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ABSTRACT

The main goal of this paper is to describe a data structure called binary join trees
that are useful in computing multiple marginals efficiently in the Shenoy-Shafer
architecture. We define binary join trees, describe their utility, and describe a
procedure for constructing them.

Key Words: local computation, fusion algorithm, join trees, binary join trees

1  INTRODUCTION

The main goal of this paper is to describe a data structure called binary join trees that are useful in

computing multiple marginals efficiently in the Shenoy-Shafer architecture [Shenoy and Shafer

1990]. We define binary join trees, describe their utility, and describe a procedure for constructing

them.

In the last decade, much work has been done in the uncertain reasoning community on exact

computation of marginals using local computation [see, e.g., Pearl 1986, Kong 1986, Lauritzen

and Spiegelhalter 1988, Dempster and Kong 1988, Shenoy and Shafer 1990, Jensen et al. 1990,

Almond 1995, Lauritzen and Jensen 1996, Shafer 1996]. The main idea behind local computation

is to compute marginals of the joint distribution without actually computing the joint distribution.

Local computation can be described as message passing in data structures called join trees. Join

trees are also called junction trees [Jensen et al. 1990], clique trees [Lauritzen and Spiegelhalter

1988], qualitative Markov trees [Shafer et al. 1987], and hypertrees [Shenoy and Shafer 1990].

The efficiency of the message-passing algorithms depend on the sizes of the subsets in a join

tree. The problem of finding a join tree that minimizes the size of the largest subset has been shown

to be NP-complete [Arnborg et al. 1987]. Consequently, much attention has been devoted to

finding heuristics for constructing good join trees [see, e.g., Olmsted 1983, Kong 1986, Mellouli

1987, Zhang 1988, Kjærulff 1990].
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In this paper, we focus on another aspect of join trees, the number of neighbors of nodes in a

join trees. If a node in a join tree has many neighbors, then it leads to much inefficiencies,

especially in the Shenoy-Shafer architecture. This motivates the definition of binary join trees

which is a join tree such that no node has more than three neighbors. The main idea behind a

binary join tree is that all combinations are done on a binary basis, i.e., we combine functions two

at a time.

Local computation has also been studied in many other domains besides uncertain reasoning

such as solving systems of equations [Rose 1970], optimization [Bertele and Brioschi 1972], and

relational databases [Beeri et al. 1983]. In order to keep the applicability of the results as wide as

possible, we describe our work using the abstract framework of valuation networks [Shenoy

1989, 1992a, 1994a, 1994b, 1994c].

An outline of this paper is as follows. Section 2 introduces the framework of valuation

networks. Section 3 describes three axioms that enable local computation. Section 4 describes a

fusion algorithm for computing a marginal of the joint valuation. Section 5 describes the fusion

algorithm in terms of message passing in join trees. Section 6 describes a message passing

algorithm for computing multiple marginals—the Shenoy-Shafer architecture. Section 7 introduces

the concept of binary join trees, its utility in reducing the number of combinations done in

computing marginals, and a procedure for constructing them. Finally Section 8 contains

concluding remarks.

2  THE VALUATION NETWORK FRAMEWORK

This section describes the abstract valuation network (VN) framework. In a VN, we represent

knowledge by entities called valuations, and we make inferences using two operators called

marginalization and combination that operate on valuations.

Variables and Configurations. We use the symbol WX for the set of possible values of a

variable X, and we call WX the state space for X. We are concerned with a finite set Y of

variables, and we assume that all the variables in Y have finite state spaces. We use upper-case

Roman letters such as X, Y, Z, etc., to denote variables, and we use italicized lower-case Roman

letters such as r, s, t, etc., to denote sets of variables.

Given a nonempty set s of variables, let Ws denote the Cartesian product of WX for X Î s; Ws =

´{ WX | X Î s} . We call Ws the state space for s. We call the elements of Ws configurations of s.

We use lower-case, bold-faced letters such as x, y, z, etc., to denote configurations.

It is convenient to extend this terminology to the case where the set s is empty. We adopt the

convention that the state space for the empty set ø consists of a single configuration, and we use

the symbol ̈  to name that configuration; Wø = {¨}.
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Valuations. Given a subset s of variables (possible empty), there is a set Js. We call the

elements of Js valuations for s. Let J denote the set of all valuations, i.e., J = È{ Js | s Í Y }. If

s is a valuation for s, we say s is the domain of s. We use lower-case Greek letters such as r, s,

t, etc., to denote valuations.

Valuations are primitives in the VN framework and as such require no definition. But, as we

shall see shortly, they are entities that can be combined (with other valuations) and marginalized.

Intuitively, a valuation for s represents some knowledge about the variables in s.

In probability theory, valuations are called probability potentials. A probability potential for r

is a function r: Wr ® [0, 1]. In Dempster-Shafer’s belief function theory, valuations are called bpa

potentials. A bpa potential for m is a function m: 2Wm ® [0, 1], where 2Wm denotes the set of all

nonempty subsets of Wm. In Spohn’s epistemic belief theory, valuations are called disbelief

potentials. A disbelief potential for d is a function d: Wd ® N, where N is the set of natural

numbers. In Zadeh’s possibility theory, valuations are called possibility potentials. A possibility

potential for p is a function p: Wp ® [0, 1].

