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Abstract
The rise of algorithmic decision making led to ac-
tive researches on how to define and guarantee fair-
ness, mostly focusing on one-shot decision mak-
ing. In several important applications such as hir-
ing, however, decisions are made in multiple stage
with additional information at each stage. In such
cases, fairness issues remain poorly understood.
In this paper we study fairness in k-stage selection
problems where additional features are observed at
every stage. We first introduce two fairness no-
tions, local (per stage) and global (final stage) fair-
ness, that extend the classical fairness notions to
the k-stage setting. We propose a simple model
based on a probabilistic formulation and show that
the locally and globally fair selections that maxi-
mize precision can be computed via a linear pro-
gram. We then define the price of local fairness
to measure the loss of precision induced by local
constraints; and investigate theoretically and empir-
ically this quantity. In particular, our experiments
show that the price of local fairness is generally
smaller when the sensitive attribute is observed at
the first stage; but globally fair selections are more
locally fair when the sensitive attribute is observed
at the second stage—hence in both cases it is often
possible to have a selection that has a small price of
local fairness and is close to locally fair.

1 Introduction
The rise of algorithmic decision making in applications rang-
ing from hiring to crime prediction [Perry et al., 2013] has
raised critical concerns regarding potential unfairness to-
wards groups with certain traits, supported by recent em-
pirical evidences of discrimination [Lambrecht and Tucker,
2018; Larson et al., 2016]. This led to a fast-growing body of
literature on what fairness in algorithmic decision making is
and how to guarantee it (see related works below).

The existing literature typically considers one-shot deci-
sion processes whereby, from a set of features observed about
an individual—one of them being a ‘sensitive feature’ based
on which discrimination is defined—, one needs to decide

whether or not to “select” him/her (where select can mean
hire, grant a loan or parole, etc. depending on the context).
The problem in this setting is how to learn a decision rule
from past data that respects certain fairness constraints. In
many applications, however, decisions are made in multiple
stages. In hiring for instance, a subset of candidates is first
selected for interview based on resume (or high-level candi-
date’s information) and a final selection is then made from the
subset of interviewed candidates. In police practices, there
are often multiple stages of decisions with increasingly high
levels of investigation of the individuals not released at the
previous stage; as for instance in the famous stop-question-
and-frisk practice by the New-York City Police Department.

A distinctive specificity of the multistage setting, besides
the fact that decisions are made in multiple stages, is that in
many cases additional features get known at later stages for
the subset of individuals selected at earlier stages, but one
needs to make the early-stage selection without observing
those features. This raises a number of new questions that
are fundamental to fair multistage selection. First, given that
there are multiple layers of decisions, how should fairness be
defined? In particular, should it be defined at each individ-
ual stage, on the final decision, or otherwise? Second, given
that one has to make decisions with only partial information
at early stages, how to make an optimal selection? Finally,
given that the sensitive feature can be observed at different
stages, is it better to observe the sensitive feature at earlier or
later stages (for both fairness and utility)? This last question
intuitively relates to recurrent public debates such as “should
gender identification be removed from CVs?”.

In this paper, we study the k-stage selection problem, in
which there is a fixed limit (or budget) of candidates that can
be selected at each stage (as is natural in the applications dis-
cussed). To tackle the questions above, we propose a simple
model based on a probabilistic formulation in which we as-
sume perfect knowledge of the joint distribution of features at
all stages and of the conditional probability of being a desir-
able candidate conditioned on feature values. Based on this
model, we are then able to make the following contributions.

We introduce two meaningful notions of fairness for the k-
stage setting: local fairness (the selection is fair at each stage)
and global fairness (only the final selection needs to be fair).
These definitions extend classical group fairness notions for
one-stage decision making (such as demographic parity or



equal opportunity) to the multistage setting and they apply
regardless of when the sensitive feature is observed (at first
stage or later). We show that local fairness implies global
fairness and we propose a linear formulation of the problem
that allows us to compute the selection algorithm that maxi-
mizes precision while satisfying (local or global) fairness and
per-stage budget constraints in expectation. As local fairness
is a more restrictive condition, the precision of the optimal
globally fair algorithm is naturally higher than for the locally
fair algorithm. To capture this gap, we define the price of lo-
cal fairness (PoLF ) as the ratio of the two and prove a simple
upper bound—showing that imposing local fairness cannot be
arbitrarily bad. We also define the notion of violation of lo-
cal fairness (V oLF ) to capture how far from locally fair the
optimal globally fair algorithm is.

