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Abstract
The main goal of this paper is to describe a data
structure called binary join trees that are useful in
computing multiple marginals efficiently using
the Shenoy-Shafer architecture. We define binary
join trees, describe their utility, and sketch a
procedure for constructing them.

1  INTRODUCTION
The main goal of this paper is to describe a data structure
called binary join trees that are useful in computing
multiple marginals efficiently using the Shenoy-Shafer
architecture. We define binary join trees, describe their
utility, and sketch a procedure for constructing them.

In the last decade, much work has been done in the
uncertain reasoning community on exact computation of
marginals using local computation [see, e.g., Pearl 1986,
Kong 1986, Lauritzen and Spiegelhalter 1988, Shenoy and
Shafer 1990, Jensen et al. 1990]. The main idea behind
local computation is to compute marginals of the joint
distribution without actually computing the joint
distribution. Local computation can be described as
message passing in data structures called join trees. Join
trees are also called junction trees [Jensen et al. 1990],
clique trees [Lauritzen and Spiegelhalter 1988], qualitative
Markov trees [Shafer et al. 1987], and hypertrees [Shenoy
and Shafer 1990].

The efficiency of the message-passing algorithms depend
on the sizes of the subsets in a join tree. The problem of
finding a join tree that minimizes the size of the largest
subset has been shown to be NP-complete [Arnborg et al.
1987]. Consequently, much attention has been devoted to
finding heuristics for constructing good join trees [see,
e.g., Olmsted 1983, Kong 1986, Mellouli 1987, Zhang
1988, Kjærulff 1990].

In this paper, we focus on another aspect of join trees, the
number of neighbors of nodes in a join trees. If a node in
a join tree has many neighbors, then it leads to much
inefficiencies in the Shenoy-Shafer architecture. This
motivates the definition of binary join trees which is a
join tree such that no node has more than three neighbors.

The main idea behind a binary join tree is that all
combinations are done on a binary basis, i.e., we combine
functions two at a time.

Local computation has also been studied in many other
domains besides uncertain reasoning such as solving
systems of equations [Rose 1970], optimization [Bertele
and Brioschi 1972], and relational databases [Beeri et al.
1983]. In order to keep the applicability of the results as
wide as possible, we describe our work using the abstract
framework of valuation networks [Shenoy 1989, 1992].

An outline of this paper is as follows. Section 2
introduces the valuation network framework. Section 3
describes the Shenoy-Shafer architecture for computing
multiple marginals. Section 4 introduces the concept of
binary join trees and its utility in reducing the
computational effort of computing multiple marginals.
Finally Section 5 contains concluding remarks.

2  THE VALUATION NETWORK
FRAMEWORK
This section describes the abstract valuation network (VN)
framework [Shenoy 1989, 1992]. In a VN, we represent
knowledge by entities called valuations, and we make
inferences using two operators called marginalization and
combination that operate on valuations.

2.1 VARIABLES AND CONFIGURATIONS

We use the symbol ΩX for the set of possible values of a
variable X, and we call ΩX the state space for X. We are
concerned with a finite set Ψ of variables, and we assume
that all the variables in Ψ have finite state spaces. We use
upper-case Roman letters such as X, Y, Z, etc., to denote
variables, and we use italicized lower-case Roman letters
such as r, s, t, etc., to denote sets of variables.

Given a nonempty set s of variables, let Ωs denote the
Cartesian product of ΩX for X ∈ s; Ωs = ×{ΩX | X ∈ s}.
We call Ωs the state space for s. We call the elements of
Ωs configurations of s. We use lower-case, bold-faced
letters such as x, y, z, etc., to denote configurations.
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2.2 VALUATIONS

Given a subset s of variables (possibly empty), there is a
set ϑs. We call the elements of ϑs valuations for s. Let ϑ
denote the set of all valuations, i.e., ϑ = ∪{ϑs | s ⊆ Ψ}. If
σ is a valuation for s, we say s is the domain of σ. We
use lower-case Greek letters such as ρ, σ, τ, etc., to denote
valuations.