Marginalization . We assume that for each nonempty s Í Y, and for each X Î s, there is a

mapping ̄ (s - {X}):  Js ® Js – {X} , called marginalization to s – {X}, such that if s is a valuation

for s, then s¯(s – {X})  is a valuation for s – {X}. We call s¯(s – {X})  the marginal of s for s – {X}.

Intuitively, marginalization corresponds to coarsening of knowledge. If s is a valuation for s

representing some knowledge about variables in s, and X Î s, then s¯(s – {X}) represents the

knowledge about variables in s – {X} implied by s if we disregard variable X.

For probability potentials, marginalization from s to s – {X} is addition over the state space for

X. For bpa potentials, marginalization from s to s – {X} is addition over the subsets of the state

space for s that include {X}. For disbelief potentials, marginalization from s to s – {X} is

minimization over the state space for X. And for possibility potentials, marginalization from s to

s – {X} is maximization over the state space for X.

Combination. We assume there is a mapping Ä:J´J ® J, called combination, such that

if r and s are valuations for r and s, respectively, then rÄs is a valuation for rÈs.

Intuitively, combination corresponds to aggregation of knowledge. If r and s are valuations

for r and s representing knowledge about variables in r and s, respectively, then rÄs represents

the aggregated knowledge about variables in rÈs.

For probability potentials, combination is pointwise multiplication followed by normalization if

normalization is possible, and no normalization if normalization is not possible. For bpa potentials,

combination is the product-intersection rule followed by normalization if normalization is possible,

and no normalization if normalization is not possible. This rule is also known as Dempster’s rule

[Dempster 1966]. For disbelief potentials, combination is pointwise addition followed by

normalization [Shenoy 1991a]. And for possibility potentials, combination is multiplication
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followed by normalization if normalization

is possible, and no normalization if

normalization is not possible [Shenoy

1992b].

In summary, a valuation network

consists of a 5-tuple { Y, {WX} XÎY, {t1,

..., tm}, ¯, Ä}  where Y is a set of

variable, {WX} XÎY is a collection of state

spaces, {t1, ..., tm} is a collection of

valuations, ̄  is the marginalization

operator, and Ä is the combination

operator.

Example 1. (Chest Clinic) Consider

Lauritzen and Spiegelhalter’s [1988]

medical example:

Shortness-of-breath (dyspnoea)

may be due to tuberculosis, lung

cancer or bronchitis, or none of

them, or more than one of them. A

recent visit to Asia increases the

chances of tuberculosis, while

smoking is known to be a risk

factor for both lung cancer and bronchitis. The results of a single chest X-ray do not

discriminate between lung cancer and tuberculosis, as neither does the presence or absence

of dyspnoea.

This needs to be applied to the following hypothetical situation. A patient presents at a chest

clinic with dyspnoea, and has recently visited Asia. The doctor would like to know the chance that

each of the diseases is present.

In this example, we have eight variables—A (visit to Asia), S (Smoking), T (Tuberculosis), L

(Lung cancer), B (Bronchitis), E (Either tuberculosis or lung cancer), X (positive X-ray), and D

(Dyspnoea). Prior to any observations, we have eight valuations—a for {A}, s for {S}, t for {A,

T}, l for {S, L}, b for {S, B}, e for {T, L, E}, x for {E, X}, and d for {E, B, D}. In VNs,

observations are also modeled as valuations. Suppose, for example, we observe that a patient has

visited Asia recently, and is suffering from Dyspnoea. These two observations can be modeled as

valuations oA for {A} and oD for {D}, respectively. ■

Figure 1. The valuation network for Example 1.
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Valuation Networks. A graphical display of a valuation network is also called a valuation

network. In a valuation network, variables are represented by circular nodes, and valuations are

represented by rectangular nodes. Also, each valuation node is connected by an undirected edge to

each variable node in its domain. Figure 1 shows the valuation network for Example 1.

Making Inference in VN. In a VN, the combination of all valuations is called the joint

valuation. Given a VN, we make inferences by computing the marginal of the joint valuation for

each variable of interest.

If there are n variables in a VN, and each variable has two configurations in its state space, then

there are 2n configurations of all variables. Hence, it is not computationally tractable to compute the

joint valuation when there are a large number of variables. In Section 4, we describe an algorithm

for computing the marginal of the joint valuation for a variable without explicitly computing the

joint valuation. To ensure that this algorithm gives us the correct answers, we require that

marginalization and combination satisfy some axioms. The axioms are described in the next

section.

3  AXIOMS FOR LOCAL COMPUTATION

In this section, we state three axioms that enable efficient local computation of marginals of the

joint valuation. These axioms were first formulated by Shenoy and Shafer [1990]. Other axiomatic

systems have been defined by Shafer [1991] and Cano et al. [1993].