Finally, we conduct a numerical study in a two-stage set-
ting using three classical datasets. Our results show that the
PoLF can be large (up to 1.6 in some cases). This implies
that in some cases, enforcing local fairness constraints can
reduce the precision by 60% compared to a globally fair al-
gorithm. The V oLF is also sometimes large (up to 0.6 in our
experiments), which means that imposing only a global fair-
ness constraint can be highly unfair at intermediate stages.
We finally compare what happens when the sensitive feature
is observed at the first stage or at the second stage. We find
that the PoLF is generally higher when the sensitive feature
is observed at the second stage; while conversely the V oLF
is generally higher when the sensitive feature is observed at
the first stage. These results show that, in most cases, it is
possible to get at least approximate fairness at each stage and
precision close to globally-fair optimal together; either by im-
posing local fairness if the sensitive feature is observed at first
stage (where PoLF is small) or by hiding the sensitive fea-
ture at first stage and using a globally fair algorithm (which
is close to locally fair since V oLF is then small).

Overall, our results provide intuitive answers towards bet-
ter understanding fairness in multistage selection. To that
end, we intentionally used the simplest model that captures
the main features of a multistage selection problem and how
an optimal selection algorithm is affected by the fairness no-
tion considered and the time at which the sensitive feature
is observed—rather than using a more practical but complex
model. We believe that it is a good abstraction to start with,
but we elaborate further on our model’s limitations in Sec-
tion 6. Some details (proofs, additional formalization and
experimental results) are omitted throughout the paper and
deferred to the appendices.

Related Works
As mentioned earlier, there have been many recent works
on defining fairness and constructing algorithms that respect
those definitions for the case of one-stage decision making
[Pedreshi et al., 2008; Dwork et al., 2012; Kleinberg et al.,
2017; Hardt et al., 2016; Zafar et al., 2017; Chouldechova,
2017; Corbett-Davies et al., 2017; Kilbertus et al., 2017;
Lipton et al., 2018]. Most of those works focus on classi-
fication and propose definitions of fairness based on equating
some combinations of the classification outcome (true pos-
itives, true negatives, etc.). In this work, we focus on two

classical notions of fairness for the one-shot classification
setting: demographic parity (or disparate impact) and equal
opportunity (or disparate mistreatment) [Hardt et al., 2016;
Zafar et al., 2017]. There are also works on fairness in se-
quential learning [Joseph et al., 2016; Jabbari et al., 2017;
Heidari and Krause, 2018; Valera et al., 2018]. The model in
those papers is to sequentially consider each individual and
make decision for them, but there is no notion of refining se-
lection through multiple stages by getting additional features.

Closer to our work, a few papers investigate multistage
classification/selection without fairness considerations [Sena-
tor, 2005; Trapeznikov et al., 2012]. [Schumann et al., 2019]
model the interview decisions in hiring as a multi-armed ban-
dit problem and consider getting extra features at a cost for a
subset of candidates, but they do not have fairness constraints:
they propose an algorithm for their bandit problem and show
that it leads to higher diversity than other algorithms.

To the best of our knowledge, our paper is the first that pro-
poses concrete fairness notions for multistage selection and
algorithms to maximize utility under fairness constraints. The
only other papers discussing fairness in the context of two-
stage or composed decision making are [Bower et al., 2017;
Dwork and Ilvento, 2019], but they do not model additional
features becoming available at the second stage for the subs-
elected individuals, which is the key element of our analysis.

In recent work, [Kleinberg and Raghavan, 2018] consider
the problem of selecting a subset of candidates to interview
and show that under some condition, imposing diversity may
increase utility when there is implicit bias. Their model,
however, assumes no statistical knowledge of the features re-
vealed at second stage, and they only maximize the sum of
values of subsected candidates (effectively reducing to one-
stage). In contrast, we do not consider implicit bias but we
do model the second-stage process. Interestingly, our optimal
solution also introduces diversity at the first stage selection,
but for different reasons.

