
A Comparison of Axiomatic Approaches to Qualitative Decision
Making Using Possibility Theory

Phan H. Giang and Prakash P. Shenoy

University of Kansas School of Business, Summer¯eld Hall
Lawrence, KS 66045-2003, USA
phgiang@ku.edu, pshenoy@ku.edu

Abstract

In this paper we analyze two recent axiomatic
approaches proposed by Dubois et al. [5]
and by Giang and Shenoy [10] for qualita-
tive decision making where uncertainty is de-
scribed by possibility theory. Both axiom-
tizations are inspired by von Neumann and
Morgenstern's system of axioms for the case
of probability theory. We show that our ap-
proach naturally uni¯es two axiomatic sys-
tems that correspond, respectively, to pes-
simistic and optimistic decision criteria pro-
posed by Dubois et al. The simplifying uni-
¯cation is achieved by (i) replacing axioms
that are supposed to re°ect two informational
attitudes (uncertainty aversion and uncer-
tainty attraction) by an axiom that imposes
order on set of standard lotteries, and (ii) us-
ing a binary utility scale in which each utility
level is represented by a pair of numbers.

1 Introduction

The main goal of this paper is to compare two re-
cent axiomatic approaches proposed by Dubois et al.
[5] and Giang and Shenoy [10] for qualitative decision
making where uncertainty is described by possibility
theory.

In recent years, there is growing interest in qualitative
decision making within the AI community [3, 2]. The
aim of the research is to deal with various situations
where probability and utility inputs required by the
classical decision theory are di±cult to assess. It is
long recognized that probability theory can not faith-
fully capture all facets of uncertainty that is pervasive
in the world. Among several alternative approaches
proposed in AI to deal with uncertainty, belief func-
tion theory [15, 16], interval-valued probability [13, 20]
and fuzzy possibility theory [21, 6] occupy prominent

positions. Once uncertainty has been represented, the
next step is to determine how it can be used in decision
making. For the ¯rst two theories where probabilistic
semantics are still relevant, a standard solution is to
assess (according to some criteria) a probability dis-
tribution and then apply the classical decision theory.
For possibility theory, which apparently has no such
strong connection with probability, the technique is of
little use. In recent years, e®orts have been made to
create an axiomatic basis for decision theory tailored
for possibility theory. Stylistically, the e®orts are in
two di®erent but related directions following von Neu-
mann - Morgenstern and Savage [5, 9].

This paper is structured as follows. In the next section,
the proposal by Dubois et al. for a decision theory with
possibility theory is reviewed. In section 3, we will
present a new system of axioms that has been modi-
¯ed from our previous proposal designed for Spohnian
epistemic belief theory. We prove a representation the-
orem for that system. In the section 4, a comparison
between two approaches is made. We prove a theorem
stating that the two axiomatic systems by Dubois et
al. are just special cases of our system. An example
that illustrates calculation with di®erent utility func-
tions is provided. The last section consists of some
concluding remarks.

2 Pessimistic and Optimistic Utilities

In this section, we review, with some terminology mod-
i¯cation, the proposal that has been exposed in a series
of papers by Dubois et al. [8, 4, 5]. Assume a set S of
possible situations or states. A ¯nite uncertainty scale
V is assumed, without loss of generality, to be a set
of points in the unit interval [0; 1] such that 0; 1 2 V .
Order ¸ on V is de¯ned in a natural way. Uncertainty
about which among possible states will occur is cap-
tured by a possibility distribution that is a mapping
¼ : S ! V such that maxs2S ¼(s) = 1. The possibility
of a subset A µ S, ¼(A) def= maxs2A ¼(s): A ¯nite set
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X = fx1; x2; : : : xng of consequences or outcomes or
prizes is also given. To avoid triviality, X is assumed
to have at least two elements (n ¸ 2). We also assume
the existence of two distinct anchor1 elements in set
X. x is the best and x is the worst i.e., x º xi and
xi º x 8i where º is a preference relation with the
reading \at least as good as". A decision or lottery is
a mapping from S ! X . That is, decision d delivers
outcome d(s) in the case that state s occurs. Notice
that each decision d induces a possibility distribution
¼d on the set of consequences in the following sense:

¼d(x)
def
= ¼(d¡1(x)) where d¡1(x) = fs 2 Sjd(s) = xg:

Denote by ¦X the set of possibility distributions on
X. Set ¦X is closed under an operation (possibilis-
tic) mix. For ¼1; ¼2 2 ¦X and ¸; ¹ 2 [0; 1] such
that max(¸; ¹) = 1, a mixture of ¼1; ¼2 with weights
¸; ¹ denoted by (¸=¼1; ¹=¼2) can be de¯ned as follows
(¸=¼1; ¹=¼2)(x) = max(min(¸; ¼1(x));min(¹; ¼2(x))):
Mixture operation is pairwise commutative in the
sense that (¸=¼1; ¹=¼2) = (¹=¼2; ¸=¼1): It is useful to
consider a generalized version of mix operation: a mix-
ture of m possibility functions ¼1; : : : ¼m with weights
¸1; : : : ¸m such that max1∙i∙mf¸ig = 1 de¯ned as

