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Abstract

An important class of hybrid Bayesian networks are those that have conditionally de-
terministic variables (a variable that is a deterministic function of its parents). In this
case, if some of the parents are continuous, then the joint density function does not exist.
Conditional linear Gaussian (CLG) distributions can handle such cases when the deter-
ministic function is linear and continuous variables are normally distributed. In this paper,
we develop operations required for performing inference with conditionally deterministic
variables using relationships derived from joint cumulative distribution functions (CDF’s).
These methods allow inference in networks with deterministic variables where continuous
variables are non-Gaussian.

1 Introduction

Bayesian networks model knowledge about
propositions in uncertain domains using graphi-
cal and numerical representations. At the qual-
itative level, a Bayesian network is a directed
acyclic graph where nodes represent variables
and the (missing) edges represent conditional
independence relations among the variables. At
the numerical level, a Bayesian network consists
of a factorization of a joint probability distri-
bution into a set of conditional distributions,
one for each variable in the network. Hybrid
Bayesian networks contain both discrete and
continuous conditional probability distributions
as numerical inputs.

An important class of hybrid Bayesian net-
works are those that have conditionally deter-
ministic variables (a variable that is a deter-
ministic function of its parents). In this case, if
some of the parents are continuous, then the
joint density function does not exist. Con-
ditional linear Gaussian (CLG) distributions
(Cowell et al., 1999) can handle such cases when
the deterministic function is linear. However,
for models where continuous variables are not
normally distributed, methods for carrying out

inference in networks with linear deterministic
relationships have not been developed.

Approximate inference in hybrid Bayesian
networks can be performed using mixtures
of truncated exponentials (MTE) potentials
(Moral et al., 2001). General formulations of
MTE potentials which approximate the normal
probability density function (PDF) exist (Cobb
and Shenoy, 2003); however, these formulations
cannot be used to model a conditional distri-
bution where the variance of a variable given
values of its continuous parents is zero. In this
paper, we develop inference operations for con-
ditionally deterministic variables using relation-
ships derived from joint cumulative distribution
functions (CDF’s). This allows MTE potentials
to be used for inference in any CLG model, as
well as other models that have conditionally de-
terministic variables but do not fit the CLG
restrictions, such as those containing discrete
nodes with continuous parents.

The remainder of this paper is organized as
follows. Section 2 introduces notation and def-
initions used throughout the paper. Section 3
introduces techniques for using CDF’s to con-
struct PDF’s for deterministic variables. Sec-
tion 4 introduces join tree operations for lin-
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early deterministic variables. Section 5 con-
tains an example of inference in a Bayesian net-
work containing linearly deterministic variables.
Section 6 summarizes and states directions for
future research. This paper is a preliminary
version of a longer, forthcoming working paper
which includes proofs of all theorems.

2 Notation and Definitions

This section contains notation and definitions
that will be used throughout the remainder of
the paper.

2.1 Notation

Random variables in a hybrid Bayesian network
will be denoted by capital letters, e.g. A, B, C.
Sets of variables will be denoted by boldface
capital letters, Y if all variables are discrete,
Z if all variables are continuous, or X if some of
the components are discrete and some are con-
tinuous. If X is a set of variables, x is a config-
uration of specific states of those variables. The
discrete, continuous, or mixed state space of X
is denoted by ΩX. MTE probability potentials
and discrete probability potentials are denoted
by lower-case greek letters, e.g. α, β, γ.

In graphical representations, continuous
nodes in hybrid Bayesian networks are repre-
sented by double-border ovals, whereas contin-
uous nodes that are deterministic functions of
their parents are represented by triple-border
ovals. Shaded nodes are degenerate, indicating
that evidence has restricted the variable to one
value.

2.2 Conditional Mass Function (CMF)

When relationships between continuous vari-
ables are deterministic, the joint PDF does not
exist. We can express a conditional probability
mass function as a degenerate function. If Y is a
deterministic relationship of variables in X, i.e.
y = g(x), the conditional mass function (CMF)
for {Y | x} is defined as

pY |x(y) = 1{y = g(x)} , (1)

where 1{A} is the indicator of the event A, i.e.
1{A} = 1 if A occurs and 0 otherwise. Graph-

X Y

Figure 1: Graphical representation of the con-
ditionally deterministic relationship of Y given
X determined by the CMF pY |x(y).

ically, the conditionally deterministic relation-
ship of Y given X is represented in a hybrid
Bayesian network model as shown in Figure 1.

