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Abstract

This paper describes a systematic procedure for constructing Bayesian networks from domain

knowledge of experts using the causal mapping approach. We outline how causal knowledge of

experts can be represented as causal maps, and how the graphical structure of causal maps can be

modified to construct Bayes nets. Probability encoding techniques can be used to assess the

numerical parameters of the resulting Bayes nets. We illustrate the construction of a Bayes net

starting from a causal map of a systems analyst in the context of an information technology

application outsourcing decision.
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1 Introduction

A Bayesian network [BN] is a graphical model that encodes relationships among variables of

interest. When used in conjunction with statistical techniques, a BN has several advantages for

data analysis [33]. One, it readily handles situations where some data entries are missing. Two, it

can be used to model causal relationships, and hence can be used to gain understanding about a

problem domain and to predict the consequences of intervention. Three, because the model has

both causal and probabilistic semantics, it is an ideal representation for combining prior

knowledge (which often comes in causal form) and data. BNs are especially useful in modeling

uncertainty in a domain. BNs have been applied particularly to problems, which require

diagnosis of problems from a variety of input data. A few examples of BN applications include

medical diagnostic systems, real-time weapons scheduling, and generator monitoring expert

system and troubleshooting.

Two different approaches have been used to construct Bayesian networks—data-based

approach and knowledge-based approach. The data-based approaches use conditional

independence semantics of Bayes nets to induce models from data [17]. The knowledge-based

approach use causal knowledge of domain experts in constructing Bayesian networks [25]. The

knowledge-based approach is especially useful in situations where domain knowledge is crucial

and availability of data is scarce. Elicitation of qualitative knowledge from humans is critical in

constructing BNs because humans find it easier to handle qualitative than quantitative data [29].

Moreover, the inference procedures in a BN are more sensitive to the qualitative structure than

the quantitative probabilities associated with the structure [33]. Consequently, the most effective

BNs are those that combine the qualitative structure based on expert knowledge with the

quantitative probabilities identified and revised using hard data. Despite the importance of the
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knowledge-based approach and the qualitative structure of the BN in making inference, few

systematic techniques exist to construct the qualitative structure of the BNs. In this paper, we

propose a causal mapping approach to the construction of BNs based on expert knowledge.

Recently, there has been a growing interest in the use of causal maps to represent domain

knowledge of decision-makers [1, 20, 26]. Causal maps are cognitive maps that represent the

causal knowledge of subjects in a specific domain. Causal maps (also called cognitive maps,

cause maps, etc.) have been used extensively in the areas of policy analysis [2] and management

sciences [23, 31] to represent salient factors, knowledge, and conditions that influence decision-

making. Causal maps have been useful in practice. For example, Axelrod [2] describes a causal

map derived from text to represent a decision maker’s beliefs concerning the relationships

between factors in the public health system. Similarly, Swan [35] describes textually derived

causal maps of key managers to identify important factors affecting the decision of implementing

computer-aided production management technologies in manufacturing firms.

Causal maps are useful tools to construct Bayesian networks for several reasons. First,

causal maps capture causal knowledge of experts about a domain that other methods such as

protocol analysis and repertory grids cannot capture. Causal knowledge of experts is especially

important in the context of decision making because decision problems are described and

understood through causal connections. Second, causal maps represent domain knowledge more

descriptively than other models such as regression or structural equations. Third, causal mapping

is more comprehensive, less time-consuming and causes lesser inconvenience to experts during

knowledge elicitation than other techniques such as protocol analysis and repertory grids [5].

Finally, causal maps lend themselves to different types of statistical analysis including matrix
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algebra and network analytic methods [2, 3, 6, 13], relation algebra [7], system dynamics [16,

37], decision trees [9] and neural networks [36].

However, despite these advantages, there are some important differences between the

network representations of causal maps and Bayesian networks that must be addressed in using

causal maps to construct Bayesian Networks [28]. The primary purpose of this paper is to

propose a systematic procedure for constructing a causal Bayesian network by combining

exploratory and confirmatory methods of constructing causal maps with the technique for

converting causal maps to Bayes nets described in [28]. The resulting technique can be used as a

semi-formal method for construction of Bayesian networks starting from a domain expert.

Following the terminology in [28], we call these graphical structures “Bayesian causal maps.” In

this paper, we illustrate this method with a new case study on online ticketing application

outsourcing decision in a technology organization.

An outline of the remainder of the paper is as follows. In Section 2, we discuss Bayesian

networks, their semantics, and the process of making inferences. In Section 3, we discuss the

definition and components of a causal map. In Section 4, we discuss the similarities in and

differences between causal maps and Bayesian networks and describe Bayesian Causal Maps and

how they are different from causal maps and Bayesian Networks. In Section 5, we describe a

procedure for constructing a causal map and its conversion to a Bayesian network. In Section 6,

we discuss a case study of an online ticketing application outsourcing decision in a technology

organization. In Section 7, we list the advantages and applications of Bayesian causal maps.

Finally, in Section 8, we conclude with a summary and a statement of future research.

2 Bayesian Networks

In this section, we briefly describe the definition and semantics of Bayesian networks.
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2.1 Definition

Bayesian networks have their roots in attempts to represent expert knowledge in domains where

expert knowledge is uncertain, ambiguous, and/or incomplete. Bayesian networks are based on

probability theory. A primer on Bayesian networks is found in [33].

A Bayesian network model is represented at two levels, qualitative and quantitative. At

the qualitative level, we have a directed acyclic graph in which nodes represent variables, and

directed arcs describe the conditional independence relations embedded in the model. Figure 1

shows a Bayesian network consisting of four discrete variables: Mileage (M), Brand (B), Car

Performance (C), and Purchase the Car (P). At the quantitative level, the dependence relations

are expressed in terms of conditional probability distributions for each variable in the network.

Each variable X has a set of possible values called its state space that consists of mutually

exclusive and exhaustive values of the variable. In Figure 1, e.g., Mileage has two states: ‘high’

and ‘low;’ Brand has two states: ‘Good’ and ‘Bad;’ Car Performance has two states: ‘high’ and

‘low;’ and Purchase the Car has two states: ‘Yes’ and ‘No.’ If there is an arc pointing from X to

Y, we say X is a parent of Y. In Figure 1, Mileage and Brand have no parents. However, Car

Performance has two parents (Mileage and Brand) and Buy the Car has one parent (Car

Performance). For each variable, we need to specify a table of conditional probability

distributions, one for each configuration of states of its parents. Figure 1 shows these tables of

conditional distributions—P(M), P(B), P(C | M, B), and P(P!|!C).

Figure 1 goes about here
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2.2 Semantics

A fundamental assumption of a Bayesian network is that when we multiply the conditionals for

each variable, we get the joint probability distribution for all variables in the network. In Figure

1, e.g., we are assuming that

P(M, B, C, P) = P(M) ƒ P(B) ƒ P(C | M, B) ƒ P(P | C),

where ƒ denotes pointwise multiplication of tables. The rule of total probability tells us that

P(M, P, C, B) = P(M) ƒ P(B | M) ƒ P(C | M, B) ƒ P(P | M, B, C).

Comparing the two, we notice that we are making the following assumptions: P(B | M) = P(B),

i.e., B is independent of M; and P(P | M, B, C) = P(P | C), i.e., P is conditionally independent of

M and B given C.

