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ABSTRACT

This paper has two main objectives. Thefirst objective isto give a characterization
of aqualitative description of a possibility function. A qualitative description of a
possibility functionis called a consistent possibilistic state. The qualitative descrip-
tion and its characterization serve as qualitative semantics for possibility functions.
These semantics are useful in representing knowledge as possibility functions. The
second objective is to describe how Zadeh' s theory of possibility fitsin the frame-
work of valuation-based systems (VBYS). Since VBS serve as aframework for
managing uncertainty and imprecision in expert systems, this facilitates the use of
possibility theory in expert systems.
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1. INTRODUCTION

The main goal of this paper isto describe how Zadeh' s theory of possibility can be used for man-
aging uncertainty and imprecision in expert systems. We give a characterization of aquditative de-
scription of a possibility function. Thisis a useful first step in representing knowledge as possibil-
ity functions. Also, we describe how possibility theory fitsin the framework of valuation-based
systems (VBS). Since VBS serve as aframework for managing uncertainty and imprecision in ex-
pert systems, this facilitates the use of possibility theory in expert systems.

The theory of possibility wasfirst described by Zadeh [1978, 1979] and further devel oped by
Dubois and Prade [1988]. In possibility theory, the basic representational unit is called a possibility
function. The two main operations for manipulating possibility functions are called projection and
particularization [Zadeh 1979].

In this paper, we are concerned with two issues related to using possibility theory in expert
systems. Thefirst issueisin representing knowledge as possibility functions. To do this effec-
tively, we need semantics for possibility functions. What does it mean, for example, to say that
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possibility of aproposition is 0.8? In probability theory, for example, the probability of a proposi-
tion can be interpreted as arelative frequency or as a betting rate. With this goa in mind, we first
define a qualitative description of a possibility function called a consistent possibilistic state. Thisis
analogous to the definition of a consistent epistemic state [Shenoy 19914] in Spohn’s theory of
epistemic beliefs [Spohn 1988]. Next, we give a characterization of a consistent possibilistic state
in terms of what we call the content of a consistent possibilistic state. Again, this characterization is
analogous to Spohn’ s characterization of a consistent epistemic state in terms of its content [ Spohn
1988]. Thisis only one step toward developing semantics for possibility functions. Semantics for
the quantitative aspects of possibility functions have been studied by, for example, Dubois et al.
[1989] and Ruspini [1991].

The second issue related to using possibility theory in expert systemsis making the correspon-
dence between concepts in possibility theory and concepts in expert systems. If we interpret pos-
sibility functions as knowledge, what do the projection and particul arization operations mean in the
context of expert systems? How do we use these operations to make inferences in a knowledge-
based system? Also, since expert systems typically deal with many propositions, there is a compu-
tational issue of the tractability of using possibility theory to solve large problems. To help answer
these questions, we describe how possibility theory fitsin the framework of VBS.

The framework of VBS was first defined by Shenoy [1989] as a general language for incorpo-
rating uncertainty in expert systems. It was further elaborated in [Shenoy 1991c] to include axioms
that permit local computation in solving aVBS, and afusion agorithm for solvingaVBSusing lo-
cal computation. VBS encode knowledge using functions defined on frames of variables. The
functions are called valuations. VBS include two operators called combination and marginalization
that operate on valuations. Combination corresponds to aggregation of knowledge. Marginalization
corresponds to coarsening of knowledge. The process of reasoning in VBS can be described sim-
ply asfinding the marginal of the joint valuation for each variable in the system. Thejoint valuation
isthe valuation obtained by combining al vauations. In systems with many variables, it is compu-
tationally intractable to explicitly compute the joint valuation. However, if combination and
marginalization satisfy certain axioms, it is possible to compute the marginals of the joint valuation
without explicitly computing the joint valuation.

The framework of VBS is general enough to represent many domains such as Bayesian prob-
ability theory [Shenoy 1991c], Dempster-Shafer’ s theory of belief functions [Dempster 1967,
Shafer 1976, Shenoy 1991d], Spohn’s theory of epistemic beliefs [ Spohn 1988, Shenoy 1991¢],
discrete optimization [ Shenoy 1991b], propositional logic [Shenoy 1990a, 1990b], constraint
satisfaction [ Shenoy and Shafer 1988], and Bayesian decision theory [Shenoy 1990c, 1990d].
Saffiotti and Umkehrer [1991] describe an efficient implementation of VBS called Pulcinella.

The correspondence between possibility theory and VBSis asfollows. The particularization
operation in possibility theory corresponds to the combination operation in VBS. And the projec-
tion operation in possibility theory corresponds to the marginalization operation in VBS. This cor-
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respondence was first pointed out explicitly by Dubois and Prade [1991]. They also state that the
combination and marginalization operations in possibility theory satisfy the three axioms that en-
able the use of local computation in computing marginals of the joint possibility function. In this
paper, we reiterate this correspondence in greater detail.