(¸1=¼1; : : : ¸m=¼m)(x)
def
= max

1∙i∙m
min(¸i; ¼i(x)): (1)

To a decision maker, the value of decision d is the
same as the value of the induced ¼d. And thanks to
the mixture construct, set ¦X is rich enough to encode
not only a simple decision but also a \compound" de-
cision. For an intuitive reference, a reader can ¯nd a
similarity between the concept of possibilistic mixture
and that of two-stage lottery or \randomized" deci-
sions in probabilistic approach. A logical conclusion
of the above argument is that an analysis of prefer-
ence on decisions boils down to the analysis of set ¦X
of possibility distributions on the set of consequences
X: In other words, preference of a decision maker can
be analyzed through a preference relation º on ¦X . A
preference relation could be characterized by a system
of axioms (properties) it must satisfy or it could be
modeled by a utility function that maps elements of
¦X into some (¯nite) linearly ordered scale U called
the utility scale. sup(U) = 1 and inf(U) = 0 are as-
sumed. Symbol ¸ is used for both numerical and util-
ity comparison.

Dubois et al. consider two kinds of utility called re-
spectively pessimistic and optimistic utility and pro-
pose two axiomatic systems to characterize them.

1The term is chosen to re°ect the role these elements
play in the continuity axiom presented later in the section.

2.1 Pessimistic Utility

The pessimistic utility concept needs the following in-
gredients: a function

u : X ! U (2)

that determines utility for each outcome such that
u(x) = 1 and u(x) = 0; a function

n : U ! U (3)

that is an order reversing involution in U i.e. n(1) = 0;
n(0) = 1 and n(u1) ¸ n(u2) whenever u1 ∙ u2; and a
function

h : V ! U (4)

that is an order preserving mapping from uncertainty
scale V onto utility scale U such that h(1) = 1 and
h(0) = 0: Given that, a pessimistic qualitative utility
function QU¡ : ¦X ! U is de¯ned as

QU¡ (¼) def= min
x2X

max(nh(¼(x)); u(x)) (5)

where nh
def
= n ± h { a composition of n and h.

Dubois et al. also show the following equality

QU¡ ((¸=¼1; ¹=¼2)) = min
½
max(nh(¸); QU¡ (¼1))
max(nh(¹); QU¡ (¼2))

¾
(6)

Given a utility function, one can specify a preference
relation 2 º on ¦X : Alternatively, that relation can be
characterized by the following axiom system denoted
by SP

A1¡ (Total pre-order) º is re°exive, transitive and
complete.

A2¡ (Uncertainty aversion) If ¼ ∙ ¼0 then ¼ º ¼0.

A3¡ (Subsitutability) If ¼1 » ¼2 then (¸=¼1; ¹=¼) »
(¸=¼2; ¹=¼):

A4¡ (Continuity) 8¼ 2 ¦X ; 9¸ 2 V ¼ » (1=x; ¸=x):

Dubois et al. prove the following representation theo-
rem

Theorem 1 A preference relation º on ¦X satis-
¯es system SP i® there exist functions u; n; h and
QU¡ de¯ned as by (2, 3, 4, 5) such that ¼ º ¼0 i®
QU¡ (¼) ¸ QU¡(¼0):

2We also use two derivative relations: Â for strict pref-
erence and » for indi®erence.



2.2 Optimistic Utility

The authors also consider another utility that sup-
posedly captures the optimistic behavior of decision
makers. The optimistic qualitative utility function
QU+ : ¦X ! U is de¯ned as follows

QU+ (¼)
def
= max

x2X
min(h(¼(x)); u(x)) (7)

The system SO of axioms that characterize QU+ is
obtained from SP by replacing axioms A2¡; A4¡ by
A2+ and A4+ respectively where

A2+ (Uncertainty attraction) If ¼ ¸ ¼0 then ¼ º ¼0.
A4+ (Continuity) 8¼ 2 ¦X ; 9¸ 2 V ¼ » (¸=x; 1=x):

They also prove a representation theorem forQU+ and
SO which is similar to Theorem 1.

3 Uni¯ed Possibilistic Utility

In this section, we will translate the construct of qual-
itative utility [10] that was originally proposed for
Spohn's theory of epistemic belief into the possibility
theory framework.

A theory of epistemic belief, originally proposed by
Spohn [17, 18] to deal with plain belief, has its roots in
Adams's [1] work on the logic of conditionals. Spohn's
theory has been studied extensively by Goldszmidt and
Pearl [11, 12] under the name \rank-based system" or
\qualitative probabilities" or \∙-calculus". The ba-
sic construct of the theory is the concept of disbe-
lief function ± : S ! N such that mins2S ±(s) = 0
where N is the set of non-negative integers. For

A µ S, ±(A)
def
= mins2A ±(s): For A µ S and s 2 A,

the conditional disbelief function ±(sjA) is de¯ned as
±(sjA) def

= ±(!) ¡ ±(A): Despite some nuances, there
is a tight relationship between possibility theory and
Spohn's theory through log-transformation that has
been pointed out in [7]. Namely, for a disbelief func-
tion ±, c¡± is a possibility function where c > 1 is a
constant. Conversely, if ¼ is a possibility function then
Int[¡ logc(¼)] is a disbelief function where Int[:] is a
integer extracting function.

