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Abstract

The main aim of this paper is to describe two modifications to the Shenoy–Shafer architecture with
the goal of making it computationally more efficient in computing marginals of the joint valuation.
We also describe a modification to the Hugin architecture. Finally, we briefly compare the traditional
and modified architectures by solving a couple of small Bayesian networks, and conclude with a
statement of further research. 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we introduce some modifications to the Shenoy–Shafer [10] and Hugin
architectures [2,3]. Although both architectures are valid more generally, we will describe
our modifications for the case of Bayesian networks.

Our main modification to the Shenoy–Shafer architecture is the introduction of a new
phase called “transfer of valuations.” The transfer of valuations phase reduces the amount
of calculations needed for computation of marginal probabilities. Our other modification to
the Shenoy–Shafer architecture is the introduction of a new rule for computing marginals.
Furthermore, we sketch a modification to the Hugin architecture where all combinations
are done on a binary basis. Combining valuations on a binary basis reduces the amount of
multiplications needed. Finally, we compare the modified and the traditional architectures
in terms of computational efficiency, and conclude with a statement of further research.

An outline of the remainder of this article is as follows. In Section 2, we briefly
describe the computational aspects of the Shenoy–Shafer (SS) architecture. In Section 3,
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we describe two modifications of the SS architecture designed to make it computationally
more efficient. In Section 4, we briefly describe the computational aspects of the Hugin
architecture. In Section 5, we describe a modification of the Hugin architecture. This
modification was suggested by one of the authors of the Hugin architecture [1]. In
Section 6, we compare the traditional architectures with our suggested modifications for
two small problems to demonstrate the increase in computational efficiencies. Finally, in
Section 7, we summarize our findings and conclude with a statement of further research.

2. The Shenoy–Shafer architecture

In this section we briefly describe the Shenoy–Shafer architecture. This architecture
was first described by Shenoy and Shafer [10]. Recently, Shenoy [9] has described a new
data structure, called binary join tree, designed to make this architecture more efficient.
Lepar and Shenoy [7] do a detailed study of this architecture and compare it with the
Lauritzen and Spiegelhalter [6] and Hugin architectures. We will describe the Shenoy–
Shafer architecture using a small example calledDiabetes.

Diabetes.Diabetes (D) causes two symptoms, blue toe (B) and Glucose in urine (G).
A Bayesian network representation of this problem is shown in Fig. 1. The Bayesian
network representation includes valuationsδ for {D} representing the prior probability
distribution forD, β for {D,B} representing the conditional probability distribution for
B givenD, andγ for {D,G} representing the conditional probability distribution ofG
givenD. Suppose we have evidence forB andG represented as valuationsλB for {B} and
λG for {G}, respectively. The problem is to compute the marginals of the posterior joint
distribution forD, B andG.

In the Shenoy–Shafer architecture, we start with a set of valuations denoted byϑ . The
combination of all valuations inϑ is called the joint valuation,φ =⊗ϑ . In the Diabetes
problem,ϑ = {δ,β, γ,λB,λG}, and the joint valuation is the unnormalized posterior joint
probability distribution of{D,B,G}. The problem is to find the marginal of the joint
valuation for subsets of interest, i.e.,φ↓r , wherer is a subset of the set of variables whose
marginal is desired.

The domains of the valuations form a hypergraphH . In the Diabetes example,H =
{{D}, {D,B}, {D,G}, {B}, {G}}.

The first phase in Shenoy–Shafer architecture is called thejoin tree construction phase.
In this phase, we first arrange the subsets inH in a binary join tree [9] and then add

Fig. 1. A Bayesian network and a corresponding join tree for the Diabetes problem.
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Fig. 2. The messages computed in the Shenoy–Shafer architecture.

singleton subsets for which we need marginals to the binary join tree if these are not already
included [7]. After the binary join tree has been constructed, we associate each valuation in
ϑ with the corresponding node in the binary join tree. For the Diabetes problem, a binary
join tree with the associated valuations is shown in Fig. 1.

The second phase in the Shenoy–Shafer architecture is called themessage-passing
phase. In this phase, each node, upon receiving a request, sends a message to its neighbor
that requests such a message. The nodes for which the marginals are desired request
messages from their neighbors. The messages are computed by using the rule described
in [7,10]. In the Diabetes problem, the messages sent between adjacent nodes are shown in
Fig. 2. In this example, all eight messages are computed. If only the marginal forD was
needed, then only half the messages (four of eight) would be computed.

