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1 Introduction

In exchange economies, an allocation rule, or simply a rule, associates with each

profile of preferences a single feasible allocation. An allocation is (Pareto) effi-

cient if no one can be made better off without anyone else being made worse off.

The Pareto correspondence maps each preference profile into the set of all effi-

cient allocations. An efficient rule is a selection from the Pareto correspondence.

We study continuous selections from the Pareto correspondence, or efficient and

continuous rules, and, in particular, these rules satisfying the following notions

of non-manipulability.

Strategy-proofness is the requirement that no one can benefit by misrepre-

senting his preference, independently of others’ representations (Gibbard, 1973,

Satterthwaite, 1975). We introduce three weaker notions of non-manipulability,

which pertain to three cases of partially strategic agents. The first case is that

each agent behaves cooperatively representing his preference truthfully, unless

he is treated worst. Veto-proofness is the requirement that if truth-telling ever

leads to the worst outcome for an agent, he shouldn’t be able to escape it, by

misrepresenting his preference. A stronger notion, veto-proofness∗, pertains to

the case that each agent represents his preference truthfully, unless he can escape

from the worst outcome or can switch to the best outcome. The last notion,

weak strategy-proofness, pertains to the case that each agent represents his pref-

erence truthfully, unless he can increase his bundle in terms of vector dominance

relation.

We show that over the restricted domain of “linear preferences” (preferences

with linear utility function), every efficient and continuous rule is diagonally

dictatorial, that is, there exists an agent who receives the social endowment,

whenever all agents have the same preference. Therefore, for any domain includ-

ing the linear domain, there exists no efficient and continuous rule satisfying

any one of the following standard equity criteria, equal treatment of equals (any

two agents with the same preference should be treated the same), no-envy (Fo-

ley, 1967; no one should prefer any of others’ bundles to his own), etc.1 We next

show that over the linear domain, a rule is efficient, continuous, and veto-proof if

and only if it is dictatorial, that is, there exists an agent who always receives the

social endowment, leaving nothing for anyone else. The same result holds replac-

ing veto-proofness with any one of veto-proofness∗, weak strategy-proofness, and

strategy-proofness. We extend this result over the linear domain to any larger do-

main with the additional requirement of non-bossiness (no one can affect others’

1See Thomson (1995) for an extensive treatment of fairness in economic environments.
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bundle without affecting his own bundle) introduced by Satterthwaite and Son-

nenschein (1981). Given any domain including the linear domain, we show that a

rule is efficient, continuous, veto-proof ∗ (or weakly strategy-proof ), and non-bossy

if and only if it is dictatorial. Since all linear preferences are “homothetic”, this

result applies to the domain of homothetic preferences, or the homothetic domain,

which is widely considered in various applications (Chipman, 1974, and Chipman

and Moore, 1973). In the 2-good case, we establish the following two stronger

results over the homothetic domain: we show that every efficient and continuous

rule is diagonally dictatorial and that a rule is efficient, continuous, and veto-proof

if and only if it is dictatorial. The second result holds replacing veto-proofness

with veto-proofness∗ or weak strategy-proofness or strategy-proofness.

For the unrestricted domain of abstract social choice, the Gibbard-Satterthwaite

Theorem (Gibbard, 1973, Satterthwaite, 1975) states that if a rule is strategy-proof

and “onto”, then it is dictatorial.2 Since in economic applications, preferences

are subject to a variety of restrictions, the theorem does not apply.3 However a

number of studies have brought out similar difficulties in satisfying efficiency and

strategy-proofness in standard exchange economies.4 In particular, for the 2-agent

case, under “classical” assumptions on preferences, Zhou (1991) shows that a rule

is efficient and strategy-proof if and only if it is dictatorial. Schummer (1997)

strengthens this result by establishing it over the two restricted domains of homo-

thetic preferences and linear preferences, respectively. Ju (2002) identifies general

domain conditions leading to this impossibility result.

There are well-known difficulties in extending this negative result in the 2-

agent case to the n-agent case: see Zhou (1991) and Kato and Ohseto (2001) for

conjectures in the n-agent case. We contribute to this line of research by showing

that over each of the two restricted domains, the linear domain and the 2-good

homothetic domain, when continuity is required additionally, the negative result

extends to the n-agent case.

In the n-agent case, important contributions have been made in the three

recent works by Serizawa (2000a), Serizawa (2000b), and Serizawa and Wey-

2A rule is onto if its range is equal to the set of all social alternatives. In the abstract
social choice model, if a rule is Pareto efficient, then it is onto. Moreover, as is well-known (see
Mas-Colell, Whinston, and Green, 1995), if a rule is onto and strategy-proof, then it is Pareto
efficient.

3In exchange economies, preferences are assumed to satisfy “no-consumption-externality”
(individuals are not affected by others’ consumption) and “monotonicity”.

4References are Hurwicz (1972), Dasgupta, Hammond, and Maskin (1979), Hurwicz and
Walker (1990), Zhou (1991a), Schummer (1997), and Serizawa (1998). See also the extensive
surveys by Sprumont (1995a), Barberà (2001), and Thomson (2001)
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mark (2002). Serizawa (2000a) shows that there is no rule satisfying efficiency, in-

dividual rationality, and strategy-proofness. Replacing individual rationality with

a much weaker axiom, called “minimum consumption guarantee”, Serizawa and

Weymark (2002) establish an even stronger impossibility. Serizawa (2000b) does

not impose continuity but considers a stronger non-manipulability notion, “pair-

wise strategy-proofness” associated with preference misrepresentation by groups

consisting of at most two agents.

Continuity is desirable for the following practical reason. In order to make

a choice, we need information about preferences. However, even if people are

willing to reveal their own true preferences, for a number of reasons, they may

not be known accurately. If a rule is not continuous, the choice it makes may be

vulnerable to such inaccuracy.5

In the 2-agent and 2-good case, Sprumont (1995b) characterizes continuous

and strategy-proof rules over the same homothetic domain as ours. He shows

that any continuous and strategy-proof rule has the following dictatorial feature:

there exists an agent and an exogenously determined strictly convex subset of

consumption space such that the rule picks the best point for the agent in the

set. Our results show that in the n-agent case, even if strategy-proofness is re-

placed with efficiency, we still have “diagonal dictatorship”, which implies strong

violation of most standard equity criteria.

Continuity and strategy-proofness are studied also by Satterthwaite and Son-

nenschein (1981), yet on the domain consisting of only strictly convex preferences.

They impose in addition, “continuous differentiability” and non-bossiness. The

domain of production economies with convex technologies is one of the domains

they consider, and this domain includes exchange economies. Their result for this

domain implies that there exists no rule that is efficient, continuously differen-

tiable, strategy-proof, and non-bossy. However they do not study consequences of

dropping non-bossiness or weakening continuous differentiability to continuity or

weakening strategy-proofness.6

5In the implementation literature, one of the desirable properties of a game form is continuity
of its outcome function (See Postlewaite and Wettstein, 1989). Continuity guarantees the
robustness of equilibrium to small misspecifications of strategies. Outcome functions are often
closely related with rules they implement. In particular, in the direct revelation mechanism,
the rule coincides with the outcome function.

6In various models, central strategy-proof rules are not differentiable. For example, in public
good economies with single-peaked preference considered by Moulin (1980), the “generalized
Condorcet-winner rules”, which are the only rules satisfying Pareto efficiency, anonymity, and
strategy-proofness, are not differentiable. In private good economies with single-peaked pref-
erences considered by Sprumont (1991), the “uniform rule”, which is the only rule satisfying
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Chichilnisky (1979, 1980, 1982), Chichilnisky and Heal (1983), and Zhou (1997)

study continuous “preference aggregation rule”, which is a function mapping each

preference profile into a social “preference”. These studies exhibit difficulties of

satisfying continuity together with other equity criteria such as “unanimity” (sim-

ilar to our efficiency) and “anonymity” (similar to equal treatment of equals). Al-

though their results are established for “preference aggregation rules” and in the

topological social choice model, our result on diagonal dictatorship has a similar

flavor to theirs.

This paper is composed of five sections. In Section 2, we define our model

and basic concepts. In Section 3, we establish several useful lemmas. Our main

results are in Section 4. We conclude with a few remarks in Section 5.