Notice that we can read these conditional independence assumptions directly from the

Bayesian network graph as follows. Suppose we pick a sequence of the variables such that for all

directed arcs in the network, the variable at the tail of each arc precedes the variable at the head

of the arc in the sequence. Since the directed graph is acyclic, there always exists such a

sequence. In Figure 1, e.g., one such sequence is M B C P. Then, the conditional independence

assumptions can be stated as follows. For each variable in the sequence, we are assuming it is

conditionally independent of its predecessors in the sequence given its parents. The essential

point here is that missing arcs (from a node to its successors in the sequence) signify conditional

independence assumptions. Thus, the lack of an arc from M to B signifies that M is independent

of B; the lack of an arc from M to P and from B to P signifies that P is conditionally independent

of M and B given C.

In general, there may be several sequences consistent with the arcs in a Bayesian

network. In such cases, the list of conditional independence assumptions associated with each
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sequence can be shown to be equivalent using the laws of conditional independence [27]. [27]

and [19] describe other equivalent graphical methods for identifying conditional independence

assumptions embedded in a Bayesian network graph.

Unlike a causal map, the arcs in a Bayesian network do not necessarily imply causality.

The (lack of) arcs represent conditional independence assumptions. How are conditional

independence and causality related? Conditional independence can be understood in terms of

relevance. In our car example, P is conditionally independent of M and B given C. This

statement can be interpreted as follows. If the true state of C is known, then in assigning

probabilities to states of P, the states of M and B are irrelevant. In other words, if we know that

the performance of the car is good, then any knowledge about brand and mileage is irrelevant to

the probabilities of purchasing of the car.

In practice, the notion of direct causality is often used to make judgments of conditional

independence. Consider in our car example, a situation where M directly causes C and C in turn

directly causes P, i.e., the causal effect of M on P is completely mediated by C. Then it is clear

that although M is relevant to P, if we know the true state of C, further knowledge of M is

irrelevant (for assigning probabilities) to P, i.e., P is conditionally independent of M given C.

This situation is represented by the Bayesian network M Æ C Æ P in which there is no arc from

M to P. As another example, consider a situation where variable X directly causes variable Y and

variable X also directly causes variable Z. Although knowledge of Y is relevant to Z (if Y is true

then it is more likely that X is true which in turn means that it is more likely that Z is true), once

we know the true state of X, then further knowledge of Y is irrelevant to Z, i.e., Y is

conditionally independent of Z given X. This situation is represented by the Bayesian network

Z!¨ X Æ Y in which there is no arc from Y to Z or vice-versa. Finally as a third example,
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consider the situation where X and Y are two independent direct causes of Z, i.e., X and Y are

unconditionally independent. But if we learn something about the true state of Z, then X and Y

are no longer irrelevant to each other (if Z is believed to be true and X is false, then it is more

likely that Y is true), i.e., Y is not conditionally independent of X given Z. This situation is

represented by the Bayesian net X Æ Z ¨ Y in which there is no arc from X to Y or vice-versa.

2.3 Making Probabilistic Inferences

Inference (also called probabilistic inference) in a Bayesian network is based on the notion of

evidence propagation. Evidence propagation refers to an efficient computation of marginal

probabilities of variables of interest, conditional on arbitrary configurations of other variables,

which constitute the observed evidence [29]. Once a Bayesian network is constructed, it can be

used to make inferences about the variables in the model. The conditionals given in a Bayesian

network representation specify the prior joint distribution of the variables. If we observe (or

learn about) the values of some variables, then such observations can be represented by tables

where we assign 1 for the observed values and 0 for the unobserved values. Then the product of

all tables (conditionals and observations) gives the (un-normalized) posterior joint distribution of

the variables. Thus, the joint distribution of variables changes each time we learn new

information about the variables.

3 Causal Maps

Causal maps, also called cause maps or cognitive maps, are directed graphs that represent the

cause-effect relations embedded in experts’ thinking. Eden [12] defines a cognitive map as a

“directed graph characterized by a hierarchical structure which is most often in the form of a

means/end graph.” Causal maps express the judgment that certain events or actions will lead to
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particular outcomes. There are three major components of a causal map: causal concept, causal

connection and causal value. Figure 2 shows a part of a causal map of a prospective buyer

relating to the decision of whether to buy or not to buy a particular used car.

3.1 Causal concept

A causal concept is a single ideational category [6]. It can be an attribute, issue, factor or variable

of a domain, and is represented by a node in the causal map. A concept can be a single word such

as ‘Mileage,’ ‘Age,’ and ‘Price;’ a composite word such as ‘Good Brand,’ ‘Fuel Efficiency,’

‘Car Performance’ and ‘Time Belt Condition;’ or a more complex phrase such as ‘Condition of

Car Parts,’ ‘Accident Record of the Car’ and ‘Buy the Car.’

Figure 2 goes about here

3.2 Causal connection

A causal connection is a tie that links two concepts in the map and is represented with a

unidirectional arrow. It depicts an antecedent-consequence relation between two concepts. The

concept at the tail of an arrow is taken to cause the concept at the head of the arrow. In Figure 2,

‘Mileage,’ ‘Age,’ ‘Brand’ and ‘Fuel Efficiency’ determine the performance as well as the price

of the car. ‘Accident Record of the Car’ determines the ‘Engine Condition,’ and the

‘Transmission Condition.’ Similarly, the ‘Engine Condition,’ ‘Transmission Condition,’ and

‘Timing Belt Condition’ determine the condition of the parts of the car. Finally, the decision to

buy the car is a consequence of ‘Price,’ ‘Performance,’ and ‘Car Condition.’

A causal connection can be positive or negative. A positive connection indicates that an

increase in the causal concept leads to an increase in the effect concept, whereas a negative

connection indicates that an increase in the causal concepts leads to a decrease in the effect
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concept. In Figure 2, for example, ‘Fuel Efficiency’ and ‘Good Brand’ exert a positive influence

on the ‘Car Performance.’ Thus, the higher the fuel efficiency and better the brand, the higher

will be the performance of the car. On the other hand, ‘Age’ and ‘Mileage’ have a negative

influence on ‘Car Performance.’ Thus, higher the age and mileage of the car, lower the

performance of the car.

3.3 Causal value

A causal value represents the strength of the causal connection. Different techniques have been

used to determine the causal value including social networks and matrix algebra [2, 6], system

dynamics [16], relation algebra [7], and neural networks [36]. The choice of techniques used to

determine the causal value is determined by the purpose of analysis. In this study, we use causal

maps to construct Bayesian networks and represent the causal values as Bayesian probabilities.

4 Transforming Causal Maps to Bayesian Networks

Although Bayesian networks and causal maps are causal models that represent cause-effect

beliefs of experts, there are some differences in the two approaches to modeling that need to be

addressed if we are to transform causal maps to Bayesian Networks. These differences are

discussed in the following paragraphs. Most of the discussion in this section is taken from [28].

4.1 Conditional independencies

A network model can be either a dependence map (D-map) or an independence map (I-map)

[29]. A D-map guarantees that concepts found to be connected are indeed dependent; however, it

may display a pair of dependent concepts as a pair of separated concepts. In other words, in a D-

map, a link or arrow between two nodes in the model implies that the two nodes are related.

However, a lack of an arrow between nodes does not necessarily imply independence between
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the two nodes. An I-map, on the other hand, guarantees that concepts found to be separated are

indeed conditionally independent, given other variables. However, it may display a pair of

independent concepts as connected concepts. Thus, in an I-Map, lack of an arrow implies

independence between two nodes, whereas the presence of an arrow between two nodes does not

necessarily imply that the two nodes are related.

