pacific Isl. -0.10 0.68
Chinese  - - -
Filipino 3.27 **

 
1.66

Japanese 2.72 2.48
Korean 2.70 2.16

Southeast Asian 0.12 1.84
Pacific Islander -4.21 **

 
2.13

South Asian 2.66 2.34
West Asian 6.10 **

 
2.95

Middle Eastern -2.87 2.84
Other Asian 2.25 2.28

SES 0.52 ***
 

0.07 0.06 0.10 0.22 0.20
LEP -0.07 0.15 1.03 0.68 -2.70 *** 0.89

2= .015 
Adj. R2= .014  

R2= .003 
Adj. R2= .000 

R2= .036 
Adj. R2= .025  

      

*p<.10, **p<.05, ***p<.01 
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Table 6. 
Math Performance of Aggregate and Disaggregate Groups (as additive blocks) 
 
 Race Only Race, SES & LEP Hispanic Disaggregate API Disaggregate 

Estimate SE Estimate  SE Estimate  SE Estimate  SE
White -        - - - - - - - 
Black -7.16            

            
          

       
            
             
             

            
       
            
             
             
            
             
             
            
            
             

             
          

 R

*** 0.43 -6.78 *** 0.43 -6.73 *** 0.43 -6.77 *** 0.43
Native American -7.36 *** 0.69 -7.10 *** 0.69 -7.06 ***

 
0.69

 
-7.10 *** 0.69

Hispanic -4.25 ***
 

0.43
 

-3.85 ***
 

0.43
 

-3.84 ***
 

0.43
 Mexican -3.57 ***

 
0.49

Cuban 3.80 3.46
Puerto Rican -6.88 *** 1.66

Other -3.46 *** 0.94
Asian/Pacific Isl.  2.44 ***

 
0.71

 
2.35 ***

 
0.70

 
2.39 ***

 
0.70

 Chinese 6.28 ***
 

1.79
Filipino 1.04 1.45

Japanese 5.29 * 2.82
Korean 6.39 ***

 
2.31

Southeast Asian 2.27 1.79
Pacific Islander -6.83 *** 2.30

South Asian 6.94 ***
 

2.62
West Asian 8.45 **

 
3.53

Middle Eastern -1.11 3.73
Other Asian 0.44 2.53

SES 0.79 ***
 

0.07 0.79 ***
 

0.07 0.79 ***
 

0.07
LEP -0.07 0.16 -0.07 0.16 -0.07 0.15

2= .030 
Adj. R2= .029 

R2= .037 
Adj. R2= .037 

R2= .037 
Adj. R2= .037 

 R2= .040 
Adj. R2= .039 

      

*p<.10, **p<.05, ***p<.01 
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Table 7. 
Reading Performance of Aggregate and Disaggregate Groups (as additive blocks) 
 
 Race Only Race, SES & LEP Hispanic Disaggregate API Disaggregate 

Estimate SE Estimate  SE Estimate  SE Estimate  SE
White -       - - - - - - - 
Black -4.11            

            
          

       
            
             
             

           
          
             
             
             
             
             
            
             
             
             

             
          

 R

*** 0.42 -3.86 *** 0.41 -3.83 *** 0.42 -3.86 *** 0.42
Native American -5.30 *** 0.67 -5.13 *** 0.67 -5.10 ***

 
0.67

 
-5.12 *** 0.67

Hispanic -2.28 ***
 

0.41
 

-2.01 ***
 

0.41
 

-2.01 ***
 

0.41
 Mexican -1.73 ***

 
0.47

Cuban 3.52 3.36
Puerto Rican -2.68 * 1.61

Other -2.42 ***
 

0.91
Asian/Pacific Isl.  -0.04 0.69

 
-0.10 0.68

 
-0.07 0.68

 Chinese -0.79 1.74
Filipino 1.99 1.41

Japanese 1.53 2.75
Korean 1.31 2.25

Southeast Asian -1.21 1.75
Pacific Islander -5.75 **

 
2.23

South Asian 1.27 2.54
West Asian 4.96 3.43

Middle Eastern -4.02 3.28
Other Asian 1.02 2.46

SES 0.52 ***
 

0.07 0.52 ***
 

0.07 0.51 ***
 

0.07
LEP -0.07 0.15 -0.07 0.15 -0.70 0.15

2= .011 
Adj. R2= .011 

R2= .015 
Adj. R2= .014 

R2= .014 
Adj. R2= .014 

R2= .015 
Adj. R2= .014  

      

*p<.10, **p<.05, ***p<.01 
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APPENDIX A: VARIABLES AND SAMPLE DESCRIPTION 
 
Sample:  
N = 14,596 
 
8th Grade: BYSES 

BYSES was constructed using the following parent questionnaire data: father's education level, mother's 
education level, father's occupation, mother's occupation, and family income (data coming from BYP30, 
BYP31, BYP34B, BYP37B, and BYP80). 