2 The model and basic concepts

Let l be the number of goods, l ≥ 2, and Ω ∈ Rl
+ be the social endowment. Let

N ≡ {1, · · · , n} be the set of agents. Let Z ≡ {z ∈ Rl·n
+ :

∑
N zi = Ω} be the

set of feasible allocations and Z0 ≡ {zi ∈ Rl
+ : 0 5 zi 5 Ω} the set of possible

consumption bundles for each agent.

Each agent has a preference, a complete and transitive binary relation over

Rl
+. Preferences are continuous, strictly monotonic,7, and convex. For each pref-

erence R0, we use P0 and I0 to denote its strict relation and indifference relation,

respectively. LetR be a family of admissible preferences. Since we keep the social

endowment fixed, an economy can be identified by a profile of preferences in R.

An allocation rule, or simply a rule, is a function ϕ : RN → Z associating with

each economy a single feasible allocation.

The following two restricted families of preferences are important. A pref-

erence R0 is homothetic if for all x, y ∈ Rl
+ and all α ∈ R+, x I0 y implies

αx I0 αy. Let RH be the class of homothetic preferences. A preference R0 is lin-

ear if it is represented by a vector p0 ∈ Rl
++ as follows: for all x, y ∈ R+, x R0 y

if and only if p0 · x ≥ p0 · y. Let RL be the class of linear preferences. Clearly,

RL ⊂ RH . We call RN
H and RN

L the homothetic domain and the linear do-

main, respectively. Note that since preferences are strictly monotonic, for all

homothetic preference, every indifference curve intersects with each axis. Thus,

Pareto efficiency, anonymity, and strategy-proofness, is not differentiable.
7A preference relation Ri is strictly monotonic if zi ≥ z′i implies zi Pi z′i, where the vector

inequality zi ≥ z′i means that each component of zi is weakly larger than each component of z′i
and zi 6= z′i.
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for example, the “Cobb-Douglas” preferences are not members of RH . However,

this feature is not crucial for our result as explained in Section 5.

For each economy R ∈ RN , an allocation z ∈ Z is (Pareto) efficient if there

is no feasible allocation that makes at least one agent better off without making

anyone else worse off. Let P (R) be the set of all efficient allocations for R.

We call P (·) , the Pareto correspondence. A rule ϕ : RN → Z is efficient

if it is a selection from the Pareto correspondence, that is, for all R ∈ RN ,

ϕ (R) ∈ P (R) .

Domain RH is endowed with the metric ρ : RH×RH → R+ defined as follows.

For all x, y ∈ Rl, let −→x, y ≡ {x+α(y−x) : α ∈ R+} and x, y ≡ {x+α(y−x) : α ∈
[0, 1]}. For all R0 ∈ RH and all q ∈ ∆l−1, let r(q, R0) ∈ Rl

+ be the point of inter-

section of the ray,
−→
0, q, and the indifference curve of R0 through (1, · · · , 1) (note

that r (q, R0) is well-defined because preferences are strictly monotonic). For all

R0, R
′
0 ∈ RH , let ρ(R0, R

′
0) ≡ supq∈∆l−1 ||r(q, R0) − r(q, R′

0)||. For convenience,

over the subdomainRL, we use the following equivalent metric d : RL×RL → R+:

for all Ri, R
′
i ∈ RL, let pi ∈ ∆l−1 represent Ri and p′i ∈ ∆l−1 represent R′

i. Let

d(Ri, R
′
i) ≡ ‖pi − p′i‖. The topologies of RN

L and RN
H are the product topologies

corresponding to the metric topologies of RL and RH .

In what follows, for any family of preferences, denoted by R, when R contains

RH (or RL), we assume that R is endowed with a topology inducing the above

metric topology in the subspaceRH (orRL, respectively) and thatRN is endowed

with the product topology associated with the topology on R. We refer readers

to Kannai (1970) for a construction of topology on spaces of preferences.

Given a topology of RN , we define continuity of an allocation rule over

RN in the standard way. We study efficient and continuous rules, or continuous

selections from the Pareto correspondence, which are immune to the following

kinds of manipulative behavior.

Most well-known is manipulation via preference misrepresentation. A rule

ϕ : RN → Z is strategy-proof if no one can ever benefit by misrepresenting his

preference, independently of others’ representations; that is, for all i ∈ N and all

R ∈ RN , there exists no R′
i ∈ R such that ϕi(R

′
i, R−i) Pi ϕi(Ri, R−i).

We next define three weaker notions of non-manipulability, which pertain to

three types of partially strategic behavior of agents. First is the type in which

each agent behaves cooperatively, truthfully representing his preference, except

when he is treated worst. Each agent misrepresents his preference only to “veto”

the worst outcome, namely, the zero bundle. In this case, the following weakening

of strategy-proofness is important. A rule ϕ : RN → Z is veto-proof if for all
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i ∈ N and all R ∈ RN with ϕi (R) = 0, there exists no R′
i ∈ R such that

ϕi(R
′
i, R−i) Pi ϕi(Ri, R−i).

Second is the type in which each agent truthfully represents his preference, un-

less he can switch to the best outcome or escape the worst outcome, by misrepre-

senting his preference. Since preferences are strictly monotonic, Ω is the best out-

come and 0 is the worst outcome. In this case, the following weakening of strategy-

proofness is important. A rule ϕ : RN → Z is veto-proof ∗ if for all i ∈ N and

all R ∈ RN , there exists no R′
i ∈ R such that (i) ϕi (R

′
i, R−i) = Ω Pi ϕi (R) or

(ii) ϕi(R
′
i, R−i) Pi 0 = ϕi(Ri, R−i).

Third is the type in which each agent truthfully represents his preference, un-

less he can increase his bundle in terms of vector dominance relation, by misrepre-

senting his preference. In this case, the following weakening of strategy-proofness

is important. A rule ϕ : RN → Z is weakly strategy-proof if for all i ∈ N and

all R ∈ RN , there exists no R′
i ∈ R such that ϕi (R

′
i, R−i) ≥ ϕi (R).

Clearly, every rule satisfies veto-proofness if no allocation in its range has

any zero component, that is, no one ever receives the zero bundle. Similarly,

every rule satisfies veto-proofness∗ if no one ever receives either the zero bundle

or Ω. Since preferences are strictly monotonic, strategy-proofness implies weak

strategy-proofness, which implies veto-proofness∗, which implies veto-proofness.

Our main results show that all rules satisfying the above requirements have

the following “dictatorial” feature. A rule is dictatorial if there exists an agent

who always gets his most preferred bundle in Z0. Since preferences are strictly

monotonic, a rule ϕ : RN → Z is dictatorial if and only if there exists i ∈ N

such that for all R ∈ RN , ϕi(R) = Ω. We call such an agent the dictator.

A preference profile R ∈ RN is diagonal if there exists R0 ∈ R such that

R = (R0, · · · , R0). A rule ϕ : RN → Z is diagonally dictatorial if there exists

an agent who receives his most preferred bundle in Z0 at every diagonal preference

profile. We call such an agent the diagonal dictator.

Every diagonally dictatorial rule violates the following standard equity crite-

ria. A rule ϕ : RN → Z satisfies equal treatment of equals if for all i, j ∈ N

and all R ∈ RN with Ri = Rj = R0, ϕi(R) I0 ϕj(R). It satisfies no-envy, (Foley,

1967) if for all i, j ∈ N and all R ∈ RN , ϕi(R) Ri ϕj(R). It meets the equal

division lower bound property if for all i ∈ N and all R ∈ RN , ϕi(R) Ri

Ω/n.8

8We refer readers to Thomson (1995) for an extensive treatment of these equity criterion in
various economic environments including exchange economies.
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3 Useful lemmas

We will show later that every continuous and efficient rule selects allocations on

the boundary of a predetermined “truncated (polyhedral) cone”, whenever there

exist at least two identical agents. In this section, we study implications of this

property in conjunction with continuity and veto-proofness.