A causal map is a directed graph that depicts causality between variables as perceived by

individuals. Since an arrow between two variables implies dependence, it is a D-map. However,

the absence of an arrow between two variables does not imply a lack of dependence. In other

words, a causal map does not guarantee that variables found to be separated correspond to

independent concepts, i.e., it is not an I-map. This is because the process for deriving causal

maps is exploratory. A lack of an arrow may result from the lack of articulation of an arc on the

part of the expert. It does not imply that the expert believes the nodes to be independent.

Bayesian networks, on the other hand, are I-maps. Given a sequence of variables, an

absence of arrow from a variable to its successors in the sequence implies conditional

independence between the variables. Conditional independence is an important issue in making

inferences since it specifies the relevance of information on one variable in making inference on

another. Thus, if we are to regard a causal map as a Bayesian network, it is important to ensure

that the lack of links between the concepts in the causal maps implies independence and the

presence of links between concepts implies dependence. In other words, we need to make causal

maps both D-maps and I-maps.

An example of this is shown in Figure 3. The solid arrows in the figure represent links

identified in the original causal map based on the narrative yielded by an open ended exploratory

interview conducted with the buyer. However, when the expert was shown the original causal
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map based on the first interview and asked if the map was accurate or if the buyer wanted to

make any further changes to the causal map in terms missing links, redundant links and wrong

direction of the links, the buyer added three more links shown by the dotted lines in Figure 3:

From Mileage to Car Performance, from Car History to Car Performance and from Brand to

Price of the Car. The addition of the three new links changes the inference about the variables in

the map. For example, car performance was independent of Mileage and Car History in the

original map. However, in the new map Mileage and Car History are relevant in making

inferences about Car Performance. Similarly, in the original map, Brand was not relevant to

making inferences about the Price of the Car. However, in the new map, Price of Car is

dependent not only on Mileage but also on Brand. In short, the new links change the conditional

independence assumptions about variables in the map.

Figure 3 goes about here

4.2 Reasoning underlying cause-effect relations

Causal maps identify individuals’ perceptions of cause-effect relationships between variables

based on language rather than the reasoning processes [6]. Studies in managerial cognition

indicate that individuals reason by accumulating possibly significant pieces of information and

organizing them in relation to each other so as to be able to combine them into a conclusion and

decision [8]. Individuals use such reasoning processes to put information together as a cause-

effect series of events leading to predicted future courses of events. These reasoning processes

are important in decision-making and in making inferences about future decision outcomes.

Literature on logic suggests that individuals perceive cause-effect relationships based on

two types of reasoning: deductive and abductive [8]. A reasoning process is called deductive
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when we reason from causes to effects, i.e., in the direction of causation. For example, in the

medical domain, risk factors (e.g., smoking) are regarded as causes, and the diseases (e.g., lung

cancer) as effects. When a physician, confronted with a patient who has been a smoker, reasons

that the patient is at risk for lung cancer, (s)he is reasoning deductively.

A reasoning process is called abductive when we reason from effects to causes, i.e., in the

direction opposite to causation. For example, diseases (e.g., lung cancer) are regarded as causes

of symptoms (e.g., positive X-ray). When a physician, after observing a patient’s positive x-ray

result, concludes that the patient is probably suffering from lung cancer, (s)he is reasoning

abductively.

The difference between deductive and abductive reasoning underlying causal statements

and their effect on representation of causal linkages are illustrated in Figure 4. Causal statement

1 involves the use of logical deduction and the reasoning is in the direction of causation. This is

correctly reflected in the arc from ‘Car been in an accident’ to ‘Dent in the body of the car’ of the

car. Causal statement 2 involves abductive reasoning. Since information about whether the car

has been in an accident is not known to the buyer (in this case), the buyer is making inference

about this unknown variable based on his/her observation of the Dent in the body of the car. This

does not imply that dent in the car causes the car to be have been in an accident. The reasoning in

this causal statement is in the direction opposite of causation. Causal statements involving

abductive reasoning are misrepresented in a causal map by an arc from effect to cause. Such

misrepresentation can also lead to redundant circular relations between variables in the causal

map. For instance, both the arrows in Figure 4 may be represented in a causal map creating a

loop. A distinction between deductive and abductive reasoning behind the causal linkages is

essential to establish accurate directions of linkages in causal maps. The emphasis in deriving
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causal maps should be on the reasoning underlying the causal statements rather than the language

used.

Figure 4 goes about here

4.3 Distinguishing between direct and indirect relationships

The procedure for deriving causal maps does not provide for a distinction between ‘direct’ and

‘indirect’ relationships between concepts [12, 13]. For example, a direct link between two

concepts in the causal map does not guarantee a direct relationship between the two concepts. It

just implies a relation between the two concepts that can be either direct or indirect. This

distinction is important to identify conditional independencies in the causal maps. Figure 5

depicts how a lack of distinction between direct and indirect relationship affects conditional

independence assumptions in a causal map.

Figure 5 goes about here

In Figure 5, both ‘accident record of the car’ and ‘performance of the car’ affect the decision of

whether to ‘buy/not buy the car.’ In the modified Bayesian causal map, there is no linkage

between accident record of the car and Buy/not buy implying that accident record of the car

impacts the decision to buy the car strictly through performance of the car. If we have complete

information on performance of the car, any additional information on accident Record of the car

would be irrelevant in making inferences about the decision to buy/not buy the car.

A clear distinction between direct and indirect cause-effect relations is important for three

reasons. First, it helps us understand the nature of relations between variables. It tells us whether

the effect of a variable on another is completely modeled by the effect of the first on a third
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mediating variable (which in turn is a cause of the second). Second, if Accident History of the

Car (in Figure 5) affects the decision to Buy/Not Buy the Car only through Performance of the

Car, then an arrow from Accident History of the Car to the decision to Buy/Not Buy the Car is

redundant and increases the complexity of the representation. Finally, distinction between direct

and indirect cause-effect relations allows incorporation of conditional independencies in causal

maps. As we have seen earlier, conditional independencies are critical in making inferences on

the variables in large causal maps.

4.4 Eliminating circular relations

Causal maps are directed graphs and are characterized by a hierarchical (or acyclic) structure.

However, circular relations or causal loops destroy the hierarchical form of a graph. Circular

relations in the causal maps violate the acyclic graphical structure required in a Bayesian

network. It is therefore essential to eliminate circular relations to make causal maps compatible

with Bayesian networks. Causal loops can exist for two reasons [4, 12, 20]. First, they may be

coding mistakes that need to be corrected. Second, they may represent dynamic relations

between variables across multiple time frames.

Coding mistakes can be rectified by clarifying causal linkages between variables in terms

of deductive versus abductive reasoning or direct versus indirect linkage; issues already

discussed in previous paragraphs. In addition to coding mistakes, feedback loops may indicate

dynamic relations between variables over time. In such cases, part of the linkages in the loop

pertains to a current time frame and some linkages pertain to a future time frame. In such cases,

disaggregating the variables into two time frames can often solve the problem of circularity.

Figure 6 goes about here
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For example, Figure 6 shows a reciprocal causal relation between Accident Record of the

Car and Car Performance and reasoning underlying this circular relation. Arrow t1 implies that

the prior or past accident record of the car affects the future car performance. In other words, if

the car has been in an accident, then there may be problems with the car that may affect its

current performance. Arrow t2 implies that current car performance can affect the future accident

record of the car. The circular relation has resulted from aggregation of the variable Accident

Record of the Car across two time frames: t1 and t2. After de-aggregating Accident Record of the

Car into two time frames, we get an acyclic relation between the three variables. To make the

causal map acyclic, we can either include both the arrows in the map or we can arbitrarily retain

one of the two relations and exclude the other from the causal map. This will depend on the time

frame of the decision being modeled. An acyclic structure of the causal map is essential to the

inference process and to make causal maps compatible with Bayesian networks. Bayesian

networks are unable to represent reciprocal causal relations.