An outline of this paper is as follows. Section 2 describes the framework of VBS. Section 3
contains an axiomatic definition and a characterization of a consistent possibilistic state. Section 4
describes the main features of possibility theory in terms of the framework of VBS. Section 5 de-
scribes asmall exampleillustrating the use of possibility theory for managing uncertainty and im-
precision in expert systems. Section 6 contains some concluding remarks. Finally, section 7 con-
tains proofs of all resultsin the paper.

2. VALUATION-BASED SYSTEMS

In this section, we will sketch the basic features of VBS. Also, we describe three axioms that
permit the use of local computation, and describe a fusion algorithm for solving aVBS using local
computation.

2.1. The Framework

This subsection describes the framework of valuation-based systems. In aVBS, we represent
knowledge by functions called valuations. Valuations are functions that assign values to the ele-
ments of frames for sets of variables. We make inferencesin aVBS using two operators called
combination and marginalization. We use these operators on valuations.

Variables and Configurations. We use the symbol Wy for the set of possible values of a
variable X, and we call Wy, the frame for X. We assume that one and only one of the elements of
Wy isthetrue value of X. We are concerned with afinite set X of variables, and we assume that all
the variablesin X havefinite frames.

Given anonempty set s of variables, let W, denote the Cartesian product of Wy for X in's; W
= x{ Wy | Xes}. We call W, the frame for s. We call the elements of W, configurations of s.

Valuations. Given asubset s of variables, thereisaset V.. We call the elements of V; val-
uations for s. Let V denote the set of all valuations, i.e., V=U{V,|sCX}. If o isavaluation for
s, then we say sisthe domain of o.

Valuations are primitivesin our abstract framework and as such require no definition. But as
we shall see shortly, they are objects which can be combined and marginalized. Intuitively, aval-
uation for s represents some knowledge about the variablesin s.

Nonzero valuations. For each sCX, there is a nonempty subset P, of V, whose elements
are called nonzero valuations for s. Let P denote U{ ;| SCX}, the set of al nonzero valuations.

Intuitively, a nonzero valuation represents knowledge that isinternally consistent. The notion
of nonzero valuations isimportant as it enables us to define combinability of valuations, and it
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allows usto constrain the definitions of combination and marginalization to meaningful operators.
An example of anonzero valuation isapossibility function.
Combination. We assume there is a mapping ®:VxV — V, caled combination, such that

(i) if p and o are valuations for r and s, respectively, then p®o is avaluation for

rJs,

(i) if either p or o is not a nonzero valuation, then p®ao is not a nonzero valuation;

and

(iii) if p and o are both nonzero valuations, then p&®c may or may not be a nonzero

valuation.

We cdl p®o the combination of p and o.

Intuitively, combination corresponds to aggregation of knowledge. If p and o are valuations
for r and s representing knowledge about variablesinr and s, respectively, then p®o represents
the aggregated knowledge about variables in rUs. For possibility functions, combinationis
pointwise multiplication [Zadeh 1965].

Marginalization. We assume that for each SCX, and for each X€&s, there is a mapping
L (s{X}): Vs— s{x} called marginalization to s{X} such that

(i) If o isavaluation for s, then o4 (S{X}) jsavaluation for s{X}; and
(ii) oV 1X}) jsanonzero valuation if and only if o isanonzero valuation.
We call otE{XD) the marginal of o for s{X}.

Intuitively, marginalization corresponds to coarsening of knowledge. If o isavauation for s
representing some knowledge about variablesin s, and X€Es, then ot 51X} represents the knowl-
edge about variablesin s<{ X} implied by o if we disregard variable X. In the case of possibility
functions, marginalization from sto s<{ X} is maximization over the frame for X [Zadeh 1979].

In summary, a valuation-based system consists of a 3-tuple{{oy, ..., o}, ®, |} where{o;,
..., O} 1sacollection of valuations, ® is the combination operator, and |, isthe marginalization
operator.

Valuation Networks. A graphical depiction of avaluation-based system is called a valuation
network. In avaluation network, variables are represented by circular nodes, and valuations are
represented by diamond-shaped nodes. Also, each valuation node is connected by an undirected
edge to each variable node in its domain. Figure 1 shows a va uation network for aVBS that
consists of valuations o4 for {W}, o, for {W, X}, oz for {X, Y}, and o, for {Y, Z}.

Making Inference in VBS. In aVBS, the combination of all valuationsis called the joint
valuation. Given aVBS, we make inferences by computing the margina of the joint valuation for
each variable in the system.
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Figure 1. A valuation network for aVVBS consisting of valuations
o4 for {W}, o, for {W, X}, o for {X, Y}, and o, for {Y, Z}.
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If there are n variables in the system, and each variable has two configurationsin its frame,
then there are 2" configurations of all variables. Hence, it is not computationally feasible to com-
pute the joint valuation when there are alarge number of variables. In Section 2.3, we describe an
agorithm for computing marginals of the joint valuation without explicitly computing the joint val-
uation. So that this algorithm gives us the correct answers, we require combination and marginal-
ization to satisfy three axioms. The axioms and the algorithm are described in the next two subsec-
tions, respectively.