We use the following notation. For all l linearly independent vectors a1, · · · , al ∈
Rl and all k ∈ {1, · · · , l}, let 〈a1, · · · , ak〉 ≡ {x ∈ Rl : x = λ1a1 + · · · + λkak, for

some λ1, · · · , λk ∈ R} be the space generated by the k vectors, a1, · · · , ak. Let

〈a1, · · · , ak〉+ ≡ {x ∈ Rl : x = λ1a1 + · · · + λkak, for some λ1, · · · , λk ∈ R+} be

the set of positive linear combinations of the k vectors, a1, · · · , ak.
9 Since a1,

· · · , al are linearly independent, then for all x ∈ Rl, there exists a unique list

of numbers, λ1, · · · , λl, such that x = λ1a1 + · · · + λlal. For each X ⊆ Rl, let

intX be the interior of X and int〈a1,··· ,ak〉X be the relative interior of X in the

subspace 〈a1, · · · , ak〉. Note that int〈a1,··· ,ak〉 〈a1, · · · , ak〉+ = {x ∈ Rl : for some

strictly positive λ1, · · · , λk ∈ R++, x = λ1a1 + · · ·+ λkak}.
Given a subset R0 ⊆ R, a rule ϕ : RN → Z satisfies Property B over RN

0 ,

if there exist l linearly independent vectors, a1, · · · , al ∈ Rl
+, such that

(i) Ω ∈ int 〈a1, · · · , al〉+;

and for all R ∈ RN
0 , if for all i ∈ N , ϕi (R) = λi1a1 + · · ·+ λilal for some λi1, · · · ,

λil ∈ R,

(ii) for all i, j ∈ N with i 6= j, all k, m ∈ {1, · · · , l} with k 6= m, and all R ∈ RN
0

with Ri = Rj,

λik = λim = 0, or λjk = λjm = 0, or (λik + λjk, λim + λjm) /∈ R2
++;10

(iii) for all I ⊆ N , if for all i, j ∈ I, Ri = Rj and
∑

I ϕi(R) = Ω, then for all

i ∈ I, (λi1, · · · , λil) = 0 (that is, ϕi(R) ∈ 〈a1, · · · , al〉+).

When a rule satisfies Property B over the entire domain, we say that the rule

satisfies Property B. For all k ∈ {1, · · · , l}, let ek be the unit vector that has 1

in its kth component and 0 in every other component. Note that when a1, · · · , al

are unit vectors, parts (i) and (iii) hold trivially. In this case, part (ii) says that

whenever two agents have the same preferences, at least one of them receives 0

or both of them receive some positive amounts of only one and the same good.

Property B imposes a severe restriction on the choice, when there is a group

I of agents who have identical preferences and who consume the entire social

9Such a set is called “polyhedral cone”.
10The last part (λik +λjk, λim +λjm) /∈ R2

++ is equivalent to (λik +λjk)ak +(λim +λjm)am /∈
int〈ak,am〉 〈ak, am〉+.
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endowment in the aggregate. In this case, by part (ii), no two agents in I can

consume, in the aggregate, a bundle in the interior of 〈a1, · · · , al〉+. Moreover,

part (ii) imposes similar restrictions for all two dimensional subspaces. On the

other hand, by part (i), the aggregate bundle Ω (consumed by agents in I) lies

in the interior of 〈a1, · · · , al〉+. Since by part (iii), individual bundles should lie

in 〈a1, · · · , al〉+, the only way to satisfy all three parts is to give a single agent in

I the entire endowment Ω and all others the zero bundle, as shown by the next

lemma. An allocation z ∈ Z is extreme if it is one of the following l allocations,

(Ω, 0, · · · , 0) , (0, Ω, 0, · · · , 0) , · · · , (0, · · · , 0, Ω).

Lemma 1. Let R0 ⊆ R. Assume that ϕ : RN → Z satisfies Property B over RN
0 .

If I ⊆ N and R ∈ RN
0 are such that for all i, j ∈ I, Ri = Rj and

∑
i∈I ϕi(R) = Ω,

then ϕ (R) is extreme.

Proof. Suppose that ϕ satisfies Property B with respect to l linearly independent

vectors a1, · · · , al ∈ Rl
+. Without loss of generality, we may assume Ω = a1 +

· · ·+ al. Let I ⊆ N and R ∈ RN
0 be given as above. Let z ≡ ϕ(R). By part (iii)

of Property B, for all i ∈ I, zi ∈ 〈a1, · · · , al〉+. Then for each i ∈ I, there exist

λi1, · · · , λil ≥ 0 such that zi = λi1a1 + · · · + λilal. If λik > 1 for some i ∈ I

and k ∈ {1, · · · , l}, then
∑

j∈I\i zj =
∑

j∈N\i
(
λjkak +

∑
m6=k λjmam

)
= Ω −

zi = (1− λik) ak +
∑

m6=k (1− λim) am. Since a1, · · · , al are linearly independent,∑
j∈N\i λjk = 1 − λik < 0, contradicting the fact that all λjk’s are non-negative.

Therefore, for all j ∈ I and all k ∈ {1, · · · , l}, λjk ∈ [0, 1].

Since
∑

i∈I zi = Ω ∈ int 〈a1, · · · , al〉+, there exist i ∈ I and k ∈ {1, · · · , l}
such that λik > 0. We first show λik = 1. Suppose, by contradiction, λik < 1.

Then since
∑

j∈I λjk = 1, there exists j ∈ I\i such that λjk > 0. Take any

m 6= k. By part (ii) of Property B, λim = 0. Then since
∑

h∈I λhm = 1, there

exists h ∈ I\i such that λhm > 0. This contradicts part (ii) of Property B.

Therefore, λik = 1.

Let m ∈ {1, · · · , l}\k. We only have to show λim = 1. If λim < 1, then since∑
i∈I zi = Ω, there is j ∈ I\i such that λjm > 0. Then since λik > 0, we have a

contradiction to part (ii) of Property B. Therefore λim = 1.

We now show that if a continuous rule satisfies Property B over the entire

domain RN and the domain is connected, then the rule is diagonally dictatorial.

Lemma 2. If a continuous rule satisfies Property B and the domain is connected,

then it is diagonally dictatorial.

Proof. Let RN be a connected domain. Assume that ϕ : RN → Z is continuous

9



and satisfies Property B. Then by Lemma 1, for all diagonal profiles R, ϕ(R)

is extreme. Let h : R → Z be defined as follows: for all R0 ∈ R, h(R0) ≡
ϕ(R0, · · · , R0). By continuity of ϕ, h is continuous. Since ϕ chooses an extreme

allocation at all diagonal profiles, h has a finite range. Now we can apply the fact

that if a continuous function defined over a connected space has a finite range in

a Hausdorff space, then it is constant. Thus, h is constant, that is, there exists

an agent i ∈ N such that for all R0 ∈ R, hi(R0) = Ω. Therefore agent i is the

diagonal dictator and ϕ is diagonally dictatorial.

Remark 1. Suppose that RN is not connected but is a union of connected sub-

domains. Then every continuous rule satisfying Property B over RN is diagonally

dictatorial over each of the subdomains. However the diagonal dictators may vary

from subdomain to subdomain.

Adding veto-proofness, we obtain:

Lemma 3. If a continuous and veto-proof rule satisfies Property B and the

domain is connected, then it is dictatorial.

Proof. Let RN be a connected domain. Assume that ϕ : RN → Z satisfies Prop-

erty B and is continuous and veto-proof. By Lemma 2, ϕ is diagonally dictatorial.

Let i∗ ∈ N be the diagonal dictator. Without loss of generality, let i∗ = 1. We

prove that for all R ∈ RN , ϕ(R) = (Ω, 0, · · · , 0).

For all R ∈ RN , let H(R) ≡ {i ∈ N : Ri 6= R1} be the set of agents

who have different preferences from agent 1’s. Note that H(R) ⊆ N\{1} and

0 ≤ |H(R)| ≤ n− 1. In what follows, we prove the following statement, referred

to as S (k), by an induction argument with respect to k ∈ {0, 1, · · · , n − 1}: for

all R ∈ RN , if |H(R)| ≤ k, ϕ(R) = (Ω, 0, · · · , 0).

The first step of the induction argument, S (0), follows directly from Lemma 2.

Now suppose S (m) for m ∈ {1, · · · , n− 2}. In order to prove S(m + 1), we use

the following claim.

Claim 1. For all R ∈ RN with |H(R)| = m+1, if i ∈ H(R), then ϕi(R) = 0.

