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ABSTRACT

This paper has two main objectives. The first objective is to give a characterization
of a qualitative description of a possibility function. A qualitative description of a
possibility function is called a consistent possibilistic state. The qualitative descrip-
tion and its characterization serve as qualitative semantics for possibility functions.
These semantics are useful in representing knowledge as possibility functions. The
second objective is to describe how Zadeh’s theory of possibility fits in the frame-
work of valuation-based systems (VBS). Since VBS serve as a framework for
managing uncertainty and imprecision in expert systems, this facilitates the use of
possibility theory in expert systems.
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1. INTRODUCTION

The main goal of this paper is to describe how Zadeh’s theory of possibility can be used for man-

aging uncertainty and imprecision in expert systems. We give a characterization of a qualitative de-

scription of a possibility function. This is a useful first step in representing knowledge as possibil-

ity functions. Also, we describe how possibility theory fits in the framework of valuation-based

systems (VBS). Since VBS serve as a framework for managing uncertainty and imprecision in ex-

pert systems, this facilitates the use of possibility theory in expert systems.

The theory of possibility was first described by Zadeh [1978, 1979] and further developed by

Dubois and Prade [1988]. In possibility theory, the basic representational unit is called a possibility

function. The two main operations for manipulating possibility functions are called projection and

particularization [Zadeh 1979].

In this paper, we are concerned with two issues related to using possibility theory in expert

systems. The first issue is in representing knowledge as possibility functions. To do this effec-

tively, we need semantics for possibility functions. What does it mean, for example, to say that
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possibility of a proposition is 0.8? In probability theory, for example, the probability of a proposi-

tion can be interpreted as a relative frequency or as a betting rate. With this goal in mind, we first

define a qualitative description of a possibility function called a consistent possibilistic state. This is

analogous to the definition of a consistent epistemic state [Shenoy 1991a] in Spohn’s theory of

epistemic beliefs [Spohn 1988]. Next, we give a characterization of a consistent possibilistic state

in terms of what we call the content of a consistent possibilistic state. Again, this characterization is

analogous to Spohn’s characterization of a consistent epistemic state in terms of its content [Spohn

1988]. This is only one step toward developing semantics for possibility functions. Semantics for

the quantitative aspects of possibility functions have been studied by, for example, Dubois et al.

[1989] and Ruspini [1991].

The second issue related to using possibility theory in expert systems is making the correspon-

dence between concepts in possibility theory and concepts in expert systems. If we interpret pos-

sibility functions as knowledge, what do the projection and particularization operations mean in the

context of expert systems? How do we use these operations to make inferences in a knowledge-

based system? Also, since expert systems typically deal with many propositions, there is a compu-

tational issue of the tractability of using possibility theory to solve large problems. To help answer

these questions, we describe how possibility theory fits in the framework of VBS.

The framework of VBS was first defined by Shenoy [1989] as a general language for incorpo-

rating uncertainty in expert systems. It was further elaborated in [Shenoy 1991c] to include axioms

that permit local computation in solving a VBS, and a fusion algorithm for solving a VBS using lo-

cal computation. VBS encode knowledge using functions defined on frames of variables. The

functions are called valuations. VBS include two operators called combination and marginalization

that operate on valuations. Combination corresponds to aggregation of knowledge. Marginalization

corresponds to coarsening of knowledge. The process of reasoning in VBS can be described sim-

ply as finding the marginal of the joint valuation for each variable in the system. The joint valuation

is the valuation obtained by combining all valuations. In systems with many variables, it is compu-

tationally intractable to explicitly compute the joint valuation. However, if combination and

marginalization satisfy certain axioms, it is possible to compute the marginals of the joint valuation

without explicitly computing the joint valuation.

The framework of VBS is general enough to represent many domains such as Bayesian prob-

ability theory [Shenoy 1991c], Dempster-Shafer’s theory of belief functions [Dempster 1967,

Shafer 1976, Shenoy 1991d], Spohn’s theory of epistemic beliefs [Spohn 1988, Shenoy 1991c],

discrete optimization [Shenoy 1991b], propositional logic [Shenoy 1990a, 1990b], constraint

satisfaction [Shenoy and Shafer 1988], and Bayesian decision theory [Shenoy 1990c, 1990d].

Saffiotti and Umkehrer [1991] describe an efficient implementation of VBS called Pulcinella.

The correspondence between possibility theory and VBS is as follows. The particularization

operation in possibility theory corresponds to the combination operation in VBS. And the projec-

tion operation in possibility theory corresponds to the marginalization operation in VBS. This cor-
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respondence was first pointed out explicitly by Dubois and Prade [1991]. They also state that the

combination and marginalization operations in possibility theory satisfy the three axioms that en-

able the use of local computation in computing marginals of the joint possibility function. In this

paper, we reiterate this correspondence in greater detail.

An outline of this paper is as follows. Section 2 describes the framework of VBS. Section 3

contains an axiomatic definition and a characterization of a consistent possibilistic state. Section 4

describes the main features of possibility theory in terms of the framework of VBS. Section 5 de-

scribes a small example illustrating the use of possibility theory for managing uncertainty and im-

precision in expert systems. Section 6 contains some concluding remarks. Finally, section 7 con-

tains proofs of all results in the paper.