2.2. Axioms

In this section, we state three simple axioms that enable local computation of marginals of the joint
valuation. These axioms were first formulated by Shenoy and Shafer [1990]. The axioms are
stated dightly differently here.

Axiom Al (Commutativity and associativity of combination): Suppose p, o, and t
arevauationsfor r, s, and t respectively. Then

p®o = o®p, and p®(o®r) = (p®0)®t.

Axiom A2 (Order of deletion does not matter): Suppose o isavaluation for s, and
suppose X4, X, € s. Then

VX)X X)) =
(o )

VXX 1. X))
(o ) :

Axiom A3 (Distributivity of marginalization over combination): Suppose p and ¢
are valuations for r and s, respectively. Suppose Xér, and suppose XEs. Then

(p®o)¢((rUS)—{ X}) = p®(0$(5—{x}))_

One implication of Axiom A1 isthat when we have multiple combinations of valuations, we
can write it without using parenthesis. For example, (...((0,®0,)®0,)®...®0,,)) can be written
smply as®{o; |i =1, ..., m} or as 0,®...90y, i.e., we need not indicate the order in which the
combinations are carried out.
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If we regard marginalization as a coarsening of avaluation by deleting variables, then axiom
A2 saysthat the order in which the variables are deleted does not matter. One implication of this
axiom isthat (0¢(s{x1}))¢(s{x1,x2}) can be written simply as Ous{xl,xz})’ i.e., we need not indi-
cate the order in which the variables are deleted.

Axiom A3 isthe crucial axiom that makeslocal computation possible. Axiom A3 states that the
computation of (p®c)* 9 X) can be accomplished without having to compute p®o. The
combination operation in p®o is on the frame for rUs whereas the combination operation in
p®(0¢ (A X})) ison the frame for (rUs)—{ X} . In the next subsection, we describe afusion algo-
rithm that applies this axiom repeatedly resulting in an efficient method for computing marginals.

2.3. A Fusion Algorithm

In this subsection, we describe a fusion algorithm for making inferencesin a VBS using local
computation. Suppose {{oy, ..., o}, ®, |} isaVBSwith n variables and m valuations.
Suppose that combination and marginalization satisfy the three axioms stated in section 2.2.
Suppose we have to compute the marginal of the joint valuation for variable X, (0,®..®0,,)"*}.
The basic idea of the fusion algorithm isto successively delete all variables but X from the VBS.
The variables may be deleted in any sequence. Axiom A 2 tellsusthat all deletion sequences lead to
the same answers. But, different deletion sequences may involve different computational costs. We
will comment on good del etion sequences at the end of this section.

When we delete a variable, we have to do a“fusion” operation on the valuations. Consider a
set of k valuations py, ..., px. Suppose p; is avaluation for r;. Let Fusy{p4, ..., P} denote the
collection of valuations after fusing the valuationsin the set { p, ..., pi} With respect to variable
X. Then

Fusy{py, ... pit = {p" P U{p; | Xetr}
where p = ®{p; | XEr;}, and r = U{r; | XEr;}. After fusion, the set of valuations is changed as
follows. All valuations that bear on X are combined, and the resulting valuation is marginalized
such that X iseiminated from its domain. The valuations that do not bear on X remain unchanged.

We are ready to state the main theorem that describes the fusion algorithm

Theorem 1 [Shenoy 1991c]. Suppose {{o4, ..., o}, ®, |} isaVBS where o;
isavaluation for s, and suppose ® and | satisfy axioms A1-A3. Let X denote
$,U...Us,,. Suppose XEKX, and suppose X1 X,...X,,_; IS a sequence of variables
in X<{X}. Then

(01®..®0m) 1 = ®{ Fusy, { . Fusq{Fusc {0y, . on}} } } :

Toillustrate Theorem 1, consider the VBS shown in Figure 1. Suppose we need to compute
the marginal of thejoint for Z, (0,®..®0,) 4. Consider the deletion sequence WXY . After
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fusion with respect to W, we have (0,00,)"**} for {X}, o5 for {X, Y}, and o, for {Y, Z}. After
fusion with respect to X, we have ((6,®0,) " ®0) " for { Y}, and o, for { Y, Z} . Finally,
after fusion with respect to Y, we have (((01®02)“X}®03)“Y}®04) 12 for {Z}. Theorem 1
tells us that (((0,®0,) X @02) 1 ®0,) 1 = (6,®..90,)"?. Thus, instead of doing
combinations on the frame for {W, X, Y, Z}, we do combinations on the frame for { W, X}, { X,
Y}, and{Y, Z}. Thefusion agorithmis shown graphically in Figure 2.

Figure 2. Thefirst valuation network showstheinitial VBS. The second network is
the result after fusion with respect to W. The third network is the result after fusion
with respect to X. The fourth network is the result after fusion with respectto Y.