Here are some technical notes. In [10], we have 6 ax-
ioms that were inspired by presentation of von Neu-
mann and Morgernstern's axiom system by Luce and
Rai®a [14]. Here, in order to make later comparison
more transparent, we will present those axioms in a
slightly modi¯ed form. In [10] we used the product-
based mixture in the set of Spohnian lotteries in this
paper we will adopt the min-based mixture for possi-
bilistic lotteries.

We use term standard lottery for a lottery that real-
izes (with corresponding degrees of certainty) in either
the best prize x or the worst x, i.e., (¸=x; ¹=x) where
¸; ¹ 2 V and max(¸; ¹) = 1. We use B to denote the
set of all standard lotteries.

We have the following system of axioms that is denoted
by S without subscript.

B1 (Total pre-order) º is re°exive, transitive and
complete.

B2 (Qualitative monotonicity) º restricted over B
satis¯es the following condition. Let suppose ¾ =
(¸=x; ¹=x) and ¾0 = (¸0=x; ¹0=x) then

¾ º ¾0 i®

8<:
1 ¸ ¸ ¸ ¸0 & ¹ = ¹0 = 1
¸ = 1 & ¸0 < 1
¸ = ¸0 = 1 & ¹ ∙ ¹0

(8)

B3 (Subsitutability) If ¼1 » ¼2 then (¸=¼1; ¹=¼) »
(¸=¼2; ¹=¼):

B4 (Continuity) 8x 2 X; 9¾ 2 B x » ¾:

We list the axioms of S in the same order as those of
SP : Compared with the system in [10], we note the
following correspondence: B1 (Total pre-order) axiom
incorporates Axioms 1 and 5 (order of prizes and tran-
sitivity), B2 is Axiom 6, B3 is Axiom 3 and B4 is
Axiom 4. Reduction of compound lotteries axiom is
taken care of by the de¯nition of possibilistic mixture.

We need a lemma.

Lemma 1 Assume º satis¯es S (axioms B1 through
B4). For each ¼ 2 ¦X , there exists one and only one
¾ 2 B such that ¼ » ¾.

Proof: By de¯nition of possibilistic mixture (1),
¼ can be rewritten in the form of a mixture
(¼(x1)=x1; ¼(x2)=x2; : : : ¼(xn)=xn): By B4, we have
xi » ¾i for 1 ∙ i ∙ n where ¾i is a stan-
dard lottery ¾i = (¸i=x; ¹i=x): By B3, we have
¼ » (¼(x1)=¾1; ¼(x2)=¾2; : : : ¼(xn)=¾n): Again using
the de¯nition of mixture, we
have (¼(x1)=¾1; ¼(x2)=¾2; : : : ¼(xn)=¾n) = (¸=x; ¹=x)
where

¸ = max
1∙i∙n

min(¼(xi); ¸i)

¹ = max
1∙i∙n

min(¼(xi); ¹i)

So ¼ » (¸=x; ¹=x): By B1 and B2, (¸=x; ¹=x) must
be unique.

Let us consider a utility function QU : ¦X ! U: If we
wish that ¼1 º ¼2 i® QU(¼1) ¸ QU(¼2) holds, from
qualitative monotonicity (B2); it is clear that utility
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Figure 1: Binary utility scale UV .

scale U must be at least rich enough to distinguish
every standard lottery. Let us take

UV
def
= f<¸;¹> j¸; ¹ 2 V and max(¸; ¹) = 1g: (9)

In other words, UV is the set of pair of elements in
the uncertainty scale V such that one of them is 1. A
linear order ¸ on UV is de¯ned as, for u =<¸; ¹>,
u0 =<¸0; ¹0>;

u ¸ u0 i®

8<:
1 ¸ ¸ ¸ ¸0 & ¹ = ¹0 = 1
¸ = 1 & ¸0 < 1
¸ = ¸0 = 1 & ¹ ∙ ¹0

(10)

We refer to UV equipped with the order¸ as the binary
utility scale.

We extend3 operation min in such a way that it is
distributive with respect to pairing as follows

min(®;<¯; °>)
def
=<min(®; ¯);min(®; °)> (11)

We also extend operation max so that it is associative
with respect to pairing

max(<®; ¯>;<°; ±>)
def
=<max(®; °);max(¯; ±)> (12)

Let us call a function u : X ! UV that assigns utility
for each prize in X a basic utility assessment. We
say that a basic utility assessment is consistent with
º if for any pair x; y 2 X x º y i® u(x) ¸ u(y),
u(x) =<1; 0> and u(x) =<0; 1>. Remember that x
and x are respectively the best and the worst prizes in
X: For a given basic utility assessment u, let us de¯ne
a utility function QU : ¦X ! UV as follows

QU(¼)
def
= max

x2X
min(¼(x); u(x)) (13)

We have the following lemma on standard lotteries

Lemma 2 Suppose ¾ = (¸=x; ¹=x) is a standard lot-
tery then QU(¾) =<¸; ¹> :

3We decide in favor of extending operations min and
max instead of creating new symbols. Hopefully, this slight
abuse of notation does not lead to any confusion because
the type of arguments will tell which rule is to apply.