2. VALUATION-BASED SYSTEMS

In this section, we will sketch the basic features of VBS. Also, we describe three axioms that

permit the use of local computation, and describe a fusion algorithm for solving a VBS using local

computation.

2.1. The Framework

This subsection describes the framework of valuation-based systems. In a VBS, we represent

knowledge by functions called valuations. Valuations are functions that assign values to the ele-

ments of frames for sets of variables. We make inferences in a VBS using two operators called

combination and marginalization. We use these operators on valuations.

Variables and Configurations. We use the symbol WX for the set of possible values of a

variable X, and we call WX the frame for X. We assume that one and only one of the elements of

WX is the true value of X. We are concerned with a finite set X of variables, and we assume that all

the variables in X have finite frames.

Given a nonempty set s of variables, let Ws denote the Cartesian product of WX for X in s; Ws

= ×{WX | X∈s}. We call Ws the frame for s. We call the elements of Ws configurations of s.

Valuations. Given a subset s of variables, there is a set Vs. We call the elements of Vs val-

uations for s. Let V denote the set of all valuations, i.e., V = ∪{Vs | s⊆X}. If σ is a valuation for

s, then we say s is the domain of σ.

Valuations are primitives in our abstract framework and as such require no definition. But as

we shall see shortly, they are objects which can be combined and marginalized. Intuitively, a val-

uation for s represents some knowledge about the variables in s.

Nonzero valuations. For each s⊆X, there is a nonempty subset Ps of Vs whose elements

are called nonzero valuations for s. Let P denote ∪{Ps | s⊆X}, the set of all nonzero valuations.

Intuitively, a nonzero valuation represents knowledge that is internally consistent. The notion

of nonzero valuations is important as it enables us to define combinability of valuations, and it
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allows us to constrain the definitions of combination and marginalization to meaningful operators.

An example of a nonzero valuation is a possibility function.

Combination. We assume there is a mapping ⊗:V×V → V, called combination, such that

(i) if ρ and σ are valuations for r and s, respectively, then ρ⊗σ is a valuation for

r∪s;

(ii) if either ρ or σ is not a nonzero valuation, then ρ⊗σ is not a nonzero valuation;

and

(iii) if ρ and σ are both nonzero valuations, then ρ⊗σ may or may not be a nonzero

valuation.

We call ρ⊗σ the combination of ρ and σ.

Intuitively, combination corresponds to aggregation of knowledge. If ρ and σ are valuations

for r and s representing knowledge about variables in r and s, respectively, then ρ⊗σ represents

the aggregated knowledge about variables in r∪s. For possibility functions, combination is

pointwise multiplication [Zadeh 1965].

Marginalization. We assume that for each s⊆X, and for each X∈s, there is a mapping

↓(s−{X}): Vs → Vs–{X}, called marginalization to s–{X} such that

(i) If σ is a valuation for s, then σ↓(s–{X}) is a valuation for s–{X}; and

(ii) σ↓(s–{X}) is a nonzero valuation if and only if σ is a nonzero valuation.

We call σ↓(s–{X}) the marginal of σ for s–{X}.

Intuitively, marginalization corresponds to coarsening of knowledge. If σ is a valuation for s

representing some knowledge about variables in s, and X∈s, then σ↓(s–{X}) represents the knowl-

edge about variables in s–{X} implied by σ if we disregard variable X. In the case of possibility

functions, marginalization from s to s–{X} is maximization over the frame for X [Zadeh 1979].

In summary, a valuation-based system consists of a 3-tuple {{σ1, ..., σm}, ⊗, ↓} where {σ1,

..., σm} is a collection of valuations, ⊗ is the combination operator, and ↓ is the marginalization

operator.

Valuation Networks. A graphical depiction of a valuation-based system is called a valuation

network. In a valuation network, variables are represented by circular nodes, and valuations are

represented by diamond-shaped nodes. Also, each valuation node is connected by an undirected

edge to each variable node in its domain. Figure 1 shows a valuation network for a VBS that

consists of valuations σ1 for {W}, σ2 for {W, X}, σ3 for {X, Y}, and σ4 for {Y, Z}.

Making Inference in VBS. In a VBS, the combination of all valuations is called the joint

valuation. Given a VBS, we make inferences by computing the marginal of the joint valuation for

each variable in the system.
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Figure 1. A valuation network for a VBS consisting of valuations
σ1 for {W}, σ2 for {W, X}, σ3 for {X, Y}, and σ4 for {Y, Z}.

W X Y Z

σ1 σ2 σ3 σ4

If there are n variables in the system, and each variable has two configurations in its frame,

then there are 2n configurations of all variables. Hence, it is not computationally feasible to com-

pute the joint valuation when there are a large number of variables. In Section 2.3, we describe an

algorithm for computing marginals of the joint valuation without explicitly computing the joint val-

uation. So that this algorithm gives us the correct answers, we require combination and marginal-

ization to satisfy three axioms. The axioms and the algorithm are described in the next two subsec-

tions, respectively.

2.2. Axioms

In this section, we state three simple axioms that enable local computation of marginals of the joint

valuation. These axioms were first formulated by Shenoy and Shafer [1990]. The axioms are

stated slightly differently here.