Axiom A1 (Order of deletion does not matter): Suppose s is a valuation for s, and

suppose X1, X2 Î s. Then

(s¯(s – {X1} ))¯(s – {X1, X2} ) = (s¯(s – {X2} ))¯(s – {X1, X2} ).

Axiom A2 (Commutativity and associativity of combination): Suppose r, s, and t are

valuations for r, s, and t, respectively. Then

rÄs = sÄr, and rÄ(sÄt) = (rÄs)Ät.

Axiom A3 (Distributivity of marginalization over combination): Suppose r and s are

valuations for r and s, respectively, suppose X Î s, and suppose X Ï r. Then

(rÄs)¯((rÈs) – {X})  = rÄ(s¯(s – {X}) ).

If we regard marginalization as a coarsening of a valuation by deleting variables, then Axiom

A1 says that the order in which the variables are deleted does not matter. Thus variables can be

deleted in any order. One implication of this axiom is that (s¯(s – {X1} ))¯(s – {X1, X2} ) can be written

simply as s¯(s – {X1, X2} ), i.e., we need not indicate the order in which the variables are deleted.
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Axiom A2 allows us to combine valuations in any order. One implication of this axiom is that

when we have multiple combinations of valuations, we can write it without using parenthesis. For

example, (...((s1Äs2)Äs3)Ä...Äsm) can be written simply as Ä{ si | i = 1, ..., m} or as

s1Ä...Äsm, i.e., we need not indicate the order in which the combinations are carried out.

Another implication of Axiom A2 is that the set of valuations and the combination operator can be

regarded as a commutative semigroup.

Axiom A3 is the axiom that makes local computation possible. Axiom A3 states that

computation of (rÄs)¯((rÈs) – {X})  can be accomplished without having to compute rÄs. Notice

that rÄs is a valuation for rÈs whereas rÄ(s¯(s – {X}) ) is a valuation for (rÈs) – {X}.

4  COMPUTING A MARGINAL USING THE FUSION
ALGORITHM

In this section, we describe the fusion algorithm for computing the marginal for a variable using

local computation [Shenoy 1992a]. The fusion algorithm was first described by Cannings et al.

[1978] in the context of probability models in genetics, and they called their procedure “peeling.”

Suppose { { t1, ..., tm}, ¯, Ä}  is a VN with m valuations. Suppose that marginalization and

combination satisfy the three axioms stated in Section 4. Suppose we need to compute the marginal

of the joint valuation for subset t, (t1Ä...Ätm)¯t. The basic idea of the fusion algorithm is to

successively delete all variables in Y – t from the VN. The variables may be deleted in any

sequence. Axiom A1 tells us that all deletion sequences lead to the same answer. But, different

deletion sequences may involve different computational efforts. We will comment on good deletion

sequences at the end of this section.

First let us deal with the case of deleting one variable. Suppose we have a set of k valuations

s1, ..., sk. Suppose si is a valuation for si. Then s1Ä...Äsk is a valuation for s1È...Èsk. Let Y

Î s1È...Èsk and suppose we wish to delete Y from s1Ä...Äsk. Lemma 1 tells us that we can

accomplish this using local computation.

Lemma 1. Under the assumptions of the previous paragraph,

(s1Ä...Äsk)
¯(s1È...Èsk  - {Y})  = s¯(s - {Y}) Ä(Ä{ si | Y Ï si} )

where s = Ä{ si | Y Î si}, and s = È{ si | Y Î si}.

Lemma 1 follows directly from Axiom A3 by letting r = Ä{ si | Y Ï si}  and s =

Ä{ si  | Y  Î si}.

If s = s1Ä...Äsk, then we say s1, ..., sk are the factors of s. If we compare the factors of

(s1Ä...Äsk)
¯(s1È...Èsk  - {Y})  with the factors of s1Ä...Äsk, we observe that in deleting Y, the
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factors that do not contain Y in their domains remain unchanged and the factors that contain Y in

their domains are first combined and then Y is deleted from the combination. We call this operation

fusion. A formal definition is as follows. Consider a set of k valuations s1, ..., sk. Suppose si is

a valuation for si. Let FusY{ s1, ..., sk} denote the set of valuations after fusing the valuations in

the set {s1, ..., sk} with respect to variable Y. Then

FusY{ s1, ..., sk} = { s¯(s - {Y}) } È{ si | Y Ï si}

where s = Ä{ si | Y Î si}, and s = È{ si | Y Î si}. After fusion, the set of valuations is changed as

follows. All valuations that have Y in their domains are combined, and the resulting valuation is

marginalized such that Y is eliminated from its domain. The valuations that do not have Y in their

domains remain unchanged.

Using the definition of fusion, we can express the result of Lemma 1 as follows:

(s1Ä...Äsk)
¯(s1È...Èsk  - {Y})  = Ä FusY{ s1, ..., sk}

By successively deleting variables, we can find the marginal of the joint for any subset. Axiom

A1 tells us that we can use any sequence. This result is stated formally as follows.