Proof. Let R ∈ RN be given as above. Let z ≡ ϕ(R). For each i ∈ H(R),

let R′
i = R1. Then |H(R′

i, R−i)| = m and so by the induction hypothesis,

ϕi(R
′
i, R−i) = 0. Hence for all i ∈ H(R), if zi 6= 0, then agent i with preference R′

i

can escape the worst outcome 0 by reporting Ri, contradicting veto-proofness. ¤

To complete the final step, let R̄ ∈ RN be such that |H(R̄)| = m + 1. Let

j ∈ H(R̄) (since m ≥ 1, there exists such j). For all R′
j ∈ R, let g(R′

j) ≡
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ϕ(R′
j, R̄−j). If R′

j = R̄1, then |H(R′
j, R̄−j)| = m. Hence by the induction hy-

pothesis, g(R′
j) = (Ω, 0, · · · , 0). If R′

j 6= R̄1, then |H(R′
j, R̄−j)| = m + 1. Hence

by Claim 1,
∑

i∈N\H(R′j ,R̄−j)
ϕi(R

′
j, R̄−j) = Ω. Since all agents in N\H(R′

j, R̄−j)

have the same preferences, then, by Lemma 1, g(R′
j) is an extreme allocation.

Therefore g has a finite range containing (Ω, 0, · · · , 0). Since g is continuous

and R is connected, the range of g is a singleton set {(Ω, 0, · · · , 0)}. Therefore

ϕ(R̄) = g(R̄j) = (Ω, 0, · · · , 0).

Remark 2. When the domain RN is not connected, Lemma 3 does not hold.

Let R∗
a,R∗

b ⊆ R constitute a disconnection of R ≡ R∗
a ∪ R∗

b . Let N ≡ {1, 2, 3}.
Define a rule ϕ as follows: for all R ∈ D, (i) if R3 ∈ R∗

a, ϕ(R) ≡ (Ω, 0, 0) and

(ii) if R3 ∈ R∗
b , ϕ(R) ≡ (0, Ω, 0). Then ϕ satisfies Property B over RN and is

continuous, and strategy-proof. However, ϕ is not dictatorial.

Let A be an arbitrary index set. A family of subsets of R, {Rα ⊆ R : α ∈ A},
is union-dense if ∪α∈ARα is dense in R. We next show that if R has a union-

dense family of connected subsets, {Rα ⊆ R : α ∈ A}, then every continuous

rule that satisfies Property B over RN
α for all α ∈ A is diagonally dictatorial.

Lemma 4. Assume that R is connected and has a union-dense family of con-

nected subsets, {Rα ⊆ R : α ∈ A}. Then every continuous rule satisfying Prop-

erty B over RN
α for all α ∈ A, is diagonally dictatorial.

Proof. Let ϕ : RN → Z be continuous and satisfy Property B over RN
α for all

α ∈ A. Then by Lemma 2, for all α ∈ A, ϕ is diagonally dictatorial over RN
α .

Since {Rα : α ∈ A} is union-dense, then for each R0 ∈ R, there exists a sequence

of preferences (Rn
0 : n ∈ N) in ∪α∈ARα, converging to R0. Since for all n ∈ N,

ϕ(Rn
0 , · · · , Rn

0 ) is extreme and ϕ is continuous, then ϕ(R0, · · · , R0) is also extreme.

Therefore ϕ chooses an extreme allocation at all diagonal profiles in RN . For all

R0 ∈ R, let h(R0) ≡ ϕ(R0, · · · , R0). Then the range of h is a finite set of extreme

allocations. Since ϕ is continuous, h is also continuous. Therefore since R is

connected, the range of h is a singleton. That is, there exists i ∈ N such that for

all R0 ∈ R, ϕi(R0, · · · , R0) = Ω.

Adding veto-proofness, we obtain:

Lemma 5. Assume that R is connected and has a union-dense family of con-

nected subsets, {Rα ⊆ R : α ∈ A}. Then every continuous and veto-proof rule

that satisfies Property B over RN
α for all α ∈ A is dictatorial.

11



Proof. Let ϕ : D → Z satisfy Property B over RN
α for each α ∈ A and be contin-

uous and veto-proof. By Lemma 3, for all α ∈ A, ϕ is dictatorial over RN
α . Since

∪α∈ARN
α is dense in R and ϕ is continuous, then the range of ϕ is composed

of finite extreme allocations. By continuity of ϕ and connectedness of R, we

conclude that the range is a singleton: that is, ϕ is dictatorial.

4 The main results

We show that every efficient and continuous rule over the linear domain satisfies

Property B. Therefore, by Lemmas 2 and 3, we obtain the following results. Over

the linear domain, (i) every efficient and continuous rule is diagonally dictatorial

(Theorem 1) and (ii) a rule is efficient, continuous, and veto-proof if and only if

it is dictatorial (Theorem 2). It follows from the first result that for any domain

including the linear domain, there is no efficient and continuous rule satisfying

any of the following equity criteria, equal treatment of equals, no-envy, and the

equal division lower bound property (Corollary 1). Also it follows from the sec-

ond result that a rule over the linear domain is efficient, continuous, and (weakly)

strategy-proof if and only if it is dictatorial (Corollary 2). Adding “non-bossiness”

(to be defined later) introduced by Satterthwaite and Sonnenschein (1981), we

show that for any domain including the linear domain, a rule is efficient, con-

tinuous, veto-proof ∗ (or weakly strategy-proof ), and non-bossy if and only if it

is dictatorial (Theorem 3). The homothetic domain contains the linear domain

and so Corollary 1 and Theorem 3 apply. In the 2-good case, we show that

non-bossiness in Theorem 3 is redundant and moreover, veto-proofness∗ (or weak

strategy-proofness) can be weakened to veto-proofness. More precisely, we show

that (i) every efficient and continuous rule over the homothetic domain is diago-

nally dictatorial (Theorem 4) and (ii) a rule is efficient, continuous, and veto-proof

if and only if it is dictatorial (Theorem 5). Veto-proofness in the second result

can be replaced with any one of the three requirements, veto-proofness∗, weak

strategy-proofness, and strategy-proofness.

We now show that every efficient and continuous rule over the linear domain

is diagonally dictatorial.

Theorem 1. Every efficient and continuous rule over the linear domain is di-

agonally dictatorial.

Proof. Since RL connected, then by Lemma 2, we only have to show that every

efficient and continuous rule over RN
L satisfies Property B.
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Let ϕ : RN
L → Z be efficient and continuous. We show that ϕ satisfies parts

(i)-(iii) in the definition of Property B, with respect to {e1, · · · , el}. Parts (i) and

(iii) are trivially satisfied. To show part (ii), let R ∈ RN
L be such that for two

agents i and j with i 6= j, Ri = Rj. Let z ≡ ϕ(R). We only have to show that

for all k, m ∈ {1, · · · , l} with k 6= m, either zik = 0 or zjm = 0. Suppose by

contradiction that there exist k, m ∈ {1, · · · , l} such that k 6= m, zik > 0, and

zjm > 0. Without loss of generality, we set k = 1 and m = 2.

Let Ω̂ ≡ zi + zj. Then Ω̂1 > 0 and Ω̂2 > 0. Let R0 ≡ Ri = Rj. Let p0 ∈ Rl
++

represent R0. Let d be a real number satisfying 0 < d < 1
2
Ω̂1. Let B(Ω̂, d) ≡

{z′0 ∈ Rl
+ : ||z′0 − Ω̂|| ≤ d} be the closed ball with center Ω̂ and radius d. Let

A ≡ {z′i ∈ Z0 : z′i1 ∈ [Ω̂1 − d, Ω̂1 + d] or z′i2 = 0} and B ≡ {z′i ∈ Z0 : z′i1 = 0 or

z′i2 ∈ [Ω̂2 − d, Ω̂2 + d]}. We show that both zi and zj are in A ∩B.

For all δ > 0, let pδ
0 ≡ (p01 + δ, p02, · · · , p0l) and Rδ

0 be the linear preference

represented by pδ
0. Let Rδ be a profile such that Rδ

i ≡ Rδ
0 and for all h 6= i,

Rδ
h ≡ Rh. Let zδ ≡ ϕ(Rδ). Note that limδ→0 Rδ = R. Hence by continuity of ϕ,

there exists δ̄ > 0 such that for all δ ∈ (0, δ̄), zδ
i + zδ

j ∈ B(Ω̂, d).