2 Multistage Selection Framework
2.1 Basic Setting and Notation
Assume that there are n candidates,1 each described by d
features, and consider the following k-stage selection pro-
cess. At the first stage, we observe some of the features
x1, . . . , xd1 of the n candidates where d1 < d. We then se-
lect n1 of them that “pass” to the second stage. At the second
stage, we observe some extra features of these n1 candidates
xd1+1, . . . , xd2 (d1 < d2) that were not known at the previous
stage. Using the features of both stages, we do a selection,
from the n1 that passed the first stage of n2 ≤ n1 candidates
that pass to the next stage, and so on. At the last stage k, we
observe all dk = d features of the nk−1 candidates and select
nk among those who passed the stage k − 1.

We assume that each candidate is endowed with a label
y ∈ {0, 1}, which encodes whether the candidate is “good” or
“bad” according to the purpose of the selection, i.e., if y = 1
we would like to have this candidate in our final selection, if

1We use the term candidates in a generic sense to refer to ele-
ments of the initial set that can be selected.



y = 0 we would prefer not. The label y is not known until the
end and is therefore not available to make the selection.

We assume that the decision maker knows the joint dis-
tribution of features and the conditional probability that ex-
presses the probability that the candidate is “good” given all
its features. We will denote by px1...xd = P (x1, . . . , xd) the
probability to observe a specific realization of features and by
py=1
x1...xd

= P (y = 1|x1, . . . , xd) the probability that a candi-
date is good (y = 1) given its features x1 . . . xd.

2.2 Probabilistic Selection and Budget Constraints
In the following, we will consider a class of selection algo-
rithms that perform a probabilistic selection of candidates.
Such an algorithm takes as an input a list of probability values
p
(i|i−1)
x1...xdi

for all stages i ∈ {1 . . . k} and all possible combi-
nation of features. Then, for each candidate that passed stage
i − 1 and has features (x1 . . . xdi), the algorithm selects this
candidate for the next stage with probability p(i|i−1)x1...xdi

, with
the convention that everyone passes stage 0.

For each stage i, we define a binary predictor ŷi that is
equal to 1 if the candidate is selected at stage i (by convention,
ŷ0 = 1 for all candidates). We assume that, on average, the
number of candidates that can be selected by the algorithm at
stage i is at most αin and exactly αkn for the last stage, with
1 ≥ α1 ≥ · · · ≥ αk. We denote by α−k = (α1, · · · , αk−1)

T

the selection sizes of the first k−1 stages.

2.3 Performance Metric
We measure the performance of a given selection algo-
rithm in terms of precision. The precision is the fraction of
the selected candidates that indeed were “good” for selection:

precision=
True Positive

True Positive+False Positive
=P (y=1|ŷk=1),

where the denominator is the number of selected candidates.
The choice of precision may seem arbitrary but it is in fact

a very natural metric when the size of the final selection is
fixed as in our setting. Indeed, maximizing precision is then
equivalent to maximizing most other meaningful metrics as
formalized in the next proposition.
Proposition 1. Assume that the selection size P (ŷk = 1) is
fixed (to αk). Then maximization of precision is equivalent to
maximization of true positive rate, true negative rate, accu-
racy and f1-score; and to minimization of false positive rate
and false negative rate.

Additionally, there are many realistic k-stage selection pro-
cesses for which precision can be used as a utility metric.
Example 1. A bank decides to whom it will give entrepreneur
loans. The procedure is in two stages: at first, n candidates
fill in an application form, and the first d1 features of each
candidate are obtained. Some candidates are then invited for
an interview which brings additional features of those candi-
date that the bank can use for its final decision of selecting
n2 candidates. If the profit of giving a loan to a trustworthy
candidate is cp and if a candidate that does not pay a loan
costs cl, then the average gain can be written as:

Ubank = (cp + cl) · n2 · P (y = 1|ŷ2 = 1)− n2 · cl.
In this example, cp, cl and selection size n2 are fixed.

Hence, maximizing precision or utility is equivalent.

3 Fairness Notions in Multistage Setting
In this section, we propose new notions of fairness for the
multistage selection problem. We assume that there exists,
amongst all features that describe candidates, a sensitive fea-
ture xs that indicates whether or not a candidate belongs to a
sensitive group that should not be discriminated against.

The literature has introduced multiple definitions of fair-
ness for the single-stage setting (and it is worth mentioning
that in most of the cases those fairness criteria cannot be sat-
isfied simultaneously [Chouldechova, 2017]). The most rele-
vant notions in the context of selection problems are Demo-
graphic Parity (DP) and Equal Opportunity (EO). We first
recall the definition of these fairness criteria in the traditional
setting of single-stage selection. We then extend them to the
multistage setting by showing that there are essentially two
relevant notions of fairness: local and global fairness.