2.3 Mixtures of Truncated
Exponentials (MTE) Potentials

A mixture of truncated exponentials (MTE)
(Moral et al., 2001) potential has the following
definition.

MTE potential. Let X be a mixed n-
dimensional random variable. Let Y =
(Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the dis-
crete and continuous parts of X, respectively,
with c + d = n. A function φ : ΩX �→ R+ is an
MTE potential if one of the next two conditions
holds:

1. The potential φ can be written as

φ(x) = φ(y, z) =

a0 +
m∑

i=1

ai exp{ d∑
j=1

b
(j)
i yj

+
c∑

k=1

b
(d+k)
i zk}

(2)

for all x ∈ ΩX, where ai, i = 0, . . . , m and
b
(j)
i , i = 1, . . . , m, j = 1, . . . , n are real

numbers.

2. There is a partition Ω1, . . . ,Ωk of ΩX ver-
ifying that the domain of continuous vari-
ables, ΩZ, is divided into hypercubes, the
domain of the discrete variables, ΩY, is di-
vided into arbitrary sets, and such that φ
is defined as

φ(x) = φi(x) if x ∈ Ωi, (3)



where each φi, i = 1, ..., k can be written in
the form of equation (2) (i.e. each φi is an
MTE potential on Ωi).

3 Using CDF’s to Construct PDF’s
for Deterministic Variables

This section describes methods of constructing
CDF’s and their corresponding PDF’s for vari-
ables that are deterministic functions of their
parents.

3.1 Monotonically Increasing Functions

Consider a random variable Y which is a mono-
tonically increasing deterministic function of a
random variable X. A Bayesian network repre-
senting this relationship is shown in Figure 1.
The joint CDF for {X, Y } is then given by

FX,Y (x, y) = P [X ≤ x, Y ≤ y]

=

{
FX(x) if x < g−1(y)
FX(g−1(y)) if x ≥ g−1(y).

(4)

Thus, FY (y) = lim
x→∞FX,Y (x, y) = FX(g−1(y)),

and therefore

fY (y) =
d

dy
FY (y)

= fX(g−1(y))
d

dy
(g−1(y)) .

Proposition 1. Suppose we have a Bayesian
network with two variables X and Y with
an arrow from X to Y where Y is a con-
ditionally deterministic, monotonically in-
creasing function of X. Then, the equiva-
lent Bayesian network with an arrow from
Y to X where X is a conditionally deter-
ministic function of Y meets the conditions
that fY (y) = fX(g−1(y)) d

dy (g−1(y)) and
pX|y(x) = 1{x = g−1(y)}.

When Y is a monotonically increasing (and
therefore invertible) deterministic function of
X, Proposition 1 gives a shortcut to finding the
PDF of Y from the PDF of X that does not

YX

Figure 2: Graphical representation of the condi-
tionally deterministic relationship of X on Y af-
ter performing an “arc reversal” on the Bayesian
network of Figure 1.

require the CDF of Y to be computed. We re-
fer to using the operation in Proposition 1 as
performing an “arc reversal” on the Bayesian
network. After the operation is performed, the
Bayesian network appears as in Figure 2.

Example 1.

Suppose that a random variable X has
PDF

fX(x) =

{
3x2 if 0 < x < 1
0 elsewhere ,

and we want to find fY (y) if Y = g(x) =
4x2.

Note that fX(g−1(y)) = 3y/4 and
d
dy (g−1(y)) = 1/(4

√
y). Using Proposition

1, we compute

fY (y) =
3y

4
· 1
4
√

y
=

3
√

y

16
.

3.2 Monotonically Decreasing
Functions

Consider a random variable Y which is a mono-
tonically decreasing deterministic function of a
random variable X.

We can compute the joint CDF as follows
when Y is a monotonically decreasing function
of X

FX,Y (x, y) = P [X ≤ x, Y ≤ y]

=

{
0 if x < g−1(y)
FX(x) − FX(g−1(y)) if x ≥ g−1(y).