Theorem 1 (Fusion Algorithm) [Shenoy 1992a]. Suppose { { t1, ..., tm}, ¯, Ä}  is a

VN where ti is a valuation for ti, and suppose ¯ and Ä satisfy axioms A1–A3. Let Y

denote t1È...Ètm. Suppose t Í Y, and suppose X1X2...Xn is a sequence of variables in

Y – t. Then

(t1Ä...Ätm)¯t = Ä{ FusXn
{ ... FusX2

{ FusX1
{ t1, ..., tm} } } } .

To illustrate Theorem 1, consider the VN of Example 1. Suppose we need to compute the

marginal of the joint for {T}, i.e., (aÄoAÄsÄtÄlÄbÄeÄxÄdÄoD)¯{T} . Consider the deletion

sequence XASDBLE. First, after fusion with respect to X, we have { a, t, s, l, b, e, x¯{E} , d,

oA, oD} . Second, after fusion with respect to A, we have { (aÄoAÄt)¯{T} , s, l, b, e, x¯{E} , d,

oD} . Third, after fusion with respect to S, we have { (aÄoAÄt)¯{T} , (sÄlÄb)¯{L, B} , e, x¯{E} ,

d, oD} . Fourth, after fusion with respect to D, we have { (aÄoAÄt)¯{T} , (sÄlÄb)¯{L, B} , e,

x¯{E} , (dÄoD)¯{E, B} } . Fifth, after fusion with respect to B, we have { (aÄoAÄt)¯{T} ,

((sÄlÄb)¯{L,  B}Ä(dÄoD)¯{E, B} )¯{L, E} , e, x¯{E} } . Sixth, after fusion with respect to L, we have

{ (aÄoAÄt)¯{T} , (((sÄlÄb)¯{L,  B} Ä(dÄoD)¯{E, B} )¯{L, E} Äe)¯{T, E} , x¯{E} } . Finally, after

fusion with respect to E, we have { (aÄoAÄt)¯{T} ,

[(((sÄlÄb)¯{L,  B}Ä(dÄoD)¯{E, B} )¯{L,  E}Äe)¯{T, E} Äx¯{E} ]¯{T} } . Theorem 4.1 tells us that

(aÄoAÄt)¯{T} Ä[(((sÄlÄb)¯{L,  B}Ä(dÄoD)¯{E, B} )¯{L, E} Äe)¯{T, E} Äx¯{E} ]¯{T}  =

(aÄoAÄsÄtÄlÄbÄeÄxÄdÄoD)¯{T} . The fusion algorithm is shown graphically in Figure 2.
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Figure 2. The fusion algorithm for the VN of Example 1 using deletion sequence XASDBLE.
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Deletion Sequences. Different deletion sequences may involve different computational

efforts. Finding an optimal deletion sequence is a secondary optimization problem that has been

shown to be NP-complete [Arnborg et al. 1987]. But, there are several heuristics for finding good

deletion sequences [Kong 1986, Mellouli 1987, Zhang 1988, Kjærulff 1990].

One such heuristic is called one-step-look-ahead [Olmsted 1983, Kong 1986]. This heuristic

tells us which variable to delete next. As per this heuristic, the variable that should be deleted next

is one that leads to combination over the smallest state space with ties broken arbitrarily. In

particular, if a variable appears in the domain of only one valuation, then such variables should be

deleted first as no combination is involved.

For example, in the VN of Example 1, if we assume that each variable has a state space

consisting of two configurations, then this heuristic would pick X for the first deletion since

deletion of X involves no combination whereas deleting any other variable involves some

combination. The deletion sequence XASDBLE used to illustrate the fusion algorithm is one of the

many deletion sequences suggested by the one-step-look-ahead heuristic.

5  FUSION ALGORITHM AS MESSAGE PASSING IN JOIN
TREES

If we can compute the marginal of the joint valuation for one variable, then we can compute the

marginals for all variables. We simply compute them one after the other. It is obvious, however,

that this will involve much repetition of effort. To avoid this repetition, we will describe the fusion

algorithm as message-passing in join trees. A join tree can be thought of as a data structure that

allows us to organize the computation, and more importantly, that allows us to cache the

computations to avoid repetition of effort. In the next section, we will describe how the join tree

data structure allows us to efficiently compute multiple marginals.

Join Trees. A join tree is a tree whose nodes are subsets of Y such that if a variable is in

two distinct nodes, then it is in every node on the path between the two nodes [Maier 1983]. As we

will see, join trees are useful data structures to cache computation.