5 Constructing Bayesian Causal Maps

In this section, we propose a systematic procedure to construct Bayesian Causal Maps. The

procedure comprises four main steps:

1. Data elicitation

2. Derivation of causal maps

3. Modification of causal maps to construct Bayesian Causal Maps

4. Derivation of the Parameters of Bayesian Causal Maps

In the first step—data elicitation—an individual domain expert is interviewed using

qualitative interview to elicit his/her domain knowledge and the experts’ response to the
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interview is transcribed to get a text that we call a ‘narrative.’ In the second step, the narrative

obtained in the first step in analyzed using a systematic content analysis technique to represent

the narrative in the form of a causal map of the expert. In the third step, the causal map of the

expert is modified to eliminate biases that result from the use of textual analysis and to make the

structure of the causal maps compatible with Bayesian Networks. In the final step, the

parameters of the Bayesian Causal Maps are derived using probability-encoding techniques.

5.1 Data Elicitation

In this step, domain information is elicited from the expert. Two different types of elicitation

techniques are typically employed to capture domain information: structured and unstructured.

The structured techniques are based on a confirmatory approach to data elicitation whereas

unstructured methods are based on the exploratory approach. These two types of techniques

differ in terms of purpose and type of knowledge elicited [6]. In the structured techniques,

experts are provided with a list of pre-defined concepts and are asked to specify the direction and

sign (positive and negative) between the concepts. Structured methods are more suitable for

confirming and validating expert knowledge rather than for eliciting expert knowledge for

domains that are not clearly defined. On the other hand, the purpose of an unstructured approach

is to inductively explore a new or unfamiliar domain by posing questions such as: “What are the

factors relevant to the decision?” The unstructured approach yields a richer understanding of the

processes that individuals engage in decision-making as well as helps gather important insights

into the general knowledge that individuals have on the domain being evaluated.

The choice of elicitation methods affects the data elicitation process as well as the coding

process in constructing cognitive maps. In the structured methods, the concepts in the cognitive

maps are defined a priori by modelers and these concepts are imposed on the experts from whom
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the knowledge is elicited. Hence, in the structured methods, researchers know the number of

concepts in the cognitive map. On the other hand, in the unstructured methods, the concepts

emerge from the data or the narrative of the expert. In this paper, we propose a combination of

the two techniques to facilitate the elicitation of data using an inductive approach and the

validation of data using a confirmatory approach. The structured methods are discussed in

greater detail in the validation section.

In unstructured methods, in-depth qualitative and open-ended questions are posed to the

expert to obtain raw data in the form of a narrative. This narrative is then used to construct

cognitive maps using textual analysis. Unstructured methods are most appropriate for eliciting

expert knowledge because they are exploratory and less intrusive. This is because the concepts

and the links between concepts are allowed to emerge in the process of interviews by sequencing

the interview questions based on the responses of the expert. These methods are particularly

suitable for eliciting expert knowledge for unknown and ill-structured domains. The knowledge

elicited through unstructured methods can be validated using structured methods. A widely used

qualitative interview technique that can be used to elicit a narrative is open interview with probes

[32]. This interview consists of three different types of questions: broad-open ended questions,

probing questions and closed questions.

An example of an open interview with probes conducted with the prospective buyer

(university graduate student) relating to the decision of whether or not to buy a 1995 Honda

Accord car is presented in Figure 7. As shown in the Figure, the interview starts by posing a

broad question to extract the general decision variables such as: “What factors would you

consider in deciding whether or not to buy a 1995 Honda Accord car LX?” The subject’s answer

to this question can then be used to identify ‘probes’ or key phrases identified by the subject.



A Causal Mapping Approach to Constructing Bayesian Networks 18

Subsequent questions presented to the subject relate to each of these probes in terms of direct

questions as well as indirect relationships with other probes offered by the subject. Closed

questions are very specific and require the subject to answer as either ‘yes’ or ‘no.’ Closed

questions are primarily used for clarification purposes. The bold phrases in the prospective

buyer’s response represent the probes identified by the interviewer. For example in the interview

shown in Figure 7, “performance of the car” and “condition of car parts” are probes used by the

interviewer to get more detailed factors that determine the performance of car. The probing

question on car performance (question 2) yielded 3 additional probes: “age,” “mileage” and

“fuel”; the probing question on condition of car parts also yielded 3 probes: “engine,”

“transmission,” and “time belt.” These probes were used to get more detailed information about

each of these concepts. This probing continues till the prospective buyer has exhausted the list of

factors that make-up a domain and he/she cannot think of any additional factors. The responses

of the expert to the open interview can be transcribed to yield a ‘narrative’ or a ‘text.’ This

narrative or text is then analyzed using a systematic procedure of textual analysis to derive causal

maps. This procedure is described in the next section.

Figure 7 goes about here

5.2 Derivation of causal maps.

There are four different steps in deriving causal maps using narrative or text yielded by the

interview [2, 20]. These steps are shown in Figure 8 and discussed in detail in the following

paragraphs.

Figure 8 goes about here
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5.2.1 Identify Causal Statements in the Narrative

The first step in constructing causal maps is to identify causal statements in the narrative. Causal

statements are statements in the narrative that explicitly contain a cause-effect relationship. A

causal statement links two different concepts through a causal connector. An important

consideration in identifying causal statements in a narrative is to define rules for recognizing

causal connectors. This involves developing a comprehensive dictionary of words or phrases that

can be considered as causal connectors. Examples of words used to represent causal connectors

include ‘if-then’, ‘because’, ‘so,’ ‘as,’ ‘therefore’ etc. Each statement containing a causal

connector can be identified as a ‘causal statement.’ This can be done either manually or can be

automated. In the manual procedure, multiple raters can develop a comprehensive dictionary of

causal connectors before going through the narrative or the text yielded by the open interview.

They can then recognize the causal connectors in the narrative to identify causal statements. The

advantage of the manual procedure is that raters can add new causal connectors to the pre-

defined list of causal connectors while going through the narrative and hence the chance of

missing a uniquely worded causal statement is low. But at the same time, the manual procedure

is labor intensive and time consuming.

Alternatively, causal statements can be identified using an automated process. In an

automated process, two types of files are created: narrative files and causal connector file. A

separate text file is created for each expert narrative (response to the open interview). The causal

connector file contains the list of causal connectors. The advantage of an automated process is

that it is time saving and is not labor intensive. However, the disadvantage of the automated

process is that the list of causal connectors needs to be defined before hand. Causal connectors

cannot be added to the predefined list as is done in the case of manual process. This may result in
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the loss of some peculiarly worded causal statements in the narrative that do not contain pre-

defined causal connectors. The choice of methods may depend on pragmatic factors such as the

length of the text, the complexity of the domain etc. Figure 8 shows two causal statements

identified from the narrative of the subject interviewed. These two statements were identified as

causal statements because they contain words identified as causal connectors: ‘leads to’ and ‘if-

then.’

5.2.2 Construct Raw Causal Maps

Once the causal statements are identified, they are broken into causal phrases, causal connectors

and effect phrases to derive the raw cognitive maps. Again, this can be done either manually or

can be automated. Figure 8 shows how the two causal statements identified in step 1 are broken

into raw cognitive maps. This process can also be automated by defining the rule for classifying

phrases in the causal statements into cause and effect phrases. A separate rule needs to be

defined for each causal connector. For example, a phrase immediately following ‘if’ can be

classified as a causal phrase, whereas a phrase following ‘then’ can be classified as an effect

phrase. Similarly, the phrase immediately before ‘leads to’ can be classified as a causal phrase,

whereas the phrase following ‘leads to’ can be classified as an effect phrase. The automated

process is less labor intensive, less time consuming and more reliable than is the manual process.