Proof: We have by de¯nition of QU

QU(¾) = max(min(¸;<1; 0>);min(¹;<0; 1>))
= max(<¸; 0>;<0; ¹>)
=<¸; ¹> :

Now we have the following representation theorem

Theorem 2 º on ¦X satis¯es axioms B1 through B4
i® there exists a consistent basic utility assessment u
such that ¼ º ¼0 i® QU(¼) ¸ QU(¼0) 8¼; ¼0 2 ¦X
where QU is de¯ned by (13).

Proof:

()) Suppose º satis¯es axioms B1 through B4. For
¼1; ¼2 2 ¦X ; let us assume ¼1(xi) = ¼1i and ¼2(xi) =
¼2i for 1 ∙ i ∙ n: Suppose ¼1 º ¼2, we will show that
QU(¼1) ¸ QU(¼2):
By B4, for each xi 2 X we have xi » ¾i for some stan-
dard lottery ¾i = (¸i=x; ¹i=x): Let us select a function
u as follows u(x) =<1; 0>, u(x) =<0; 1> and

u(xi) =<¸i; ¹i> for 1 ∙ i ∙ n: (14)

By B3, ¼i = (¼i1=x1; ¼i2=x2; : : : ¼in=xn) »
(¼i1=¾1; ¼i2=¾2; : : : ¼in=¾n) for i = 1; 2: Let us give a
name ½i to the right hand sides (i = 1; 2):We will show
that ½i; which is a possibilistic mixture, is reduced to
a standard lottery. By de¯nition of mixture,

½i(x) = max
1∙j∙n

min(¼ij ; ¸j) (15)

½i(x) = max
1∙j∙n

min(¼ij ; ¹j) (16)

and for all other x 2 X

½i(x) = max
1∙j∙n

min(¼ij ; 0) = 0 (17)

By B1, from ¼1 º ¼2 we have ½1 º ½2: By B2, since
½i are standard lotteries, ½1 º ½2 means either
(½1(x) ¸ ½2(x) and ½1(x) = ½2(x) = 1) or
(½1(x) = 1 and ½2(x) ∙ 1) or
(½1(x) = ½2(x) = 1 and ½1(x) ∙ ½2(x)):

(18)

Now, let us consider the pair < ½i(x); ½i(x) > : By
equations (15, 16) and de¯nitions (11, 12), we have

<½i(x); ½i(x)>= max
1∙j∙n

min(¼ij ; <¸j ; ¹j>) (19)

Taking into account equations (19, 14, 13), we have
QU(¼i) =<½i(x); ½i(x)> : And each of conditions (18)
implies QU(¼1) ¸ QU(¼2):
(() For a given u : X ! UV such that u(x) =<1; 0>
and u(x) =< 0; 1 >, a function QU : ¦X ! UV is



de¯ned as in (13). We have to show that order º
on ¦X induced by QU (¼ º ¼0 i® QU(¼) ¸ QU(¼0))
satis¯es axioms B1 through B4:

B1 is satis¯ed because the order on UV is transitive
and complete.

Suppose ¾ º ¾0 where ¾ = (¸=x; ¹=x), ¾0 =
(¸0=x; ¹0=x) are two standard lotteries. Because º is
induced from QU, we haveQU(¾) ¸ QU(¾0): By lemma
2 we have <¸; ¹> ¸ <¸0; ¹0>. By de¯nitions (10) and
(8) we infer that º satis¯es B2:
Suppose ¼1 » ¼2: Because º is induced from QU, we
have QU(¼1) = QU(¼2): By de¯nition (13), we will
have

QU((¸=¼1; ¹=¼)) =

= max(min(¸;QU(¼1));min(¹;QU(¼)))

= max(min(¸;QU(¼2));min(¹;QU(¼)))

= QU((¸=¼2; ¹=¼))

This means º induced by QU satis¯es B3:
Finally, the existence of basic utility assessment u to-
gether with lemma 2 guarantee satisfaction of B4:

4 Pessimistic, Optimistic or Uni¯ed
Utilities

In this section, we will do a comparison of three
systems of qualitative utilities presented in previous
sections. Since we have a representation theorem
for each of them, we can discuss the systems either
in terms of axioms or in terms of utility functions
QU¡ ; QU+ ; and QU:

First of all, note that the adjectives \pessimistic"
and \optimistic" used for axiom systems SP ;SO, per-
haps, implicitly refer to the opposite direction of ax-
iom A2¡ and A2+: If ¼1 ¸ ¼2 in numerical sense i.e.
¼1(xi) ¸ ¼2(xi) 8i; then A2¡ requires ¼2 º ¼1 while
A2+ requires ¼1 º ¼2: A2

¡ and A2+ are called un-
certainty attitude axioms. The former is \uncertainty
aversion" and the latter is \uncertainty attraction".