Consider again the definition of fusion. Suppose we have valuations s1, ..., sk, where si is a

valuation for si. Suppose the valuations are labeled such that s1, .., sj contain Y and sj+1, ..., sk do

not contain Y. Then

FusY{ s1, ..., sk} = { s¯(s - {Y}) } È{ sj+1, ..., sk}

where s = s1Ä...Äsj, and s = s1È...Èsj. We will now describe the fusion operation as message-

passing in a rooted join tree.
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Suppose that s1, ..., sk, s, and s – {Y} are all distinct subsets of Y. We can describe the

fusion operation as follows. We imagine that s1, ..., sj, s, and s – {Y} are all nodes connected

together in a rooted join tree as shown in Figure 3 where the arrows point toward the root. Nodes

s1, ..., sj have stored in them the valuations s1, ..., sj, respectively. Nodes s and s – {Y} have

nothing stored in them. First nodes s1, ..., sj send messages to their inward neighbor s consisting

of the valuations stored in them. Next, node s first combines all messages it receives from its

outward neighbors, marginalizes the combination s to s¯(s - {Y}) , and sends this valuation as a

message to its inward neighbor s – {Y}. At the end of the fusion operation, we are only concerned

with node s – {Y} with a message s¯(s - {Y}) .

If s – {Y} is not distinct from sj+1, ..., sk, say s – {Y} = sj+1, then the only change we need to

make is that node s – {Y} = sj+1 will have valuation sj+1 stored in it, but this valuation plays no

role in fusion with respect to Y. Also, if not all s1, ..., sj are distinct, say s1 = s2 then we have

only one node for s1 and s2, and we imagine that this node either has two valuations s1 and s2

stored in it or that it has one valuation s1Äs2 stored in it. The basic idea is that any subset of

variables should appear only once in the rooted tree.1

In all cases, the rule for messages is stated as Rule 1.

Rule 1 (Messages). Each node sends a message to its inward neighbor (toward the root).

The message that a node sends to its inward neighbor is as follows. First it combines all

messages it receives from its outward neighbors together with its own valuation (if any).

                                                
1 There is no problem with having a subset appear more than once in a rooted tree. But since there is no need for it
at this stage, we try to avoid it. In Section 7, we will describe binary join trees that have multiple copies of subsets
to make the message passing algorithm more efficient.

Figure 3. Fusion as message-passing in a rooted join tree.

s1

s2

sj

ss–{Y}

s1

s2

sj

s1

s2

sj

s¯(s-{Y})



Fusion Algorithm as Message Passing in Join Trees 11

Next it marginalizes the combination to the intersection of itself with its inward neighbor.

Each node sends a message when it has received messages from all its outward neighbors.

Leaves have no outward neighbors and can send messages right away.

As we continue to delete variables using fusion, we recursively grow the rooted join tree.

When we have deleted all but one variable, say X, we have a rooted join tree with {X} as the root.

A formal description of the process of constructing a join tree is as follows.

Rooted Join Tree Construction. Let Y denote the set of variables, let F denote the set of

subsets of variables for which we have valuations, let |F| denote the number of elements of F, let

N denote the nodes of the rooted join tree, and let E denote the edges of the rooted join tree. A

procedure in pseudocode for constructing a rooted join tree (N, E) for computing the marginal for

{X} is as follows [Shenoy 1991b].

Procedure for Constructing a Rooted Join Tree

INPUT: Y, F

OUTPUT: N, E

INITIALIZATION

Yu ¬ Y – {X} /* Yu denotes the set of variables in Y that have not yet been deleted */

Fu ¬ F /* Fu denotes the subsets in F that have not yet been arranged in the join tree */

N ¬ ø

E ¬ ø

DO WHILE  |Fu| > 1 /* If |Fu| = 1, then we are done */

Pick a variable Y Î Yu /* using some heuristic */

s ¬ È{ si Î Fu | Y Î si} .

N ¬ N È { si Î Fu | Y Î si}  È { s}  È { s – {Y} }
E ¬ E È { (si, s) | si Î [Fu – { s}] , Y Î si}  È { (s, s – {Y}) }
Yu ¬ Yu - {Y}

Fu ¬ [Fu – { si Î Fu | Y Î si}] È { s – {Y} }
END DO

N ¬ N È Fu /* This is needed for the trivial case |F| = 1 */

END

The root node in the rooted join tree has no inward neighbor and does not send a message to

any node. Instead, the root node simply combines all messages it receives from its outward

neighbors resulting in the desired marginal (as per Theorem 1). We describe this as Rule 2.

Rule 2 (Marginal).When the root node has received a message from each of its outward

neighbors, it combines all messages together with its own valuation and reports the result

as its marginal.
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The construction of the join tree and Rules 1 and 2 completely describe the fusion algorithm in

terms of message passing in join trees. Figure 4 illustrates the construction of the join tree and the

messages for computing the marginal for T in the Chest Clinic problem (Example 1).

Figure 4. Fusion algorithm as message passing in a join tree. Valuations shown adjacent to nodes
are the inputs. Valuation shown adjacent to edges are the messages.
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6  COMPUTING MULTIPLE MARGINALS

In this section, we show how we can adapt the message-passing algorithm of the previous section

so we can compute multiple marginals of the joint valuation.