However, it may result in misclassification of some peculiarly worded statements.

5.2.3 Design Coding scheme

The raw causal maps derived in step 2 are cast in the language of the expert. In spite of their

usefulness, the raw maps obscure analysis because of their complexity. Hence, there is a need to

design a coding scheme to recast the raw causal maps into the final cognitive maps. This process

of coding is called filtering or aggregation. Aggregation is the process of determining which part
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of the text to code, and what words to use in the coding scheme. Aggregating phrases in the raw

causal maps into generalized concepts can be used to move the coded text beyond explicitly

articulated idea to implied or tacit ideas. Aggregation can also be used to avoid misclassification

of concepts due to peculiar wording on the part of individuals.

In the process of coding, the raters have to decide which words in the raw causal phrases

to retain and which words to delete. The raters also have to decide which part of the phrase needs

to be reworded. The raw causal phrase can be changed into a coded concept that may be a single

word, a composite word or a complex phrase. This process requires human interpretation and it

is recommended that it be done manually. Multiple raters can code raw phrases into coded

concepts using the ‘majority’ rule or the ‘consensus’ rule. In other words, all or a majority of the

raters must agree on the coded concept used to represent the raw phrase.

Additionally, it is important to confirm that the coded concepts capture the meaning

implied by the raw causal phrases to avoid inconsistencies between raw cognitive maps and

coded cognitive maps. This can be done through a close collaboration of the expert whose causal

map is being constructed. The expert can be shown the coded concepts used to recast the phrases

used by him/her in the interview. The input of the original experts is crucial in this stage to avoid

inconsistencies between raw cognitive maps and coded cognitive maps. Figure 8 shows how

phrases used by the prospective buyer in the raw cognitive maps are coded into generalized

concepts. The coding scheme was developed by two raters using the consensus rule and was

confirmed with the buyer who was interviewed in step 1.

5.2.4 Convert Raw Causal Maps into Coded Causal Maps

Finally, the coding scheme developed in step 3 is used to recast the raw cognitive maps into

coded maps. A coded cognitive map is a network of concepts formed from causal statements in a
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narrative depicting directionality (cause-effect) and sign (positive and negative) of the relations

between the concepts. Two statements are linked if they share one concept. For example, causal

statement 1 and causal statement 2 in Figure 8 share the concept “Car Performance” thus

resulting in the network of “Mileage‡ Car Performance‡ Buy the Car.”

5.3 Modification of Causal Maps

As discussed earlier, the structure of the causal maps requires modification to make it compatible

with the Bayesian network by paying attention to four major modeling issues: conditional

independencies, reasoning underlying the link between concepts, distinction between direct and

indirect relations and eliminating circular relations. Structured methods are appropriate tools to

eliminate the four biases discussed above. Two most widely used structured methods are

structured interviews and adjacency matrices. In structured interviews, the experts are provided a

list of paired concepts as well as different alternative specifications of the relation between the

concepts in the original map. The experts are then instructed to choose an alternative to specify

the direct relation between the pair of concepts. Figure 9 is an illustration of a part of a structured

interview filled by a prospective car buyer.

Figure 9 goes about here

Alternatively, experts can be provided the concepts in the form of an adjacency matrix (shown in

Figure 10), where the rows represent causes and columns represent effects. The experts are asked

to enter ‘0’(no relation), ‘+’ (positive relation) or ‘-’ (negative relation) in each cell to specify the

relation between two concepts in the matrix. These two structured methods help in removing the

four modeling biases relating to the construction of Bayesian Causal Maps.
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Figure 10 goes about here

5.4 Deriving Parameters

Once the structure of the Bayesian Causal Maps is constructed, numerical parameters of this

modified structure need to be assessed so that the propagation algorithms in the Bayesian

network can be used to make inferences.

The causal map has been used primarily to qualitatively describe the variables used by

experts to describe a particular decision domain. The focus of causal maps is to analyze the

structure of the map using network analysis techniques [24]. Consequently, the uncertainty

associated with the different variables in causal map is not captured by a causal map. All

variables are assumed to have the same level of uncertainty. A Bayesian network allows a

decision-maker to make inferences on the different variables in the network based on the

information about other variables in the network. In order to be able to make inferences, we need

to assess uncertainty associated with every variable in the map and the interactive effects of

multiple causal variables on effect variables.

One common way of capturing uncertainty of the variables in a Bayesian network is to

measure a person’s ‘degree of belief’ for that variable conditional on the states of its parents.

This uncertainty associated with the variables in a decision model is sensitive to the context in

which the certainties have been established. The process of measuring degrees of belief is

commonly referred to as probability assessment or probability encoding procedure.

The parameters of the Bayesian causal maps can be derived in two steps: identification of

state space of each variable in the Bayesian causal map and derivation of the conditional

probabilities associated with the variables in the map. To identify the state space of each
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variable, it is very important to develop precise definitions of each concept [28]. This is

especially important because the meaning associated with the variables in the causal maps is not

universal and depends on the perceptions of the experts. Precise definitions also specify the

scope of each variable that is especially useful in making inferences based on the Bayesian

causal maps. Experts can be asked to define each variable in the map. These definitions can be

further modified and validated through subsequent interviews aimed at clarifications. For

example, our expert defined car performance in terms of “reliability, safety and driving

pleasure.” Based on the definitions provided by the experts, the state space of the variables can

be established. For example, the five variables in Figure 10 have the following states: Mileage

(High, Low), Age (Old, New), Fuel Efficiency (High, Low), Car Performance (Good, Bad),

Brand Quality (High, Low).

Once the states of the variables in the causal maps are specified, the conditional

probabilities associated with the variables can be derived using probability-encoding techniques.

Many different probability-encoding techniques are available (for a detailed review see [34])

wherein a subject responds to a set of questions either directly by providing numbers or

indirectly by choosing between simple alternatives or bets. The choice of response mode (direct

or indirect) as well as the choice of a method within each mode depends on the preferences of the

subject. [34] describes three direct response-encoding methods—cumulative probability, fractiles

and verbal encoding—to elicit probabilities. In the cumulative probability method, the subject is

asked to assign the cumulative probability associated with a variable conditioned on the states of

its parent variables. The probability response can be expressed either as an absolute number

(0.30), as a discrete scale (“three on a scale from zero to ten”), or as a fraction using a discrete

scale (“three in ten”). Verbal encoding uses verbal descriptions to characterize events in the first
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phase of the encoding procedure. The descriptors used are those to which the subject is

accustomed to such as “high,” “medium” or “low.” The quantitative interpretation of the

descriptors is then encoded in a second phase. The form chosen to express the probability

(absolute number, percentage, fraction or verbal) should be the one most familiar to the subject.

When a variable has many parents, the number of probability assessments can be reduced

by assessing the nature of the relationship between the variable and its parents such as noisy-OR,

noisy-AND, etc. [18, 30]. Once the parameters of the causal map are identified, propagation

algorithms can be used to make inferences about the variables in the causal maps.