3.1 Classical Fairness Notions in Single-Stage
Let ŷ be a binary predictor that decides which candidates be-
long to the selection. The first fairness definition, widely
known as demographic parity, states that the predictor ŷ is
fair if it is statistically independent from xs.
Definition 1 (Demographic Parity, DP). The binary predictor
ŷ satisfies DP with respect to xs if ŷ and xs are independent:

P (ŷ = 1|xs = 0) = P (ŷ = 1|xs = 1). (1)

DP does not take into account the actual label y. [Hardt et
al., 2016; Zafar et al., 2017] argue that DP is not the most rel-
evant notion of fairness in cases where we have ground truth
on the quality of the candidates (which is our case since we
assume statistical knowledge of the probabilities of labels).
In such cases, one might want to be fair among the candi-
dates that are worth selecting, a metric called Equal Opportu-
nity [Hardt et al., 2016] (an equivalent notion called disparate
mistreatment is proposed in [Zafar et al., 2017]):
Definition 2 (Equal Opportunity, EO [Hardt et al., 2016]).
The binary predictor ŷ satisfies EO with respect to xs if ŷ
and xs are independent given that y = 1:

P (ŷ = 1|y = 1, xs = 0) = P (ŷ = 1|y = 1, xs = 1). (2)

In the remainder, we systematically consider DP and EO.

3.2 Local and Global Fairness in Multistage
Existing fairness notions apply to single-stage selection,
where we have only one binary predictor ŷ. In the case of k-
stage selection, we have k binary predictors ŷ = (ŷ1, . . . , ŷk).
In this section, we develop different notions of fairness that
extend existing notions to the k-stage selection setting.

We propose three definitions that we believe correspond
to three reasonable notions of fairness. The high-level idea
of each definition is depicted on Figure 1. For the sake of
brevity of exposition, we present the formal definitions for
the demographic parity criterion, the translation to EO (or to
any other fairness notion) being straightforward.

The first fairness notion, local fairness 1 (LF1), imposes
that the selection be fair at every stage with respect to the
set of candidates that reached that stage. In other words the
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Figure 1: Illustration of the different fairness definitions.

selection of each stage i is fair with respect to the population
that “passed” stage i− 1.

Definition 3 (Local Fairness 1, LF1). A k-stage selection al-
gorithm satisfies LF1 if (for the case of DP), ∀i ∈ {1, · · · , k}:
P (ŷi=1|ŷi−1 = 1, xs=0) = P (ŷi=1|ŷi−1=1, xs=1).

The second fairness notion that we propose, local fairness
2 (LF2), prescribes that the selection should be fair at each
stage with respect to the initial set of candidates.

Definition 4 (Local Fairness 2, LF2). A k-stage selection al-
gorithm satisfies LF2 if (for the case of DP), ∀i ∈ {1, · · · , k}:

P (ŷi = 1|xs = 0) = P (ŷi = 1|xs = 1).

In the last definition, global fairness (GF), we allow the
predictor ŷi to be unfair at each stage before the last, but we
require the final decision ŷk to be fair with respect to the ini-
tial set of candidates.

Definition 5 (Global Fairness, GF). A k-stage selection
algorithm satisfies GF if (for the case of DP):

P (ŷk = 1|xs = 0) = P (ŷk = 1|xs = 1).

Note that the above definitions can be adapted to EO by
conditioning on y = 1 in all formulas.

3.3 Equivalence between LF1 and LF2
In the following proposition, we show that both notions of
local fairness, LF1 and LF2 are equivalent. Therefore in the
rest of the paper, we will simply name a multistage selection
algorithm that satisfies LF1 (and thus LF2) as a being locally
fair (LF). An algorithm satisfying the global fairness defini-
tion will be called globally fair (GF).