But perhaps these names are a source of confusion.
First, since axiom systems SP ;SO are presented in
style of von Neumann and Morgenstern [19], it is ap-
propriate to recall similar terms \risk aversion" and
\risk attraction." In the linear utility theory, risk aver-
sion (attraction) refers to the concavity (convexity) of
utility function. In other words, risk aversion and risk
attraction are properties ascribed to individual util-
ity functions. They are not a property of the utility
theory. Di®erent psychological states may result in dif-
ferent utility assignment to the same outcome or a dif-
ferent assessment of uncertainty related to outcomes,

but it is hard to conceive that they require di®erent
theories as implied by SP and SO: Operationally, the
dichotomy of pessimistic and optimistic systems might
also lead to di±culty in application. For example, how
would a decision maker classify herself as either \opti-
mistic" or \pessimistic" or what would happen if she
was unsure about either options. Moreover, in the
writing of the authors for example [8, 6], it is clear that
inequality of the form ¼1 ¸ ¼2 is an informational re-
lationship. It says that ¼2 is more speci¯c than ¼1: In
other words, it says that ¼2 contains more information
than ¼1 does. So it seems to us, the equation of infor-
mational relationship with preferential relationship º
is not a very sensible idea. Although information has
its own value, informational value per se rarely serves
as a decision criterion. For example, decision making
under uncertainty is mostly guided by von Neumann
and Morgenstern's linear utility theory rather than by
Shannon's information theory.

Let us consider the following example. We face a
choice between two lotteries ¼1 = (1=x; 1=x) and
¼2 = x: In other words, ¼1 is a possibilistic distri-
bution on X such that ¼1(x) = ¼1(x) = 1, ¼1(x) = 0
for all other x and ¼2(x) = 1, ¼2(x) = 0 for all other
x: According to possibility theory [8, 6], ¼1 describes
a situation where we have knowledge to exclude all
prizes except x and x: Moreover, we are equally sure
about occurence of either of the prizes. ¼2 describes a
complete knowledge situation where all but x are ex-
cluded. Because something is going to happen, ¼2 is
equivalent to saying that x is the certain prize. Ax-
iom A2¡ will force us to consider4 ¼2 is at least as
good as ¼1. In other words, if we were adopting SP
we would have been indi®erent between a surely worst
prize and an uncertain outcome in which there is a
hope to get the best prize. We believe such a choice
is unreasonable. To see when axiom A2+ recommends
a bad action, we could consider a choice between a
surely best prize and uncertain outcome where there
is a danger of getting the worst prize. A2+ will rec-
ommend the latter. Note that all these anomalies are
corrected by axiom B2:

Let us consider sets of standard lotteries B =
f(¸=x; ¹=x)j ¸; ¹ 2 V and max(¸; ¹) = 1g; B¡ def

=

f(1=x; ¹=x)j ¹ 2 V g and B+ def
= f(¸=x; 1=x)j ¸ 2 V g:

We have B = B¡ [B+ and B¡ \B+ = (1=x; 1=x): It
is straightforward to verify the following lemma

Lemma 3 Let º¡;º+ and º denote respectively
the order relations on B¡, B+ and B imposed by
A2¡; A2+ and B2; º = º¡ [ º+ [ (B¡£B+)

4To be exact, a complete calculation would show that
¼1 » ¼2: But a lazy evaluation would suggest to choose ¼2
over ¼1 without bothering further calculation.



The lemma implies that º¡ is the same as º restricted
to B¡ and º+ is the same as º restricted to B+:
It is easy to check that QU¡ ((¸=x; 1=x)) = QU¡ (x);
QU+ ((1=x; ¹=x)) = QU+ (x): In general QU¡ and
QU+ have the following property

Lemma 4 Suppose QU¡ (¼1) ¸ QU¡ (¼2) then
QU¡ ((¸=¼1; 1=¼2)) = QU¡ (¼2) (20)

QU+ ((1=¼1; ¹=¼2)) = QU+ (¼1): (21)

Proof: We will prove (20). The proof of (21) is just
dually similar. Using equation (6), we have

QU¡ ((¸=¼1; 1=¼2)) = min
½
max(nh(¸); QU¡ (¼1))
max(nh(1); QU¡ (¼2))

¾
(22)

By de¯nition of function nh (eqs. 3,4), nh(1) =
0. So, max(nh(1); QU¡ (¼2)) = QU¡ (¼2): Be-
cause of lemma condition QU¡ (¼1) ¸ QU¡ (¼2),
max(nh(¸); QU¡ (¼1)) ¸ QU¡ (¼2): By equation (22),
we have QU¡ ((¸=¼1; 1=¼2)) = QU¡ (¼2):

Thus, if a decision maker is pessimistic, whenever she
sees that the less desirable prize of a lottery is fully
possible she will ignore all considerations about other
prizes and uncertainty to conclude that the lottery is
as good as the least desirable prize. For a optimistic
decision maker, once she sees the more desirable prize
of a lottery is fully possible she concludes that the
lottery is worth the same as that best prize. Roughly
speaking, QU¡ (QU+ ) lumps together a half of total
number of lotteries.