6 A Case Study: IT Application Outsourcing Decision

This section describes a case study of a construction of a Bayesian causal map. First, we

illustrate how starting from a causal map, we constructed the qualitative structure of a Bayesian

causal map. We show how additional information can be collected from a subject to address the

modeling issues discussed in Section 4.1 as well as to derive the numerical parameters of the

Bayesian causal map. Second, we show how Bayesian network software can be used to draw

probabilistic inferences in a Bayesian causal map.

6.1 Decision context

We used a real-time IT application outsourcing decision analyzed by a systems analyst of a big-

five consulting firm. We chose this decision context for two major reasons. First, IT application

outsourcing is an emerging domain and the boundaries of this domain are not clearly defined.

Therefore, this domain is appropriate for the exploratory approach of constructing causal maps.

Second, the decision alternatives, outcomes and application environmental factors involved

uncertainty and required the systems analyst to use his/her intuition. It allowed the analyst to
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develop his/her own framework in diagnosis, analyses, and recommendations of decision

options.

The IT application outsourcing decision was as follows. A major airline company had

recently decided to develop an online ticketing system. Although the company is a well-

established company with a well-developed regular ticketing processes, online ticketing is a

totally new concept to the company. The decision faced by the airline company is whether to

develop the online ticketing system in-house or to use an application service provider’s (ASP)

application. The role of the system analyst was to analyze the decision and suggest a

recommendation.

6.2 Subject

The subject was a systems analyst in a big-five consulting firm. She had an MBA in information

systems and 2 years of experience in systems analysis and design. The subject was a part of the

team that analyzed the online ticketing outsourcing decision.

6.3 Procedure for Constructing a Bayesian Causal Map.

6.3.1 Step 1: Data Elicitation

The subject was interviewed using an open-ended interview with probes. The interview lasted

about two hours. The interview began with a very broad question: "What do you think are the

key factors affecting the Online Ticketing Application Outsourcing Decision at ABC Airlines?"

The subsequent ‘probes’ were based on the factors suggested by the expert. The probing

continued till a comprehensive list of factors relating to the outsourcing decision was elicited and

the subject could not think of any additional factors.
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6.3.2 Step 2: Derivation of Causal Map

The causal map of the expert was constructed from the narratives yielded by the interviews using

the four-step procedure described in Section 5.

Identifying causal statements. Two raters identified the causal statements based on a

comprehensive list of causal connectors developed by the two raters. A statement was identified

as causal if it contained one of the words listed as causal connectors. Examples of words

contained in the list of causal connectors include ‘if-then,’ ‘because,’ ‘so,’ etc.

Raw cognitive maps. The causal statements identified in step 1 were broken into causal

phrases, causal connectors and effect phrases to derive the raw causal maps.

Coding scheme. The phrases used by the expert were coded into generalized concepts by

two raters. We closely consulted the expert to ensure that the coded concepts did not deviate

from the original cause and effect phrases used by the expert in his/her interview response.

Coded causal map. The coding scheme developed in the previous step was used to recast

the raw causal map into coded map. The Net-analysis program was used to construct the causal

map of the expert. The input file contained all the causal pairs identified by the expert in the

form of causal concept, effect concept, direction the link and sign of the link. The program then

identifies the common concepts between different causal pairs and links these causal pairs. It

provides the output in the form of an adjacency matrix that includes all the links between pairs of

concepts in the map.

The original causal map shown in Figure 11 describes the subject’s causal perceptions of

the decision problem in the online ticketing decision. There are 23 variables in the map that can

be broadly classified as in-house application cost variables, ASP outsourcing cost variables, risk

determinant variables, application environment variables, and decision variables. A brief
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definition and the possible states of each variable are shown in Tables 1 and 2. The variable In-

house Feasibility was not captured in the original causal map. It was identified in the follow-up

interviews conducted with the subject.

Figure 11 goes about here

6.3.3 Step 3: Modification of Original Causal map

The original causal map was modified using the structured questionnaire. The expert was

provided with a list of paired concepts and alternative specifications of the direction (‡/fl/0)

and sign (+: positive relation, -: negative relation, 0: no relation) of the relation between the

concepts (as shown in Figure 9). The expert was then instructed to choose the alternative that

best specified the relation between the pair of concepts. This procedure eliminated the four

modeling biases discussed below. The modified causal map is shown in Figure 12.

Figure 12 goes about here

1. Direct causality between variables. The input expert’s response to the structured

interview resulted in two major changes relating to direct versus indirect relation between

concepts in the original map. First, in the original causal map, Business Domain was directly

related to In-house or ASP variable. However, the subject clarified this relation in the structured

questionnaire interview and suggested an indirect relationship between Business Domain and In-

house/ASP variable. In the modified map, Business Domain indirectly affects In-house/ASP

through two different variables: Risk Preferences and Application Cost. Second, there was a

direct relation between Application Maturity and In-house/ASP variable in the original causal
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maps. However, in the follow-up interview, it was found that Application Maturity also affects

In-house/ASP variable through Risk Preferences and Application Cost.

Table 1 goes about here

Table 2 goes about here

2. Conditional Independence. The expert’s response to the structured interview yielded

five additional links in the original map. Overall Feasibility was a new variable added to the

map. This variable did not exist in the original map. First is the link between Labor Market and

Overall Feasibility that did not exist in the original causal map. Second is the link between

Knowledge, Skills and Abilities and Feasibility. Third is the link between Process Maturity and

Product Customization. These variables were shown as conditionally independent in the original

map. Similarly, the modified map shows links between Product Customization and Maintaining

Application Currency and Feasibility and In-house/ASP that did not exist in the original causal

map.

3. Deductive reasoning. The original map shows a link from Labor Cost to Knowledge,

Skills & Abilities. However, the direction of the arrow is based on abductive reasoning from the

observable measure (Labor) to the latent cause (Knowledge, Skills & Abilities). The direction of

this arrow changed in the modified causal map from Knowledge, Skills and Abilities to Labor

Cost.

4. Similar time frames. The subject was instructed that all variables should pertain to a

specific time frame t1. We defined t1 as the period until the final decision of online ticketing

application decision was reached (to eliminate circular relations due to relations pertaining to
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different periods). This resulted in the elimination of two reciprocal relationships in the original

causal map. First is the two-way relation between In-house Application Cost and Online

Ticketing and second is the circular relation between In-house/ASP variable and Net Application

Value-added. The resultant structure of the Bayesian Causal Map is shown in Figure 12.

6.3.4 Step 4: Assessing Parameters

In this step, the parameters of the Bayesian Causal Map were assessed. The parameters of a

Bayesian causal map consist of marginal probabilities and conditional probabilities. To assess

the marginal probabilities, the expert was asked to provide the following information.

1. To rate the marginal and conditional probabilities on a discrete scale (0 to 10); and

2. To identify the type of interactive effects of multiple causal variables on effect variables.

For example, whether each causal variable affects the effect variable independently

(noisy-OR model), or whether each causal variable affect the effect variables through

interactions of two or more variables (noisy-AND), or some combination of the two [18,

30].

6.4 Validating the Bayes Net Model

We used Netica [www.norsys.com] to make probabilistic inferences using sum propagation. The

sum propagation computes the marginal probabilities of all the model variables and updates the

marginals with all additional evidence received about other variables. In our case study, we can

evaluate each Online Ticketing Application option under different scenarios. The scenarios were

defined in consultation with two IS experts (including the subject), and they represent situations

in which there are unambiguous prescriptions for Application Outsourcing decisions in the IS

literature. We illustrate how predictions can be made about our subject’s perceptions of In-
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house/ASP decision under different information conditions. The decision prescriptions yielded

by the Bayesian Causal Maps were checked for validity with the expert

We specify two different scenarios and show how our inferences about Application

decision option change depending on the external application cost, application feasibility and

environment factors. In the first scenario, we consider a favorable labor market and an unstable

and complex application environment. In terms of application environment, we consider an

unstable market environment as well as a high sensitivity of passenger data. Accordingly we

specify the states of the following four firm variables in the map: Knowledge, Skills & Abilities

= low, Labor Market = high, Fluctuations in Sales = low, and Sensitivity of Passenger Data =

low. Since the case specifically mentioned that online ticketing was a new process for the airline

company, we specified Application Maturity = New. Based on this information, we propagate

the information to compute the posterior marginals of variables of interest.

