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We compare four graphical techniques for representation and solution of asymmetric
decision problems—decision trees, influence diagrams, valuation networks, and

sequential decision diagrams. We solve a modified version of Covaliu and Oliver’s Reactor
problem using each of the four techniques. For each technique, we highlight the strengths,
weaknesses, and some open issues that perhaps can be resolved with further research.
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Decision Diagrams)

1. Introduction
This paper compares four graphical techniques for
representing and solving asymmetric decision prob-
lems—traditional decision trees (DTs), Smith, Holtz-
man, and Matheson’s (SHM) (1993) influence dia-
grams (IDs), Shenoy’s (1993b, 1996) valuation
networks (VNs), and Covaliu and Oliver’s (1995)
sequential decision diagrams (SDDs).

We focus our attention on techniques designed for
asymmetric decision problems. In a decision tree, a
path from the root to a leaf node is called a scenario.
We say a decision problem is asymmetric if the number
of scenarios in a decision tree representation is less
than the cardinality of the Cartesian product of the
state spaces of all chance and decision variables.

Each technique has a distinct way of encoding
asymmetry. DTs encode asymmetry through the use
of scenarios. IDs encode asymmetry using graphical
structures called “distribution trees.” VNs encode
asymmetry using functions called “indicator valua-
tions.” Finally, SDDs encode asymmetry by showing
all scenarios in a compact fashion using graphs called
“sequential decision diagrams.”

The main contribution of this paper is to highlight
the strengths, weaknesses, and some open issues that

perhaps can be resolved with further study of the four
techniques. By strengths and weaknesses, we mean
intrinsic features we find desirable and undesirable,
respectively.

An outline of the remainder of the paper is as
follows. In §2, we give a complete statement of a
modified version of the Reactor problem (Covaliu and
Oliver 1995), describe a DT representation and solu-
tion of it, and discuss strengths, weaknesses, and open
issues associated with DTs. In §3, we represent and
solve the same problem using Smith, Holtzman, and
Matheson’s IDs, and discuss strengths, weaknesses,
and open issues associated with IDs. In §4, we do the
same using Shenoy’s VNs. In §5, we focus on Covaliu
and Oliver’s SDDs. Finally, in §6, we summarize our
conclusions.

2. Decision Trees
In this section, we describe a DT representation and
solution of a small asymmetric decision problem
called the Reactor problem, and we discuss strengths,
weaknesses, and some open issues associated with
DTs. The Reactor problem is a modified version of the
problem described by Covaliu and Oliver (1995). In
our version, Bayesian revision of probabilities is re-
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quired during the solution process, and the joint
utility function decomposes into only three factors.

2.1. A Statement of the Reactor Problem
An electric utility firm must decide whether to build
(D 2) a reactor of advanced design (a), a reactor of
conventional design (c), or neither (n). If successful,
an advanced reactor is more profitable, but is riskier.
Based on past experience, a conventional reactor (C)
has probability 0.980 of no failure (cs), and a proba-
bility 0.020 of a failure (cf ). On the other hand, an
advanced reactor ( A) has probability 0.660 of no
failure (as), probability 0.244 of a limited accident
(al ), and probability 0.096 of a major accident (am).
The profits for the case the firm builds a conventional
reactor are $8B if there is no failure, and �$4B if there
is a failure. The profits for the case the firm builds an
advanced reactor are $12B if there is no failure, �$6B
if there is a limited accident, and �$10B if there is a
major accident. The firm’s utility function is a linear
function of the profits.

Before making this decision, the firm can conduct an
expensive test of the components of the advanced
reactor. The test results (T) can be classified as bad (b),
good ( g), excellent (e), or no result (nr). The cost of
this test is $1B. If the test is done, its results are
correlated with the success or failure of the advanced
reactor. The likelihoods for the test results are as
follows: P( g�as) � 0.182, P(e�as) � 0.818, P(b�al )
� 0.288, P( g�al ) � 0.565, P(e�al ) � 0.147, P(b�am)
� 0.313, P( g�am) � 0.437, and P(e�am) � 0.250. If
the test results are bad, the Nuclear Regulatory Com-
mission will not permit an advanced reactor. The firm
needs to decide (D 1) whether to conduct the test (t), or
not (nt). If the decision is nt, the test outcome is nr.

2.2. DT Representation and Solution
Figure 1 shows a decision tree representation and
solution of this problem. The order in which the nodes
are traversed from left to right is the chronological
order in which decisions are made and/or outcomes
of chance events are revealed to the decision-maker,
and every available branch at every node is explicitly
shown. Thus, the decision tree gives a chronological
and fully detailed view of the structure of the decision
problem.

Notice that even before the decision tree can be

completely specified, the conditional probabilities re-
quired by the decision tree representation have to be
computed from those specified in the problem using
the standard procedure called preprocessing. In this
procedure, given the priors and the likelihoods, first
we compute the joints, then the preposteriors, and
finally the posteriors. Details of the results of the
procedure for the Reactor problem can be found in
Bielza and Shenoy (1998).

Figure 1 also shows the solution of the Reactor
problem using rollback. The optimal strategy is to do
the test; build a conventional reactor if the test results
are bad or good, and build an advanced reactor if the
test results are excellent. The expected profit associ-
ated with this strategy is $8.130B.

2.3. Strengths of DTs
DTs are easy to understand and easy to solve. DTs
encode asymmetries through use of scenarios without

Figure 1 A Decision Tree Representation and Solution of the Reactor
Problem
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introducing dummy states for variables. If a variable is
not relevant in a scenario, a DT simply does not
include it. As we will see shortly, IDs and VNs
introduce dummy states for chance and decision vari-
ables in the process of encoding asymmetry. This
decreases their computational efficiency. Like DTs,
SDDs do not introduce dummy states for variables.

2.4. Weaknesses of DTs
DTs capture asymmetries globally in the form of
scenarios. This contributes to the exponential growth
of the decision tree representation and limits the use of
DTs to small problems. In comparison, IDs, VNs, and
SDDs capture asymmetries locally.

Although we have shown the decision tree repre-
sentation using coalescence (Olmsted 1983), it should
be noted that automating coalescence in decision trees
is not easy because it involves constructing the com-
plete uncoalesced tree and then recognizing repeated
subtrees.1 This is a major drawback of DTs (as com-
pared to IDs, VNs, and SDDs), and it limits the use of
DT representation to small decision problems.