Proposition 2 (Relations between fairness notions). For both
DP and EO:

1. A selection algorithm satisfies LF1 if and only if it satis-
fies LF2. We call such an algorithm locally fair (LF).

2. A locally fair selection algorithm is globally fair (GF).

4 Utility Maximization as a Linear Program
Our goal is to find the binary predictors (ŷ1, . . . , ŷk) corre-
sponding to stages from 1 to k, respectively, that maximize
precision while respecting budget and fairness constraints:

max
ŷ1,...,ŷk

P (y = 1|ŷk = 1)

P (ŷi = 1) ≤ αi, i ≤ k − 1
P (ŷk = 1) = αk

fj(ŷ1, . . . , ŷk) = 0, j ≤ t

(3)

where functions fj(·) of the binary predictors correspond to
the fairness constraints we impose. For instance, for a glob-
ally fair algorithm (DP) we have only one fairness constraint:
f(ŷ1, . . . , ŷk) = P (ŷk = 1|xs = 0)− P (ŷk = 1|xs = 1).

Using the assumption that the final stage size constraint is
P (ŷk = 1) = αk we can write the precision as follows:

P (y=1|ŷk=1)=
1

αk

∑
x1...xd

py=1
x1...xd

px1...xd

k∏
j=1

p(j|j−1)x1...xdj
. (4)

Using the notation introduced in Section 2.2, the probability
P (ŷi = 1) that candidate passes stage i is

P (ŷi = 1) =
∑

x1...xd

px1...xd

i∏
j=1

p(j|j−1)x1...xdj
. (5)

Hence, the constraints on the selection size P (ŷi = 1) ≤ αi

for i < k and P (ŷk = 1) = αk can be expressed using (5).
The fairness constraints can be developed in the same man-

ner, e.g., for the globally fair case (DP):

f(ŷ1, . . . , ŷk) = P (ŷk = 1|xs = 0)− P (ŷk = 1|xs = 1),

where ∀a ∈ {0, 1},

P (ŷk=1|xs=a)=

∑
xi,i6=s

∏k
j=1 p

(j|j−1)
x1...xdj

·px1...xs=a...xd∑
xi,i6=s

px1...xs=a...xd

. (6)

From (4), we see that the objective is not linear in the vari-
ables p(j|j−1)x1...xdj

due to the product of probabilities. Similarly,
we observe from (5) and (6) that the constraints are also not
linear in these variables. However, we can show that by us-
ing the change of variables p̃(i|i−1)x1...xdi

=
∏i

j=1 p
(j|j−1)
x1...xdj

, it can
be made linear. This shows that it is possible to compute the
variables p(j|j−1)x1...xdj

that maximize precision (3) using a linear
program (LP) (see details in Appendix A), which is key to
applicability. It should be noted, however, that the number
of variables in (LP) grows exponentially with the number of
features.

To distinguish between the different notions of fairness, we
will denote by U∗LF (α−k, αk) and U∗GF (α−k, αk) the value
of the problem (LP)—i.e., the maximum utility—when the
fairness constraints correspond to local and global fairness,
respectively. Similarly, we will denote by U∗un(α−k, αk) the
optimal precision value when no fairness constraint are im-
posed (we call it the unfair case).

4.1 Solution Properties wrt Budget Constraints
The selection sizes may be related to some budget or to some
physical resources of our problem and are crucial parameters.
As we show in the next proposition, the optimal utility val-
ues are monotonic and concave as functions of budget sizes
α1, . . . , αk−1. This property can be useful for budget opti-
mization and is illustrated as well on Figure 2.
Proposition 3 (Monotonicity and concavity). For U∗ ∈
{U∗LF , U

∗
GF , U

∗
un} and any fairness constraints that can be

expressed as linear homogeneous equations2 (such as DP and
EO), we have that U∗(α−k, αk) is

2See details in Lemma 1 in Appendix A.



1. non-decreasing and concave with respect to α−k;
2. non-increasing with respect to αk.
Note that U∗ can be concave or convex or none of the two

with respect to αk, depending on the problem’s parameters.

4.2 The Price of Local Fairness
We are now ready to define our central notion—the price of
local fairness—that represents the price to pay for being fair
at intermediate stages compared to a globally fair solution.
Definition 6 (Price of Local Fairness, PoLF ). Let

PoLF(α−k, αk) =
U∗GF (α−k, αk)

U∗LF (α−k, αk)
.

It should be clear that the locally fair algorithm is more
constrained than the globally fair. Thus, we have:

U∗LF (α−k, αk) ≤ U∗GF (α−k, αk) ≤ U∗un(α−k, αk).