It has been noted that QU¡ and QU+ are \comple-
mentary" in a sense that although optimistic QU+

is not able to distinguish two lotteries (1=x; ¹1=x)
and (1=x; ¹2=x); pessimistic QU

¡ can discriminate
between them by comparing values of ¹1 and ¹2:
The situation is reversed for lotteries (¸1=x; 1=x) and
(¸2=x; 1=x): Again, we note that QU agrees with QU

¡

in the former situation and with the QU+ in the latter
situation.

With notations B¡ and B+, axioms A4¡ and A4+ can
be restated respectively as 8¼ 2 ¦X ; 9¾ 2 B¡ ¼ » ¾
and 8¼ 2 ¦X ; 9¾ 2 B+ ¼ » ¾: We'll show that these
axioms can be weakened, without any e®ect to the
results, by requiring instead 8x 2 X: i.e.,

(B4¡) 8x 2 X; 9¾ 2 B¡ x » ¾:
(B4+) 8x 2 X; 9¾ 2 B+ x » ¾:

As we argued previously, these axioms are coun-
terintuitive. A4¡ requires, for example, the worst
prize x is equivalent to some lottery where the best

prize x is fully possible. But the presense of A2¡

(A2+) makes the stated form of A4¡ (A4+) neces-
sary. Had A4¡ been substituted by B4 8x 2 X;9¾ 2
B x » ¾, we would still have x » (1=x; 1=x), be-
cause (1=x; 1=x) was the mimimal element in B ac-
cording to A2¡: Let assume for some x0 Â x (x0 is
strictly preferred to x) x0 » (¸=x; 1=x). Using def-
inition (5) and the facts that nh(1) = 0; u(x) =
1 and u(x) = 0, we calculate QU¡ ((¸=x; 1=x)) =
min(max(nh(¸); u(x));max(nh(1); u(x))) = 0: From
that we infer QU¡ (x0) = 0 = QU¡ (x): This is in-
consistent with assumption x0 Â x:
We have the following theorem that states precisely
the relationship between systems SP , SO and S:
Theorem 3

(i) SP j= S
(ii) SO j= S
(iii) S [B4¡ j= SP
(iv) S [B4+ j= SO
Proof: We will prove (i) and (iii): The proof of (ii)
and (iv) is dually similar.

(i) Assume A1¡ through A4¡ are satis¯ed , since B1
is the same as A1¡ and B3 is the same as A3¡, we are
left to prove that B2 and B4 are also satis¯ed. From
A4¡ for each ¼ 2 ¦X ; 9¾ 2 B¡ ¼ » ¾: Obviously,
X µ ¦X and B¡ µ B, so B4 is also satis¯ed (note
that symbol X is used for the set of prizes as well as
the set of singleton possibility distributions on set of
prizes). And ¯nally, we will show 5 that SP j= B2:
Assume that º satis¯es SP : For two standard lotteries
¾ = (¸=x; ¹=x) and ¾0 = (¸0=x; ¹0=x): We want to
show

¾ º ¾0 i®
8<: 1 ¸ ¸ ¸ ¸0 & ¹ = ¹0 = 1 (1)
¸ = 1 & ¸0 < 1 (2)
¸ = ¸0 = 1 & ¹ ∙ ¹0 (3)

(23)

(If) Observe that if ¹ = 1 (¹0 = 1), by theorem 1
and lemma 4, we have ¾ » x » (1=x; 1=x) (¾0 » x »
(1=x; 1=x)). In case (1) when ¹ = ¹0 = 1, we have ¾ »
x » ¾0: Thus, ¾ º ¾0: In case (2); since max(¸0; ¹0) = 1
from ¸0 < 1 we have ¹0 = 1: Therefore, ¾0 » x »
(1=x; 1=x): By axiom A2¡ we have ¾ º (1=x; 1=x):
From transitivity, ¾ º ¾0: In case (3), since ¸ = ¸0 = 1
and ¹ ∙ ¹0, by A2¡ we have ¾ º ¾0:
(Only If) Assume ¾ º ¾0: By A4¡ we can assume
¸ = ¸0 = 1: Furthermore, ¹ > ¹0 would violate A2¡.
We have ¹ ∙ ¹0: Thus, the right hand side of (23) (a
disjunction) is true.

(iii) Note that since B4¡ j= B4, set of axioms S[B4¡
is e®ectively one that is obtained by replacing B4 by

5Note that A2¡ states only a su±cient condition for º
while B2 states both necessary and su±cient conditions.