2.5. Some Open Issues
To complete a DT representation of a problem, the
probability model may need preprocessing, and this
makes the automation of DTs difficult. One method
for avoiding preprocessing is to use von Neumann-
Morgenstern (1944) information sets to encode infor-
mation constraints—see Shenoy (1995, 1998) for de-
tails. However, adding information sets makes the
resulting representation more complex.

Since conditional independence is not explicitly
encoded in probability trees, doing the preprocessing
by computing the joint probability distribution for all
chance variables is computationally intractable in
problems with many chance variables. This issue can
be resolved by using a Bayesian network representa-
tion of the probability model, and Olmsted’s (1983)
and Shachter’s (1986) arc-reversal method can then be
used to compute the probability model demanded by
the DT representation. However, this raises the issue
of determining a sequence of arc reversals so as to

achieve the desired probability model with minimum
computation.

3. Asymmetric Influence Diagrams
In this section, we will represent and solve the Reactor
problem using Smith, Holtzman, and Matheson’s
(1993) (henceforth, SHM) asymmetric influence dia-
gram technique. Although SHM describe their tech-
nique for a single undecomposed utility function, we
use Tatman and Shachter’s (1990) extension of the ID
technique that allows for a decomposition of the joint
utility function. The symmetric ID technique was
initially developed by Howard and Matheson (1981),
Olmsted (1983), and Shachter (1986). Modifications of
the symmetric ID solution technique have been pro-
posed by Smith (1989), Shachter and Peot (1992),
Ndilikilikesha (1994), Jensen et al. (1994), Cowell
(1994), Zhang et al. (1994), Goutis (1995), and others.
Besides SHM, asymmetric extensions of the influence
diagram technique have been proposed by, e.g., Call
and Miller (1990), Fung and Shachter (1990), and Qi et
al. (1994).

3.1. ID Representation
An influence diagram representation of a problem is
specified at three levels—graphical, functional, and
numerical. At the graphical level, we have a directed
acyclic graph, called an influence diagram, that dis-
plays decision variables, chance variables, factoriza-
tion of the joint probability distribution into condition-
als, factorization of the joint utility function, and
information constraints. Figure 2 shows an influence
diagram for the Reactor problem at the graphical level.

1 When a DT has repeating subtrees, they are shown just once and
are pointed to by all scenarios in which they occur. This is referred
to as coalescence.

Figure 2 An ID for the Reactor Problem at the Graphical Level
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Note that the arcs pointing to chance nodes reflect
the way in which their joint probability distribution is
currently factored, which is not necessarily the chro-
nological order in which their outcomes will be re-
vealed to the decision maker. Arcs between pairs of
chance nodes may be reversed by changing the way in
which the joint distribution is factored, as in applica-
tions of Bayes’ theorem. Also, note that the ID avoids
the combinatorial explosion of the decision tree (the
so-called “bushy mess” phenomenon) by suppressing
details of the number of branches available at each
decision or chance node. The latter information is
encoded deeper down at the functional level instead.

At the functional level, we specify the structure of
the conditional distribution (or simply, conditional)
for each node (except super value nodes) in the ID,
and at the numerical level, we specify the numerical
details of the probability distributions and the utilities.
The key idea of the SHM technique is a new tree
representation for describing the conditionals. These
are called distribution trees with paths showing the
conditioning scenarios that lead to atomic distributions
that describe either probability distributions, set of
alternatives, or (expected) utilities, assigned in each

conditioning scenario. A conditional for a chance node
represents a factor of the joint probability distribution.
A conditional for a decision node can be thought of as
describing the alternatives available to the decision-
maker in each conditioning scenario. A conditional for
a value node represents a factor of the joint utility
function. For the Reactor problem, some of the condi-
tionals are shown in Figure 3 (the complete set is
found in Bielza and Shenoy 1998).

The distribution tree for D 2 has two atomic distri-
butions. The firm will choose among three alternatives
(conventional or advanced reactor or neither) only if it
decides to not do the test (D 1 � nt) or if it conducts
the test and its result is good or excellent. The condi-
tional for D 2 is coalesced, i.e., the atomic distribution
with three alternatives is shared by three distinct
scenarios, and is clipped, i.e., many branches in condi-
tioning scenarios are omitted because the correspond-
ing conditioning scenarios are impossible. For exam-
ple, if the firm chooses to not do the test, then it is
impossible to observe any test results.

The distribution tree for T shows that if the firm
decides to not perform the test (D 1 � nt), then T � nr
with probability 1 regardless of the advanced reactor

Figure 3 Distribution Trees for Decision Node D 2, Chance Node T, and Utility Node �1
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state. Thus, the conditional for T can be collapsed
across A given D 1 � nt. Collapsed scenarios are
shown by indicating the set of possible states on a
single edge emanating from the node. They allow the
representation of conditional independence between
variables that holds only given particular outcomes of
some other variables. Deterministic atomic distribu-
tions for chance and decision variables are shown by
double-bordered nodes.

Although not all are shown in Figure 3, the condi-
tionals for the three utility nodes provide other exam-
ples of coalesced, clipped, and collapsed distributions.
They are deterministic nodes because we assign a
single utility for each conditioning scenario. Since
utility functions are always deterministic, and we use
diamond-shaped nodes to indicate utility functions,
we do not draw these nodes with a double border.

Another feature of distribution trees not illustrated
in the Reactor problem is unspecified distributions
where certain atomic distributions of a chance node
are left unspecified since they are not required during
the solution phase. If only the probabilities are unspec-
ified, then we have a partially unspecified distribution.
All of these features—coalesced, clipped, collapsed,
and unspecified distributions—provide a more com-
pact and expressive representation than the usual
table in the symmetric ID literature.

3.2. ID Solution
The algorithm for solving an asymmetric ID is concep-
tually the same as that for conventional ID. However,
SHM describe methods for exploiting different fea-
tures of a distribution tree (such as clipped scenarios,
coalescence, collapsed scenarios, etc.) to simplify the
computations.

We solve an ID by reducing variables in a sequence
that respects the information constraints. If the true state
of a chance variable C is not known at the time the
decision maker must choose an alternative from the
atomic distribution of decision variable D, then C must
be reduced before D, and vice versa. In the Reactor
problem, there are two possible reduction sequences,
CAD2TD1 and ACD2TD1. Both of these reduction se-
quences require the same computational effort. In the
following, we use the first reduction sequence CAD2TD1.

We use this sequence also when we solve this problem
with the VN and the SDD techniques.