The join tree constructed in the preceding section was rooted only to indicate the direction of

the messages. The directions of the edges served no other purpose. If the join tree constructed for

the computation of the marginal for variable X also contains a node corresponding to singleton

subset {Z}, then the same join tree (with some of the directions changed) will serve for the

computation of the marginal for Z. We simply redirect some of the edges so that {Z} is now the

root (instead of {X}).

For example, for the valuation network of Example 1, if we would like the marginal of the joint

for E instead of T, we have to reverse the directions of two edges—({T, E}, {T}), and ({E}, {T,

E}) (see Figure 4). Suppose we have saved the messages computed for the marginal for {T}.

Then, to compute the marginal for {E}, we have to compute only two new messages—the

message from {T} to {T, E}, and the message from {T, E} to {E}. If we use Rule 1 to compute

these messages, then the message from {T} to {T, E} is (aÄoAÄt)¯{T} . And the message from

{T, E} to {E} is [(aÄoAÄt)¯{T} Ä(((sÄlÄb)¯{L,  B} Ä(dÄoD)¯{E, B} )¯{L, E} Äe)¯{T, E} ]¯E. If

{E} now uses Rule 2, the marginal for {E} is given by

[(aÄoAÄt)¯{T} Ä(((sÄlÄb)¯{L,  B} Ä(dÄoD)¯{E, B} )¯{L, E} Äe)¯{T, E} ]¯E Äx¯E.

Instead of directing the edges of the join tree, it will be easier to leave the edges of the join tree

undirected, and simply associate directions with the messages. Also, if each node sends a message

to each of its neighbors, then we can compute the marginals for every subset in the join tree. We

do this by changing the two rules as follows.

Rule 1’ (Messages) Each node sends a message to each of its neighbors. Suppose mr®s

denotes the message from r to s, suppose N(r) denotes the neighbors of r in the join tree,

and suppose the valuation associated with node r is denoted by ar, then the message from

node r to its neighboring node s is given as follows:

mr®s = (Ä{mt ® r | t Î (N(r) – {s}) } Äar}
¯rÇs (7.1)

In words, the message that r send to its neighbor s is the combination of all messages that r

receives from its other neighbors together with its own valuation suitably marginalized.

Regarding timing, it is clear that node r sends a message to neighbor s only when r has

received a message from each of its other neighbors. A leaf of the join tree has only one

neighbor, and therefore it can send a message to its neighbor right away without waiting

for any messages.
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Rule 2’ (Marginals). When a node r has received a message from each of its neighbors,

it combines all messages together with its own valuation and reports the results as its

marginal. If j denotes the joint valuation, then

j¯r = Ä{mt ® r | t Î N(r)} Äar (7.2)

Using Rules 1’ and 2’, we can compute the marginal of the joint for each subset in the join

tree. Thus, if we know the subsets for which we need marginals, we simply include these subsets

(along with the subsets for which we have valuations) in F during the construction of the join tree.

Rules 1’ and 2’ suggest an architecture as shown in Figure 5. Each node in the join tree would

have two storage registers, one for the input valuation, and one for reporting the marginal of the

joint. Also, each edge in the join tree would have two storage registers for the two messages, one

in each direction.

Figure 5. An architecture for computing multiple marginals.
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7  BINARY JOIN TREES

In this section, we introduce the concept of a binary join tree. Binary join trees are important from

a computational viewpoint since they reduce the number of computations involved in computing

marginals.

A binary join tree is a join tree such that no node has more than three neighbors. The join tree

shown in Figure 4 for the Chest Clinic problem is not binary since node {S, L, B} has four

neighbors.

To explain the importance of a binary join tree, we will describe by means of an example, the

inefficiencies of computation in a non-binary join tree.

Example 2. Consider a valuation network consisting of four variables W, X, Y, and Z, and

four valuations a for {W, X}, b for {W, Y}, g for {W, Z}, and d for {X, Y, Z}. A non-binary

join tree with the messages between adjacent nodes is shown in Figure 6. We make some

observations about inefficiencies of computation in this non-binary join tree.

1. (Domain of Combination). First, consider the message (aÄbÄg)¯{X, Y, Z}  (from {W, X,

Y, Z} to {X, Y, Z}). The computation of this message involves combination of the valuations a,

b, and g on the domain {W, X, Y, Z}. In general, combination of m valuations on a domain with

n configurations involves computation that is linear in m–1 and a monotonic increasing function of

n. Suppose that W has 2 states, X has 3 states, and Y has 4 states and Z has 5 states. Then the

Figure 6. A non-binary join tree with messages for the VN in Example 2.
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state space of {W, X, Y, Z} has 120 configurations. Instead of combining a, b, and g on the

domain {W, X, Y, Z} that has 120 configurations, it is more efficient to first combine a and b on

domain {W, X, Y} with 24 configurations, and next combine aÄb with g on the domain {W, X,

Y, Z} with 120 configurations. A similar observation can be made for the message

(aÄbÄd)¯{W,  Z} .