The third and final phase is called themarginal computation phase. In this phase, we
compute the marginals for the desired subsets using the following rule.

Rule for Computing Marginals. When a noder has received a message from each of its
neighbors, it combines all messages together with its own valuation and reports the results
as its marginal. Ifφ denotes the joint valuation, then

φ↓r =⊗{µt→r | t ∈N(r)}⊗ αr .
In the Diabetes problem, nodeB computes

λB ⊗µDB→B = λB ⊗
(
(λG⊗ γ )↓B ⊗ δ⊗ β

)↓B
,

nodeD computes

δ⊗µDB→D ⊗µDG→D = δ⊗ (λB ⊗ β)↓D ⊗ (λG ⊗ γ )↓D,
and nodeG computes

λG⊗µDG→G = λG ⊗
(
(λB ⊗ β)↓D ⊗ δ⊗ γ

)↓G
.

These are the respective (unnormalized) marginals for the singleton subsets{D}, {B} and
{G}. This completes our brief description of the computational aspects of the Shenoy–
Shafer architecture.

3. Two modifications to the Shenoy–Shafer architecture

In this section we describe the two modifications to the Shenoy–Shafer architecture.
These modifications are motivated by the presence of repetitive combinations in the
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Fig. 3. The messages in the Shenoy–Shafer architecture after transfer of valuations (∗ denotes the identity
valuation).

traditional Shenoy–Shafer architecture. We start by motivating the modifications and then
describe the actual modifications.

Consider again the Diabetes problem. Notice that although we calculateλG ⊗ γ in the
message from{D,G} to {D}, we combineλG andγ again during the computation of the
marginal forG: φ↓G = λG⊗ (µD→DG⊗γ )↓G. Similarly, the combinationλB⊗β is done
twice—once during the computation of the message from{D,B} to {B}, and once during
the computation of the marginal forB. These inefficiencies can be removed by recursively
transferring the valuations from the leaves to the adjacent supersets before the message-
passing phase. It may seem counterintuitive to transfer a valuation from a subset to its
superset. However, since the combination of the transferred valuation happens on the state
space of the superset anyway, there is no computational penalty in doing the transfer. In
the Diabetes example, we transfer the valuationλB from {B} to {D,B}, and transferλG
fromG to {D,G}.

Notice that since{D} is not a leaf node (and never becomes one), we do not transfer its
associated valuationδ anywhere. In Fig. 2, notice that the combination ofδ happens on the
state space of{D}. If we transferδ to either{D,B} or {D,G}, there would be a computa-
tional penalty since the combination ofδ would then happen on a larger state space.

If we do the transfer of valuations prior to the message-passing phase and then do the
message-passing, the computations for the Diabetes problem are shown in Fig. 3. Notice,
that the combinationsλB ⊗β andλG⊗γ are now done just once. Since{B} and{G} have
no valuations associated with them, the messages to these nodes from their neighbors are
the marginals for these nodes, and no combination is involved in the computation of the
marginals for these nodes during the marginal computation phase (unlike the case in Fig. 2
where no valuations were transferred). In Section 6, we will return to this example and
discuss the computational savings as a result of this modification.

The second modification is motivated by the following observation. Notice that, when
D computes its marginal in Fig. 2, it computes

δ⊗µDB→D ⊗µDG→D = δ⊗ (λB ⊗ β)↓D ⊗ (λG ⊗ γ )↓D.
However, the combinationδ ⊗ µDB→D was already done before in the message fromD
to {D,G}. Thus we could have avoided this repetition by computingµD→DG ⊗ µDG→D
instead ofδ ⊗ µDB→D ⊗ µDG→D . Alternatively, we could have computed the marginal
for D by computingµD→DB ⊗ µDB→D . We can use this rule as long as the neighbor of
the node whose marginal is desired is a superset of the node because when a node sends
a message to a neighbor that is its superset, there is no marginalization involved in the
computation of the message. Thus, for example, we cannot use this rule for computing the
marginal for{D,B}—we have to use the old rule.
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We will now formally describe the two modifications of the Shenoy–Shafer architecture.
In the modified Shenoy–Shafer architecture, the computation of marginals is done in four
phases (instead of three in the traditional Shenoy–Shafer architecture). Following the join
tree construction phase and before the message-passing phase, we introduce a new phase
called thetransfer (of valuations) phase.

In the transfer phase, valuations associated with some of the nodes of the join tree
(constructed at the end of the join tree construction phase) are transferred to other nodes.
The precise rules for transfer of valuations are as follows:

Rules for transferring valuations
Assume that initially each node has a list of its neighbors. Letn(r) denote such a list for

noder. We calln(r) theneighbor setof noder. This list gets modified during the transfer
of valuations phase. However, the structure of the tree is not modified.