2.3 MARGINALIZATION

We assume that for each nonempty s ⊆ Ψ, and for each X
∈ s, there is a mapping ↓(s − {X}): ϑs → ϑs – {X}, called
marginalization to s −{X}, such that if σ is a valuation for
s, then σ↓(s – {X}) is a valuation for s − {X}. We call
σ↓(s – {X}) the marginal of σ for s − {X}.

2.4 COMBINATION

We assume there is a mapping ⊗:ϑ×ϑ → ϑ, called
combination, such that if ρ and σ are valuations for r and
s, respectively, then ρ⊗σ is a valuation for r∪s.

In summary, a valuation network consists of a 5-tuple
{Ψ, {ΩX}X∈Ψ, {τ1, ..., τm}, ↓, ⊗} where Ψ is a set of
variable, {ΩX}X∈Ψ is a collection of state spaces, {τ1, ...,
τm} is a collection of valuations, ↓ is the marginalization
operator, and ⊗ is the combination operator.

2.5 MAKING INFERENCE IN VN

In a VN, the combination of all valuations is called the
joint valuation. Given a VN, we make inferences by
computing the marginal of the joint valuation for each
variable of interest. If the marginalization and
combination operations satisfy some axioms [Shenoy and
Shafer 1990], then we can compute the marginals of the
joint valuation locally using the Shenoy-Shafer
architecture. This is described in the next section.

3  COMPUTING MULTIPLE MARGINALS
In this section, we briefly describe the Shenoy-Shafer
architecture [Shenoy and Shafer 1990] for computing
multiple marginals of the joint valuation using local
computation.

In the Shenoy-Shafer architecture, first we construct a join
tree, and then we propagate the valuations in the join tree.

3.1 JOIN TREES

A join tree is a tree whose nodes are subsets of Ψ such
that if a variable is in two distinct nodes, then it is in
every node on the path between the two nodes [Maier

1983]. The construction of a join tree from a VN is
described in [Shenoy 1991, Lauritzen and Shenoy 1996].
Join trees are useful data structures to cache computation.

3.2 PROPAGATION IN JOIN TREES

Once we have a join tree, we associate each valuation with
a node in the join tree and we propagate the valuations
using two rules as follows.

3.2.1 Rule 1 (Messages)

Each node sends a message to each of its neighbors.
Suppose µr→s denotes the message from r to s, suppose
Ν(r) denotes the neighbors of r in the join tree, and
suppose the valuation associated with node r is denoted by
αr, then the message from node r to its neighboring node
s is given as follows:

µr→s = (⊗{µt → r | t ∈ (N(r) – {s})}⊗αr)↓r∩s

In words, the message that r send to its neighbor s is the
combination of all messages that r receives from its other
neighbors together with its own valuation suitably
marginalized. Regarding timing, it is clear that node r
sends a message to neighbor s only when r has received a
message from each of its other neighbors. A leaf of the
join tree has only one neighbor, and therefore it can send a
message to its neighbor right away without waiting for
any messages.

3.2.2 Rule 2 (Marginals)

When a node r has received a message from each of its
neighbors, it combines all messages together with its own
valuation and reports the results as its marginal. If ϕ
denotes the joint valuation, then

ϕ↓r = ⊗{µt → r | t ∈ N(r)}⊗αr

Using Rules 1 and 2, we can compute the marginal of the
joint for each subset in the join tree.

Rules 1 and 2 suggest an architecture shown in Figure 1.
Each node in the join tree would have two storage
registers, one for the input valuation, and one for
reporting the marginal of the joint. Also, each edge in the
join tree would have two storage registers for the two
messages, one in each direction.

4  BINARY JOIN TREES
In this section, we introduce the concept of a binary join
tree.

A binary join tree is a join tree such that no node has
more than three neighbors. To explain the importance of a
binary join tree, we will describe by means of an example,
the inefficiencies of computation in a non-binary join tree.