We start by reducing node C. Essentially, we absorb
the conditional for C into utility function �1 using the
expectation operation (following Theorem 5 in Tat-
man and Shachter (1990)). The expectation operation
is carried out by considering each conditioning sce-
nario separately. Figure 4 shows the ID after reducing
C. Next, we reduce A. To do so, we first reverse the arc
( A, T), and then absorb the posterior for A into utility
function �2 using the expectation operation. Figure 4
shows the ID after reduction of A.

Next, we need to reduce D 2. Since D 2 has two value
node successors, before we reduce D 2, we introduce a
new super-value node �, and then we merge �1 and �2

into � (as per Theorem 5 in Tatman and Shachter
1990). We reduce D 2 by maximizing � over the states
of D 2 permitted by the distribution tree for D 2. Notice
that this distribution tree (shown in Figure 3) has
asymmetry in the atomic alternative sets, but this is
not exploited either during the reduction of A or
during the processing prior to reduction of D 2. We
will comment further on this aspect of SHM technique
in §3.5. Figure 4 shows the ID after reduction of D 2.

Next, we reduce T. Notice that � is the only value
node that has T in its domain. We absorb the condi-
tional for T into the utility function � using the
expectation operation. Figure 4 shows the resulting
ID. Finally, we need to reduce D 1. Since D 1 is in the
domain of �3 and �, first we combine �3 and �

obtaining �, and then we reduce D 1 by maximizing �

over the possible states of D 1. This completes the
solution of the Reactor ID representation. Complete
details of the ID solution of the Reactor problem are
found in Bielza and Shenoy (1998).

An optimal strategy can be pieced together from the
optimal decision function for D 1 (obtained during
reduction of D 1) and the optimal decision function for
D 2 (obtained during reduction of D 2). Of course, we
get the same optimal strategy and the same maximum
expected utility as in the DT case.

3.3. Strengths of IDs
The main strength of IDs is their compactness. The
size of an ID graphical representation grows linearly
with the number of variables. Also, they are intuitive
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to understand, and they encode conditional indepen-
dence relations in the probability model.

The asymmetric extension of IDs captures asymme-
try through the notion of distribution trees. These are
easy to understand and specify. The sharing of scenar-
ios, clipping of scenarios, collapsed scenarios, and
unspecified-distribution features of distribution trees
contribute to the expressiveness of the representation
and to the efficiency of the solution technique.

In distribution trees one can mix the different kinds
of atomic distributions—not only can one mix deter-
ministic and stochastic atomic distributions for chance
nodes, one can mix stochastic atomic distributions and
atomic alternative sets for decision nodes. This feature
may be useful if the decision-maker’s ability to decide
is determined by some previous decision or uncer-
tainty (SHM 1993, p. 287).

The ID technique can detect the presence of unnec-

essary information in a problem by identifying irrele-
vant or barren nodes (Shachter 1988). This leads to a
simplification of the original model and to a corre-
sponding decrease in the computational burden of
solving it.

3.4. Weaknesses of IDs
The ID technique is most suitable for problems in
which we have a conditional probability model (also
called a Bayesian network model) of the uncertainties.
This is typical of problems in which the modeling of
probabilities is done by a human expert. However, for
problems in which a probability model is induced
from data, the corresponding probability model is not
always a Bayesian network model. In this case, the use
of ID technique is problematic, i.e., it may require
extensive and unnecessary preprocessing to complete
an ID representation (Shenoy 1994a).

Figure 4 ID Solution at the Graphical Level
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3.5. Some Open Issues
The asymmetric ID graphical representation does not
distinguish between pure informational arcs and con-
ditioning arcs for decision variables. Thus, we cannot
predict the domain of the conditional for decision
variables from the graphical representation alone. One
of the most attractive aspects of graphical models
(Bayes nets, symmetric IDs, VNs, etc.) is that one can
determine domains of functions directly from the
graphical level description. This is the essence of
encoding conditional independence by graphs. This
aspect of asymmetric IDs can be easily resolved by
having two kinds of arcs that lead to decision vari-
ables. One kind can be interpreted as conditional as
well as informational, and the other can be interpreted
as purely informational.

Our major concerns with the SHM representation
center around having information about asymmetries
in the problem stored in many distribution trees in the
diagram. For example, in the Reactor problem, con-
sider the distribution trees for T and D 2 (shown in
Figure 3). Notice that, e.g., in the distribution tree for
T, if D 1 � nt, we have T � nr with probability 1. The
clipping of T in the distribution tree for D 2 describes
the same information. This repetition raises questions
about the consistency and efficiency of the represen-
tation and the solution technique. First, the redundant
specification of information may be inefficient when
assessing these distributions; the user may have to
repeatedly clip or collapse these same scenarios for
many distributions. Second, if the user fails to clip or
collapse scenarios in some distribution trees, he or she
may do unnecessary calculations for these scenarios
when solving the influence diagram. Third, even if the
user represents all clipped/collapsed scenarios in all
distribution trees, there is still the possibility of some
unnecessary computation since the solution algorithm
does not have access to all asymmetric information at
all times. For example, in the Reactor problem, con-
sider the situation immediately after reduction of
node A shown in Figure 4. �2 has just inherited two
new predecessors T and D 1, and its distribution tree
has some conditioning scenarios that are not possible
such as D 1 � t, T � b, D 2 � a. The absence of this
scenario is encoded in the distribution tree for D 2 (see

Figure 3), but we do not use this information until it is
time to reduce D 2. Finally, the redundant specification
creates a need for consistency: We need to somehow
ensure that scenarios that are in fact possible are not
inadvertently clipped in one of the distribution trees.
Similarly, if we use the “unspecified distribution”
feature, we need to be sure that we really do not need
that distribution to answer particular questions. We
can always check the consistency of an influence
diagram by attempting to solve it (perhaps not carry-
ing out the numeric calculations) and seeing if any
required information has been clipped or left unspec-
ified. It would be nice, however, if there were some
simpler tests (perhaps along the lines of those used in
VNs, Shenoy 1993b) that could determine whether the
ID is sufficiently defined to answer specific questions.