(((01®02)HX}®03) HY}®04) 12

If we can compute the marginal of thejoint valuation for one variable, then we can compute the
marginasfor al variables. We simply compute them one after the other. It is obvious, however,
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that thiswill involve much duplication of effort. Shenoy and Shafer [1990] describe an efficient
algorithm for smultaneous computation of al marginals without duplication of effort. Regardless
of the number of variablesin aVBS, we can compute marginals of the joint valuation for all vari-
ables for roughly three times the computational effort required to compute one margina [ Shenoy
and Shafer 1990].

Deletion Sequences. Different deletion sequences may involve different computational ef-
forts. For example, consider the VBS in the above example. In this example, deletion sequence
WXY involvesless computational effort than, for example, XYW, as the former involves combi-
nations on the frame for two variables only whereas the | atter involves combination on the frame
for three variables. Finding an optimal deletion sequence is a secondary optimization problem that
has shown to be NP-complete [Arnborg et al. 1987]. But, there are several heuristics for finding
good deletion sequences [Kong 1986, Mellouli 1987, Zhang 1988, Kjaarulff 1990].

One such heurigtic is called one-step-look-ahead [Kong 1986]. This heuristic tells us which
variable to delete next. As per this heuristic, the variable that should be deleted next is one that
leads to combination over the smallest frame. For example, in the VBS described above, if we as-
sume that each variable has aframe consisting of two configurations, then this heuristic would pick
W over X and Y for first deletion since deletion of W involves combination on the frame for {W,
X} whereas deletion of X involves combination on the frame for {W, X, Y}, and deletion of Y in-
volves combination on the frame for { X, Y, Z}. After W isdeleted, for second deletion, this
heuristic would pick X over Y. Thus, this heuristic would choose del etion sequence WXY .

3. CONSISTENT POSSIBILISTIC STATES

In this section, first we define axiomatically a consistent possibilistic state. A consistent pos-
shilistic state serves as a qualitative description of a possibility function. The definition of acon-
sistent possibilistic state is analogous to the definition of a consistent epistemic statein Spohn’s
theory of epistemic beliefs [Shenoy 1991a, Spohn 1988]. Next, we give a characterization of a
consistent possibilistic state. Again, this characterization is anal ogous to the characterization of a
consistent epistemic state given by Spohn [1988]. Before we define a consistent possibilistic state,
we need to establish our notation.

Consider avariable X with frame Wy. Suppose Wy is defined such that the propositions re-
garding X that are of interest are precisely those of the form ‘ The true value of X isins,” wheres
isasubset of Wy. Thus the propositions regarding X that are of interest are in a one-to-one corre-
spondence with the subsets of Wy [Shafer 1976, p. 36].

The correspondence between subsets and propositions is useful since it trandates the logical
notions of conjunction, digunction, implication, and negation into the set-theoretic notions of inter-
section, union, inclusion, and complementation [Shafer 1976, pp. 36-37]. Thus, if r and s are two
subsets of Wy, and 1" and s' are the corresponding propositions, then rNs corresponds to the
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conjunction of r' and s', rUs corresponds to the digunction of r' and s', 1Cs if and only if ' im-
pliess', and r is the set-theoretic complement of s with respect to Wy (written asr = ~s) if and only
if r' isthe negation of s'. Notice also that the proposition that correspondsto & isfalse, and the
proposition that corresponds to Wy istrue. Henceforth, we will simply refer to a proposition by its
corresponding subset. The set of subsets of Wy will be denoted by Wx.

In apossibilistic state for X, propositions are said to be either possibly true (or smply, possi-
ble) or possibly false (or smply, not possible). Thus a possibilistic state for X is an assignment of
labels ‘ possible’ and ‘not possible’ to each proposition in Wy. Logical consistency requires that a
possibilistic state satisfy certain conditions (axioms). A definition of a consistent possibilistic state
isas follows.

Definition 1. A possibilistic state for X is said to be consistent if the following

four axioms are satisfied:

B1. For any proposition s, one and only one of the following conditions holds:
(i) sispossible.
(i) s isnot possible.

B2. Wy ispossible, and & is not possible.

B3. If s isnot possible and rCs, then r is not possible.

B4. If r and s are not possible, then rUs is not possible.

Some simple consequences of Definition 1 are as follows.

Proposition 1. The following conditions always hold in any consistent possi-
bilistic state:

B5. If s ispossible and r2s, then r is possible.

B6. If s isnot possible, then ~s is possible.

B7. If s is possible, then this does not necessarily imply that ~s is not possible; ~s
could also be possible.

Itis clear from axiom B1 that we can specify a consistent possibilistic state smply by listing al
propositions that are not possible. Then axiom B1 tells us that the remaining propositions are pos-
sible. Let idenote the set of all propositions (subsets) that are not possible. Theorem 2 gives a
characterization of &

Theorem 2. Suppose i‘denotes the set of all propositions that are not possiblein
some possibilistic state for X. Then the possibilistic state is consistent if and only if
there exists a unique proper subset ¢ of Wy such that i= {sEZWX |sCc}.