Axiom A1 (Commutativity and associativity of combination): Suppose ρ, σ, and τ

are valuations for r, s, and t respectively. Then

ρ⊗σ = σ⊗ρ, and ρ⊗(σ⊗τ) = (ρ⊗σ)⊗τ.

Axiom A2 (Order of deletion does not matter): Suppose σ is a valuation for s, and

suppose X1, X2 ∈ s. Then

(σ↓(s–{X1}))↓(s–{X1,X2}) = (σ↓(s–{X2}))↓(s–{X1,X2}).

Axiom A3 (Distributivity of marginalization over combination): Suppose ρ and σ

are valuations for r and s, respectively. Suppose X∉r, and suppose X∈s. Then

(ρ⊗σ)↓((r∪s)–{X}) = ρ⊗(σ↓(s–{X})).

One implication of Axiom A1 is that when we have multiple combinations of valuations, we

can write it without using parenthesis. For example, (...((σ1⊗σ2)⊗σ3)⊗...⊗σm) can be written

simply as ⊗{σi | i = 1, ..., m} or as σ1⊗...⊗σm, i.e., we need not indicate the order in which the

combinations are carried out.
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If we regard marginalization as a coarsening of a valuation by deleting variables, then axiom

A2 says that the order in which the variables are deleted does not matter. One implication of this

axiom is that (σ↓(s–{X1}))↓(s–{X1,X2}) can be written simply as σ↓(s–{X1,X2}), i.e., we need not indi-

cate the order in which the variables are deleted.

Axiom A3 is the crucial axiom that makes local computation possible. Axiom A3 states that the

computation of (ρ⊗σ)↓((r∪s)–{X}) can be accomplished without having to compute ρ⊗σ. The

combination operation in ρ⊗σ is on the frame for r∪s whereas the combination operation in

ρ⊗(σ↓(s–{X})) is on the frame for (r∪s)–{X}. In the next subsection, we describe a fusion algo-

rithm that applies this axiom repeatedly resulting in an efficient method for computing marginals.

2.3. A Fusion Algorithm

In this subsection, we describe a fusion algorithm for making inferences in a VBS using local

computation. Suppose {{σ1, ..., σm}, ⊗, ↓} is a VBS with n variables and m valuations.

Suppose that combination and marginalization satisfy the three axioms stated in section 2.2.

Suppose we have to compute the marginal of the joint valuation for variable X, (σ1⊗...⊗σm)↓{X}.

The basic idea of the fusion algorithm is to successively delete all variables but X from the VBS.

The variables may be deleted in any sequence. Axiom A 2 tells us that all deletion sequences lead to

the same answers. But, different deletion sequences may involve different computational costs. We

will comment on good deletion sequences at the end of this section.

When we delete a variable, we have to do a “fusion” operation on the valuations. Consider a

set of k valuations ρ1, ..., ρk. Suppose ρi is a valuation for ri. Let FusX{ρ1, ..., ρk} denote the

collection of valuations after fusing the valuations in the set {ρ1, ..., ρk} with respect to variable

X. Then

FusX{ρ1, ..., ρk} = {ρ↓(r−{X})}∪{ρi | X∉ri}

where ρ = ⊗{ρi | X∈ri}, and r = ∪{ri | X∈ri}. After fusion, the set of valuations is changed as

follows. All valuations that bear on X are combined, and the resulting valuation is marginalized

such that X is eliminated from its domain. The valuations that do not bear on X remain unchanged.

We are ready to state the main theorem that describes the fusion algorithm

Theorem 1 [Shenoy 1991c]. Suppose {{σ1, ..., σm}, ⊗, ↓} is a VBS where σi

is a valuation for si, and suppose ⊗ and ↓ satisfy axioms A1–A3. Let X denote

s1∪...∪sm. Suppose X∈X, and suppose X1X2...Xn–1 is a sequence of variables

in X–{X}. Then

(σ1⊗...⊗σm)↓{X} = ⊗{FusXn–1
{... FusX2

{FusX1
{σ1, ..., σm}}}}.

To illustrate Theorem 1, consider the VBS shown in Figure 1. Suppose we need to compute

the marginal of the joint for Z, (σ1⊗...⊗σ4)
↓{Z}. Consider the deletion sequence WXY. After
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fusion with respect to W, we have (σ1⊗σ2)↓{X} for {X}, σ3 for {X, Y}, and σ4 for {Y, Z}. After

fusion with respect to X, we have ((σ1⊗σ2)↓{X}⊗σ3)
↓{Y} for {Y}, and σ4 for {Y, Z}. Finally,

after fusion with respect to Y, we have (((σ1⊗σ2)↓{X}⊗σ3)
↓{Y}⊗σ4)↓{Z} for {Z}. Theorem 1

tells us that (((σ1⊗σ2)↓{X}⊗σ3)
↓{Y}⊗σ4)↓{Z} = (σ1⊗...⊗σ4)

↓{Z}. Thus, instead of doing

combinations on the frame for {W, X, Y, Z}, we do combinations on the frame for {W, X}, {X,

Y}, and {Y, Z}. The fusion algorithm is shown graphically in Figure 2.

Figure 2. The first valuation network shows the initial VBS. The second network is
the result after fusion with respect to W. The third network is the result after fusion
with respect to X. The fourth network is the result after fusion with respect to Y.