2. (Non-Local Combination). Second, consider the message (bÄgÄd)¯{W, X} . Notice that Z is

in the domain of g and d, but not in the domain of b. Thus it follows from Axiom A3 that

(bÄgÄd)¯{W, X}  = (bÄ(gÄd)¯{W,  X, Y} )¯{W, X} . It is computationally more efficient to compute

(bÄ(gÄd)¯{W,  X, Y} )¯{W, X}  than to compute (bÄgÄd)¯{W, X} . Similarly, instead of computing

(aÄgÄd)¯{W, Y} , it is more efficient to compute instead (aÄ(gÄd)¯{W, X, Y} )¯{W, Y} .

3. (Repetition of Combinations). Third, consider the messages (aÄbÄg)¯{X, Y, Z}  and

(aÄbÄd)¯{W, Z} . Notice that if these two messages are computed separately, then the combination

of a and b is repeated. Also for messages (bÄgÄd)¯{W, X}  and (aÄgÄd)¯{W, Y} , the combination

of g and d is repeated [Xu 1991, Xu and Kennes 1994].

Now consider a binary join tree for the same VN as shown in Figure 7. Compared to the non-

binary join tree of Figure 6, the binary join tree has an additional node {W, X, Y} and an

additional edge ({W, X, Y}, {W, X, Y, Z}).

First, notice that aÄb is computed on the domain {W, X, Y} (as a message from {W, X, Y}

to {W, X, Y, Z}) before we compute (aÄbÄg)¯{X,  Y, Z}  (as a message from {W, X, Y, Z} to {X,

Y, Z}) and (aÄbÄd)¯{W, Z}  (as a message from {W, X, Y, Z} to {W, Z}). Thus we avoid

combining valuations on domains bigger than is necessary.

Figure 7. A binary join tree with messages for the VN in Example 2.
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Second, instead of computing (bÄgÄd)¯{W, X} , we compute (bÄ(gÄd)¯{W,  X, Y} )¯{W, X} , and

instead of computing (aÄgÄd)¯{W, Y} , we compute (aÄ(gÄd)¯{W, X, Y} )¯{W, Y} . Thus the

messages are computed locally.

Third, the combination (gÄd)¯{W,  X, Y}  that appears in messages (bÄ(gÄd)¯{W,  X, Y} )¯{W, X}

and (aÄ(gÄd)¯{W, X, Y} )¯{W, Y}  is computed only once. Also, the combination aÄb is computed

only once for the messages (aÄbÄg)¯{X,  Y, Z}  and (aÄbÄd)¯{W,  Z} . Thus we avoid repetition of

combinations.

For these three reasons, binary join trees are a more efficient way to organize the computations

than non-binary join trees. ■

How does one construct a binary join tree? We will describe a technique based on the idea of

binary fusion.

Binary Fusion. Consider again the definition of fusion. Suppose we have valuations s1, ...,

sk, where si is a valuation for si. Suppose the valuations are labeled such that s1, .., sj contain Y

and sj+1, ..., sk do not contain Y. Then

FusY{ s1, ..., sk} = { s¯(s - {Y}) } È{ sj+1, ..., sk}

where s = s1Ä...Äsj, and s = s1È...Èsj. In binary fusion, we compute s by combining

valuations two at a time recursively as follows. We start with the set of valuations we need to

combine to compute s, namely {s1, ..., sj}. Let || si || denote the number of configurations in the

state space of si. Suppose that the subsets are labeled such that || s1Ès2 || =

ARGMIN {|| spÈsq || | 1 £ p,  q £ j. Then we first combine s1Äs2. Now the set of valuations that

need to be combined is {s1Äs2, s3, ..., sj}. We repeat this procedure recursively till we end with

a set of one valuation, {s}. Binary fusion is essentially fusion with the added requirement that all

combinations are done on a binary basis, i.e., two at a time.

As in the case of fusion, we can implement binary fusion as a message passing scheme in join

trees. The join tree that is suggested by binary fusion is, of course, binary. For example, consider

the Chest Clinic problem in Example 1. After fusion with respect to X and A we have valuations

{ (aÄoAÄt)¯{T} , s, l, b, e, x¯{E} , d, oD}. Next we wish to do fusion with respect to S.

Ordinary fusion with respect to S leads to a non-binary join tree (see Figure 4). If we do binary

fusion with respect to S, then to combine s, l, and b, we first combine s and l, and then we

combine sÄl and b. We can represent this as a message passing scheme in a binary join tree as

shown in Figure 8.
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In the above procedure, notice that some subsets may appear more than once in the join tree.

For example, s1Ès2 may be identical with, say, s2. This poses no problem in practice. However,

to accommodate this, we need to consider the set of nodes of a join tree as a multiset, i.e., a set of

indexed subsets of Y (two identical subsets corresponding to distinct nodes will be identified

unambiguously with their indices which will be different).

Binary  Join Tree Construction. We will now formally describe a procedure in

pseudocode that describes a construction of a binary join tree suggested by binary fusion.