Claim 1. For all δ ∈ (0, δ̄), zδ
i ∈ A.

Proof. Since zδ
i , z

δ
j ∈ Rl

+ and zδ
i + zδ

j ∈ B(Ω̂, d), zδ
i1 ≤ Ω̂1 + d. Hence if we

assume zδ
i /∈ A, then zδ

i1 < Ω̂1 − d and zδ
i2 > 0. Since zδ

i + zδ
j ∈ B(Ω̂, d), zδ

j1 > 0.

Since zδ
i2 > 0, zδ

j2 < Ω2.

In the following, we define a feasible allocation that Pareto dominates zδ. Let

z′i ≡ (zδ
i1+ρ, zδ

i2−ρ·p01/p02, z
δ
i3, · · · , zδ

il) and z′j ≡ (zδ
j1−ρ, zδ

j2+ρ·p01/p02, z
δ
j3, · · · , zδ

jl).

For all h ∈ N\{i, j}, let z′h = zδ
h. Note that

∑
N z′i =

∑
N zδ

i = Ω. Since

zδ
i1 ≤ Ω̂1 − d < Ω1, z

δ
i2 > 0, zδ

j1 > 0, and zδ
j2 < Ω2, there exists ρ > 0 such

that z′ is feasible. By definition of Rδ, it is easy to show that z′i P δ
i zδ

i and for all

h 6= i, z′h Iδ
h zδ

h. Hence z′ Pareto dominates zδ. This contradicts efficiency of ϕ. ¤

By continuity of ϕ, limδ→0 zδ
i = zi. Since for all δ ∈ (0, δ̄), zδ

i ∈ A and A is

closed, zi ∈ A.

For all δ > 0, let p̂δ
0 ≡ (p01−δ, p02, · · · , p0l) and let R̂δ

0 be the linear preference

represented by p̂δ
0. Let R̂δ be the profile defined by R̂δ

i ≡ R̂δ
0 and for all h 6= i,

R̂δ
h ≡ R̂h. Let ẑδ ≡ ϕ(R̂δ). Note that limδ→0 R̂δ = R. Hence by continuity of ϕ,

there exists δ̂ > 0 such that for all δ ∈ (0, δ̂), ẑδ
i + ẑδ

j ∈ B(Ω̂, d). Now using the

same argument as in Claim 1, we show that for all δ ∈ (0, δ̂), ẑδ
i ∈ B. Therefore

by continuity of ϕ and closedness of B, we have zi ∈ B.

Therefore zi ∈ A ∩ B. In order to prove zj ∈ A ∩ B, we apply the same

argument as above.

Since zi ∈ A ∩ B, either (i) zi1 = 0 and zi2 = 0, or (ii) zi1 ∈ [Ω̂1 − d, Ω̂1 + d]
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and zi2 ∈ [Ω̂2 − d, Ω̂2 + d]. Since zi1 > 0 by the initial assumption, (i) does not

hold. Therefore zi1 ∈ [Ω̂1 − d, Ω̂1 + d] and zi2 ∈ [Ω̂2 − d, Ω̂2 + d].

Similarly, we show that zj1 ∈ [Ω̂1−d, Ω̂1 +d] and zj2 ∈ [Ω̂2−d, Ω̂2 +d]. Hence

zi1 + zj1 ≥ 2Ω̂1 − 2d. Therefore since d < 1
2
Ω̂1, then zi1 + zj1 ≥ 2Ω̂1 − 2d > Ω̂1 =

zi1 + zj1. This is a contradiction.

If an allocation rule is diagonally dictatorial, it violates standard equity prop-

erties such as equal treatment of equals, no-envy, the equal division lower bound

property, etc.

Corollary 1. Given any domain containing the linear domain, there exists no

efficient and continuous rule satisfying any one of the three equity criteria, equal

treatment of equals, no-envy, and the equal division lower bound property.

The impossibility is because of extreme choices for diagonal preference profiles.

And the set of diagonal preference profiles is a “measure zero” subset of the linear

domain. Thus, despite the impossibility, there may exist efficient and continuous

rules that behave “nicely” over the set of non-diagonal profiles.11 Our next result

is that if we require veto-proofness in addition, we cannot escape dictatorship.

The proof is immediate from Lemma 3 and Proof of Theorem 1.

11For example, in the two agents and two goods economy, let ε > 0 be an arbitrary real
number and Dε ≡ {(R1, R2) ∈ R2

L : ||p1 − p2|| > ε, where p1 ∈ ∆1 and p2 ∈ ∆1 represent
R1 and R2 respectively}. For each p1, p2 ∈ ∆1 with p1 6= p2, let z (p1, p2) be the efficient
allocation that is indifferent for agent 1 to the equal division (thus when p11 > p21, z1 (p1, p2)
is the intersection of the 1’s indifference curve through Ω/2 and the “lower right corner” of the
Edgeworth box; when p11 < p21, z1 (p1, p2) is on the “upper left corner” of the Edgeworth box).
For each δ ∈ [0, ε], let zlr

1 (p1, δ) be a bundle on the lower right corner of the Edgeworth box
such that zlr

1 (p1, δ) moves continuously from z1 (p1, p2) to Ω as δ changes from ε to 0, for some
p2 with p21 < p11. Thus, zlr

1 (p1, 0) = Ω and zlr
1 (p1, ε) = z1 (p1, p2). Similarly, for each δ ∈ [0, ε],

let zul
1 (p1, δ) be a bundle on the upper left corner such that zul

1 (p1, δ) moves continuously from
z1 (p1, p2) to Ω as δ changes from ε to 0, for some p2 with p21 > p11.

Now define ϕ as follows. For all (R1, R2) ∈ Dε, ϕ1 (R1, R2) ≡ z1 (p1, p2), where p1, p2 ∈ ∆1

represent R1 and R2 respectively. When ||p1 − p2|| ≤ ε,

ϕ1 (R1, R2) ≡
{

zlr
1 (p1, ||p1 − p2||) , if p11 ≥ p21;

zul
1 (p1, ||p1 − p2||) , if p11 < p21.

For each (R1, R2), let ϕ2 (R1, R2) ≡ Ω − ϕ1 (R1, R2). By definition, ϕ satisfies efficiency and
continuity. Clearly, over Dε, ϕ satisfies the equal division lower bound property. However, ϕ is
diagonally dictatorial, since it gives Ω to agent 1 at each diagonal profile. Thus, although ϕ

is diagonally dictatorial, ϕ violates the equal division lower bound property only over R2
L\Dε,

which can be made arbitrarily small by choosing sufficiently small ε > 0.
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Theorem 2. A rule over the linear domain is efficient, continuous, and veto-

proof if and only if it is dictatorial.

Since veto-proofness∗ [or (weak) strategy-proofness ] implies veto-proofness, we

have the following corollary:

Corollary 2. (i) A rule over the linear domain is efficient, continuous, and

veto-proof∗ if and only if it is dictatorial. (ii) A rule over the linear domain is

efficient, continuous, and (weakly) strategy-proof if and only if it is dictatorial.

Examples 1-3 below establish independence of the three requirements in each

of Theorem 2 and Corollary 2. For simplicity, we assume N = {1, 2, 3} and l = 2.

Then we may represent each linear preference Ri by a number pi ∈ R++, where

(pi, 1) is the normal vector of indifference curves of Ri. In the following examples,

we use pi instead of Ri.

Example 1. Define ϕ as follows: (i) if p3 ≥ 1, ϕ(p1, p2, p3) ≡ (Ω, 0,0), (ii) if

p3 < 1, ϕ(p1, p2, p3) ≡ (0, Ω, 0). Then ϕ satisfies efficiency and strategy-proofness.