The efficiency concerns can be at least partially
addressed by “propagating” clipped scenarios during
the assessment phase, as suggested by SHM (1993, p.
288). For example, if the user has specified the alter-
natives for D 1 and the distribution for T prior to
specifying the distribution for D 2, then the system can
figure out which combinations of D 1 and T are impos-
sible (e.g., the combination D 1 � t and T � nr is
impossible) and automatically clip the corresponding
branches in the distribution tree for D 2. By propagat-
ing clipping in this way, we save the user the trouble
of repeatedly doing this, thereby making the user
more efficient and less likely to specify scenarios that
should be clipped and less likely to clip scenarios that
are possible. To propagate clipping in this way, the
user must define distribution trees in a sequence
consistent with the partial order defined by the influ-
ence diagram. Note, however, that this propagation
does not make use of the numeric probabilities in the
representation; it depends only on the specification of
possible and impossible events. This propagation pro-
cess is somewhat similar to the calculation of “effec-
tive state spaces” in VNs, as described in Shenoy
(1993b).

4. Asymmetric Valuation Networks
In this section, we will represent and solve the Reactor
problem using Shenoy’s (1993b, 1996) asymmetric
valuation network technique. The symmetric VN tech-
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nique is described in (Shenoy 1993a) for the case of a
single undecomposed utility function, and in (Shenoy
1992) for the case of an additive decomposition of the
joint utility function.

4.1. VN Representation
A valuation network representation is specified at
three levels—graphical, dependence, and numerical.
The graphical and dependence levels refer to qualita-
tive (or symbolic) knowledge, whereas the numerical
level refers to quantitative knowledge.

At the graphical level, we have a graph called a
valuation network. Figure 5 shows a valuation network
for the Reactor problem. A valuation network consists
of two types of nodes—variable and valuation. Vari-
ables are further classified as either decision or chance,
and valuations are further classified as indicator, prob-
ability, or utility. Thus, in all there are five different
types of nodes—decision, chance, indicator, probabil-
ity, and utility.

Decision nodes correspond to decision variables
and are depicted by rectangles. Chance nodes corre-
spond to chance variables and are depicted by circles.
This part of VNs is similar to IDs.

Indicator valuations represent qualitative con-
straints on the joint state spaces of decision and chance
variables and are depicted by double-triangular
nodes. The set of variables directly connected to an
indicator valuation by undirected edges constitutes
the domain of the indicator valuation. In the Reactor

problem, there are two indicator valuations labeled �2

and �2. �2’s domain is {D 1, T, D 2} and it represents the
constraints that the test results are available only in
the case we decide to do the test, and that the
alternatives at D 2 depend on the choices at D 1 and the
test results T. �2’s domain is {T, A} and it represents
the constraint that if A � as, then T � b is not
possible.

Utility valuations represent additive factors of the
joint utility function and are depicted by diamond-
shaped nodes. The set of variables directly connected
to a utility valuation constitutes the domain of the
utility valuation. In the Reactor problem, there are
three additive utility valuations labeled �1, �2, and �3,
with domains {D 2, C}, {D 2, A}, and {D 1}, respectively.

Probability valuations represent multiplicative fac-
tors of the family of joint probability distributions for
the chance variables in the problem, and are depicted
by triangular nodes. Thus, in a VN, information about
the current factorization of the joint probability distri-
bution of chance variables is carried by the additional
probability valuation nodes, rather than by the direc-
tions of arcs pointing to chance nodes. The set of all
variables directly connected to a probability valuation
constitutes the domain of the probability valuation. In
the Reactor problem, there are three probability valu-
ations labeled �1, �, and �, with domains {A, T}, {A},
and {C}, respectively.

The specification of the valuation network at the

Figure 5 A Valuation Network for the Reactor Problem
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graphical level includes directed arcs between pairs of
distinct variables. These directed arcs represent infor-
mation constraints. Suppose R is a chance variable and
D is a decision variable. An arc (R, D) means that the
true state of R is known to the decision maker (DM) at
the time the DM has to choose an alternative from D’s
state space (as in an ID). Conversely, an arc (D, R)
means that the true state of R is not known to the DM
at the time the DM has to choose an alternative from
D’s state space.

Next, we specify a valuation network representation
at the dependence level. At this level, we specify the
state spaces of all variables and we specify the details
of the indicator valuations.

Associated with each variable X is a state space � X.
As in the cases of IDs and SDDs, we assume that all
variables have finite state spaces. Suppose s is a subset
of variables. An indicator valuation for s is a function
�: � s 3 {0, 1}. An efficient way of representing an
indicator valuation is simply to describe the elements
of the state space that have value 1, i.e., we represent
� by �� where �� � {x � �s��(x) � 1}. Obviously, � � �

� s. To minimize jargon, we also call �� an indicator
valuation for s. In the Reactor problem, the details of
the two indicator valuations are as follows: � �2

� {(nt,
nr, n), (nt, nr, c), (nt, nr, a), (t, b, n), (t, b, c), (t, g,
n), (t, g, c), (t, g, a), (t, e, n), (t, e, c), (t, e, a)}; � �2

� {(as, nr), (as, g), (as, e), (al, nr), (al, b), (al, g), (al,
e), (am, nr), (am, b), (am, g), (am, e)}. Notice that the
indicator valuation ��2

is identical to the scenarios in
the distribution tree for D 2 depicted in Figure 3. The
indicator valuation ��2

rules out the scenario A � as,
T � b.

Before we can specify the valuation network at the
numerical level, it is necessary to introduce the notion
of effective state spaces for subsets of variables. Sup-
pose that each variable is in the domain of some
indicator valuation. (If not, we can create “vacuous”
indicator valuations that are identically one for every
state of such variables.) We define combination of
indicator valuations as pointwise Boolean multiplica-
tion, and marginalization of an indicator valuation as
Boolean addition over the state space of reduced
variables. Then, the effective state space for a subset s of
variables, denoted by � s, is defined as follows: First

we combine all indicator valuations that include some
variable from s in their domains, and next we margin-
alize the combination so that only the variables in s
remain in the marginal. Shenoy (1994b) has shown
that these definitions of combination and marginaliza-
tion satisfy the three axioms that permit local compu-
tation (Shenoy and Shafer 1990). Thus, the computa-
tion of the effective state spaces can be done efficiently
using local computation. For example, to compute the
effective state space for {A, T}, by definition � {A,T}

� (� 2 V � 2)
2{A,T} (where �2 V �2 denotes combination

of valuations �2 and �2, and (� 2 V � 2)
2{A,T} denotes

marginalization of the joint valuation �2 V �2 down to
the domain {A, T}). However, using local computa-
tion, it can be computed more efficiently as follows:
� {A,T} � � 2

2{T} V � 2. Details of local computation are
found in Shenoy (1993b).