B4¡: We have to show that if B1; B2; B3 and B4¡

are satis¯ed so are A1¡; A2¡; A3¡ and A4¡. Again,
we do not have to worry about A1¡ and A3¡ since
they are identical to B1 and B3:

First, we will show the satisfaction of A4¡: From
B4¡, we can assume xi » ¾i for 1 ∙ i ∙ n where
¾i 2 B¡. We will show that 8¼ 2 ¦X ; 9¾ 2 B¡ ¼ » ¾:
Suppose ¾i = (1=x; ¹i=x) for 1 ∙ i ∙ n: By B3,
¼ » (¼(x1)=¾1; ¼(x2)=¾2 : : : ¼(xn)=¾n): Applying the
de¯nition of mixture (1) for the right hand side, say ½,
of the indi®erence,

½(x) = max
1∙i∙n

min(¼(xi); 1) (24)

½(x) = max
1∙i∙n

min(¼(xi); ¹i) (25)

and for all other x 2 X
½(x) = max

1∙i∙n
min(¼(xi); 0) = 0 (26)

We have ½(x) = 1 because maxi(¼(xi)) = 1: Thus
¼ » (1=x; ½(x)=x):
Now we turn to A2¡. Suppose ¼1 ¸ ¼2: We just show
that ¼1 » (1=x; ½1(x)=x) and ¼2 » (1=x; ½2(x)=x)
where ½i(x) i = 1; 2 is calculated by equation (25).
Since ¼1 ¸ ¼2, we have ½1(x) ¸ ½2(x): By B2, we
have (1=x; ½2(x)=x) º (1=x; ½1(x)=x): From this, by
transitivity we have ¼2 º ¼1:

Corollary 1 System SP (SO) is a special case of S
when each prize in X has an equivalent standard lot-
tery in B¡ (B+):

Since SP and SO are special cases of S; a question that
can be raised 6 is if a \combination" of those special
cases has the same expressive power as S: Speci¯cally,
if one considers pairs of pessimistic and optimistic util-
ities of lotteries <QU¡ (¼); QU+ (¼)> can one come to
something similar to binary utility QU(¼)? We suspect
the answer is no.7

Example: Let X = fx1; x2; x3; x4g: x = x1 Â x2 Â
x3 Â x4 = x: V = f1; :7; :5; 0g and U = f1; :5; :3; 0g:
Consider ¼1; ¼2 2 ¦X with ¼1(x1) = :7; ¼1(x2) =
1; ¼1(x3) = :5; ¼1(x4) = :5 and ¼2(x1) = 1; ¼2(x2) =

6It was raised by a referee.
7Here are some reasons for that. First, although B4¡ j=

B4 and B4+ j= B4 we have B4 6j= B4¡ _ B4+: In other
words, when a basic utility assignment equates elements in
X to standard lotteries on both halves of UV , it violates
both A4¡ and A4+: In order that < QU¡ (¼); QU+ (¼) >
makes sense, somehow at least one of them must hold. Sec-
ond, on one hand, the set of <QU¡ (¼); QU+ (¼)> is a true
two-dimensional object i.e., there is no visible dependence
between QU¡ (¼) and QU+ (¼): On the other hand, set UV
is not because one of the two numerical values in a pair
must be 1.

:7; ¼2(x3) = 0; ¼2(x4) = 1:We will compare utility of
¼1 and ¼2 using QU

¡ and QU:

For de¯nition of QU¡ , let us assume that function n
is given by n(1) = 0; n(:5) = :3; n(:3) = :5; n(0) = 1:
Function h is given by h(1) = 1; h(:7) = :5; h(:5) =
:3; h(0) = 0: Their composition nh is given by
nh(1) = 0; nh(:7) = :3; nh(:5) = :5; nh(0) = 1:
A utility assignment u which is consistent with the
preference order x1; x2; x3; x4 is given by u(x1) =
1; u(x2) = :5; u(x3) = :3; u(x4) = 0: Note that
this utility assignment also means x1 » (1=x1; 0=x4);
x2 » (1=x1; :5=x4), x3 » (1=x1; :7=x4) and x4 »
(1=x1; 1=x4): Using de¯nition (5) we calculate utility
for ¼1

QU¡ (¼1) = min

8>><>>:
max(nh(:7); 1)
max(nh(1); :5)
max(nh(:5); :3)
max(nh(:5); 0)

9>>=>>;
= min

8>><>>:
max(:3; 1)
max(0; :5)
max(:5; :3)
max(:5; 0)

9>>=>>;
= minf1; :5; :5; :5g = :5:

and ¼2

QU¡ (¼2) = min

8>><>>:
max(nh(1); 1)
max(nh(:7); :5)
max(nh(0); :3)
max(nh(1); 0)

9>>=>>;
= min

8>><>>:
max(0; 1)
max(:3; :5)
max(1; :3)
max(0; 0)

9>>=>>;
= minf1; :5; 1; 0g = 0:

Thus, according to QU¡ , ¼1 which is equivalent to x2,
is strictly prefered to ¼2, which is equivalent to x4.

To de¯ne QU, we have UV = f<0; 1>;<:5; 1>;<:7; 1>
;<1; 1>;<1; :7>;<1; :5>;<1; 0>g: Take the following
consistent basic utility assessment u(x1) =< 1; 0 >;
u(x2) =<1; :5>; u(x3) =<1; :7> and u(x4) =<1; 1> :
Using de¯nition (13) we calculate utility for ¼1

QU(¼1) = max

8>><>>:
min(:7;<1; 0>)
min(1; <1; :5>)
min(:5;<1; :7>)
min(:5;<1; 1>)

9>>=>>;
= max

8>><>>:
<:7; 0>
<1; :5>
<:5; :5>
<:5; :5>

9>>=>>;
= <1; :5>



and ¼2

QU(¼2) = max

8>><>>:
min(1; <1; 0>)
min(:7;<1; :5>)
min(0; <1; :7>)
min(1; <1; 1>)

9>>=>>;
= max

8>><>>:
<1; 0>
<:7; :5>
<0; 0>
<1; 1>

9>>=>>;
= <1; 1>

So, according to QU, ¼1 which is equivalent to x2, is
strictly prefered to ¼2, which is equivalent to x4.