Example 2. Define ϕ as follows: (i) if p1 > max{p2, p3}, ϕ1(p1, p2, p3) ≡ (Ω1, 0)+
max{p2,p3}

p1
· (0, Ω2) and for all i = 2, 3, ϕi(p1, p2, p3) ≡ 1

2

(
1− max{p2,p3}

p1

)
· (0, Ω2),

(ii) if p1 < min{p2, p3}, ϕ1(p1, p2, p3) ≡ p1

min{p2,p3} · (Ω1, 0) + (0, Ω2) and for all

i = 2, 3, ϕi(p1, p2, p3) ≡ 1
2

(
1− p1

min{p2,p3}

)
· (Ω1, 0), and (iii) in all other cases,

ϕ(p1, p2, p3) ≡ (Ω, 0, 0). It is easy to show that ϕ satisfies efficiency and continuity.

Example 3. Constant allocation rules satisfy continuity and strategy-proofness

trivially.

Theorem 2 and Corollary 2 pertain to the linear domain. However, for any

larger domain, these two results are still applicable at least locally over the lin-

ear domain. Considering the following additional requirement introduced by

Satterthwaite and Sonnenschein (1981), we extend the two results to any do-

main including the linear domain. A rule ϕ : RN → Z is non-bossy if no

one can affect others’ bundles without affecting his own bundle, that is, for all

R ∈ RN and all i ∈ N, there is no R′
i ∈ R such that ϕi (R

′
i, R−i) = ϕi (R) and

ϕ−i (R
′
i, R−i) 6= ϕ−i (R).

Theorem 3. Given any domain including the linear domain, (i) a rule is effi-

cient, continuous, veto-proof∗, and non-bossy if and only if it is dictatorial ; (ii)

a rule is efficient, continuous, weakly strategy-proof, and non-bossy if and only

if it is dictatorial.
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Proof. We only have to show (i). Let R ⊇ RN
L be a family of preferences. Let

ϕ : RN → Z be efficient, continuous, veto-proof ∗, and non-bossy. Then by The-

orem 2, there exists i ∈ N such that for all R ∈ RN
L , ϕi (R) = Ω. Let R ∈ RN .

We only have to show ϕi (R) = Ω.

Let R̄ ∈ RN
L . Then ϕi

(
R̄

)
= Ω. Let j ∈ N\i. Since ϕj

(
R̄

)
= 0, then by veto-

proofness∗, ϕj

(
Rj, R̄−j

)
= 0. By non-bossiness, ϕ

(
Rj, R̄−j

)
= ϕ

(
R̄

)
. Applying

the same argument successively to each agent in N\i, we show ϕ
(
R̄i, R−i

)
=

ϕ
(
R̄

)
. Then ϕi

(
R̄i, R−i

)
= Ω. Applying veto-proofness∗ to agent i, ϕi (Ri, R−i) =

Ω.

Remark 3. (i) In the 2-agent case, non-bossiness is redundant. Given any do-

main including the linear domain, a rule is efficient, continuous, and veto-proof ∗

[or, weakly strategy-proof ] if and only if it is dictatorial.

(ii) When veto-proofness∗ or weak strategy-proofness is replaced with strategy-

proofness, similar result holds without continuity. Serizawa (2000b) shows that a

rule is efficient, strategy-proof , and non-bossy if and only if it is dictatorial.

The homothetic domain contains the linear domain and so Corollary 1 and

Theorem 3 apply. Moreover, in the 2-good case, we establish stronger results.

We consider the following union-dense family of connected subsets of the ho-

mothetic domain. We will show later that every efficient and continuous rule

satisfies Property B over each of these subsets.

We first introduce useful notation. Let ε > 0. If Ω − (ε, 0) ∈ R2
+, then

let aε
1 ≡ Ω − (ε, 0). Otherwise, let aε

1 ≡ (0, Ω2). If Ω − (0, ε) ∈ R2
+, then let

aε
2 ≡ Ω− (0, ε). Otherwise, let aε

2 ≡ (Ω1, 0).

The two vectors, aε
1 and aε

2, generate a positive cone Cε ≡ {αaε
1 +βaε

2 : α, β ∈
R+}.

Let X ⊆ R2
+ and R0, R

′
0 ∈ RH . We say that two preferences, R0 and R′

0,

coincide on X if the two preferences order every two bundles in X in the same

way. Let x ∈ X. A vector p ∈ R2
+ is a supporting normal vector at x for R0 if

p is normal to the hyperplane through x, which supports the upper contour set

(at x) of R0, formally, for all y ∈ R2
+ with y R0 x, p · y ≥ p · x. We say that

two preferences R0 and R′
0 have identical supporting normal vectors on X if for

all x ∈ X, the set of supporting normal vectors at x for R0 is equal to the set of

supporting normal vectors at x for R′
0. We say that R0 is strictly convex over X

if for all x, x′ ∈ X and all λ ∈ (0, 1), if λx + (1 − λ)x′ ∈ X and x′ R0 x, then

(λx + (1− λ)x′) P0 x.

Next we define a class of homothetic preferences that are locally linear over

the cone and strictly convex outside the cone. Formally, let RH,ε ⊆ RH be the
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class of preferences defined as follows: for all R0 ∈ RH , R0 ∈ RH,ε if and only if

(i) R0 is strictly convex on R2
+\Cε, (ii) there exists a linear preference R′

0 ∈ RL

such that R0 coincide with R′
0 on Cε, and (iii) the indifference curves of R0 have

kinks along both of the two rays,
−−→
0, aε

1 and
−−→
0, aε

2.

Let RH,sc be the class of all strictly convex preferences in RH . Note that for

all R0 ∈ RH,sc, there exists a unique preference in RH,ε that coincides with R0 on

R2
+\Cε. However for each R0 ∈ RH,ε, there are many preferences in RH,sc that

coincide with R0 on R2
+\Cε. Hence we may say that RH,ε is smaller than RH,sc.

We first show that if an efficient allocation has i-th component that lies

outside Cε and two preferences in RH,ε of agents i and j have identical supporting

normal vectors outside Cε, then their bundles are along the same ray through the

origin.12

Lemma 6. Let z be efficient for R ∈ RN
H,ε. For all i, j ∈ N, if Ri and Rj have

identical supporting normal vectors over R2
+\Cε and zi /∈ Cε, then there exists

α ∈ R+ such that zj = αzi.

Proof. Let z ∈ Z be efficient for R ∈ RN
H,ε. Let i, j ∈ N. Assume that Ri and Rj

have identical supporting normal vectors over R2
+\Cε and zi /∈ Cε.

Claim 1. For all x ∈ Rl
+ such that x 6= zi and x Ii zi, there exists no vector

that is a supporting normal vector for Ri both at x and at zi.

Proof. Let x Ii zi. Suppose to the contrary that there exists p ∈ Rl
+ such that

(i) for all y ∈ Rl
+ with y Ri zi, p · y ≥ p · zi and (ii) for all y ∈ Rl

+ with y Ri x,

p · y ≥ p · x. Then since zi Ii x, p · zi = p · x. Since Ri is convex, for all δ ∈ (0, 1),

[δx + (1− δ)zi] Ii zi. Since Cε is closed, there exists δ∗ ∈ (0, 1) such that for all δ ∈
[0, δ∗], δx+(1−δ)zi /∈ Cε. Therefore for all λ ∈ (0, 1), λ(δ∗x+(1−δ∗)zi)+(1−λ)zi /∈
Cε, δ∗x+(1−δ∗)zi /∈ Cε, and [λ(δ∗x + (1− δ∗)zi) + (1− λ)zi] Ii [δ∗x + (1− δ∗)zi]

Ii zi. This contradicts that Ri ∈ RH,ε is strictly convex over R2
+\Cε. ¤

Next we show that zj ∈ −−→0, zi. Suppose to the contrary that zj is not along the

ray
−−→
0, zi. Then, there exist α, β ∈ R++ such that zi Ii αzj and zj Ij βzi. Since

zj /∈ −−→0, zi, zi 6= αzj and zj 6= βzi. Since z is efficient for R, there is p ∈ Rl
+ that

supports Ri at zi and Rj at zj. Then by homotheticity, p supports Ri both at zi

and at αzj, contradicting Claim 1.

In the 2-good case, the following three simple facts hold: (i) RH is path-

connected, (ii) for all ε > 0, RH,ε is path-connected, and (iii) ∪ε>0Rε
H is dense

12Schummer (1997) uses a similar fact for strictly convex and homothetic preferences.
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in RH . We sketch the proofs in Appendix. Using the three facts and applying

Lemma 4, we show that every efficient and continuous rule over RN
H is diagonally

dictatorial.