This implies that the values of PoLF (α−k, αk) are always
larger than or equal to 1. Using only the final selection size
αk, it is also possible to compute an upper bound as follows.
Proposition 4 (PoLF bound). For all (α−k, αk), we have:

1 ≤ PoLF(α−k, αk) ≤ min

(
1

αk
,

1

P (y = 1)

)
.

For instance, if the final stage selection size is αk = 0.3 (as
in our numerical examples), the globally fair algorithm can
outperform the locally fair one by a factor at most 3.33. While
this bound is probably loose, we will see in our numerical
example that the PoLF can be as large as 1.6 on real data.

5 Empirical Analysis
In this section we implement3 the optimization algorithms in
order to capture tendencies on real datasets and to provide
general insights. We consider the two-stage selection process,
since it is the most easily interpretable. Thus, α−k = α1 and
αk = α2. In our experiments we use three datasets: Adult
[Dua and Graff, 2017], COMPAS [Larson et al., 2016] and
German Credit Data [Dua and Graff, 2017]. We adapt
these datasets to our two stage fair selection problem by leav-
ing 6 features, binarizing them (see details in Appendix D)
and artificially separating in two stages. We estimate the
statistics px1...xd and py=1

x1...xd
from data. We then use a linear

solver for the linear program (LP) that gives us the optimal
utility U∗(α1, α2) for the fair and unfair cases.

5.1 Analysis of the Price of Local Fairness
We consider three different scenarios: i) the sensitive attribute
xs is observed at the first stage; ii) at the second stage; iii)
never used in the selection process. We distinguish these three
cases since it could happen that the use of the sensitive at-
tribute xs in decision making is forbidden at some stages or
even at all (by law or other conventions). Our aim is to com-
pare how the price of local fairness behaves in every case.

Let us start with a simple example. We leave 5 features
from the Adult dataset: sex, age, education, relationship

3All codes are available at https://github.com/vitaly-emelianov/
multistage fairness/
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globally fair
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Figure 2: Utility U∗(α1, α2 = 0.3) for Adult dataset (DP).

and native country and consider the attribute sex as sensitive.
Figure 2 then shows the values of U∗{un, GF, LF}(α1, α2) as
a function of α1 for fixed α2 = 0.3 when using the features
displayed on top of each subfigure at first stage and the rest at
second stage. We make two important observations from this
figure. First, the value of PoLF can be significant. From Fig-
ure 2-(right), we see that for α1 ≈ 0.33, the value of PoLF is
about 1.3, meaning that the globally fair algorithm achieves
30% larger value of precision than the locally fair. Second,
the gap between LF and GF algorithms is significantly larger
when the sensitive attribute xs is observed at the second stage.

To show that this behavior is significant we calculate the
values of U∗{un, GF, LF}(α1, α2) for every possible combina-
tion X = {x1, . . . , x5} of 5 features out of 6 as decision
variables (x1, x2 at first stage and x3, x4 at second stage),
with one sensitive attribute xs = x5 that can be observed at
the first stage or at the second stage or not observed at all,
and for every possible (discretized) value of α1 ≥ α2. Due
to space constraints we present our results only for the DP
definition of fairness; we emphasize that the observations are
robust among the three datasets and the two fairness notions
(DP and EO) (see Appendix C for additional results). Fig-
ure 3 shows the empirical cumulative distribution functions
F̂PoLF (x) of the values of PoLF obtained. We observe that
the price of local fairness is significantly lower when the sen-
sitive attribute xs is revealed at the first stage compared to the
case where it is revealed later. This is consistent with the ob-
servation made on Figure 2. A possible interpretation is that
the LF algorithm has to make a conservative decision at the
first stage and therefore cannot perform well compared to the
GF algorithm that is able to compensate (when the sensitive
feature xs is observed) for the unfair decisions that have been
made at the first stage. It is worth mentioning that we have
the same observation for a three-stage algorithm: the later we
reveal the sensitive attribute, the higher the values of PoLF
we obtain (see Appendix C.4).

5.2 Violation of Local Fairness
By definition, a globally fair algorithm can violate fair-
ness constraints at intermediate stages. For a given budget
constraints α1, α2, we define the violation of local fairness
(V oLF ) as the absolute value of the fairness constraint vio-
lation at the first stage for the optimal globally fair algorithm.
For instance, for DP, this quantity equals:

V oLF (α1, α2) = |P (ŷ1 = 1|xs = 0)− P (ŷ1 = 1|xs = 1)| .
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Figure 3: Empirical CDFs of PoLF for all datasets (DP, α2 = 0.3).
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Figure 4: Empirical CDFs of V oLF for all datasets (DP, α2 = 0.3).