4.1 EXAMPLE 1

Consider a valuation network consisting of four variables
W, X, Y, and Z, and four valuations α for {W, X}, β for
{W, Y}, γ for {W, Z}, and δ for {X, Y, Z}. A non-binary
join tree with the messages between adjacent nodes is
shown in Figure 2. We make some observations about
inefficiencies of computation in this non-binary join tree.

4.1.1 Domain of Combination

First, consider the message (α⊗β⊗γ)↓{X, Y, Z} (from {W,
X, Y, Z} to {X, Y, Z}). The computation of this message
involves combination of the valuations α, β, and γ on the
domain {W, X, Y, Z}. In general, combination of m
valuations on a domain with n configurations involves
computation that is linear in m–1 and a monotonic
increasing function of n. Suppose that W has 2 states, X
has 3 states, and Y has 4 states and Z has 5 states. Then
the state space of {W, X, Y, Z} has 120 configurations.
Instead of combining α, β, and γ on the domain {W, X,
Y, Z} that has 120 configurations, it is more efficient to
first combine α and β on domain {W, X, Y} with 24
configurations, and next combine α⊗β with γ on the
domain {W, X, Y, Z} with 120 configurations. A similar
observation can be made for the message
(α⊗β⊗δ)↓{W, Z}.

4.1.2 Non-Local Combination

Second, consider the message (β⊗γ⊗δ)↓{W, X}. Notice
that Z is in the domain of γ and δ, but not in the domain
of β. Thus it follows from one of the axioms that
(β⊗γ⊗δ)↓{W, X} = (β⊗(γ⊗δ)↓{W, X, Y})↓{W, X}. It is
computationally more efficient to compute
(β⊗(γ⊗δ)↓{W, X, Y})↓{W, X} than to compute
(β⊗γ⊗δ)↓{W, X}. Similarly, instead of computing
(α⊗γ⊗δ)↓{W, Y}, it is more efficient to compute instead
(α⊗(γ⊗δ)↓{W, X, Y})↓{W, Y}.

4.1.3 Repetition of Combinations

Third, consider the messages (α⊗β⊗γ)↓{X, Y, Z} and
(α⊗β⊗δ)↓{W, Z}. Notice that if these two messages are
computed separately, then the combination of α and β is
repeated. Also for messages (β⊗γ⊗δ)↓{W, X} and
(α⊗γ⊗δ)↓{W, Y}, the combination of γ and δ is repeated
[Xu 1991, Xu and Kennes 1994].

Now consider a binary join tree for the same VN as shown
in Figure 3. Compared to the non-binary join tree of
Figure 2, the binary join tree has an additional node {W,
X, Y} and an additional edge {{W, X, Y}, {W, X, Y, Z}}.

First, notice that α⊗β is computed on the domain {W, X,
Y} (as a message from {W, X, Y} to {W, X, Y, Z})
before we compute (α⊗β⊗γ)↓{X, Y, Z} (as a message from
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Figure 1: An Architecture for Computing Multiple Marginals



{W, X, Y, Z} to {X, Y, Z}) and (α⊗β⊗δ)↓{W, Z} (as a
message from {W, X, Y, Z} to {W, Z}). Thus we avoid
combining valuations on domains bigger than is
necessary.

Second, instead of computing (β⊗γ⊗δ)↓{W,X}, we
compute (β⊗(γ⊗δ)↓{W, X, Y})↓{W, X}, and instead of
computing (α⊗γ⊗δ)↓{W, Y}, we compute (α⊗(γ⊗δ)↓{W,

X, Y})↓{W, Y}. Thus the messages are computed locally.

Third, the combination (γ⊗δ)↓{W, X, Y} that appears in
messages (β⊗(γ⊗δ)↓{W, X, Y})↓{W, X} and
(α⊗(γ⊗δ)↓{W, X, Y})↓{W, Y} is computed only once.
Also, the combination α⊗β is computed only once for the
messages (α⊗β⊗γ)↓{X, Y, Z} and (α⊗β⊗δ)↓{W, Z}. Thus
we avoid repetition of combinations.

For these three reasons, binary join trees are a more
efficient way to organize the computations than non-
binary join trees.