Subset ¢ in Theorem 2 is called the content of the consistent possibilistic state. Note that the
content constitutes a complete specification of a possibilistic state. Thus a simple corollary of
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Theorem 2 isthat in aframe Wy consisting of n elements, there are exactly 2"-1 distinct possible
consistent possibilistic states (corresponding to each proper subset of W as the content). The con-
tent ¢ represents the largest subset (proposition) that is not possible.

Example 1. (Consistent possibilistic states) Consider aframe W ={x, y, z}. Table 1 lists all
seven possible consistent possibilistic states. Possibilistic state 1 represents a state of complete ig-
norance in which every proposition (except the null proposition) is possible. Possibilistic states 5,
6, and 7 represent a state of complete information where one and only one element of the frameis
possibly true. Possibilistic states 2, 3, and 4 are states of partial information where one element of
the frameis not possible

Table 1. The seven consistent possibilistic states for avariable with frame W = {x,y,z}.

State | Content Possible Not Possible
c v

1 % {3 v Az {x v {y. 2. {x. Z {x, . Z} %

2 {x} {v}. {z. {x v} {x.zt.{y. z. {x. y, 2} g, {x}

3 {v} {x.{z}, {x y}. {x.z4.{y. z}. {x. y, 2} g, {y}

4 {7} {3 Ayh A yh {x 2z {y, 4. {x, y, 2} a,{z}

5 {x v} {z4.{x.z}.{y. z}. {x, v, 2} g, {x}, {y}. {x, v}
6 {x. z} {yt. {x.yt. {y. z. {x. y. 2} g, {xt,.{z}, {x, Z}
7 {v. 7} {xp, {x. v}, {x, 7}, {X, y, 7} 2, {y}. {7}, {y. z}

4. POSSIBILITY THEORY

In this section, we describe the main features of Zadeh’ s theory of possibility in terms of the
framework of VBS described in the previous section, i.e., we will use the terminology of VBSin-
stead of the terminology used in [Zadeh 1979]. Thus the operation Zadeh calls particularization we
call combination, and the operation Zadeh calls projection we call marginalization. The basic unit of
knowledge representation is called a possibility function.

Definition 2 . A possibility function = for p is a function 2Wp [0, 1] such

that
P1. There exists a configuration weWp such that m({w}) = 1,

P2. For any r€(2"9 - {2}), n(t) = MAX{x({w}) |wer}; and
P3. n(J) = 0.
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Note that although a possibility function is defined for the set of all subsets of W, it is com-
pletely specified by its values for each singleton subset of Wp.

A possibility function is a complete representation of a consistent possibilistic state. To see
what propositions are possible and what propositions are not possible in state i, consider the sub-
set ¢ = {weW, | n({w}) < 1}. By condition P1in Definition 2, c is always a proper subset of
Wp. ¢ represents the content of the possibilistic state m, i.e., risnot possiblein state 7t iff r C c.
Thusrispossiblein state  iff 7(r) = 1, and r isnot possible in state it iff (r) < 1.

A possibility function consists of more than a representation of a consistent possibilistic state.
It also includes degrees to which proposition are possible and degrees to which propositions are
not possible. rt(r) can be interpreted as the degree to which proposition r is possible, and 1-m(r)
can beinterpreted as the degree to which proposition r is not possible, i.e., r is more possible than
t if 7w(r) > m(t) and conversely, r is more impossible than t if wt(r) < mi(t) < 1.

Consider the following possibility function for s: w({w}) = 1 for all weWy. This means that
the only proposition that is not possible is & (and all other propositions are possible). We shall call
such apossibility function vacuous. It represents a state of complete ignorance.

Proposition 2. Suppose =t is a possibility function for p. Then
PA. For eachr € ZWP, either 7t(r) = 1 or m(~r) = 1 or both.
P5. For each r,t€ 2", n(rUt) = MAX{ (r), n()}

Extension of Subsets. By extension of a subset of a frame to a subset of alarger frame, we
mean acylinder set extension. If r and s are sets of variables, rCs, and r is a subset of W;, then
the extension of 7 to sisrxWs_,. Wewill let 'S denote the extension of r to's. For example,
consider three variables R, P, Q with frames Wg = {r, ~r}, Wp = {p, ~p}, and Wy = {q, ~q},
respectively. Then the extension of {(r,~p), (~r,p)} (whichisasubset of Wirp) to {R,P,Q} is
{(r,~p,q), (r,~p,~q), (~1,p,q), (~r,p,~0)}. Note that the propositions corresponding to r and r's
arelogicaly equivaent.