Let us consider the forms of functions QU¡ ; QU+ and
QU given by equations (5), (7) and (13) respectively.
First of all, it is easy to note that QU looks similar
to \optimistic" QU+ which, in turn, is quite di®er-
ent from \pessimistic" QU¡ : The form of QU+ and
QU reminds us of the expected utility in probabilistic
approach where the expected utility of a probabilis-

tic lottery p is de¯ned as EU(p)
def
=
P

x2X p(x):u(x):
Operations max;min have, respectively, counterparts
in addition (+) and multiplication (:). This similarity
leads us to refer to QU also as expected qualitative util-
ity function. The di®erence between functions QU+

and QU is that latter makes no use of function h that
maps uncertainty scale V onto utility scale U: In addi-
tion to h, de¯nition of QU¡ requires an order reversing
involution n on U .

But the key distinction between QU on one hand and
QU¡ ; QU+ on the other hand is that the utility scale
used for QU is an ordered set UV of pairs of numbers
that are conveniently taken to be in the uncertainty
scale V: The utility scale UV is chosen so that there is
a one to one correspondence between UV and the set
of standard lotteries B:

It is well known that probability theory interprets
negation operation in a strictly complementary sense
i.e., p(A) = 1 ¡ p(:A): That fact makes it su±cient
to represent the occurence likelihood (or belief in Sav-
age's personalistic view) of an event by one number -
its probability. Unlike probability theory, possibility
theory as well as most non-probabilistic uncertainty
formalisms e.g., Demster-Shafer belief function theory
[15, 16] or interval valued probabilty [13, 20] describe
uncertainty of an event by two numbers. They are
possibility and necessity degrees in possibility theory;
plausibility and belief in DS theory; upper and lower
probabilities in interval-valued probability theory. It is
also well known that the heart of decision making un-
der uncertainty is trading-o® between uncertainty and
utility. In order to enable the trade-o®, utility and
uncertainty must be \comparable." Therefore, binary

utility is, perhaps, the \right" answer to binary uncer-
tainty.

Focusing on standard lotteries, we can give the order
on binary utility the following intuition. Since stan-
dard lottery ¾ 2 B is a possibility distribution on X
such that ¾(x) = ¸; ¾(x) = ¹ and ¾(x) = 0 for all
other x 2 X; the possibility degree and the necessity
degree assigned by ¾ to x are ¸ and 1¡¹: Because dif-
ferent standard lotteries have exactly the same prize,
comparison of their utility boils down to comparing
how sure the prize will be realized. The highest con-
¯dence level is, of course, represented by necessity de-
gree 1 that corresponds to ¸ = 1 and ¹ = 0: The
con¯dence level is decreasing when necessity decreas-
ing to 0. That corresponds to ¹ increases to 1. Before
necessity degree becomes 0, the possibility is always 1.
Once necessity equals 0, the con¯dence level can drop
further with the falling of possibility degree from 1 to
0. The least con¯dence level is when the possibility
degree is 0 i.e. ¸ = 0 and ¹ = 1:

5 Conclusion

In this paper we have proposed a system of axioms
for decision making with possibility theory. Our ax-
iomatic system (S) uni¯es the pessimistic and opti-
mistic systems of axioms (SP ;SO) previously proposed
by Dubois et al. The uni¯cation is made by (i) replac-
ing two informational attitude axioms A2¡ and A2+

(uncertainty aversion and uncertainty attraction) by
the monotonicity axiom B2; (ii) generalization of con-
tinuity axioms A4¡ and A4+ to axiom B4: Our axiom
system subsumes both pessimistic and optimistic sys-
tems in the sense that any conclusion drawn by either
SP or SO can also be made by S: But the reverse is
not true. Our system can sensibly handle situations
where neither SP nor SO could. An example is when
prizes in X have equivalent standard lotteries in both
halves B¡ and B+ of B: Beside the simplifying e®ect,8

we argue that our proposal also removes uncertainty
attitude from an utility theory to where it belongs {
individual utility assessments.

We also prove a representation theorem for the uni¯ed
system of axioms. Our utility function maps possibilis-
tic lotteries into an ordered binary utility scale where
each utility level is a pair of numbers. The utility
function is a composition of max, min operations that
have been generalized in a natural way to work with
pairs. The composition is similar to the composition of
the classic expected utility expression where in place
of max is addition and in place of min is multiplica-
tion. We also provide intuitive argument for the use

8Among other things, QU does not need auxiliary func-
tions n and h required by QU¡ and QU+ :



of binary utility.
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