Finally, we specify a valuation network at the
numerical level. At this level, we specify the details of
the utility and probability valuations. A utility valua-
tion � for s is a function �: � s 3 �, where � is the set
of real numbers. The values of � are utilities. In the
Reactor problem, there are three utility valuations.
One of these is shown in Table 1, and we refer the
reader to Bielza and Shenoy (1998) for the complete
description.

A probability valuation � for s is a function �: � s 3
[0, 1]. The values of � are probabilities. In the Reactor
problem, there are three probability valuations. One of
these is shown in Table 1. What do these probability

Table 1 Utility Valuation �1 and Probability Valuation �1 in the
Reactor Problem

� {D2 ,C} �1 � {A,T} �1

n cs 0 as nr 1
n cf 0 as g .182
a cs 0 as e .818
a cf 0 al nr 1
c cs 8 al b .288
c cf �4 al g .565

al e .147
am nr 1
am b .313
am g .437
am e .250
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valuations mean? � is the marginal for C, � is the
marginal for A, and � 2

2{D1 ,T} V � 2 V � 1 is the condi-
tional for T given A and D 1. Thus the conditional for
T factors into three valuations such that �1 has the
numeric information, and �2 and �2 include the struc-
tural information.

Notice that the utility and probability valuations are
described only for effective state spaces that are com-
puted using local computation from the specifications of
the indicator valuations. There is no redundancy in the
representation. However, in �1, unlike the ID represen-
tation, the irrelevance of C in scenarios D2 � n or a is not
represented in the VN representation because we are
unable to do so. Also, in �2, the irrelevance of A in
scenarios where D2 � n or c is not represented. We will
comment further on these issues in §4.5.

4.2. VN Solution
In this section, first we sketch the fusion algorithm for
solving valuation network representations of decision
problems, and then we solve the Reactor problem.

The fusion algorithm is essentially the same as in
the symmetric case (Shenoy 1992). The main difference
is in how indicator valuations are handled. Since
indicator valuations are identically one on effective
state spaces, there are no numeric computations in-
volved in combining indicator valuations. Indicator
valuations do contribute domain information and
cannot be totally ignored. In the fusion algorithm, we
reduce a variable by doing a fusion operation on the
set of all valuations (utility, probability, and indicator)
with respect to the variable. All numeric computations
are done on effective state spaces only. This means
that the effective state spaces may need to be com-
puted prior to doing the fusion operation if the
effective state space has not been already computed
during the representation phase.

Fusion with respect to a decision variable D is
defined as follows. The utility, probability, and indi-
cator valuations whose domains do not include D
remain unchanged. All utility valuations that include
D in their domain are combined together, and the
resulting utility valuation � is marginalized such that
D is eliminated from its domain. A new indicator
valuation 	 D corresponding to the decision function
for D is created. All probability and indicator valua-

tions that include D in their domain are combined
together and the resulting probability valuation 
 is
combined with 	 D and the result is marginalized so
that D is eliminated from its domain.

Fusion with respect to a chance variable C is defined
as follows. The utility, probability, and indicator val-
uations whose domains do not include C remain
unchanged. A new probability valuation, say 
, is
created by combining all probability and indicator
valuations whose domain include C and marginaliz-
ing C out of the combination. Finally, we combine all
probability and indicator valuations whose domains
include C, divide the resulting probability valuation
by the new probability valuation 
 that was created,
combine the resulting probability valuation with the
utility valuations whose domains include C, and fi-
nally marginalize the resulting utility valuation such
that C is eliminated from its domain. In some special
cases—such as if 
 is identically one, or if C is the only
chance variable left—we can avoid creating a new
probability valuation and the corresponding division.

The solution of the Reactor problem using the
fusion algorithm is as follows.

Fusion with Respect to C. First we fuse valuations
in {�2, �2, �1, �2, �3, �, �, �1} with respect to C. Since �2A

is identically one,

FusC��2, �2, �1, �2, �3, �, �, �1�

� ��2, �2, �2, �3, ��1 � ��2D2, �, �1�.

Let �4 denote (� 1 V �)2D2. The details of the numerical
computation involved are shown in Table 2. The result
of fusion with respect to C is shown graphically in
Figure 6.

Fusion with Respect to A. Next, we fuse the valu-

Table 2 Details of Fusion with Respect to C

� {D2 ,C} �1 � �1 V � (� 1 � �)2D2 � � 4

n cs 0 0.98 0 0
n cf 0 0.02 0
c cs 8 0.98 7.840 7.760
c cf �4 0.02 �0.080
a cs 0 0.98 0 0
a cf 0 0.02 0
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ations in {�2, �2, �2, �3, �4, �, �1} with respect to A. FusA{�2,
�2, �2, �3, �4, �, �1} � {�2, �3, �4, (�2 V (� V �1 V �2)/(� V

�1 V �2)
2T)2{D2 ,T}, (� V �1 V �2)

2T}. Let �5 denote (�2 V (� V

�1 V �2)/(� V �1 V �2)
2T)2{D2 ,T}, and let �� denote (� V �1 V

�2)
2T. The result of fusion with respect to A is shown

graphically in Figure 6. Notice that all computations are
done on effective state spaces, and so we need to
compute the effective state space of {T, D2, A} prior to
doing the fusion since it has not been already computed
during the representation stage (see Bielza and Shenoy
(1998) for details).

Fusion with Respect to D 2. Next we fuse {�2, �3, �4,
�5, ��} with respect to D 2. Since D 2 is a decision
variable, FusD2

{� 2, � 3, � 4, � 5, ��} � {(� 2 V 	 D2
)2{D1 ,T},

� 3, (� 4 V � 5)
2T, ��}, where 	 D2

is the indicator function
representation of the decision function for D 2. Let �6

denote (� 4 V � 5)
2T, and ��2 denote (� 2 V 	 D2

)2{D1 ,T}. The
result of fusion with respect to D 2 is shown graphi-
cally in Figure 6.

Fusion with Respect to T. Next we fuse {��2, �3, �6,
��} with respect to T. Since T is the only chance

Figure 6 Fusion in VNs at the Graphical Level
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variable, FusR{��2, � 3, � 6, ��} � {� 3, (��2 V �� V � 6)
2D1}.

Let �7 denote (��2 V �� V � 6)
2D1. The result of fusion

with respect to T is shown graphically in Figure 6.