W X Y Z

σ1

X Y Z

Y Z

Z

σ2
σ4σ3

σ3 σ4

σ4

(σ1⊗σ2)↓{X}

((σ1⊗σ2)↓{X}⊗σ3)↓{Y}

(((σ1⊗σ2)↓{X}⊗σ3)↓{Y}⊗σ4)↓{Z}

If we can compute the marginal of the joint valuation for one variable, then we can compute the

marginals for all variables. We simply compute them one after the other. It is obvious, however,
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that this will involve much duplication of effort. Shenoy and Shafer [1990] describe an efficient

algorithm for simultaneous computation of all marginals without duplication of effort. Regardless

of the number of variables in a VBS, we can compute marginals of the joint valuation for all vari-

ables for roughly three times the computational effort required to compute one marginal [Shenoy

and Shafer 1990].

Deletion Sequences. Different deletion sequences may involve different computational ef-

forts. For example, consider the VBS in the above example. In this example, deletion sequence

WXY involves less computational effort than, for example, XYW, as the former involves combi-

nations on the frame for two variables only whereas the latter involves combination on the frame

for three variables. Finding an optimal deletion sequence is a secondary optimization problem that

has shown to be NP-complete [Arnborg et al. 1987]. But, there are several heuristics for finding

good deletion sequences [Kong 1986, Mellouli 1987, Zhang 1988, Kjærulff 1990].

One such heuristic is called one-step-look-ahead [Kong 1986]. This heuristic tells us which

variable to delete next. As per this heuristic, the variable that should be deleted next is one that

leads to combination over the smallest frame. For example, in the VBS described above, if we as-

sume that each variable has a frame consisting of two configurations, then this heuristic would pick

W over X and Y for first deletion since deletion of W involves combination on the frame for {W,

X} whereas deletion of X involves combination on the frame for {W, X, Y}, and deletion of Y in-

volves combination on the frame for {X, Y, Z}. After W is deleted, for second deletion, this

heuristic would pick X over Y. Thus, this heuristic would choose deletion sequence WXY.

3. CONSISTENT POSSIBILISTIC STATES

In this section, first we define axiomatically a consistent possibilistic state. A consistent pos-

sibilistic state serves as a qualitative description of a possibility function. The definition of a con-

sistent possibilistic state is analogous to the definition of a consistent epistemic state in Spohn’s

theory of epistemic beliefs [Shenoy 1991a, Spohn 1988]. Next, we give a characterization of a

consistent possibilistic state. Again, this characterization is analogous to the characterization of a

consistent epistemic state given by Spohn [1988]. Before we define a consistent possibilistic state,

we need to establish our notation.

Consider a variable X with frame WX. Suppose WX is defined such that the propositions re-

garding X that are of interest are precisely those of the form ‘The true value of X is in s,’ where s

is a subset of WX. Thus the propositions regarding X that are of interest are in a one-to-one corre-

spondence with the subsets of WX [Shafer 1976, p. 36].

The correspondence between subsets and propositions is useful since it translates the logical

notions of conjunction, disjunction, implication, and negation into the set-theoretic notions of inter-

section, union, inclusion, and complementation [Shafer 1976, pp. 36-37]. Thus, if r and s are two

subsets of WX, and r' and s' are the corresponding propositions, then r∩s corresponds to the
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conjunction of r' and s', r∪s corresponds to the disjunction of r' and s', r⊆s if and only if r' im-

plies s', and r is the set-theoretic complement of s with respect to WX (written as r = ~s) if and only

if r' is the negation of s'. Notice also that the proposition that corresponds to ∅ is false, and the

proposition that corresponds to WX is true. Henceforth, we will simply refer to a proposition by its

corresponding subset. The set of subsets of WX will be denoted by 2WX.

In a possibilistic state for X, propositions are said to be either possibly true (or simply, possi-

ble) or possibly false (or simply, not possible). Thus a possibilistic state for X is an assignment of

labels ‘possible’ and ‘not possible’ to each proposition in WX. Logical consistency requires that a

possibilistic state satisfy certain conditions (axioms). A definition of a consistent possibilistic state

is as follows.

Definition 1. A possibilistic state for X is said to be consistent if the following

four axioms are satisfied:

B1. For any proposition s, one and only one of the following conditions holds:

(i) s is possible.
(ii) s is not possible.

B2. WX is possible, and ∅ is not possible.

B3. If s is not possible and r⊆s, then r is not possible.

B4. If r and s are not possible, then r∪s is not possible.

Some simple consequences of Definition 1 are as follows.

Proposition 1. The following conditions always hold in any consistent possi-

bilistic state:

B5. If s is possible and r⊇s, then r is possible.

B6. If s is not possible, then ~s is possible.

B7. If s is possible, then this does not necessarily imply that ~s is not possible; ~s

could also be possible.

It is clear from axiom B1 that we can specify a consistent possibilistic state simply by listing all

propositions that are not possible. Then axiom B1 tells us that the remaining propositions are pos-

sible. Let i denote the set of all propositions (subsets) that are not possible. Theorem 2 gives a

characterization of i.

Theorem 2. Suppose i denotes the set of all propositions that are not possible in

some possibilistic state for X. Then the possibilistic state is consistent if and only if

there exists a unique proper subset c of WX such that i = {s∈2WX | s ⊆ c}.