(5)
Thus, FY (y) = lim

x→∞FX,Y (x, y) = 1 −
FX(g−1(y)), and therefore



fY (y) =
d

dy
FY (y)

= −fX(g−1(y))
d

dy
(g−1(y)) .

Proposition 2. Suppose we have a Bayesian
network with two variables X and Y with
an arrow from X to Y where Y is a con-
ditionally deterministic, monotonically de-
creasing function of X. Then, the equiva-
lent Bayesian network with an arrow from
Y to X where X is a conditionally deter-
ministic function of Y meets the conditions
that fY (y) = −fX(g−1(y)) d

dy (g−1(y)) and
and pX|y(x) = 1{x = g−1(y)}.

When Y is a monotonically decreasing (and
therefore invertible) deterministic function of
X, Proposition 2 gives a shortcut to finding the
PDF of Y from the PDF of X that does not
require the CDF of Y to be computed. As in
the monotonically increasing case, we refer to
use of the operation in Proposition 2 as an arc
reversal.

Example 2.

Let X have the uniform PDF over the unit
interval, i.e. X ∼ U(0, 1). Find fY (y) if
Y = g(x) = − ln x

λ .

Note that fX(g−1(y)) = 1 and
d
dy (g−1(y)) = −λe−λy. Using Propo-
sition 2, we compute

fY (y) = (−1) · −λe−λy = λe−λy .

3.3 Linear CDF Marginalization
Operator

Suppose Y is a conditionally deterministic lin-
ear function of X, i.e. Y = g(x) = ax+b, a �= 0.
The following definition will be used to deter-
mine the marginal PDF for Y :

fY (y) = (fX(x) ⊗ pY |x(y))↓Y

∆=




1
a
· fX

(
y − b

a

)
if a > 0

−1
a

· fX

(
y − b

a

)
if a < 0 .

(6)

The definition of the combination of a determin-
istic function followed by marginalization fol-
lows directly from the expressions in Proposi-
tions 1 and 2.

Example 3.

Suppose that a random variable X has
PDF

fX(x) =

{
6x(1 − x) if 0 < x < 1
0 elsewhere.

Find fY (y) if Y = g(x) = 2x + 1.

Note that fX(y−b
a ) = fX(y−1

2 ) = 6(y−1
2 ) ·

(1 − (y−1
2 )) = −3

2y2 + 6y − 9
2 .

Using the operation in (6), we find the PDF
for Y as

fY (y) = (fX(x) ⊗ pY |x(y))↓Y

=

{
−3

4y2 + 3y − 9
4 if 1 < y < 3

0 elsewhere.

The following theorem is required for infer-
ence using MTE potentials in Bayesian net-
works with conditionally deterministic linear
variables.

Theorem 3. If φ1(x) is an MTE potential for
X and Y is a conditionally deterministic
linear function of X, then φ2(y) = (φ1(x)⊗
pY |x(y))↓Y is an MTE potential.

3.4 Method of Convolutions

The following theorem will be required for join
tree operations when a variable is a linearly de-
terministic function of its parents.

Theorem 4. Let X and Y be continuous, pos-
sibly dependent random variables and let
W = a1 · x + a2 · y + b, a1 �= 0, a2 �= 0. The
PDF for W can be found as

fW (w) = (fX,Y (x, y) ⊗ pW |x,y(w))↓W

∆= 1
|a2|

∫ +∞

−∞
fX,Y

(
x,

w − a1 · x − b

a2

)
dx .



An integral of the form in Theorem 4 is referred
to as a convolution of the function fX,Y (x, y)
(Larsen and Marx, 2001).

To use the convolution formula in Theorem
4 to find PDF’s for linearly deterministic vari-
ables in hybrid Bayesian networks with MTE
potentials, the following theorem is required.

Theorem 5. If φ1 is a joint MTE potential
for {X, Y }, an MTE potential φ for

W = a1 · x + a2 · y + b

can be formed from the convolution of φ1.

4 Join Tree Operations with
Linearly Deterministic Variables

Suppose we have a node in a join tree created
from a hybrid Bayesian network containing a set
of variables X = (X1, ..., XN ). Assume a vari-
able Xi ∈ X is a linear deterministic function
of its continuous parents (Z1, ...ZK) ⊂ X, i.e.