A comparison of prior and posterior marginals of Application Cost, In-house Feasibility,

Net Application Value-added, and In-house/ASP Decision is shown in Table 3. When additional

information is received about application cost and environment factors, the posterior probability

of Application Cost = In-house < ASP increases from 0.46 to 0.67, that of (in-house) Feasibility

= high increases from 0.55 to 0.85 and that of Net Application Value-added = In-house > ASP

increases from 0.61 to 0.66. These posterior marginals change our inference about the state of In-

house/ASP Decision. The posterior probability of In-house Application is 0.54 in comparison to

a prior of 0.49. Under the conditions described in scenario 1, our Systems Expert is likely to

select In-house Application Development because the cost of in-house development is lower than

outsourcing to ASP, the Net Value-added is much higher for In-house development and the

feasibility of In-house development is high.
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In the second scenario, we considered an adverse labor market and stable and less complex

application environment. Accordingly, the states of the two application cost variables and the

two application environment variables in the map are specified as follows: Knowledge, Skills &

Abilities = high, Labor Market = low, Fluctuations in Sales = low and Sensitivity of Passenger

Data = low. As shown in Table 3, the posterior probability of (in-house) Feasibility = low

increases from 0.45 to 0.80, that of Application Cost = In-house > ASP increases from 0.54 to

0.56, and that of Net Application Value-added = In-house < ASP increases 0.39 from to 0.58.

This implies that in scenario two, our systems expert is more likely to reject In-house

Application and select the option of using ASP’s application.

Table 3 goes about here

7 Advantages and Applications of Causal Bayesian Networks

By integrating Bayesian networks and causal maps, causal Bayesian networks combine the

advantages of the two methods and reduce the limitations of either. First, since causal Bayesian

networks are both a D-map and an I-map, they represent relationships between variables more

comprehensively than either the Bayesian network or causal maps. Second, causal Bayesian

networks allow a robust probabilistic inference based on both causality and conditional

independence. This is especially important in decision context, where cause-effect relations are

critical in making inferences about decision outcomes. Third, the proposed method imposes no a

priori assumptions about the orthogonality of variables or the (non-) existence of interaction

terms, symmetry, or linearity. Thus, complex interdependencies can be modeled.

We propose causal Bayesian networks as a useful tool to complement other decision

modeling methods and decision aids. First, they can be used to support initial decision-making
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[22]. Evidence from prior studies suggests that in the vast majority of cases, decision makers are

outperformed by their own bootstrap models due to the elimination of unsystematic errors.

However, decision aids are just that, aids, and immense skills are still required in assessing the

states of the variables, many of which are intangible and/or difficult to observe. However, a

causal Bayesian network makes transparent the drivers behind the overall assessment and the

software implementation allows easy what-if and sensitivity analysis by changing variables

states and observing the automatically updated decision outcomes. Second, the mere act of

explicating and formalizing hitherto tacit decision models surfaces hidden assumptions that can

now be scrutinized. Research on causal mapping suggests, that the act of drawing a causal map

in itself can reduce decision bias (e.g. Hodgkinson, et al., 1999). Third, novices become experts

over time by learning from experience. Bayesian causal maps support this process by making

variable assessments and decision drivers explicit and storing them so that they can be compared

to reality later. Entering actual rather than predicted values for variables and comparing them, as

well as the revised vs. the initial investment probability, can uncover both errors in variable state

assessments and errors in the decision model, which can then be refined. Finally, causal

Bayesian networks can be used as reference and departure in coaching, teaching, training, and in

collaborative learning contexts.

8 Summary and Conclusions

The main goal of this paper is to propose a semi-formal method for constructing the graphical

structure of a Bayesian network based on domain knowledge. Our method consists of first

constructing a causal map and then converting it to a Bayesian network. We call such Bayesian

networks, Bayesian causal maps. Bayesian causal maps combine the strengths of causal maps

and Bayesian networks and reduce the limitations of both. Using concepts from the literature on
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causal modeling and logic, Bayesian causal maps clarify the cause-effect relations depicted in the

causal maps. They depict dependence between variables based on causal mapping approach (D-

map) as well as a lack of dependence between variables based on the Bayesian network approach

(I-map). A Bayesian causal map is therefore a perfect map. Bayesian causal maps consider the

reasoning (deductive versus abductive) underlying the cause-effect relations perceived by

individuals. This strengthens the validity of the direction of causal relations represented in the

map. Bayesian causal maps provide a framework for representing the uncertainty of variables in

the map as well as the effect of variables not modeled in the map. Finally, using evidence

propagation algorithms, Bayesian causal maps allow us to make inferences about the variables in

the map. We have illustrated how Bayesian causal maps can be constructed starting from a

causal map, and how it can be used to make inferences about a new product decision in different

scenarios.

There are some interesting implications of our study. This study enables decision-makers

to use causal maps for decision-making. Influence diagrams proposed in [19] use Bayesian

network models of uncertainty in addition to decision nodes, utility functions, and information

constraints. Thus, Bayesian causal maps can be use for normative decision-making using the

framework of influence diagrams.
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Figure 1. A Bayesian Network with Conditional Probability Tables

Mileage (M) Brand (B)

Car
Performance (C)

Purchase the
Car (P)

P(M) High Low
0.75 0.25

P(B) Good Bad
0.6 0.4

P(C | M, B) High Low
High, Good 0.60 0.40
High, Bad 0.03 0.97
Low, Good 0.95 0.05
Low, Bad 0.55 0.45

P(P | C) Yes No
High 0.90 0.10
Low 0.05 0.95
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Figure 2. Causal map of a Prospective Buyer Relating to a Used Car Buying Decision
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Figure 3. Making a causal map a D-map and an I-map

Mileage Car History Brand

Price of Car Car Performance

Purchase the Car
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Figure 4. Distinguishing Between Deductive and Abductive Reasoning

Statement 1. If the car has been in an accident, then there will be a dent in the body of the car.
Causal map based on statement 1: Correct Causal Map

Statement 2. There is a dent in the body of the car, therefore the car may have been in an accident.
Causal map based on statement 2: Incorrect Causal Map

Car been in an
accident

Car been in an
accident

Dent in the body of
the car

Dent in the body of
the car
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Figure 5. Distinguishing between Direct and Indirect Relations

Accident record
of the car

Performance of
the car

Buy/not buy the
car

Accident record
of the car

Performance of
the car

Buy/not buy the
car

Original Causal Map Bayesian Causal Map
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Figure 6. Disaggregating Variables over Time

t1 t2

Accident
record of the

car
Car

performance

Accident record
of the car Car performance

Accident record
of the car
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Figure 7. A Part of the Open Ended Interview with Probes Conducted with a Prospective
Used Car Buyer

Question 1: What factors would you consider in deciding whether or not to buy the 1995

Honda Accord LX?
Prospective Buyer's response: I would consider how good is the performance of the car,

…how good is the condition of the car parts and of course the price of the car…

Question 2: You mentioned performance of the car. What specific factors determine the

performance of a car?