Marginalization. Suppose it is a possibility function for p. Suppose q € p. We may bein-
terested only in propositions about variablesin g. In this case, we would like to marginalize z to q.
The following definition of marginalization is motivated by the fact that each proposition qEZWq
about variablesin q can be regarded as a proposition qTp € 2" about variablesin p.

Definition 3 (Marginalization). Suppose & is a possibility function for p, and
suppose g C p. The marginal of & for g, denoted by 79 isa possibility function
for g given asfollows:

nt%a) =n(a"?) = MAX{ a({ (x)}) | xEq, yEW, o} ()
for al ge2"a,



12 Using Possibility Theory in Expert Systems

In particular, if q isasingleton subset, i.e., q = {x} for some xewq, then (1) simplifiesto:
w9(3) = MAX{ x({ (y)}) [ YEW, o}

Note that if 7t is a possibility function for p, and X4, X, € p, then (et PXab (X Xah) -
(yc¢ (HX2}))¢ PAX1%2) 1n words, if we regard marginalization as reduction of m by deletion of
variables, then the order in which the variables are del eted makes no difference in the final answer.

Example 2. (Possibility function and marginalization) We would like to determine whether a
stranger (about who we know nothing about) is a pacifist or not depending on whether heisa
Republican or not and whether heis a Quaker or not. Consider three variables R, Q and P. R has
two configurations: r (for Republican), ~r (not Republican); Q has two configurations: g (Quaker)
and ~q (not Quaker); and P has two configurations: p (pacifist) and ~p (not pacifist). Our
knowledge that most (at |east 80 percent) Republicans are not pacifists and that most (at |east 90
percent) Quakers are pacifistsis represented by the possibility function rt for { R,Q,P} shownin
Table 2 (the construction of this possibility function will be explained later in this section—see
Example 3).

Note that the marginal of &t for R is the vacuous possibility function for R, i.e., mt (R qrh) =
R ({~r}) = 1. Thusin possibilistic state t, we have no knowledge whether the stranger isare-
publican or not. Similarly, notice that the marginals of & for { Q} and { P} are also vacuous. The
marginal of =t for {R, P} isasfollows:

MR ((rph) = 0.2, 2 RP (1 ~p}) = 2 RP (~rp}) = 2 RP ((~rp}) = 1
Thus pacifist Republicans are not possible (to degree 0.8). Similarly, notice that the margina of ©
for {Q, P} isasfollows:

7% ({q-p}) = 0.1, 7P (aph) =227 ((~ap}) = 2"V (-a-ph) = 1.

Thus non-pacifist Quakers are not possible (to degree 0.9). Finally note that the marginal of st for
{R, Q} isasfollows:

o) =02, 77V ((r~q)) = a1V ({~r,qh) = a1V {~r~a)) = 1

Thus Republican Quakers are not possible (to degree 0.8).
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Table 2. A possibility function & for {R,Q,P}.

Wirpg) n

r p q 0.2

r p —q 0.2
r-p d 0.1
ro-p -g 1.0
~ p q 1.0
~r p -q 1.0
~ ~p q 0.1
~ ~p —q 1.0

Next, we state arule for combining possibility function. Thisruleis called particul arization by
Zadeh [1979]. Zadeh [1965] has given two rules for combining possibility
functions—minimization and multiplication. Axiom B2 (W is possible) requires that we include
normalization in the definition of combination. Since minimization followed by normalization is not
associative, multiplication followed by normalization is associative, and associativity of
combination is arequirement in VBS (axiom A1), we use multiplcation followed by normalization
as our definition of combination.

Definition 4. Suppose 7, and &, are possibility functions for p; and p,, respectively.

Suppose K = MAX{ m (WP mo({wiP2}) |WEW } . The combination of

pP1Up2
and s,, denoted by wt;®m,, is the function for p;Up, given by

K™, ({w'P1}) my({w'P2) if K =0
(m@mp)({w}) = )
0 ifK=0
for all weW,, up,.
If K =0, then T;®m, is not a possibility function. In this case, ;®m, is not a nonzero
vauation. This means that the knowledge in rt; and rt, are inconsistent. If K = 0, thenK isa
normalization constant that ensures that rt;®m, isapossibility function. Thus, combination
consists of pointwise multiplication followed by normalization (if normalization is possible).

Example 3. (The rule of combination) Consider two pieces of knowledge as follows:
1. Most Republicans (at least 80 percent) are not pacifists.
2. Most Quakers (at least 90 percent) are pacifists.



14 Using Possibility Theory in Expert Systems

If T, isapossibility function representation of the first piece of knowledge, and nt, is a possibility
function representation of the second piece of knowledge, then 7t;&®mt, will represent the aggrega-
tion of these two pieces of knowledge. In particular, suppose r; is a possibility function for { R,P}
asfollows:
m({(rp)}) = 0.2, m({(r~p)}) = 7 ({ (=r.p)}) = m({(-r~p)}) =1

(i.e., pacifist Republicans are not possible to degree 0.8), and suppose x, is a possibility function
for {Q,P} asfollows:

mo({(@~p)}) = 0.1 my({(@.p)}) = mo({ (~a.p)}) = ma({ (~a~p)}) = 1
(i.e., non-pacifist Quakers are not possible to degree 0.9). Then the possibility function ;®m, =
m, say, shown in Table 3, represents the aggregate knowledge.