Xi = g(z1, ..., zK) = w + b ,

where

w =
K∑

k=1

ak · zk

with a1, ..., ak and b defined as real numbers.
The joint PDF for {Xi, Z1, ..., ZK} does not

exist; however, we can find the marginal PDF
for Xi by using the operations defined in Sec-
tion 3 as follows:

fXi(xi) = (fW (w) ⊗ pXi|w(xi))↓Xi ,

where the PDF fW (w) is obtained by repeated
application of the method of convolutions.

Example 5.

Consider the Bayesian network depicted in
Figure 3. Suppose X ∼ N(0, 1), Y ∼
N(1, 1), and Z is a conditionally determin-
istic function of its parents, Z | x, y ∼
N(2 + x − y, 0). The objective is to find
the marginal PDF for Z.

YX

Z

Figure 3: The Bayesian network for Example 5.
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Figure 4: The marginal PDF for Z in Example
5.

Using the PDF for X and the PDF for Y ,
we next create the PDF for Z = x−y+2 us-
ing the method of convolutions as follows:

fZ(z) =
∫ ∞

−∞
fX,Y (x, x − z + 2) dx .

Note that in this case, since X and Y
are independent, fX,Y (x, y) = fX(x)fY (y).
Thus, the calculation above can be simpli-
fied to

fZ(z) =
∫ ∞

−∞
fX(x)fY (x − z + 2) dx .

The marginal PDF for Z (shown in Fig-
ure 4) was created by approximating the
normal PDF’s in this example with the
MTE approximation to the normal PDF
presented in Cobb and Shenoy (2003). The
mean and variance of this marginal PDF
are 1.0000 and 1.9638. All answers pre-
sented in this example are comparable to
those obtained by solving the problem with
Hugin software.

Suppose we obtain evidence that Z = 3.
Since the existing potential for Z states
that Z = 2 + x − y, the evidence dictates
new deterministic relationships X−Y = 1,
X = Y + 1, and Y = X − 1.



Z

YX

Figure 5: The revised Bayesian network for Ex-
ample 5 after observing evidence on Z.

The variables X and Y are no longer inde-
pendent and now have a conditionally de-
terministic linear relationship. The revised
Bayesian network is depicted in Figure 5.
To calculate the revised marginal distribu-
tion for X—denoted fXev(x)— we combine
the prior distribution for X with the distri-
bution created by applying the linear CDF
marginalization operator in (6) to the prior
distribution for Y . This is done as follows

fXev(x) = K−1fX(x) · (fY (y) ⊗ pX|y(x))↓X

= K−1fX(x) · fY (x − 1) .

The normalization constant, K, is calcu-
lated as K = fZ(3) = 0.103815 and rep-
resents the likelihood of the observed evi-
dence. The expected value and variance of
the posterior marginal PDF for X are cal-
culated as 1.0000 and 0.5004, respectively.

To calculate the revised marginal distribu-
tion for Y —denoted fYev(y)— we combine
the prior distribution for Y with the distri-
bution created by applying the linear CDF
marginalization operator in (6) to the prior
distribution for X. This is done as follows

fYev(y) = K−1fY (y) · (fX(x) ⊗ pY |x(y))↓Y

= K−1fY (y) · fX(y + 1) .

The function (fX(x) ⊗ pY |x(y))↓Y is con-
structed by reversing the arc between X
and Y in Figure 5. The same normalization
constant, K, used to calculate the poste-
rior distribution for X remains valid. The

expected value and variance of the poste-
rior marginal PDF for Y are calculated as
0.0000 and 0.5004, respectively.

5 Example

The Bayesian network in this example (shown
in Figure 7) contains one variable (A) which fol-
lows a beta distribution, one variable (C) with a
Gaussian potential, and one variable (B) which
is a deterministic linear function of its parent.
All probability potentials are approximated in
the calculations by MTE potentials.