How does one construct a binary join tree? We will
describe a technique based on the idea of binary
combination.

4.2 JOIN TREE CONSTRUCTION USING
BINARY COMBINATION

We need to structure the join tree so that we combine
valuations two at a time. The following procedure does
not guarantee a binary join tree. However, it attempts to
reduce the number of neighbors of a node.

Let Ψ denote the set of variables, let Φ denote the set of
subsets of variables for which we have valuations or the
subsets for which we need marginals, let Ν denote the
nodes of the binary join tree, and Ε denote the edges of the
binary join tree, let | Φ | denote the number of elements of
set Φ, and let || s || denote the number of elements of the
state space of subset s. A procedure in pseudocode for
constructing a join tree (N, E) using binary combination
is as follows.

4.2.1 Procedure

INPUT: Ψ, Φ
OUTPUT: Ν, Ε
INITIALIZATION
Ψu ← Ψ {Ψu denotes the set of variables in Ψ that
have not yet been deleted}
Φu ← Φ {Φu denotes the subsets in Φ that have not
yet been arranged in the join tree}
Ν ← ø
Ε ← ø
DO WHILE | Φu | > 1

Pick a variable Y ∈ Ψu
ΦY ← {si ∈ Φu | Y ∈ si}.
DO WHILE | ΦY | > 1
s1 ← si and s2 ← sj where si, sj ∈ ΦY and
||si ∪ sj|| ≤ ||sp ∪ sq|| for all sp,  sq ∈ ΦY
IF s1 ⊆ s2, THEN
Ν ← Ν ∪ {s1, s2}
Ε ← Ε ∪ {{s1, s2}}

{W, X, Y, Z}

{W, X}

α

{W, Y} β

{W, Z}

γ

{X, Y, Z}δ

α

β

γ

δ

(α⊗β⊗γ)↓{X, Y, Z}

(β⊗γ⊗δ)↓{W, X}

(α⊗γ⊗δ)↓{W, Y}

(α⊗β⊗δ)↓{W, Z}

Figure 2: A Non-Binary Join Tree for the VN in Example 1



ΦY ← ΦY − {s1}
ELSE
Ν ← Ν ∪ {s1, s2, s1∪s2}
Ε ← Ε ∪ {{s1, s1∪s2}, {s2, s1∪s2}}
ΦY ← ΦY − {s1, s2} ∪ {s1∪s2}
END IF
END DO
s ← si where {si} = ΦY
Ν ← Ν ∪ {s} ∪ {s – {Y}}
Ε ← Ε ∪ {{s, s – {Y}}}
Φu ← Φu ∪ {s – {Y}} – {si ∈ Φu | Y ∈ si}

END DO
Ν ← Ν ∪ Φu
END

4.3 EXAMPLE 2

Consider a valuation network with valuations as follows:
δ for {D}, σ1 for {D, S1}, σ2 for {D, S2}, σ3 for {D, S3},
σ4 for {D, S4}, ο1 for {S1}, and ο2 for {S2}. Suppose we
need the marginal of the joint for all five variables. If we
implement the binary combination procedure for the
collection Φ = {{D}, {D, S1}, {D, S2}, {D, S3}, {D, S4},
{S1}, {S2}, {S3}, {S4}} using deletion sequence
S1S2S3S4, the resulting join tree displayed in Figure 4 is
non-binary.

Figure 4 also displays the messages computed using
Rules 1 and 2 for the marginals of each variable in the
VN. Notice that although the join tree is non-binary, the
computation of the messages does not exhibit the
inefficiencies labeled domain of combination and non-local
combination exhibited by Example 1. However, notice
that the messages from node {D} to its four neighbors
does exhibit the inefficiency labeled repetition of
combinations. For example, the message from {D} to {D,

S1} and the message from {D} to {D, S2} share the
combination σ3↓D⊗σ4↓D⊗δ. The processor at node {D}
does 13 combinations in total (3 in each of the 4
messages as shown in Figure 4, and 1 more to compute
the marginal for {D} not shown in Figure 4).