Rule 1. If |n(r)| = 1, sayn(r)= {s}, andr ⊆ s, thenr sends the valuation associated with
it to s, replaces the valuation associated with it by the identity valuation, and deletess from
its neighbor set (son(r) is now the empty set).

Rule 2. If a noder receives a valuation, sayαs , from its neighbors, thenr replaces the
valuation associated with it, sayαr , by αr ⊗ αs , and removess from its neighbor set,
n(r)← n(r)\{s}.

The valuations transferred between nodes in this phase are not stored in the separators.
This phase ends when there are no nodes that satisfy the condition stated in Rule 1
(n(r)= {s}, andr ⊆ s).

In the Diabetes problem, node{B} has only one neighbor that is its superset. Hence, it
transfersλB to {D,B} and replacesλB by the identity valuation. Node{D,B} replaces
its own valuationβ by the combinationλB ⊗ β and removes nodeB from its neighbor
set. Node{G} also has one neighbor that is its superset. Hence, it sends its valuationλG
to it, and replacesλG by the identity valuation. Node{D,G} replaces its valuationγ by
the combinationλG ⊗ γ . Nodes{D,B} and{D,G} now have only one element in their
neighbor set. However, because neither of them have neighbors that are supersets of them,
the transfer of valuations phase ends. At the end of the transfer of valuation phase, the
valuations associated with each node are as shown in Fig. 3. Notice, that the structure of
the join tree has not changed. Only the valuations have been transferred.

The second modification of the Shenoy–Shafer method applies to calculation of the
marginals. In the traditional Shenoy–Shafer method the rule for computing marginals is
as follows: when a noder has received a message from each of its neighbors, it combines
all messages together with its own valuation and reports the results as its marginal. This
can lead to up to three combinations as a node can receive up to three messages in a binary
join tree. A modified rule for computing marginals is as follows.

Modified Rule for Computing Marginals. Supposes is a neighbor ofr such thats ⊇ r.
Noder computes its marginal by combining the message fromr to s by the message from
s to r (regardless of the number of other messages noder receives), i.e.,

φ↓r =µs→r ⊗µr→s .
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The reason this rule works is as follows. LetN(r) denote the set of neighbors of noder.
(Notice thatN(·) is strictly a function of the topology of the join tree and is different from
n(·) that got modified during the transfer phase.)

φ↓r =⊗{µt→r | t ∈N(r)}⊗ αr
=µs→r ⊗ {⊗ {µt→r | t ∈N(r)\{s}} ⊗ αr}
=µs→r ⊗µr→s .

Notice that the modified rule only applies to nodes that have a neighbor that is its
superset. If this condition is not satisfied, i.e., none of the neighbors of a node are its
supersets, then such a node has to use the old rule for computing its marginal. Typically,
we are interested in marginals for singletons. In such cases, we can always apply this rule
since a singleton will always have a superset as its neighbor. Notice, that if a singleton node
is a leaf in the join tree, then it will have the identity valuation associated with it after the
transfer of valuation phase. In this case, the marginal for this singleton variable will simply
be the message that it receives from its neighbor and there is no combination involved. This
is the case for nodes{B} and{G} in Fig. 3.

4. The Hugin architecture

In this section, we briefly describe the computational aspects of the Hugin architecture.
The Hugin architecture has its roots in the method proposed by Lauritzen and Spiegelhalter
[6] for computing marginals of probability distributions. It was proposed by Jensen et al.
[2,3] and is incorporated in the software product Hugin. Recently, Lauritzen and Jensen
[5] have described some axioms underlying this architecture so it applies not only for
probabilities but also to any domain that satisfies the axioms.

The Hugin architecture also has three phases. The first phase is the join tree construction
phase. The join tree constructed is called ajunction tree. Fig. 4 shows a junction tree for
the Diabetes problem. This junction tree has two cliques,{D,B} and {D,G}, and one
separator,{D}. ValuationsλB , β andδ are associated with{D,B}, and valuationsλG and
γ are associated with{D,G}.

The second phase is the message-passing phase. In this phase, any one clique in the join
tree is designated as the root. The message-passing is done in two stages: the inward pass
(in which each non-root node sends a message to its inward neighbor, i.e., the neighbor
toward the root) and the outward pass (in which each non-leaf node sends a message to its
outward neighbor, i.e., the neighbor away from the root). The rules for passing messages
(in both stages) are described in [2,3,8].