Fusion with Respect to D 1. Next we fuse {�3, �7}
with respect to D 1. Since D 1 is a decision variable,
FusD1

{� 3, � 7} � {(� 3 V � 7)
2A}. Let �8 denote (�3 V

�7)
2A. The result of fusion with respect to D 1 is shown

graphically in Figure 6.
This completes the fusion algorithm. An optimal strat-

egy can be pieced together from the decision functions
for D1 and D2. The optimal strategy and maximum
expected utility are the same as in the DT and ID cases.
Complete details of the VN solution of the Reactor
problem can be found in Bielza and Shenoy (1998).

4.3. Strengths of VNs
Like IDs, VNs are compact and they encode conditional
independence relations in the probability model (Shenoy
1994c). Unlike IDs, the VN technique can represent
directly every probabilistic model, without any prepro-
cessing. All that is required is a factorization of the joint
probability distribution for the chance variables.

The information constraints representation is more
flexible in VNs than in IDs. In IDs, all decision nodes
have to be completely ordered. This condition is called
“no-forgetting” (Howard and Matheson 1981). In
VNs, there is a weaker requirement called “perfect
recall” (Shenoy 1992). The perfect recall requirement
can be stated as follows. Given any decision variable
D and any chance variable C, it should be clear
whether the true state of C is known or unknown
when a choice has to be made at D. The flexibility of
information constraints will offer a greater number of
allowable reduction sequences than the other tech-
niques. Of course, the perfect recall condition can be
easily adapted to the ID domain.

The VN representation technique captures asymme-
try through the use of indicator valuations and effec-
tive state spaces. Indicator valuations encode struc-
tural asymmetry modularly with no duplication, and
the effective state space for a subset of variables
contains all structural asymmetry information that is
relevant for that subset. This contributes to the parsi-
mony of the representation.

In VNs, the joint probability distribution can be

decomposed into functions with smaller domains than
in IDs. This is so because IDs insist on working with
conditionals. For example, the conditional for T has
the domain {D 1, A, T} in the ID (as seen in Figure 3),
and the valuation �1 has the domain {A, T} in the VN
(as seen in Table 1). The distribution tree for T in the
ID could be computed from the VN as � 2

2{D1 ,T} V � 2 V

� 1. One implication of this decomposition is that
during the solution phase, the computation is more
local, i.e., it involves fewer variables, than in the case
of IDs. For example, in the ID technique, reduction of
A involves variables D 1, D 2, T, and A (as deduced
from Figure 4), whereas in the VN technique, reduc-
tion of A only involves variables T, D 2, and A (as
deduced from Figure 6).

VNs do not perform unnecessary divisions done in
DTs, IDs, and in SDDs. In DTs, these unnecessary
divisions are done during the preprocessing stage. In
IDs and SDDs, the unnecessary divisions are done
during arc reversal. For symmetric problems, Ndiliki-
likesha (1994) and Jensen et al. (1994) have suggested
modifications to the ID solution technique to avoid
these unnecessary divisions. These modifications need
to be generalized to the asymmetric case. In general,
with arbitrary potentials and an additive decomposi-
tion of the utility function, divisions are often neces-
sary if we want to take advantage of local computa-
tion. In this case, VNs, IDs, and SDDs are similar. This
is the situation in the Reactor problem, i.e., all divi-
sions done in this problem are necessary.

Finally, the VN technique includes conditions that
tell us when a representation is well defined for
computing an optimal strategy (Shenoy 1993b). These
conditions are useful in automating the technique.

4.4. Weaknesses of VNs
The modeling of conditionals is not as intuitive in VNs
as in IDs. For example, in the Reactor problem, the
probability valuation �1 is not a true conditional; it is
only a factor of the conditional, i.e., � 2

2{D1 ,T} V � 2 V � 1

is a conditional for T given D 2 and A. This factoring of
conditionals into valuations with smaller domains
makes it difficult to attach semantics for the probabil-
ity valuations, and this may make it difficult or
nonintuitive to represent.

In VNs, the specification of a decision problem is
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done sequentially as follows. First, the user specifies
the VN diagram. Next, the user specifies the state
spaces of all decision and chance nodes, and all
indicator valuations. Finally, the user specifies the
numerical details of each probability and utility valu-
ations for configurations in the effective state spaces
that are computed using local computation from the
indicator valuations. Some users may find this se-
quencing too constraining.

VNs show explicitly the probability distributions as
nodes, which implies a greater number of nodes and
edges in the diagram and probably more confusion
when representing problems with many variables.

4.5. Some Open Issues
A major issue of VNs is their inability to model some
asymmetry. For example, in the Reactor problem, we
are unable to model the irrelevance of node C for the
scenarios D 2 � n or a in the utility valuation �1. This
issue perhaps can be resolved by adapting the col-
lapsed scenario feature of IDs to VNs.

In comparison with IDs, VNs are unable to use
sharing of scenarios and collapsed scenario features of
IDs. Consequently, a VN representation may demand
more space than a corresponding ID representation
that can take advantage of these features. Also, the
inability to use sharing and collapsed scenarios fea-
tures has a computational penalty. For example, in the
Reactor problem, reduction of C requires 9 arithmetic
operations in VNs as compared to 3 in the case of IDs,
and reduction of A requires 80 operations in VNs as
compared to 39 in the case of IDs. This issue perhaps
can be resolved by adapting the sharing and collapsed
scenario features of IDs to VNs. However, VNs can

and do represent clipping of scenarios through the use
of effective state spaces. The elements of an effective
state space include the unclipped conditioning scenar-
ios. Also, VNs can represent partially unspecified
distributions by simply not specifying the values for
particular elements of the effective state space. How-
ever, to avoid the problem of determining when a
representation is completely specified for computation
of an optimal strategy, it may be better to not use this
feature of IDs.

5. Sequential Decision Diagrams
In this section, we will represent and solve the Reactor
problem using Covaliu and Oliver’s (1995) sequential
decision diagram technique. The SDD technique is
described either for a problem in which the utility
function is undecomposed, or for a problem in which
the utility function decomposes into additive (or mul-
tiplicative) factors such that each factor has only one
variable in its domain. Since our version of the Reactor
problem is not in either of these two categories, first
we combine the three utility factors and then we use
the undecomposed version of the SDD technique to
represent and solve the Reactor problem.