Table 3. The combination of rt; and .

Wirpar Ty Tty T®n, = w
r p q 0.2 1.0 0.2
r p —q 0.2 1.0 0.2
r-p g 1.0 0.1 0.1
ro-p -—-q 1.0 1.0 1.0
~ p q 1.0 1.0 1.0
~ p —q 1.0 1.0 1.0
~ ~p q 1.0 0.1 0.1
~ ~p - 1.0 1.0 1.0

Proposition 3. The rule of combination described in (2) has the following prop-
erties.

C1. (Commuitativity) m;®m, = 1,&0;.

C2. (Associativity) (m1®m,)®m3 = 1@ (1,®73).

C3. If =ty is vacuous, then mt;®m, = 7.

C4. In generdl, m,®mq = ;.

The possibility function rt; ®m, represents the aggregation of knowledge contained in possibil-
ity functions zt; and =, if t; and mt, are independent. Like Bayesian probability theory, Dempster-
Shafer’ stheory of belief function, and Spohn’ s theory of epistemic beliefs, possibility theory
requires that the possibility functions rt; and t, be independent. Thisis because of property
C4—double-counting of knowledge may lead to erroneous resullts.

We have already shown that axioms Al and A2 are valid for possibility functions. Theorem 3
below states that axiom A3 isalso satisfied. Thisresult is stated in [Dubois and Prade 1991].
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Theorem 3. Suppose wt; and t, are possibility functions for p; and p,,
respectively. Suppose Xé&p,, and suppose XEp,. Then (m,®m,) ¢ (P1UP=XD =
J.El@(nzi (pZ‘{X}))_

Since dl three axioms required for local computation of marginals are satisfied, the fusion al-
gorithm described in section 2.3 can be used for reasoning from knowledge expressed as possibil-
ity functions. In the context of possibility theory, [Chatalic et al. 1987] describes aloca computa-
tional method for reasoning with possibility functions. The next section describes a small example
to illustrate the use of the fusion algorithm to find marginals.

5. AN EXAMPLE

In this section, we describe an example in complete detail to illustrate the use of possibility theory
in managing imprecision in expert systems.

Is Dick a Pacifist? Consider the following items of evidence. Most Republicans (at |east 80
percent) are not pacifists. Most Quakers (at least 90 percent) are pacifists. Dick isa Republican
(and we are more than 99 percent certain of this). Dick isa Quaker (and we are more than 99 per-
cent certain of this). Is Dick apacifist or not?

We will model the four items of evidence as possibility functions zr; for { R,P}, m, for { Q, P},
n3 for {R}, and =, for { Q}, respectively, as displayed in Table 4. Figure 3 shows the valuation
network for this example. If we apply the fusion algorithm using deletion sequence RQ, we get
(1, @, @m5®m) P = (m1,®m5) P @(r,@m,) '™ . The details of the computations are shown in
Table 5. The conclusion isthat the proposition Dick is a pacifist is possible (to degree 1), and the
proposition Dick is not a pacifist is not possible (to degree 0.5).
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Table 4. The possibility functions iy, 7t,, 73, and w4 in the Is Dick a Pacifist? example.

Using Possibility Theory in Expert Systems

Wrp | T Wiop | 72 W | 73 Wa | ma
r p | 02 q p 1 r 1 q 1
ro-p 1 q —-p 0.1 ~ .01 ~q .01
~ p ~q p
P 9P

Figure 3. The vauation network for the Is Dick a Pacifist? example.

o
CACHERORC

Table 5. The computation of (r1;®m3) "t P @ (m,@m,) 7.

W{ R,P} J'E]_@J'Eg W{ QP TE2®J'E4
r p 0.20 q p 1.00
r ~p 1.00 q ~p 0.10
~ p 0.01 ~q p 0.01
~ ~p 0.01 ~( ~p 0.01
W 1P 1P (@) 7
P (1, @) (n,®y) ® (@) 1P
p 0.20 1.00 1.00
~p 1.00 0.10 0.50
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6. CONCLUSIONS

We have given an axiomatic definition of a qualitative description of apossibility function called a
consistent possibilistic state. We have also given a characterization of a consistent possibilistic state
in terms of its content. Our objective here isto help devel op semantics for possibility theory. Our
contribution in this paper is only one step in this direction.

We have also described how possibility theory fitsin the framework of valuation-based sys-
tems. Thiswasfirst described by Dubois and Prade [1991]. We have expanded on thistopic by
providing a brief yet complete description of the VBS framework, and by describing the main
features of possibility theory in terms of the VBS framework. We have also described a small ex-
ample in complete detail to illustrate the use of possibility theory in managing uncertainty and im-
precision in expert systems.