Subset c in Theorem 2 is called the content of the consistent possibilistic state. Note that the

content constitutes a complete specification of a possibilistic state. Thus a simple corollary of
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Theorem 2 is that in a frame WX consisting of n elements, there are exactly 2n−1 distinct possible

consistent possibilistic states (corresponding to each proper subset of W as the content). The con-

tent c represents the largest subset (proposition) that is not possible.

Example 1. (Consistent possibilistic states) Consider a frame W = {x, y, z}. Table 1 lists all

seven possible consistent possibilistic states. Possibilistic state 1 represents a state of complete ig-

norance in which every proposition (except the null proposition) is possible. Possibilistic states 5,

6, and 7 represent a state of complete information where one and only one element of the frame is

possibly true. Possibilistic states 2, 3, and 4 are states of partial information where one element of

the frame is not possible

Table 1. The seven consistent possibilistic states for a variable with frame W = {x,y,z}.

State Content

c

Possible Not Possible

i

1 ∅ {x}, {y}, {z}, {x, y}, {y, z}, {x, z}, {x, y, z} ∅

2 {x} {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z} ∅, {x}

3 {y} {x}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z} ∅, {y}

4 {z} {x}, {y}, {x, y}, {x, z}, {y, z}, {x, y, z} ∅, {z}

5 {x, y} {z}, {x, z}, {y, z}, {x, y, z} ∅, {x}, {y}, {x, y}

6 {x, z} {y}, {x, y}, {y, z}, {x, y, z} ∅, {x}, {z}, {x, z}

7 {y, z} {x}, {x, y}, {x, z}, {x, y, z} ∅, {y}, {z}, {y, z}

4. POSSIBILITY THEORY

In this section, we describe the main features of Zadeh’s theory of possibility in terms of the

framework of VBS described in the previous section, i.e., we will use the terminology of VBS in-

stead of the terminology used in [Zadeh 1979]. Thus the operation Zadeh calls particularization we

call combination, and the operation Zadeh calls projection we call marginalization. The basic unit of

knowledge representation is called a possibility function.

Definition 2 . A possibility function π for p is a function π: 2Wp → [0, 1] such

that
P1. There exists a configuration w∈Wp such that π({w}) = 1;

P2. For any r∈(2Wg − {∅}), π(r) = MAX{π({w}) | w∈r}; and

P3. π(∅) = 0.
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Note that although a possibility function is defined for the set of all subsets of Wp, it is com-

pletely specified by its values for each singleton subset of Wp.

A possibility function is a complete representation of a consistent possibilistic state. To see

what propositions are possible and what propositions are not possible in state π, consider the sub-

set c = {w∈Wp | π({w}) < 1}. By condition P1 in Definition 2, c is always a proper subset of

Wp. c represents the content of the possibilistic state π, i.e., r is not possible in state π iff r ⊆ c.

Thus r is possible in state π iff π(r) = 1, and r is not possible in state π iff π(r) < 1.

A possibility function consists of more than a representation of a consistent possibilistic state.

It also includes degrees to which proposition are possible and degrees to which propositions are

not possible. π(r) can be interpreted as the degree to which proposition r is possible, and 1−π(r)

can be interpreted as the degree to which proposition r is not possible, i.e., r is more possible than

t if π(r) > π(t) and conversely, r is more impossible than t if π(r) < π(t) < 1.

Consider the following possibility function for s: π({w}) = 1 for all w∈Ws. This means that

the only proposition that is not possible is ∅ (and all other propositions are possible). We shall call

such a possibility function vacuous. It represents a state of complete ignorance.

Proposition 2. Suppose π is a possibility function for p. Then

P4. For each r ∈ 2Wp, either π(r) = 1 or π(~r) = 1 or both.

P5. For each r,t∈ 2Wp, π(r∪t) = MAX{π(r), π(t)}

Extension of Subsets. By extension of a subset of a frame to a subset of a larger frame, we

mean a cylinder set extension.  If r and s are sets of variables, r⊆s, and r is a subset of Wr, then

the extension of r to s is r×Ws−r.  We will let r↑s denote the extension of r to s.  For example,

consider three variables R, P, Q with frames WR = {r, ~r}, WP = {p, ~p}, and WQ = {q, ~q},

respectively.  Then the extension of {(r,~p), (~r,p)} (which is a subset of W{R,P}) to {R,P,Q} is

{(r,~p,q), (r,~p,~q), (~r,p,q), (~r,p,~q)}.  Note that the propositions corresponding to r and r↑s

are logically equivalent.

Marginalization. Suppose π is a possibility function for p. Suppose q ⊆ p. We may be in-

terested only in propositions about variables in q. In this case, we would like to marginalize π to q.

The following definition of marginalization is motivated by the fact that each proposition q∈2Wq

about variables in q can be regarded as a proposition q↑p ∈ 2Wp about variables in p.

Definition 3 (Marginalization). Suppose π is a possibility function for p, and

suppose q ⊆ p. The marginal of π for q, denoted by π↓q, is a possibility function

for q given as follows:

π↓q(q) = π(q↑p) = MAX{π({(x,y)}) | x∈q, y∈Wp−q} (1)

for all q∈2Wq.
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In particular, if q is a singleton subset, i.e., q = {x} for some x∈Wq, then (1) simplifies to:

π↓q({x}) = MAX{π({(x,y)}) | y∈Wp−q}.