Theorem 4. In the 2-good case, every efficient and continuous rule over the

homothetic domain is diagonally dictatorial.

Proof. By Lemma 4, we only have to show that every efficient and continuous

rule over the homothetic domain satisfies Property B over RN
H,ε, for all ε > 0.

Let ϕ : RN
H → Z be efficient and continuous. We show that ϕ satisfies condi-

tions (i)-(iii) of Property B over RN
H,ε, associated with the two linearly indepen-

dent vectors, aε
1 and aε

2. Clearly, Ω ∈ int 〈aε
1, a

ε
2〉+ . Let R ∈ RN

H,ε and z ≡ ϕ(R).

Assume that there exist i, j ∈ N such that i 6= j and Ri = Rj. Let R0 ≡ Ri = Rj.

Let p0 ∈ R++ and R0 coincide with the linear preference represented by (p0, 1)

∈ R2
++ on Cε. We only have to show that zi = 0 or zj = 0 or zi+zj 6∈ int 〈aε

1, a
ε
2〉+ .

The proof is by contradiction. Suppose to the contrary that zi 6= 0, zj 6= 0,

and zi + zj ∈ int 〈aε
1, a

ε
2〉+ (= int(Cε)). Let zi + zj ≡ Ω̂. Since Ω̂ ∈ int(Cε), there

exists ρ̄ such that for all ρ ∈ (0, ρ̄), the closed ball B(Ω̂, ρ) is contained in Cε.

Our proof makes use of the following geometric objects. For all B ⊆ R2,

let comp (B) ≡ {x ∈ Rl : for some y ∈ B, x 5 y}. Let ρ ∈ (0, ρ̄) and Zρ
0 ≡

Z0 ∩ comp
(
B(Ω̂, ρ)

)
. Let H1 be the ray

−−→
0, aε

2 and d1 ∈ R2 be a vector such that

d1 · aε
2 = 0 and for all z0 ∈ Cε, d1 · z0 ≥ 0. Let H2 be the ray

−−→
0, aε

1 and d2 ∈ R2

be a vector such that d2 · aε
1 = 0 and for all z0 ∈ Cε, d2 · z0 ≥ 0. Note that since

aε
1 and aε

2 are linearly independent, d1 and d2 are linearly independent also and

that for all z0 ∈ R2
+, there exist α, β ∈ R+ such that z0 = αd1 + βd2.

Clearly, there exists a unique bundle bρ
1 ∈ B(Ω̂, ρ) such that for all z0 ∈

B(Ω̂, ρ), d1 · z0 ≥ d1 · bρ
1. Also, there exists a unique bundle bρ

2 ∈ B(Ω̂, ρ) such

that for all z0 ∈ B(Ω̂, ρ), d2 · z0 ≥ d2 · bρ
2.

13 Let Hρ
1 ≡ {z0 ∈ Zρ

0 : d1 · z0 ≥ d1 · bρ
1}

be the intersection of Zρ
0 and the half space above the line through bρ

1, which is

normal to d1. Let Hρ
2 ≡ {z0 ∈ Zρ

0 : d2 · z0 ≥ d2 · bρ
2} be the intersection of Zρ

0 and

the half space below the line through bρ
2, which is normal to d2.

13Since B(Ω̂, ρ) is compact and strictly convex, the following (a) and (b) have unique solutions.

(a) max
z0∈B(Ω̂,ρ)

d1 · z0,

(b) min
z0∈B(Ω̂,ρ)

d2 · z0.

The solution for (a) is bρ
1 and the solution for (b) is bρ

2.
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In the following argument, we first prove that for sufficiently small ρ > 0, we

have zi ∈
(−−→
0, aε

1 ∪Hρ
1

)
∩

(−−→
0, aε

2 ∪Hρ
2

)
. We next derive a contradiction based on

this fact.

Since R0 has kinks along both two rays,
−−→
0, aε

1 and
−−→
0, aε

2, then for some δo > 0,

if δ ∈ (0, δo), there exists Rδ
0 ∈ RH,ε such that Rδ

0 and R0 have identical support-

ing normal vectors over R2
+\Cε, 14 and Rδ

0 coincides with the linear preference

represented by (p0− δ, 1) over Cε. Let δ ∈ (0, δo). Let Rδ
i ≡ Rδ

0 and for all h 6= i,

let Rδ
h ≡ Rh. Let zδ ≡ ϕ(Rδ).

By continuity of ϕ, there exists δ̄ ∈ (0, δo) such that for all δ ∈ (0, δ̄), zδ
i +zδ

j ∈
B(Ω̂, ρ).

Claim 1. For all δ ∈ (0, δ̄), we have zδ
i , z

δ
j ∈ Cε ∩ Zρ

0 .

Proof. Since zδ
i + zδ

j ∈ B(Ω̂, ρ), clearly we have zδ
i , z

δ
j ∈ Zρ

0 . We only have to

show that zδ
i , z

δ
j ∈ Cε. Since B(Ω̂, ρ) ⊆ Cε, we have zδ

i + zδ
j ∈ Cε. By definition,

Rδ
i and Rδ

j ≡ R0 have identical supporting normal vectors on R2
+\Cε. Since ϕ is

efficient, zδ is an efficient allocation. Therefore if zδ
i /∈ Cε, then by Lemma 6,

there exists α ≥ 0, zδ
j = αzδ

i . Then zδ
i +zδ

j /∈ Cε, contradicting zδ
i +zδ

j ∈ B(Ω̂, ρ) ⊆
Cε. Therefore zδ

i ∈ Cε.

Using the same argument, we show that zδ
j ∈ Cε. ¤

Claim 2. For all δ ∈ (0, δ̄), we have zδ
i ∈

−−→
0, aε

1 ∪Hρ
1 .

Proof. Assume zδ
j 6= 0. If zδ

j ∈
−−→
0, aε

1, then by efficiency, zδ
i ∈

−−→
0, aε

1. So zδ
i + zδ

j ∈−−→
0, aε

1, contradicting zδ
i + zδ

j ∈ B(Ω̂, ρ). Hence if zδ
j 6= 0, then zδ

j /∈ −−→0, aε
1. Therefore

we distinguish three cases below.

Case 1. zδ
j = 0. In this case, zδ

i ∈ B(Ω̂, ρ). Hence by definition of bρ
1, d1 · zδ

i ≥
d1 · bρ

1. Therefore, zρ
i ∈ Hρ

1 .

Case 2. zδ
j 6= 0 and zδ

j ∈ int(Cε) ∩ Zρ
0 . In this case, by efficiency, zδ

i ∈
−−→
0, aε

1.

Case 3. zδ
j 6= 0 and zδ

j ∈
−−→
0, aε

2 ∩ Zρ
0 . In this case, there exists α > 0 such that

zδ
j = αaε

2. Let Ωδ ≡ zδ
i + zδ

j . Then Ωδ ∈ B(Ω̂, ρ) and zδ
i = Ωδ − αaε

2. Hence by

definition of bρ
1, d1·Ωδ ≥ d1·bρ

1. Therefore d1·zδ
i = d1·Ωδ−α(d1·aε

2) = d1·Ωδ ≥ d1·bρ
1.

Hence zδ
i ∈ Hρ

1 .

Therefore in all three cases, zδ
i ∈

−−→
0, aε

1 ∪Hρ
1 . ¤

By continuity of ϕ, limδ→0 zδ
i = zi. Therefore since

−−→
0, aε

1 ∪ Hρ
1 is closed,

zi ∈ −−→0, aε
1 ∪Hρ

1 .

14Even if Rδ
0 and R0 have identical supporting normal vectors over R2

+\Cε, Rδ
0 is not neces-

sarily equal to R0 over R2
+\Cε.
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Since R0 has kinks along both two rays,
−−→
0, aε

1 and
−−→
0, aε

2, then for some δ∗ >

0, if δ ∈ (0, δ∗), there exists R̂δ
0 ∈ RH,ε such that R̂δ

0 and R0 have identical

supporting normal vectors over R2
+\Cε and R̂δ

0 coincides with the linear preference

represented by (p0 + δ, 1) on Cε. Let δ ∈ (0, δ∗). Let R̂δ
i = R̂δ

0 and for all h 6= i,

let R̂δ
h = Rh. Let ẑδ = ϕ(R̂δ). Now using R̂δ and ẑδ and following the same

arguments as above, we prove that zi ∈ −−→0, aε
2 ∪Hρ

2 .