Prospective Buyer's response: Mileage and age of the car definitely affect car
performance…I think fuel efficiency is also important and affects the performance of a car

Question 3: You mentioned the condition of car parts. Which car parts are most important

to you?
Prospective Buyer's response: …engine and transmission are the most important...Well,
time belt is also quite important...



A Causal Mapping Approach to Constructing Bayesian Networks 8

Figure 8. Illustration of the Procedure for Deriving Causal Maps

Identifying Causal Statements in the text

Examples:
1. A low mileage on a car leads to high car performance

2.   If the car performance is very low, then I will not buy that car

Step 1

Causal Phrase

Low mileage on a car

Car Performance is
low

Causal Connector

Leads to -
If-then

Effect Phrase

High car performance

I will not buy that car

Coding Scheme

Raw Phrase Coded Concept

1. Low mileage on a car Mileage
2. High car performance Car Performance
3.    Car performance is low Car Performance
4.    I will not buy that car Buy the Car

Step 4

Step 3

Step 2

Final coded causal map

Mileage

Car Performance

Buy the Car
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Figure 9. An Illustration of a Part of the Structured Interview

Directions: Please circle one of the four alternatives provided to specify the type of direct
relation between the concepts listed below. Also circle the sign associated with the relation.

Mileage None Æ ¨ ´ Performance
+ –

Mileage None Æ ¨ ´ Age
+ –

Mileage None Æ ¨ ´ Fuel Efficiency
+ –

Mileage None Æ ¨ ´ Brand Quality
+ –

Age None Æ ¨ ´ Performance
+ –

Age None Æ ¨ ´ Fuel Efficiency
+ –

Age None Æ ¨ ´ Brand Quality
+ –

Fuel Efficiency None Æ ¨ ´ Performance
+ –

Fuel Efficiency None Æ ¨ ´ Brand Quality
+ –

Brand Quality None Æ ¨ ´ Performance
+ –
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Figure 10. Illustration of An Adjacency Matrix

Causes

Effects Mileage Age Fuel Efficiency Performance Brand Quality

1. Mileage + 0 0 0

2. Age 0 0 0 0

3. Fuel Efficiency - - 0 +

4. Performance - - + +

5. Brand Quality 0 0 0 0
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Figure 11. The Original Causal Map of a Systems Analyst for the Online Ticketing Application
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Figure 12. The Modified Causal Map of the Online Ticketing Application Decision
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Table 1. Definition and States of Variables in the Causal Map

Variable Definition States
In-house Application Cost Variables
1. Knowledge, Skills &
Abilities (KSAs)

The set of skills required to successfully design, develop, and
implement the online ticketing application in-house such as
language skills, programming skills, database skills, process
skills, and project management skills.

Broad,
Narrow

2. Labor Market The total number of IS persons available for hiring who have
the knowledge, skills, and abilities relevant to the current
application domain.

Large,
Small

3. Labor Cost The total cost of hiring individuals possessing the requisite
KSAs for designing, developing, and implementing in-house
application for inline ticketing.

High,
Low

4. Software Cost The total cost of purchasing and developing the software
necessary to design, develop, and implement in-house
application including off-the-shelf software modules,
developing CASE Tools, and ancillary software.

High,
Low

5. Hardware Cost The total cost of buying the necessary hardware equipment
for developing in-house application such as computers,
workstations, and networking equipment.

High,
Low

6. Maintenance Cost The total cost of modifying, updating and system testing the
necessary application hardware & software.

High,
Low

7. In-house Application
Cost

The sum total of software cost, hardware cost, maintenance
cost, and labor cost.

Relatively High,
Relatively Low

ASP Outsourcing Cost Variables
8. ASP Price Structure The form of fee such as a licensing fee charged by the

application service providers (ASPs) for the use of their
application.

High,
Low

9. ASP Outsourcing Cost The total cost incurred to outsource the application to an ASP
and includes the fee charged by the ASP and any hardware or
networking cost incurred.

Relatively High,
Relatively Low

10. Online Ticketing
Application Cost

A comparison of the cost of developing in-house application
to the cost of outsourcing the application to an ASP to
determine which alternative is better cost-wise.

In-house>ASP,
ASP>In-house

Risk Determinant Variables
11. Business Domain Can be either primary to the value chain of the business or it

may support the primary activities. Primary activities such as
in-bound logistics, manufacturing and sales are central to the
business. Supporting activities such as R&D, human
resources indirectly affect value creation.

Primary,
Supporting

12. Process Maturity Whether the online ticketing process already exists in the
company or whether it is totally new to the company.

Existing,
New

13. Risk Preferences The risk orientation of the decision-makers and/or corporate
culture within the company in terms of willingness to take
risk.

High risk,
Low risk

14. Feasibility The degree to which development of in-house online ticketing
application is technically, legally, and organizationally
feasible.

High,
Low
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Table 2. Definition and States of Variables in the Causal Map (continued from Table 1).
Variable Definition States
Application Environment Variables
15. Fluctuation in
Sales

The periodic variations in the sales, e.g., daily, weekly and monthly. High,
Low

16. Diversity of Price
Deals Offered

The total number of and the complexity of the tariff rates offered by
the airline company and the extent to which these are different from
each other.

High,
Low

17. Reactive Changes
in Prices

The degree to which airline prices change in response to external
environmental (e.g. change in fuel prices) and competitive forces.

Frequent,
Non-frequent

18. Product
Customization

Refers to the degree to which the online ticketing application needs to
be adapted to and supportive of diversity of price deals offered by the
airline company and the external environmental factors affecting
changes in airline prices.

High,
Low

19. Sensitivity of
Passenger Data

The degree to which the customer data is sensitive to issues of
privacy, confidentiality, transmission, storage, and security.

High,
Low

20. Application
Security Capability

The extent to which the application is capable of addressing the data
security issues, e.g., restriction of the number of parties who have
access to the data processed by and stored in the application.

High.
Low

21. Maintaining
Application Currency

The cost and level of effort required to maintain the currency of the
application through revisions and upgrades.

High,
Low

22. Time to Market The quickness and agility with which the service can be marketed to
the customer. The shorter the time to market, the more efficient the
system.

Short,
Long

23. Net Application
Value-added (NVA)

Comparison of the net value-added (NVA) through either in-house
development or ASP’s application.

NVA In-house,
NVA ASP

Decision Variables
24. Online Ticketing
Outsourcing Decision

The decision whether to develop in-house application or use the
ASP’s application.

In-house,
ASP
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Table 3. Prior and Posterior Marginal Probabilities under Two Different Scenarios

Variable States
Prior

Marginals

Posterior
Marginals in
Scenario 1

Posterior
Marginals in
Scenario 2

1. Application Cost: In-house > ASP
In-house < ASP

0.54
0.46

0.33
0.67

0.56
0.44

2. Feasibility: High
Low

0.55
0.45

0.85
0.15

0.20
0.80

3. Net-Application Value-added: In-house > ASP
In-house < ASP

0.61
0.39

0.66
0.34

0.42
0.58

4. In-House/ASP Decision: In-house
ASP

0.49
0.51

0.54
0.46

0.43
0.57

Scenario 1: Knowledge, Skills & Abilities = low, Labor Market = high, ASP Pricing Structure = high,
Fluctuations in Sales = high, Sensitivity of Passenger Data = high.

Scenario 2: Knowledge, Skills & Abilities = high, Labor Market = low, ASP Pricing Structure = low,
Fluctuations in Sales = low, Sensitivity of Passenger Data = low.