5.1. SDD Representation
In this technique, a decision problem is modeled at
two levels, graphical and numerical. At the graphical
level, we model a decision problem using two directed
graphs—an ID to describe the probability model, and
a new diagram, called a sequential decision diagram,
which captures the asymmetric and the information
constraints of the problem. Figure 7 shows an ID and

Figure 7 The Initial ID and the SDD for the Reactor Problem
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a SDD for the Reactor problem.
At the numerical level, we specify the conditionals

for each chance node in the ID, and data built from
both diagrams are organized in a formulation table,
similar to the one used by Kirkwood (1993), in such a
way that the recursive algorithm used in the solution
process can easily access the data contained in it.

A SDD is a directed acyclic graph, with the same set of
nodes as in the ID. However, its paths show all possible
scenarios in a compact way, as if it were a schematic
decision tree, i.e., a decision tree in which all branches
from a decision or chance node leading to the same
generic successor node are collapsed together. A SDD is
said to be proper if (i) there is only one source node (a
node with no arrows pointing to it), (ii) there is only one
sink node (a node with no arrows emanating from it)
and it is the value node, and (iii) there is a directed path
that contains all decision nodes.

In the SDD for the Reactor problem, the arc (D1, T)
with the label t tells us that if we perform the test (D1 � t)
then we will observe its result (T � b, g or e). Arc (D1, D2)
with label nt tells us that we will not observe T when D1

� nt. Arcs (D2, �), (D2, C), and (D2, A) show that A is
relevant only if D2 � a, and C is relevant only if D2 � c.
The label over the arc (D2, A) also indicates dependence
on realized states at predecessor nodes, i.e., the alterna-
tive D2 � a is available only if T 	 b. The six directed
paths from D1 to � in the SDD are a compact represen-
tation of the twenty-one possible scenarios in the deci-
sion tree representation (Figure 1).

Notice that the partial order implied by the arrows
in an ID may be different from the partial order
implied by the arrows in a corresponding SDD. Let 
D

and 
 I denote the partial orders in SDD and ID
respectively. If C is a chance node, D is a decision
node, and C 
 I D implies C 
D D, then we say the ID
and SDD are compatible (Covaliu and Oliver 1995). In
Figure 7, for example, we have A 
 I D 2 (since there is
a directed path from A to D 2 in the ID), and D 2 
D A
(since there is an arrow from D 2 to A in the SDD).
Therefore the two diagrams are incompatible. The
next step in completing the SDD representation is to
transform the ID so that it is compatible with the SDD.
In the Reactor problem, we must reverse the arc ( A, T)

in the ID to make the ID compatible with the SDD. The
transformed ID is shown in Figure 8.

Next, we organize data in the formulation table,
which contains the complete information the solution
algorithm will require. Table 3 is the formulation table

Table 3 A Formulation Table for the Reactor Problem

Node
Name

Node
Type

Standard
Histories

(Minimal in bold) State Space
Probability
Distribution

Next-
Node

Function

D 1 decision A nt t D 2 T
T chance D 1

t b g e 0.1 0.3 0.6 D 2 D 2 D 2

D 2 decision D 1 T

nt – n c a � C A
t b n c � C
t g n c a � C A
t e n c a � C A

A chance D 1 T D 2

nt – a as al am 0.660 0.244 0.096 � � �

t g a 0.400 0.460 0.140
t e a 0.900 0.060 0.040

C chance D 1 T D 2

nt – c cs cf 0.98 0.02 � �

t b c
t g c
t e c

� value D1 T D2 A C

nt – n – – 0
nt – c – cs 8

. . . . . . . . . . . .

t e a am – �11

Figure 8 The Transformed ID
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for the Reactor problem. Not all details of the utility
function � are shown here—see Bielza and Shenoy
(1998) for details.

The formulation table has a row for each node in the
SDD. If X 
D Y, then the row for X precedes the row for
Y. Each row includes node name, node type, standard
histories and minimal histories, state space, conditional
distribution (for chance nodes only), and next-node
function. It should be noted that the formulation table is
part of the representation of the decision problem.

The term history refers to how one gets to a node
through the directed paths in the SDD. It can be
represented as a two-row matrix, the first row listing a
node sequence of all nodes that precede it in the
partial order, and the second row listing the corre-
sponding realized states. The next-node function (in
the last column) denotes the node that is realized after
a node for each of its states and for each minimal
history. There are different kinds of histories. Minimal
histories are sufficient for defining node state spaces,
probability distributions (for chance nodes), and next
node functions. For a decision node, the minimal
histories will include those variables that affect its
state space, and its next-node function. For example,
for D 2, variable T is the only one under these condi-
tions. So, at node D 2 we have the minimal histories:

� T
– � , � T

b � , � T
g � , and � T

e � ,

where – denotes the absence of T in a path to D2, i.e.,
when D1 � nt. For a chance node, the minimal histories
will include the nodes that suffice for defining its next-
node function, and its conditional probability distribu-
tion. For example, for C, the set of minimal histories is
the empty set. For a value node, the minimal histories
will include the nodes that suffice to define the values of
the corresponding utility function and they are the direct
predecessors of � in the ID.

As we will see, minimal histories are not always
sufficient to solve a decision problem. We need a new
kind of history, called relevant history. The node sets
of relevant histories contain the node sets of minimal
histories and are contained in the node sets of full
histories. Also, relevant histories can be computed
from minimal and full histories. Therefore, we do not

show relevant histories in the formulation, just full
and minimal histories.

5.2. SDD Solution
Let wN(HN) � E(u�HN) denote the maximum expected
utility at node N of the SDD given history HN if optimal
decisions are made at N (if N is a decision node) and
from there onwards. Let �(HN) denote the set of nodes in
HN. The solution technique is based on the same back-
ward recursive relations used in decision trees, but here
we use a new kind of history called relevant history. We
cannot use only minimal histories because, when calcu-
lating wN(HN), we may reference the next nodes nN and
their histories HnN

, and wN(HN) is not well defined if there
exists at least one nN such that �(HnN

) � {N} � �(HN).
We obtain the node sets in the relevant histories by
enlarging the node sets in minimal histories by those
SDD predecessors that appear in the node sets of rele-
vant histories of any of the direct successors nodes.
Covaliu and Oliver (1995) give a recursive definition of
this term. The solution algorithm then follows a back-
ward recursive method. We will describe in detail a part
of the solution—the reduction of C.

Reduction of Node C. Let w � denote the utility
function associated with node � in the formulation
table, e.g.,

w��� D1 D2 C A
nt n – – �� � 0, etc.