7. PROOFS

In this section, we give proofs for al resultsin the paper. First we state and prove alemma needed
to prove Theorem 1.

Lemma 1. Suppose{{al, vy Om}, ®, i} isaVBS where o; is a valuation for
S, and suppose ® and |, satisfy axioms A1-A3. Let X denote sU...Us,,,. Suppose
XeX. Then

(01®._.®0m})¢(X—{X}) = ®Fusy {01, ..., Om}.

Proof of Lemma 1. Suppose o; isavauation for s, i =1, .., m. Let s= U{s | XEs}, and let
r=U{s | X¢s}. Let p = ®{o; | Xé¢¢s}, and o = ®{o; | XEs}. Note that XEs, and X¢&r. Then
(01®___®0m)¢(X%X}) =(p®0)¢((rUSHX})

= p®(0“HX})) (using axiom A3)
= (®{o; | Xs})@(0 )
= ®Fusy{o1, ..., om} - n

Proof of Theorem 1. By axiom A2, (61®..®0m)" X} is obtained by sequentially marginaliz-
ing al variables but X from the joint valuation. A proof of thistheorem is obtained by repeatedly
applying the result of Lemma 1. At each step, we delete a variable and fuse the set of all valuations
with respect to this variable. Using Lemma 1, after fusion with respect to X, the combination of
all valuationsin the resulting VBS is equal 0 (01®...®0m) ' * 1. Again, using Lemma 1, after
fusion with respect to X, the combination of all valuationsin the resulting VBS is equal to
(048®...®0m) " *1X21%2)_ And so on. When all variables but X have been deleted, we have the
result. ]
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Proof of Proposition 1. To show B5, suppose s is possible, and suppose r2s. Assumer is
not possible. Then from B3, s is not possible contradicting our earlier supposition. Thereforer
must be possible.

To show B6, suppose s is not possible. If ~s isalso not possible, then from B4, sU~s = Wy is
not possible contradicting B2. Therefore ~s must be possible.

To show that B7 istrue, consider a possibilistic state in which the only proposition that is not
possibleis & (and al other propositions are possible). Clearly, this possibilistic state satisfies ax-
ioms B1 to B4. |

Proof of Theorem 2. (Sufficiency). Assume that the possibilistic state is consistent. Consider
the proposition U &« It follows from B4 that U iis not possible, and follows from B2 that U iisa
proper subset of Wy. Define ¢ = U & We need to show that {= {sEZWX | s C c}. Supposere i
Thenr CUi=c, i.e, re{s€2WX|s C c}. Now suppose re{s€2"X |s C ¢}, i.e, r C c. Then
by axiom B3, r€ & Thus we have shown that = {s€2X | s C ¢} .

(Necessity). Suppose = {s€2wX | s € c} for some proper subset ¢ of Wy. We will show
that this possibilistic state satisfies axioms B1 to B4. First note that B1 is satisfied by definition.
B2 issatisfied since c is a proper subset of Wy. To show B3, suppose that s is not possible and
supposer C s. Sinces is not possible, by hypothesis, s C c. Thereforer C ¢. Thereforer is not
possible. To show B4, suppose that r and s are not possible, i.e., r and s belong to &« By hypoth-
esis, r C ¢, and s C c. Hence, rUs C c. Therefore rUs € § i.e., rUs is not possible. ]

Proof of Proposition 2. P4 follows from condition P1 in Definition 2, and P5 follows from
condition P2 in Definition 2. |

Proof of Proposition 3. All four properties follow trivially from the definition of combination.
|

Proof of Theorem 3. Note that p;Up, = (p1—P2)U(P1NPo)U(Po—p1—{ X})U{X}, p; =
(P1P2)U(P1NPy), and p; = (p1NP)U (P X})U{X}. Suppose weW,, o, uEW,, ., and
vewpz_pl_{x}, xEWy. Then (w,u)ewpl, and (u,v,x)esz. First, note that the normalization

factor in the combination on the left-hand side, say K, is the same as the normalization factor in
the combination on the right-hand side, say K, i.e., K; = K5, as shown below.

Ky = MAX{m({w.u)}) m{ uvx}) | wuv)eW, o}
= MAX{ 7, ({(w.u)}) MAX{ o({ (uv.X)}) | xEW} | W.u)EW G Upy-x))
= MAX{ 7, ({(w.0)}) (2 P2 D) ({un}) | Wuv)EW o 0000}

=K, =K, say.
Next,
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(m,®m) P1UPOD(f (w,uv)}) =
= MAX{ (m,®m) ({ (w,u,v,x)}) | xEWy}
= MAX{ K™ 7y ({ w,)}) mo({ (uv.x)}) | xEWy}
= K™ my({(w,u)}) MAX{mo({ (uv.X)}) | xEWy}
KLy ({(w,u)}) (o P2 DD ({um)})
= (1, ®(,* P2 D) ({ (w,u,v)}). .
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