Fig. 4. The junction tree with associated valuations for the Diabetes problem.
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Fig. 5. The details of the Hugin message-passing phase for Diabetes. Node{D,G} is assumed to be the root.

The message-passing phase ends when each clique has sent a message to and received a
message from each of its neighbors. At the end of the message-passing phase, the valuation
associated with each clique and with each separator is the marginal of the joint for the
clique or separator. Fig. 5 shows the details of the message-passing phase for the Diabetes
problem where clique{D,G} is designated as the root.

The third phase is the computation of marginals phase. The needed marginals are
computed from the marginals of a smallest separator or a smallest clique that contains
the subset. For example, in the Diabetes problem, the marginal for{D} is computed from
the marginal for the separator (since the separator is{D}, no computation is involved,

φ↓D = ((λB ⊗ β ⊗ δ)↓D ⊗ (λG ⊗ δ))↓D,
the marginal for{B} is computed from the marginal for{D,B},

φ↓B = (φ↓{D,B})↓B,
and the marginal for{G} is computed from the marginal for{D,G}, (φ↓{D,G})↓G.

5. A modification to the Hugin architecture

In this section we sketch a modification to the traditional Hugin architecture. This
modification is based on a discussion with Finn V. Jensen [1], one of the authors
of the Hugin architecture. It is motivated by the same considerations that led to the
notion of binary join trees in the Shenoy–Shafer architecture [9]. To motivate the
modification, we will describe another problem, the Chest Clinic problem from Lauritzen
and Spiegelhalter [6].
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Fig. 6. The Bayesian network and a junction tree for the Chest Clinic problem.

Chest Clinic Problem. Shortness-of-breath (dyspnoea) may be due to tuberculosis (T ),
lung cancer (L) or bronchitis (B), or none of them, or more than one of them. A recent
visit to Asia (A) increases the chances of tuberculosis, while smoking (S) is known to be
a risk factor for both lung cancer and bronchitis. The results of a single chest X-ray (X)
do not discriminate between lung cancer and tuberculosis, as neither does the presence or
absence of dyspnoea (D).E denotes “has either tuberculosis or lung cancer”. Fig. 6 shows
the Bayesian network and a junction tree with associated valuations for the Chest Clinic
problem.

In the Chest Clinic problem, the valuation associated with clique{S,L,B} is σ ⊗λ⊗β .
If each variable has a state space of 10 values, then the computation ofσ ⊗ λ ⊗ β
on the state space of clique{S,L,B} requires 2000 multiplications. If the valuations
are combined on a binary basis, the amount of multiplications is reduced. Multiplying
valuations on a binary basis is done by first combining two valuations with the smallest
domains. Therefore, we first combineσ ⊗ λ on the state space of{S,L} requiring 100
multiplications, and then combineσ ⊗ λ with β on the state space of{S,L,B} requiring
an additional 1000 multiplications for a total of 1100 multiplications, a savings of 900
multiplications. Furthermore, multiplications can also be saved during the inward stage
of the message-passing phase if messages are combined on a binary basis. For example,
in the Chest Clinic problem, node{T ,L,E} combines its own valuationε with the two
messages it receives from its neighbors. Assuming that each variable has a state space of
10 values, the message from node{L,E,B} has a state space of 100 values, the message
from node{E,X} has a state space of 10 values, andε has a state space of 1000 values.
Therefore, combining all three messages on the state space of clique{T ,L,E} results in
2000 multiplications. If the messages are combined on a binary basis, the two messages
from nodes{E,X} and{L,E,B} are combined first, which requires 100 multiplications.
This product is then combined withε requiring 1000 multiplications, a total of 1100
multiplications. This results in a savings of 900 multiplications.
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6. A comparison

In this section, we will compare the modified Shenoy–Shafer and Hugin architectures
with the traditional Shenoy–Shafer and Hugin architectures, respectively. We will base our
comparison on two small problems. The first problem is the Diabetes problem described in
Section 2. The second problem is Lauritzen and Spiegelhalter’s [6] Chest Clinic problem
described in Section 5. The computations in the Shenoy–Shafer architecture for the Chest
Clinic problem are based on the binary join tree that results from the construction procedure
described in [7].

In both problems, we will assume that each variable has a state space of 10 values.
In probability theory, combination of two valuations on the state space ofn variables
will involve 10n multiplications. Marginalizing a valuation for a domain consisting ofn

variables to a domain consisting ofn− 1 variables will involve 9× 10n−1 additions. And
computing a ratio of two valuations on a domain consisting ofn variables will involve 10n

divisions. Table 1 shows the number of additions, multiplications, and divisions needed for
the Chest Clinic example with both the traditional and modified architectures.