Let Y denote the set of variables, let F denote the multiset of subsets of variables for which we

have valuations or the subsets for which we need marginals, let N denote the multiset of nodes of

the binary join tree, and E denote the edges of the binary join tree, let | F | denote the number of

elements of set F, and let || s || denote the number of elements of the state space of subset s. We

assume the subsets in F are indexed 1, ..., k, where k = |F|, i.e., F = {s1, ..., sk}. A procedure

in pseudocode for constructing a binary join tree (N, E) using binary fusion is as follows.

Procedure for Constructing a Binary Join Tree

INPUT: Y, F

OUTPUT: N, E

INITIALIZATION

Yu ¬ Y /* Yu denotes the set of variables in Y that have not yet been deleted */

Fu ¬ F /* Fu denotes the multiset of subsets, indexed as s1, ..., s|F|, that have yet to 

been arranged in the join tree */

N ¬ ø /* N denotes the multiset of nodes of the binary join tree */

Figure 8. Binary fusion as message passing in a binary join tree.
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E ¬ ø /* E denotes the set of edges */

k ¬ |F| + 1 /* k will be the index of the next subset created in the process of constructing 

a binary join tree */

DO WHILE  | Fu | > 1 /* If |Fu| = 1, then we are done */

Pick a variable Y Î Yu (using some heuristic)

FY ¬ { si Î Fu | Y Î si} .

DO WHILE  | FY | > 1

r1 ¬ si and r2 ¬ sj where si, sj Î FY and || si È sj || £ || sp È sq || for all sp,  sq Î FY

sk ¬ r1Èr2 /* sk is the new indexed subset created */

N ¬ N È { r1, r2, sk}

E ¬ E È { { r1, sk}, { r2, sk} }
FY ¬ FY - { r1, r2} È {sk} /* Each time the number of subsets in FY is 

reduced by exactly 1 */

k ¬ k+1

END DO

IF  | Yu | > 1 THEN DO

r ¬ si where {si} = FY

sk ¬ r – {Y} /* s k is the new indexed subset created */

N ¬ N È { r} È {sk}

E ¬ E È { { r, sk} }
Fu ¬ Fu È { sk}
k ¬ k+1

END IF

Fu ¬ Fu – { si Î Fu | Y Î si}
Yu ¬ Yu – {Y}

END DO

N ¬ N È Fu /* This is needed for the trivial case |F| = 1 */

END

It is easy to see from the procedure that the join tree constructed will always be binary. We

illustrate this procedure with an example.

Example 3. Consider a valuation network with valuations as follows: d for {D}, s1 for {D,

S1}, s2 for {D, S2}, s3 for {D, S3}, s4 for {D, S4}, o1 for {S1}, and o2 for {S2}. Suppose we

need the marginal of the joint for all five variables. If we implement the binary fusion procedure for

the multiset F = { {D}, {D, S 1}, {D, S2}, {D, S3}, {D, S4}, {S 1}, {S 2}, {S 3}, {S 4} }  using
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deletion sequence S1S2S3S4D suggested by the one-step-look-ahead heuristic, the resulting join

tree is displayed in Figure 9.

8 CONCLUSIONS

The main goal of this paper is to describe a data structure called binary join trees that are useful in

computing multiple marginals efficiently using the Shenoy-Shafer architecture. We define binary

join trees, describe their utility, and describe a procedure for constructing them.

The join tree construction process described here is superficially different from the method

described in Lauritzen and Spiegelhalter [1988] which consists of moralizing a directed acyclic

graph, triangulating the moral graph using the maximum cardinality search method, and then

arranging the cliques of the triangulated moral graph in a join tree. Instead of starting from a

directed acyclic graph, we start with a more general setting—a hypergraph consisting of all subsets

for which we have valuations and all subsets for which we desire marginals, and we use the fusion

algorithm as a guide to constructing a join tree. Thus the join tree can be regarded as a data

structure to organize the computations of the fusion algorithm.

Binary join trees further refine the data structure so that unnecessary computations are

minimized. In particular, we identify three sources of inefficiencies associated with non-binary join

Figure 9. A binary join tree resulting from the binary fusion procedure applied to the valuation
network in Example 3.
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trees that are eliminated in binary join trees, and we describe an automatic procedure for

constructing them based on the idea of binary fusion.

Although we have restricted our discussion in this paper to the Shenoy-Shafer architecture,

binary join trees are also useful in the Lauritzen-Spiegelhalter [1988] and Hugin [Jensen et al.

1990, Lauritzen and Jensen 1996] architectures, albeit to a lesser extent. This is because in the

Lauritzen-Spiegelhalter and Hugin architectures, some of the combination operations are replaced

by the division operations. Since the main role of the binary join trees is to reduce the computation

in combinations, their utility is less in these other architectures.

An interesting question is the relative computational efficiencies of the three architectures. It is

commonly believed that the Hugin architecture is the most efficient (at least for the case of

probabilistic reasoning). Ongoing work [Lepar and Shenoy 1996] leads us to believe that if binary

join trees are used, then the Shenoy-Shafer architecture is at least as computationally efficient as—

if not more than—the Hugin architecture.
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