Note that if π is a possibility function for p, and X1, X2 ∈ p, then (π↓(p–{X1}))↓(p–{X1,X2}) =

(π↓(p–{X2}))↓(p–{X1,X2}). In words, if we regard marginalization as reduction of π by deletion of

variables, then the order in which the variables are deleted makes no difference in the final answer.

Example 2. (Possibility function and marginalization) We would like to determine whether a

stranger (about who we know nothing about) is a pacifist or not depending on whether he is a

Republican or not and whether he is a Quaker or not. Consider three variables R, Q and P. R has

two configurations: r (for Republican), ~r (not Republican); Q has two configurations: q (Quaker)

and ~q (not Quaker); and P has two configurations: p (pacifist) and ~p (not pacifist). Our

knowledge that most (at least 80 percent) Republicans are not pacifists and that most (at least 90

percent) Quakers are pacifists is represented by the possibility function π for {R,Q,P} shown in

Table 2 (the construction of this possibility function will be explained later in this section—see

Example 3).

Note that the marginal of π for R is the vacuous possibility function for R, i.e., π↓{R}({r}) =

π↓{R}({~r}) = 1. Thus in possibilistic state π, we have no knowledge whether the stranger is a re-

publican or not. Similarly, notice that the marginals of π for {Q} and {P} are also vacuous. The

marginal of π for {R, P} is as follows:

π↓{R,P}({r,p}) = 0.2, π↓{R,P}({r,~p}) = π↓{R,P}({~r,p}) = π↓{R,P}({~r,~p}) = 1.

Thus pacifist Republicans are not possible (to degree 0.8). Similarly, notice that the marginal of π

for {Q, P} is as follows:

π↓{Q,P}({q,~p}) = 0.1, π↓{Q,P}({q,p}) = π↓{Q,P}({~q,p}) = π↓{Q,P}({~q,~p}) = 1.

Thus non-pacifist Quakers are not possible (to degree 0.9). Finally note that the marginal of π for

{R, Q} is as follows:

π↓{R,Q}({r,q}) = 0.2, π↓{R,Q}({r,~q}) = π↓{R,Q}({~r,q}) = π↓{R,Q}({~r,~q}) = 1.

Thus Republican Quakers are not possible (to degree 0.8).
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Table 2. A possibility function π for {R,Q,P}.

W{R,P,Q} π

r p q 0.2

r p ~q 0.2

r ~p q 0.1

r ~p ~q 1.0

~r p q 1.0

~r p ~q 1.0

~r ~p q 0.1

~r ~p ~q 1.0

Next, we state a rule for combining possibility function. This rule is called particularization by

Zadeh [1979]. Zadeh [1965] has given two rules for combining possibility

functions—minimization and multiplication. Axiom B2 (WX is possible) requires that we include

normalization in the definition of combination. Since minimization followed by normalization is not

associative, multiplication followed by normalization is associative, and associativity of

combination is a requirement in VBS (axiom A1), we use multiplcation followed by normalization

as our definition of combination.

Definition 4. Suppose π1 and π2 are possibility functions for p1 and p2, respectively.

Suppose K = MAX{π1({w↓p1}) π2({w↓p2}) | w∈Wp1∪p2
}. The combination of π1

and π2, denoted by π1⊗π2, is the function for p1∪p2 given by

K–1 π1({w↓p1}) π2({w↓p2}) if K ≠ 0

(π1⊗π2)({w}) =  (2)

0 if K = 0
for all w∈Wp1∪p2

.

If K = 0, then π1⊗π2 is not a possibility function. In this case, π1⊗π2 is not a nonzero

valuation. This means that the knowledge in π1 and π2 are inconsistent. If K ≠ 0, then K is a

normalization constant that ensures that π1⊗π2 is a possibility function. Thus, combination

consists of pointwise multiplication followed by normalization (if normalization is possible).

Example 3. (The rule of combination) Consider two pieces of knowledge as follows:

1. Most Republicans (at least 80 percent) are not pacifists.

2. Most Quakers (at least 90 percent) are pacifists.
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If π1 is a possibility function representation of the first piece of knowledge, and π2 is a possibility

function representation of the second piece of knowledge, then π1⊗π2 will represent the aggrega-

tion of these two pieces of knowledge. In particular, suppose π1 is a possibility function for {R,P}

as follows:
π1({(r,p)}) = 0.2, π1({(r,~p)}) = π1({(~r,p)}) = π1({(~r,~p)}) = 1

(i.e., pacifist Republicans are not possible to degree 0.8), and suppose π2 is a possibility function

for {Q,P} as follows:
π2({(q,~p)}) = 0.1, π2({(q,p)}) = π2({(~q,p)}) = π2({(~q,~p)}) = 1

(i.e., non-pacifist Quakers are not possible to degree 0.9). Then the possibility function π1⊗π2 =

π, say, shown in Table 3, represents the aggregate knowledge.

Table 3. The combination of π1 and π2.