 
Binary indicator for Limited English Proficiency (for 8th grade): BYLEP 
 
Race Indicator: BYS31A: (Re-coded Binary - White = 0, Black, API, Hispanic, American Indian/Alaskan Native) 
 
Asian Subgroup Indicator: BYS31B (Re-coded Binary - Chinese, Filipino, Japanese, Korean, Southeast Asian, 
Pacific Island, South Asian, West Asian, Middle Eastern, Other) 
 
Hispanic Subgroup Indicator: BYS31C (Re-coded Binary - Cuban, Mexican, Puerto Rican, Other) 
 
8th Grade Achievement Test Results (IRT scores) BY2XMIRR (Math), BY2XRIRR (Reading) 
 
For information on the standardized outcome measures consult Appendix H of the Second Follow-Up: Student 
Component Data File User's Manual. 
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Endnotes 
 
1 Throughout this study we refer to disaggregated subgroups of students according to the descriptors included in 

NELS ’88: Mexican, Cuban, Puerto Rican, Chinese, Filipino, Korean etc. However, we note that it may be more 

appropriate to refer to the students as Cuban American, Filipino American and so on, as all students in our sample 

resided and attended school in United States in 1988.  

2 See, for example, Cooper, Cilo and Baker (2000) 

3 For a concise discussion of this feature of the data-set, see Responses to Frequently Asked Questions Regarding 

NELS:88, http://nces.ed.gov/surveys/nelsque.html.  for a more detailed discussion, see Data File User's Manual, BY-

F1 Student Component, Section 3.6.1 

4 The group mean-centered OLS regression analysis takes the form: Yij - Y.j = βw(Xij - X.j) + rij , where Yij is the 

outcome measure Y, perhaps math achievement, for student i in the jth  school,  Y.j is the mean performance for 

students in school j, Xij is the independent measure of interest, perhaps SES, for student i in the jth school, βw is the 

coefficient of the pooled-within-organization relationship between X and Y and rij is the residual variance. Adding 

binary variables for racial group membership to the right hand side of the equation creates comparisons of 

achievement, scaled against within class means, by race controlled for SES, scaled against within class means. Bryk 

and Raudenbush (1992, p. 117-123) provide a detailed discussion of methods for estimating person-level effects (p. 

117) and disentangling person level and compositional effects (p. 121).  

5 A GLM (General Linear Model) procedure indicated an F-statistic of 6.09 (R-squared = 0.42) using Race as a 

predictor of School Assignment (School ID). This finding is consistent with our basic understanding of de facto 

ethnic and SES clustering within and between school attendance boundaries. 

6 While these caveats may be statistically troublesome to some, consider the possible shortcomings of a hierarchical 

approach, using aggregate classifications applied to a similar sample.  For one, with 15,000 students across 1000 

schools, we would, on average have within school samples of n = 15 students.  With approximately 7% of our 

students as Asian/Pacific Islanders, we may or may not, have one such student selected as representative of the 

Asian/Pacific Islander population for a given school.  That student may be Korean or Chinese or perhaps even 

Pacific Islander.  Given expected differences between these groups, this selection will likely affect the within school 

position of the aggregate group representative. While this aspect of discrimination is statistically desirable, it is 

 



Two steps forward, one step back 

- 29 - 

 

 

confounded by the fact that this student's score in turn affects his/her own position by significantly affecting the 

within school mean of the group of only 15 students. 

7 The first model can be expressed as: 

ACH = β0 + β1SES + β2LEP + β3BLACK + β4NATIVE + β5HISPANIC + β6API + ε    (1) 

Where ACH is achievement in either math or reading, SES is the socioeconomic status composite, LEP is the 

limited English proficiency indicator (1 = yes, 0 = no), ε is the error term, and racial groups are binary 

classifications, with White students as the baseline comparison group.  API refers to Asian/Pacific Islander students.  

For the aggregate analysis, n = 14,596. 

8 For example, the equation for testing differences among Hispanic subgroups may be specified: 

ACH = β0 + β1SES + β2LEP + β3CUBAN + β4PR + β5OTHER + ε  (2) 

Where n = 2,169 and Mexican students serve as the baseline for comparison (PR = Puerto Rican). The equation for 

assessing differences among Asian/Pacific Island subgroups takes the same form, with Chinese student serving as 

the baseline for comparison and n = 979. 

9 The equation including disaggregation of the Hispanic subgroups is specified: 

ACH = β0 + β1SES + β2LEP + β3BLACK + β4NATIVE + β5MEXICAN + β6CUBAN + β7PR + β8OTHER + β9API 

+ ε          (3) 

In the above equation, n = 14,596 and White students’ performance serves as the baseline.  We then similarly 

unfolded the Asian/Pacific Island group into its subgroups while reverting to the aggregate Hispanic classification in 

order to individually test the usefulness of disaggregating the Asian/Pacific Island group versus disaggregating the 

Hispanic group. 

10 See BY-F1: Student Component Data File User’s Manual, p. 57. 

11 Note, however, that these are actually the design effects for the first follow-up and not the base year IRT math and 

science scores, as these are the only ones reported in the NELS ’88 manual. The first follow-up (10th grade) sample 

involved even more complex stratified sampling with intentional oversampling than the base year, to achieve a 

freshening of the sample.  As a result, these design effects are highly conservative.  

12 Significant even when conservatively adjusted for design effects.  
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13 We would like to note that we could have chosen any one of a number of studies to make this example, but we 

were most familiar with this study in particular. No offense is intended to Dr. Taylor, whose study presents major 

methodological advancements in the production function literature.  
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