The relevant history for node C includes nodes D1 and
D2 (since C’s minimal history node set is A, C’s successor
is node �, �’s minimal history node set is {D1, D2, C, A},
and the set of predecessors of C is {D1, T, D2}).

wC�� D1 D2

nt c �� � w��� D1 D2 C
nt c cs �� �0.98�

� w��� D1 D2 C
nt c cf �� �0.02�

� w��� D1 D2 C A
nt c cs – �� �0.98�

� w��� D1 D2 C A
nt c cf – �� �0.02�

� �8��0.98� � ��4��0.02�

� 7.760.
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Similarly, w C(( t
D1

c
D2 )) � 6.76.

For further details, see Bielza and Shenoy (1998).

5.3. Strengths of SDDs
The main strength of SDDs is their ability to represent
asymmetry compactly. A SDD can be thought of as a
compact (schematic) version of a DT. Thus, we get the
intuitiveness of DTs without their combinatorial ex-
plosion.

Like DTs, SDDs model asymmetry without adding
dummy states to variables. This is in contrast to IDs
and VNs that enlarge the state spaces of some vari-
ables in order to represent asymmetry. For example, in
the Reactor problem, the state space of T is {b, g, e} in
the DT and SDD representation, whereas it is {nr, b, g,
e} in the ID and VN representation.

In the solution phase, SDDs avoid working on the
space of all scenarios (or histories) by using minimal
and relevant histories. Thus, they can exploit coales-
cence automatically, which DTs cannot.

The SDD technique can detect the presence of unnec-
essary information in a problem by identifying irrelevant
or barren nodes (Covaliu 1996). This leads to a simplifi-
cation of the original model and to a corresponding
decrease in the computational burden of solving it.

5.4. Weaknesses of SDDs
The main weakness of the SDD technique is its inabil-
ity to represent probability models consistently. It uses
one distribution in the ID representation that is com-
patible with the SDD and a different one in the
formulation table. For example, in the Reactor prob-
lem, the state space of T in the ID representation in
Figure 8 includes nr whereas the state space of T in the
formulation table does not include nr.

Before one can complete a SDD formulation, includ-
ing specifying a formulation table, it may be necessary
to preprocess the probabilities. This means that the ID
has to be modified to make it compatible with a
corresponding SDD. In the reactor problem, there was
only one incompatibility requiring one arc reversal. In
other problems, there may be many incompatibilities
requiring many arc reversals. In such problems, it is
not clear which arcs one should reverse and in what
sequence so as to achieve compatibility at minimum
computational cost. In large problems, the lack of a
formal method to translate a probability model from

an ID to a formulation table may make the SDD
technique unsuitable for large problems requiring
Bayesian revision of probabilities.

In a formulation table, the nodes are linearly or-
dered by rows. This linear ordering is used during the
solution process—the variable in a row is reduced
only after all the variables in succeeding rows are
reduced. Ideally, the ordering of nodes for reduction
should belong to the solution phase and not to the
formulation phase. If an arbitrary linear order is
chosen (compatible with the partial order in SDD),
there may be a computational penalty (see Shenoy
(1994a) for an example of this phenomenon). This
weakness is also shared by DTs.

5.5. Some Open Issues
As in DTs, SDDs require that a unique node be defined
as a next node for each state of a variable in a formula-
tion table even though the problem may allow several
nodes to qualify as next nodes. The choice of which node
should be a next node is a computational issue and it
properly belongs to the solution phase, not to the formu-
lation phase. This issue perhaps can be resolved by
allowing the next node to be a subset instead of a single
node. This strategy is advocated by Guo and Shenoy
(1996) in the context of Kirkwood’s algebraic method.

The SDD technique tells us how to compute minimal
history node sets and relevant history node sets. How-
ever, once we have the node sets, we still have to
generate the corresponding histories. Generating these
from a list of standardized histories is one possibility.
However, for large problems, the number of standard-
ized histories is an exponential function of the number of
variables. Thus, we need procedures for generating
minimal histories and relevant histories from the corre-
sponding node sets without actually listing all standard-
ized histories. This is a task that remains to be done.

A complete SDD formulation of a problem consists of
an ID and a SDD at the graphical level, and conditionals
for the chance variables in the ID and a formulation table
at the numerical level. The formulation table is built
partly from information from a compatible ID (e.g., the
conditional probability distributions), and partly from
the SDD (e.g., the histories). Thus, there is duplication of
information. A complete ID representation is sufficient
for solving the problem. A corresponding SDD dupli-
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cates some of this information. And a formulation table
that includes standardized histories has all information
required for solving the problem. Thus, a formulation
table duplicates information contained in an ID and a
SDD. This issue can be resolved by developing a solution
technique that solves a decision problem directly from a
SDD and a corresponding ID representation without
having the user specify a formulation table.

As currently described, the SDD technique tells us
only how to represent a problem with a single undecom-
posed utility function or a problem in which the utility
function decomposes into factors whose domains in-
clude only one variable. The case of an arbitrary decom-
position of the utility function is not covered. Also, it is
not clear when a SDD representation is well defined.
These are tasks that remain to be done.

6. Conclusion
The main goal of this work is to compare four distinct
techniques proposed for representing and solving asym-
metric decision problems—traditional decision trees,
SHM influence diagrams, Shenoy’s valuation networks,
and Covaliu and Oliver’s sequential decision diagrams.
For each technique, we have identified the main
strengths, intrinsic weaknesses, and some open issues
that perhaps can be resolved with further research.

One conclusion is that no single technique stands out as
always superior in all respects to the others. Each technique
has some unmatched strengths. Another conclusion is that
considerable work remains to be done to resolve the open
issues of each technique. One possibility here is to borrow
the strengths of a technique to resolve the issues of another.
Also, there is need for automating each technique by
building computer implementations, and there is very little
literature on this topic.2

We conclude with some speculative comments
about the class of problems for which each technique
is appropriate. Decision trees are appropriate for small
decision problems. Influence diagrams are appropri-
ate for problems in which we have a Bayesian network
model for the uncertainties. Valuation networks are
appropriate for problems in which we have a non-
Bayesian network model for the uncertainties such as
undirected graphs, chain graphs, etc. Finally, sequen-
tial decision diagrams are appropriate for problems
for which we have a Bayesian network model for the
uncertainties such that no Bayesian revision of prob-
abilities is required and for which the utility function
decomposes into factors whose domains are singleton
variable subsets.3

3 We are grateful to Jim Smith, Zvi Covaliu, David Rı́os Insua,
Robert Nau, and an anonymous reviewer for extensive comments
on earlier drafts.
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