W{R,P,Q} π1 π2 π1⊗π2 = π

r p q 0.2 1.0 0.2

r p ~q 0.2 1.0 0.2

r ~p q 1.0 0.1 0.1

r ~p ~q 1.0 1.0 1.0

~r p q 1.0 1.0 1.0

~r p ~q 1.0 1.0 1.0

~r ~p q 1.0 0.1 0.1

~r ~p ~q 1.0 1.0 1.0

Proposition 3. The rule of combination described in (2) has the following prop-

erties:
C1. (Commutativity) π1⊗π2 = π2⊗π1.
C2. (Associativity) (π1⊗π2)⊗π3 = π1⊗(π2⊗π3).

C3. If π1 is vacuous, then π1⊗π2 = π2.

C4. In general, π1⊗π1 ≠ π1.

The possibility function π1⊗π2 represents the aggregation of knowledge contained in possibil-

ity functions π1 and π2 if π1 and π2 are independent. Like Bayesian probability theory, Dempster-

Shafer’s theory of belief function, and Spohn’s theory of epistemic beliefs, possibility theory

requires that the possibility functions π1 and π2 be independent. This is because of property

C4—double-counting of knowledge may lead to erroneous results.

We have already shown that axioms A1 and A2 are valid for possibility functions. Theorem 3

below states that axiom A3 is also satisfied. This result is stated in [Dubois and Prade 1991].
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Theorem 3. Suppose π1 and π2 are possibility functions for p1 and p2,

respectively. Suppose X∉p1, and suppose X∈p2. Then (π1⊗π2)↓((p1∪p2)–{X}) =

π1⊗(π2
↓(p2−{X})).

Since all three axioms required for local computation of marginals are satisfied, the fusion al-

gorithm described in section 2.3 can be used for reasoning from knowledge expressed as possibil-

ity functions. In the context of possibility theory, [Chatalic et al. 1987] describes a local computa-

tional method for reasoning with possibility functions. The next section describes a small example

to illustrate the use of the fusion algorithm to find marginals.

5. AN EXAMPLE

In this section, we describe an example in complete detail to illustrate the use of possibility theory

in managing imprecision in expert systems.

Is Dick a Pacifist? Consider the following items of evidence. Most Republicans (at least 80

percent) are not pacifists. Most Quakers (at least 90 percent) are pacifists. Dick is a Republican

(and we are more than 99 percent certain of this). Dick is a Quaker (and we are more than 99 per-

cent certain of this). Is Dick a pacifist or not?

We will model the four items of evidence as possibility functions π1 for {R,P}, π2 for {Q, P},

π3 for {R}, and π4 for {Q}, respectively, as displayed in Table 4. Figure 3 shows the valuation

network for this example. If we apply the fusion algorithm using deletion sequence RQ, we get

(π1⊗π2⊗π3⊗π4)
↓{P} = (π1⊗π3)

↓{P}⊗(π2⊗π4)
↓{P}. The details of the computations are shown in

Table 5. The conclusion is that the proposition Dick is a pacifist is possible (to degree 1), and the

proposition Dick is not a pacifist is not possible (to degree 0.5).



16 Using Possibility Theory in Expert Systems

Table 4. The possibility functions π1, π2, π3, and π4 in the Is Dick a Pacifist? example.

W{R,P} π1 W{Q,P} π2 W{R} π3 W{Q} π4

r p 0.2 q p 1 r 1 q 1

r ~p 1 q ~p 0.1 ~r .01 ~q .01

~r p 1 ~q p 1

~r ~p 1 ~q ~p 1

Figure 3. The valuation network for the Is Dick a Pacifist? example.

R P Q

3π 4π2π1π

Table 5. The computation of (π1⊗π3)
↓{P}⊗(π2⊗π4)

↓{P}.

W{R,P} π1⊗π3 W{Q,P} π2⊗π4

r p 0.20 q p 1.00

r ~p 1.00 q ~p 0.10

~r p 0.01 ~q p 0.01

~r ~p 0.01 ~q ~p 0.01

WP (π1⊗π3)
↓{P} (π2⊗π4)

↓{P}
(π1⊗π3)

↓{P}

⊗(π2⊗π4)
↓{P}

p 0.20 1.00 1.00

~p 1.00 0.10 0.50
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6. CONCLUSIONS

We have given an axiomatic definition of a qualitative description of a possibility function called a

consistent possibilistic state. We have also given a characterization of a consistent possibilistic state

in terms of its content. Our objective here is to help develop semantics for possibility theory. Our

contribution in this paper is only one step in this direction.

We have also described how possibility theory fits in the framework of valuation-based sys-

tems. This was first described by Dubois and Prade [1991]. We have expanded on this topic by

providing a brief yet complete description of the VBS framework, and by describing the main

features of possibility theory in terms of the VBS framework. We have also described a small ex-

ample in complete detail to illustrate the use of possibility theory in managing uncertainty and im-

precision in expert systems.

7. PROOFS

In this section, we give proofs for all results in the paper. First we state and prove a lemma needed

to prove Theorem 1.

Lemma 1. Suppose {{σ1, ..., σm}, ⊗, ↓} is a VBS where σi is a valuation for

si, and suppose ⊗ and ↓ satisfy axioms A1–A3. Let X denote s1∪...∪sm. Suppose

X∈X. Then

(σ1⊗...⊗σm})↓(X–{X}) = ⊗FusX{σ1, ..., σm}.