5.1 Representation

The probability distribution for A is a beta dis-
tribution, i.e. £(A) ∼ Beta(2.7, 1.3). The PDF
for A is approximated (using the methods de-
scribed in (Cobb et al., 2003)) by an MTE po-
tential as follows:

α(a) = P (A) =




−5.951669 + 5.573316 exp{0.461388a}
−0.378353 exp{ − 6.459391a}

if 0 < a < d−

0.473654 − 6.358483 exp{ − 2.639474a}
+2.729395 exp{ − 0.331472a}

if d− ≤ a < m

1.823067 − (5.26E − 12) exp{26.000041a}
+0.035775 exp{0.529991a}

if m ≤ a < 1

0 elsewhere.

where m = (1 − α)/(2 − α − β) = 0.85 and

d− = (α−1)(α+β−3)−
√

(β−1)(α−1)(α+β−3)

(α+β−3)(α+β−2) = 0.493.

The MTE potential for A is shown graph-
ically in Figure 6, overlayed on the actual
Beta(2.7, 1.3) distribution.

The probability distribution for B is defined
as £(B | a) ∼ N(2a + 1, 0). The conditional
distribution for B is represented by a CMF as
follows:
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Figure 6: The MTE potential for A overlayed
on the actual Beta(2.7, 1.3) distribution.

CA B

Figure 7: The Bayesian network for the example
problem.

β(a, b) = pB|a(b) = 1{b = 2a + 1} .

The probability distribution for C is defined
as £(C | b) ∼ N(2b + 1, 1).

5.2 Computing Messages

The join tree for the example problem is shown
in Figure 8.

The messages required to calculate posterior
marginals for each variable in the network with-
out evidence are as follows:

1) α from {A} to {A, B}
2) (α ⊗ β)↓B from {A, B} to {B} and
{B} to {B,C}
3) ((α ⊗ β)↓B ⊗ δ)↓C from {B,C} to
{C}

5.3 Posterior Marginals

The posterior marginal distribution for B is the
message sent from {A, B} to {B,C}. The ex-

B {B,C} CA {A,B}

Ceα β δ

Figure 8: The join tree for the example problem.
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Figure 9: The posterior marginal distributions
for B (left) and C (right).

pected value and variance of this distribution
are calculated as 2.3488 and 0.1758, respec-
tively. The posterior marginal distribution for
C is the message sent from {B,C} to {C}. The
expected value and variance of this distribu-
tion are calculated as 5.6975 and 1.6851, respec-
tively. The posterior marginal distributions for
B and C are shown graphically in Figure 9.

5.4 Entering Evidence

Assume evidence exists that c = 6 and define
eC = 6. Define η = (α ⊗ β)↓B and ϑ(a, b) =
1{0.5b − 0.5} as the potentials resulting from
the reversal of the arc between A and B. The
evidence eC = 6 is passed from {C} to {B,C}
in the join tree, where the existing potential is
restricted to δ(b, 6). This likelihood potential is
passed from {B,C} to {B} in the join tree.

Denote the unnormalized posterior marginal
distribution for B as ξ′(b) = η(b) · δ(b, 6). The
normalization constant is calculated as K =∫

b
(η(b) · δ(b, 6)) db = 0.2344 and represents the

probability of the observed evidence. Thus,
the normalized marginal distribution for B is
found as ξ(b) = K−1 · ξ′(b). The expected value
and variance of this distribution (which is dis-
played in Figure 10) are calculated as 2.5049
and 0.0771, respectively.

Using the results of Proposition 1, we deter-
mine the posterior marginal distribution for A.
Define θ = (ξ ⊗ ν)↓A as:

θ(a) =
1

0.5
ξ (2a + 1) .

The CMF ν(a, b) = 1{2a + 1} is obtained by
reversing the arc between A and B in Figure 7.
The expected value and variance of this distri-
bution are calculated as 0.7525 and 0.0193, re-
spectively. The posterior marginal distribution
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Figure 10: The posterior marginal distribution
for B considering the evidence c = 6.
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Figure 11: The posterior marginal distribution
for A considering the evidence (c = 6).

for A considering the evidence is shown graphi-
cally in Figure 11.

6 Summary and Conclusions

This paper has described operations required for
inference in hybrid Bayesian networks contain-
ing variables that are deterministic functions of
their parents. Since the joint PDF for a network
with deterministic variables does not exist, the
operations presented are derived from CDF’s.
In future work, we plan to create a general in-
ference algorithm using these operations so that
Bayesian networks with deterministic variables
can be more widely implemented.
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