First notice that the number of additions done in the modified Shenoy–Shafer
architecture is the same as that in the traditional Shenoy–Shafer architecture. The same
is true for the Hugin architecture. This is always true because the number of additions
is strictly a function of the topology of the join tree. Since the transfer of valuations
phase does not change the topology of the join tree, it has no impact on the number of
additions done. Therefore, the modifications suggested here reduce only the number of
multiplications.

The modified Shenoy–Shafer architecture uses 430 multiplications to solve the Diabetes
example, and 9730 multiplications to solve the Chest Clinic example with evidence. This is
30 less multiplications in the Diabetes example and 1330 less multiplications in the Chest

Table 1
Comparison of the modified architectures with the corresponding traditional ones

# of binary arithmetic operations Shenoy–Shafer Hugin

Problem Traditional Modified Traditional Modified

Diabetes with evidence forB andG

# binary additions 360 360 360 360

# binary multiplications 460 430 500 500

# binary divisions 10 10

Total 820 790 870 870

Chest Clinic with evidence forA andD

# binary additions 9900 9900 9900 9900

# binary multiplications 11060 9730 10400 8510

# binary divisions 320 320

Total 20960 19630 20620 18730
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Clinic example than in the traditional Shenoy–Shafer architecture. Most of the savings
occur during the transfer of valuations phase. Because the valuations for leaf nodes are
stored in their superset neighbors, repetitive multiplications are eliminated.

In general, the two modifications described here will always reduce the number of
multiplications done in the traditional Shenoy–Shafer architecture. The essence of the
two proposed modifications is to eliminate computations that are repeated. The amount
of savings will depend on the specifics of the Bayesian network under consideration.
The transfer phase modifications will result in more savings than the modified rule
for computing marginals. Both modifications will add some minimal overhead to the
computational process, but the savings will far outweigh the overhead.

The modified Hugin method uses a total of 18730 arithmetic operations when solving
Chest Clinic example with evidence forA and D. This is 1890 less multiplications
than in the traditional Hugin method. 990 of the multiplication savings are achieved in
the beginning, when valuations for cliques are combined on a binary basis. Instead of
computingα⊗ λA⊗ τ on the state space of node{A,T } and computingσ ⊗ λ⊗ β on the
state space of node{S,L,B}, we combine the valuations with the smallest domains first,
e.g.,α ⊗ λA on the state space of node{A}, and then(α ⊗ λA)⊗ τ on the state space of
node{A,T }. We do the same for(σ ⊗ λ) ⊗ β . The other 900 savings occur during the
inward pass at clique{T ,L,E}, when its valuationε and the messages from nodes{E,X}
and{L,E,B} are combined on a binary basis as described in Section 5.

In general, the modification described here will always reduce the number of multipli-
cations done in the traditional Hugin architecture. The exact savings will depend on the
specifics of the Bayesian network under consideration, but the potential for savings is big
especially for problems in which the junction trees are non-binary [7]. Implementing bi-
nary multiplications will result in more storage space, so we are achieving savings in time
at the expense of space.

7. Conclusions

The main objective of this paper is to describe some modifications to the Shenoy–
Shafer and Hugin architectures. We sketch both methods and describe the modifications to
them. We also briefly compare the computational efficiency of the modified and traditional
methods.

The introduction of the transfer phase and the modified rule for computing marginals
always reduces the amount of computations needed in Shenoy–Shafer method. As a result
of these changes, the modified Shenoy–Shafer architecture is always more computationally
efficient than the traditional Shenoy–Shafer method. The Hugin method is also improved
by introducing the binary Hugin method that is always more efficient than the traditional
Hugin method.

A question not addressed in this paper is the relative efficiencies of the modified Shenoy–
Shafer and modified Hugin architectures. A detailed comparison of the traditional Shenoy–
Shafer and traditional Hugin architectures is found in [7]. Comparison of the modified
architectures is a task that remains to be done.
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Recently, Kjærulff [4] has suggested an alternative modification to the Hugin architec-
ture called “nested junction trees.” Nested junction trees are data structures where some
cliques in a junction tree are substituted by junction trees that represent the details of the
computation done in the cliques. This strategy can also be used for the Shenoy–Shafer
architecture. A detailed comparison of this strategy with the binary join tree strategy also
remains to be done in both architectures.
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