Proof of Lemma 1. Suppose σi is a valuation for si, i = 1, ..., m. Let s = ∪{si | X∈si}, and let

r = ∪{si | X∉si}. Let ρ = ⊗{σi | X∉si}, and σ = ⊗{σi | X∈si}. Note that X∈s, and X∉r. Then

(σ1⊗...⊗σm)↓(X–{X}) = (ρ⊗σ)↓((r∪s)–{X})

= ρ⊗(σ↓(s–{X})) (using axiom A3)

= (⊗{σi | X∉si})⊗(σ↓(s–{X}))

= ⊗FusX{σ1, ..., σm}. ■

Proof of Theorem 1. By axiom A2, (σ1⊗...⊗σm)↓{X} is obtained by sequentially marginaliz-

ing all variables but X from the joint valuation. A proof of this theorem is obtained by repeatedly

applying the result of Lemma 1. At each step, we delete a variable and fuse the set of all valuations

with respect to this variable. Using Lemma 1, after fusion with respect to X1, the combination of

all valuations in the resulting VBS is equal to (σ1⊗...⊗σm)↓(X–{X1}). Again, using Lemma 1, after

fusion with respect to X2, the combination of all valuations in the resulting VBS is equal to

(σ1⊗...⊗σm)↓(X–{X1,X2}). And so on. When all variables but X have been deleted, we have the

result. ■
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Proof of Proposition 1. To show B5, suppose s is possible, and suppose r⊇s. Assume r is

not possible. Then from B3, s is not possible contradicting our earlier supposition. Therefore r

must be possible.

To show B6, suppose s is not possible. If ~s is also not possible, then from B4, s∪~s = WX is

not possible contradicting B2. Therefore ~s must be possible.

To show that B7 is true, consider a possibilistic state in which the only proposition that is not

possible is ∅ (and all other propositions are possible). Clearly, this possibilistic state satisfies ax-

ioms B1 to B4. ■

Proof of Theorem 2. (Sufficiency). Assume that the possibilistic state is consistent. Consider

the proposition ∪i. It follows from B4 that ∪i is not possible, and follows from B2 that ∪i is a

proper subset of WX. Define c = ∪i. We need to show that i = {s∈2WX | s ⊆ c}. Suppose r∈i.

Then r ⊆ ∪i = c, i.e., r∈{s∈2WX | s ⊆ c}. Now suppose r∈{s∈2WX | s ⊆ c}, i.e., r ⊆ c. Then

by axiom B3, r∈i. Thus we have shown that i = {s∈2WX | s ⊆ c}.

(Necessity). Suppose i = {s∈2WX | s ⊆ c} for some proper subset c of WX. We will show

that this possibilistic state satisfies axioms B1 to B4. First note that B1 is satisfied by definition.
B2 is satisfied since c is a proper subset of WX. To show B3, suppose that s is not possible and

suppose r ⊆ s. Since s is not possible, by hypothesis, s ⊆ c. Therefore r ⊆ c. Therefore r is not

possible. To show B4, suppose that r and s are not possible, i.e., r and s belong to i. By hypoth-

esis, r ⊆ c, and s ⊆ c. Hence, r∪s ⊆ c. Therefore r∪s ∈ i, i.e., r∪s is not possible. ■

Proof of Proposition 2. P4 follows from condition P1 in Definition 2, and P5 follows from

condition P2 in Definition 2. ■

Proof of Proposition 3. All four properties follow trivially from the definition of combination.

■

Proof of Theorem 3. Note that p1∪p2 = (p1–p2)∪(p1∩p2)∪(p2–p1–{X})∪{X}, p1 =

(p1–p2)∪(p1∩p2), and p2 = (p1∩p2)∪(p2–p1–{X})∪{X}. Suppose w∈Wp1−p2
, u∈Wp1∩p2

, and

v∈Wp2−p1−{X}, x∈WX. Then (w,u)∈Wp1
, and (u,v,x)∈Wp2

. First, note that the normalization

factor in the combination on the left-hand side, say K1, is the same as the normalization factor in

the combination on the right-hand side, say K2, i.e., K1 = K2, as shown below.

K1 = MAX{π1({(w,u)}) π2({(u,v,x)}) | (w,u,v,x)∈Wp1∪p2
}

= MAX{π1({(w,u)}) MAX{π2({(u,v,x)}) | x∈WX} | (w,u,v)∈W((p1∪p2)−{X})}
= MAX{π1({(w,u)}) (π2

↓(p2−{X}))({u,v}) | (w,u,v)∈W((p1∪p2)−{X})}
= K2 = K, say.

Next,
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(π1⊗π2)↓((p1∪p2)–{X})({(w,u,v)}) =

= MAX{(π1⊗π2)({(w,u,v,x)}) | x∈WX}
= MAX{K–1 π1({(w,u)}) π2({(u,v,x)}) | x∈WX}
= K–1 π1({(w,u)}) MAX{π2({(u,v,x)}) | x∈WX}

= K–1 π1({(w,u)}) (π2
↓(p2−{X}))({(u,v)})

= (π1⊗(π2
↓(p2−{X})))({(w,u,v)}). ■
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