One way to avoid the repetition of combinations is for the
processor at {D} to combine valuations two at a time and
to cache the intermediate results. A more explicit way to
avoid the repetition of combinations is to make the join
tree binary as shown in Figure 5. We create multiple
copies of node {D} and connect them together as shown in
Figure 5. The input valuation δ is associated with only
one {D} node, the {D} node connected to {D, S4}. The
{D} node connected to {D, S1} and {D, S2} does the
combination σ’⊗σ’’ where σ’ = (σ1⊗ο1)↓D and σ’’ =
(σ2⊗ο2)↓D, the {D} node connected to {D, S3} does the
combination σ’’’⊗σ3 where σ’’’ = σ’⊗σ’’, and the {D}
node connected to {D, S4} does the combination σ’’’’⊗δ
where σ’’’’ = σ’’’⊗σ3.

A sketch of the procedure for constructing the binary join
tree shown in Figure 5 is as follows. We start with the
non-binary join tree as shown in Figure 4 obtained by the
binary combination procedure. Next, we designate a node
as the root, say {S4}, and direct the edges toward the root.
Next, we write down the messages computed by each node
for the computation of the marginal for the root. If a node
needs to do more than one combination, we create
multiple copies of the node so that only one binary
combination is necessary at each node. For example, in
the join tree of Figure 4, the message from {D} to {D,
S4} is (σ1⊗ο1)↓D⊗(σ2⊗ο2)↓D⊗σ3↓D⊗δ which consists
of three combination operations. If we perform the three
binary combination at three different {D} nodes as
suggested by ((((σ1⊗ο1)↓D⊗(σ2⊗ο2)↓D)⊗σ3↓D)⊗δ),
then we obtain the binary join tree structure shown in
Figure 5.

{W, X}

α

β{W, Y}{W, X, Y}

{W, Z}

γ

{W, X, Y, Z} {W, Y}{X, Y, Z}δ

α

βα⊗β

γ

(α⊗β⊗γ)↓{X,  Y,  Z}

δ

(α⊗β⊗δ)↓{W, Z}

(γ⊗δ)↓{W,  X, Y} (α⊗(γ⊗δ)↓{W, X,  Y})↓{W,  Y}

(β⊗(γ⊗δ)↓{W,  X,  Y})↓{W, X}

Figure 3: A Binary Join Tree for the VN in Example 1



Notice that the computations of messages in the binary
join tree do not suffer from the repetition of combinations
phenomenon. The processors at the three {D} nodes do a
total of 9 combinations (3 by the {D} node connected to
{D, S1}, 3 by the {D} node connected to {D, S3}, and 3
by the {D} node connected to {D, S4} assuming that this
{D} node computes the marginal for {D}). The messages
are shown in Figure 5, but the computation of the
marginals are not shown.

5  CONCLUSION
The main goal of this paper is to describe a data structure
called binary join trees that are useful in computing
multiple marginals efficiently using local computation.
We define binary join trees, describe their utility, and
sketch a procedure for constructing them.

The join tree construction process described here is
superficially different from the method described in

Lauritzen and Spiegelhalter [1988] which consists of
moralizing a directed acyclic graph, triangulating the
moral graph using the maximum cardinality search
method, and then arranging the cliques of the triangulated
moral graph in a join tree. Instead of starting from a
directed acyclic graph, we start with a more general
setting—a hypergraph consisting of all subsets for which
we have valuations (this is roughly the same as the
cliques of a moral graph) and all subsets for which we
desire marginals, and then we use the fusion algorithm
[Shenoy 1992, Cannings et al. 1978] as a guide for
constructing a join tree. Alternative procedures for join
tree construction have been suggested by Draper [1995].

A join tree can be regarded as a data structure to organize
the computations involved in computing multiple
marginals. Binary join trees further refine the data
structure so that unnecessary computations are minimized.
In particular, we identify three sources of inefficiencies
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associated with non-binary join trees that are eliminated in
binary join trees.

A complete version of this paper [Shenoy 1995] is
available via anonymous ftp from the author’s www
homepage.
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