Therefore zi ∈
(−−→
0, aε

1 ∪Hρ
1

)
∩

(−−→
0, aε

2 ∪Hρ
2

)
. Since for all k, k′ ∈ {1, 2} with

k 6= k′,
−−→
0, aε

k ∩ Hρ
k′ = ∅ and

−−→
0, aε

k ∩
−−→
0, aε

k′ = {0}, then zi ∈ {0} ∪ [Hρ
1 ∩ Hρ

2 ].

By assumption, zi 6= 0. Therefore zi ∈ Hρ
1 ∩ Hρ

2 , that is, d1 · zi ≥ d1 · bρ
1 and

d2 · zi ≥ d2 · bρ
2. Note that limρ→0 bρ

1 = limρ→0 bρ
2 = Ω̂. Taking limits in both sides

of the two inequalities, d1 · zi ≥ d1 · Ω̂ and d2 · zi ≥ d2 · Ω̂. Since Ω̂ = zi + zj,

d1 · zj ≤ 0 and d2 · zj ≤ 0. Let α, β ∈ R+ be such that zj = αd1 + βd2. Then from

the two inequalities, we obtain zj · zj ≤ 0. This implies zj = 0, contradicting our

assumption.

Using Lemma 5 and the same proof as in Theorem 4, we show that if we

require veto-proofness in addition, then we cannot escape dictatorship.

Theorem 5. In the 2-good case, a rule over the homothetic domain is efficient,

continuous, and veto-proof if and only if it is dictatorial.

Since each of veto-proofness∗ and (weak) strategy-proofness implies veto-proofness,

we have:

Corollary 3. In the 2-good case, (i) a rule over the homothetic domain is effi-

cient, continuous, and veto-proof∗ if and only if it is dictatorial ; (ii) a rule over

the homothetic domain is efficient, continuous, and (weakly) strategy-proof if

and only if it is dictatorial.

The independence of the requirements in each of Theorem 5 and Corollary 3

can be established easily.

5 Discussion

1. Our diagonal dictatorship results (Theorems 1 and 4) crucially rely on the

admissibility of “linear” or “locally linear” preferences. For such preferences, one

may easily imagine how difficult it is to select continuously from the Pareto set.

However, no earlier study has shown formally what exactly the cost of continuity

is. This paper offers an answer. To attain continuity, we have to pay the cost of

diagonal dictatorship, which seems to be too high.
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The diagonal dictatorship result does not hold on domains consisting of only

strictly convex preferences. For example, on the domain of Cobb-Douglas pref-

erences, the “Walrasian rule”, which is the rule selecting always the unique Wal-

rasian equilibrium allocation, is efficient and continuous. Then, one may well

wonder whether efficiency, continuity, and “fairness” are compatible on the full

domain of continuous, strictly monotonic, and strictly convex preferences. The

answer is left for future study.

2. In the n-agent exchange economies, we showed that only dictatorial rules

are efficient, continuous, and strategy-proof over the linear domain and also over

the 2-good homothetic domain. In proving these results, we use the diagonal

dictatorship feature of efficient and continuous rules, which is a consequence of

allowing linear or “locally linear” preferences. In this sense, our proof is not

robust. However, we think that even if only strictly convex preferences are ad-

missible, the same impossibility will apply. This is a natural conjecture following

from the well-known conjecture by Zhou (1991) and Kato and Ohseto (2001)

that the range of every efficient and strategy-proof rule contains only extreme

allocations. Let us call this property the “extreme range property”.

3. Recently, an important contribution is made by Serizawa and Weymark (2002).

They showed that any efficient and strategy-proof rule “cannot guarantee every-

one a consumption bundle bounded away from the origin”, violating the condition

of “minimum consumption guarantee”. This means that at least one agent re-

ceives bundles sufficiently close to the zero bundle, which is an obnoxious feature.

However, it is less obnoxious than (diagonal) dictatorship or the extreme range

property. This is because violation of minimum consumption guarantee does

not exclude the possibility of choosing only non-extreme bundles. Thus, their

result still leaves a substantial gap between “no minimum consumption guaran-

tee” and the extreme range property, conjectured by Zhou (1991) and Kato and

Ohseto (2001). Adding continuity, their result implies that at least one agent

should receive the zero bundle at some economies, which is still far from (diago-

nal) dictatorship or the extreme range property.

It is remarkable to note that the proof in Serizawa and Weymark (2002) is

quite robust and does not rely on the admissibility of some non-standard or artifi-

cial preferences, such as linear preferences or locally linear homothetic preferences

that are used in our proofs.

4. The homothetic preference domain RN
H does not include preferences whose

indifference curves do not intersect with all the axes, such as Cobb-Douglas pref-

erences. However, these preferences are limit points of RH (that is, there are
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sequences of preferences in RH , which converge to such preferences). Hence our

results can be extended over the larger domain containing RH and including such

preferences.

A Topological properties of the homothetic do-

main in the 2-good case

In this section, we sketch the proofs of the following facts on the homothetic

domain with two goods.

Fact 1. RH is path-connected.

Proof. Let R0, R
′
0 ∈ RH . For all x ∈ [0, 1], let f(x) ∈ R+ satisfy (x, f(x)) I0

(1, 0). Then the function f : [0, 1] → R+ is well-defined and its graph is the

indifference curve of R0 through (1, 0). Since R0 is strictly monotonic and convex,

f is monotone decreasing and convex. Since R0 is homothetic, the function f

completely determines R0. Hence we may say that f represents R0. Similarly

there exists a monotone decreasing and convex function f ′ : [0, 1] → R+ that

represents R′
0. For all λ ∈ [0, 1], let fλ be defined by fλ ≡ λf + (1− λ)f ′. Then

clearly, fλ is also monotone decreasing and convex and so there exists a preference

Rλ
0 ∈ RH represented by fλ. Define π : [0, 1] → RH as follows: for all λ ∈ [0, 1],

π(λ) ≡ Rλ
0 . It is easy to show that π is a continuous path from R0 to R′

0.

Fact 2. For all ε > 0, RH,ε is path-connected.

Proof. For all R0 ∈ RH,ε, there exists a strictly convex preference R̄0 ∈ RH that

coincides with R0 on R2
++\Cε. Let R0, R

′
0 ∈ RH,ε. Let R̄0, R̄

′
0 ∈ RH be the strictly

convex preferences that coincide with R0, R
′
0 on R2

++\Cε, respectively. Then we

can define a continuous path π : [0, 1] → RH from R̄0 to R̄′
0 as in the proof of

Fact 1. For all λ ∈ [0, 1], there exists Rλ
0 ∈ RH,ε such that Rλ

0 coincides with

π(λ) on R2
++\Cε. For all λ ∈ [0, 1], let πε(λ) ≡ Rλ

0 . Then it is easy to show that

πε : [0, 1] →RH,ε is a continuous path from R0 to R′
0.

Fact 3. ∪ε>0Rε
H is dense in RH .

Proof. Let R0 ∈ RH be strictly convex. For all n ∈ N, let Rn
0 ∈ RH,1/n be such

that Rn
0 coincides with R0 over Rl

+\C1/n. It is clear that Rn
0 converges to R0 as

n goes to infinity. Therefore for each strictly convex preference R0 in RH , there

exists a sequence of preferences in ∪ε>0RH,ε that converges to R0.
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On the other hand, as we show below, the class of strictly convex preferences

is dense in RH .

Let R0 ∈ RH be convex. Pick a strictly convex preference relation R′
0 ∈ RH .

Let π : [0, 1] → RH be the continuous path from R
′
0 to R0 defined in the proof

of Fact 1. It is clear by definition that for all λ ∈ (0, 1), π(λ) is a strictly convex

preference relation in RH . Let Rn
0 ≡ π(1/n). Then (Rn

0 )n∈N is a sequence of

strictly convex preference relations that converges to R0.

Therefore ∪ε>0RH,ε is dense in RH .
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