Figure 4 shows the empirical cumulative distribution func-
tion of violation of fairness F̂V oLF (x) for every value of
α1 ∈ [α2; 1] and for every feature combination. We observe
that the later the sensitive feature xs is revealed (or even not
revealed), the more fair at intermediate stages the globally
fair algorithm is. One possible explanation is that an algo-
rithm that cannot observe the sensitive feature xs at the first
stage has to be more “cautious” at every stage to be able to
satisfy global fairness since the exact value of sensitive at-
tribute xs is not available. This observation is again robust
among different datasets and notions of fairness.

Finally, on Figure 5 we represent the joint distribution
of PoLF and V oLF . As mentioned before, the globally
fair algorithm is more unfair at the intermediate stages when
the sensitive feature xs is observed from the beginning (left
panel), however the price of local fairness we pay in this case
is the smallest one. When the sensitive feature xs is observed
at the second stage (middle panel) the globally fair algorithm
is more locally fair compared to the previous case, but the
value of PoLF is way larger. Finally, when xs is never ob-
served (right panel) the globally fair algorithm is the “most
locally fair” among all three settings. We finally observe that,
while most points have either PoLF small (i.e., using a LF
algorithm does not lose much) or V oLF small (i.e., the GF al-
gorithm is almost locally fair), there exist some points—when
the sensitive feature is observed at the second stage—where
both PoLF and V oLF are large; i.e., imposing local fairness
even approximately comes at a significant cost.

6 Conclusion
In this work we tackle the problem of multistage selection
and the fairness issues it entails. We propose a stylized model
based on a probabilistic formulation of the k-stage selection
problem with constraints on the number of selected individ-
uals at each stage that should hold in expectation. We intro-
duce two different notions of fairness for the multistage set-
ting: local (under two equivalent variants) and global fairness.
Thanks to this framework, we show that maximizing preci-

xs at first stage xs at second stage xs unobserved
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Figure 5: V oLF (y-axis) vs PoLF (x-axis) for Adult dataset (DP,
α2 = 0.3).

sion under budget and fairness constraints can be done via
linear programming, which enables for efficient computation
as well as theoretical investigation. In particular, we analyze
theoretically and empirically how the utility of locally and
globally fair algorithms vary with selection budgets, and we
find that globally fair algorithms can lead to non-negligible
performance increases compared to locally fair ones.

One of the main findings of our work is that the stage at
which the sensitive attribute is revealed greatly affects the
difference between the performance of locally and globally
fair algorithms: hiding the sensitive feature at early stages
tends to make globally fair algorithm more fair at interme-
diate stages. While locally fair algorithms may be desirable,
our results show that local fairness does not come for free.
They also show that if a decision maker would like to encour-
age locally fair selection algorithms, there are essentially two
choices: either hide the sensitive feature at the first stage or
impose by rules the first stage to be fair.

Our model allows us to provide elegant insights into the
fairness questions related to multistage selection, yet it does a
number of simplifying assumptions that naturally restrict its
direct applicability. First, our model ignores the issue that the
selection probability at a stage depends on which candidates
got selected at the previous stages; i.e., it implicitly makes
the approximation that at each stage the number of candidates
selected for each feature combination is equal to its expecta-
tion. In Appendix E , we show that this approximation be-
comes exact as n tends to infinity. Second, we assume perfect
statistical knowledge of the joint distribution of features and
label values, without bias. Third, we consider only discrete
features and use a non-compact representation of the selec-
tion probabilities—this allows us to solve the exact selection
problem by using an LP formulation. Relaxing these assump-
tions, in particular using a more compact representation of the
selection algorithm (at the cost of a loss of precision) is an in-
teresting direction of future work.
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Appendix A Utility Maximization via Linear
Programming

In this appendix, we formally justify that maximizing precision un-
der budget constraints and fairness constraints can be done via linear
programming. The following proposition shows how to do that with
only budget constraints:

Proposition 5 (Utility maximization as a linear program). Let, for
all i ∈ {1, · · · , k} and all x1 . . . xdi ,

p(i|i−1)
x1...xdi

=

{
p̃
(i|i−1)
x1...xdi

/p̃
(i−1|i−2)
x1...xdi−1

, if p̃(i−1|i−2)
x1...xdi−1

6= 0

0, otherwise,

where the variables p̃(i|i−1)
x1...xdi

are solutions of the linear program

max
p̃(i|i−1)
x1...xdi

1

αk

∑
x1...xd

py=1
x1...xd · px1...xd · p̃

(k|k−1)
x1...xdk

s.t.
∑

x1...xd

px1...xd · p̃
(i|i−1)
x1...xdi

≤ αi, i < k,

∑
x1...xd

px1...xd · p̃
(k|k−1)
x1...xdk

= αk,

0 ≤ p̃(1|0)x1...xd1
≤ 1,

0 ≤ p̃(i|i−1)
x1...xdi

≤ p̃(i−1|i−2)
x1...xdi−1

, 1 < i ≤ k.

(7)

Then the p(i|i−1)
x1...xdi

are solutions of (3) without any fairness con-
straint.

Proof. Using (4)–(5), we can rewrite problem (3) as

max
p(i|i−1)
x1...xdi

1

αk

∑
x1...xd

py=1
x1...xd · px1...xd ·

k∏
i=1

p(i|i−1)
x1...xdi

s.t.
∑

x1...xd

px1...xd ·
i∏

j=1

p(j|j−1)
x1...xdj

≤ αi, i < k,

∑
x1...xd

px1...xd ·
k∏
j=1

p(j|j−1)
x1...xdj

= αk,

0 ≤ p(i|i−1)
x1...xdi

≤ 1, 1 ≤ i ≤ k.

(8)

Let us define the new variables

p̃(i|i−1)
x1...xdi

=

i∏
j=1

p(j|j−1)
x1...xdj

. (9)

By substitution, we get the linear program (7). Hence, assuming
that p̃(i|i−1)

x1...xdi
are solutions of (7), any p(i|i−1)

x1...xdi
such that (9) is sat-

isfied (as is the case for the p(i|i−1)
x1...xdi

defined in the proposition) is a
solution of (3).

In the following lemma, we then show that fairness constraints
can also be written as linear homogeneous equations in terms of the
transformed variables p = (p̃

(i|i−1)
x1...xdi

)T .

Lemma 1 (Linearity of fairness constraints). For both local and
global fairness, and for both EO and DP, there exists a matrix F
such that the fairness constraint can be expressed as

Fp = 0.

Proof. We present the proof for demographic parity, the idea is the
same for equal opportunity. Let us consider the fairness constraint
corresponding to stage i, 1 ≤ i ≤ k:

P (ŷi = 1|xs = 0) = P (ŷi = 1|xs = 1).

By expanding the left side, we obtain:

P (ŷi = 1|xs = 0) =

∑
xi,i 6=s

p̃
(i|i−1)
x1...xs=0...xdi

· px1...xs=0...xd∑
xi,i 6=s

px1...xs=0...xd

.

Recall that px1...xs=0...xd is a fixed parameter and not a decision
variable. Thus, for both local and global fairness, the fairness con-
straint (equality of the probabilities for xs = 0 and xs = 1) can
be represented in the form Fp = 0 for an appropriate F simply by
moving all terms on the left side of the equality.

Appendix B Missing Proofs
In this appendix, we provide the proofs of all results stated in the
paper. We start by introducing notation that will be used throughout
the proofs.

Notation
To ease the exposition, we introduce the following matrix notation
for the problem (7).
• Selection probabilities p. We concatenate all the selection

probabilities in a single vector:

p = (p̃(i|i−1)
x1...xdi

)T ,

where p̃(i|i−1)
x1...xdi

is the vector of selection probabilities at stage i for
all possible values of x1 . . . xdi (whose size depends on i).
• Constraints set Cα−k,αk . We have two types of constraints in

problem (7).

1. The constraints that correspond to selection sizes αi, i =
1, . . . , k. We separate them such that Ap ≤ α−k corresponds
to selection at first k − 1 stages, so

α−k = (α1, . . . , αk−1)
T .

The constraint bTp = αk corresponds to selection at the last
stage, where we require a strict equality.

2. The constraints that do not depend on selection sizes are writ-
ten in a form of Dp ≤ δ for an appropriate D, where
δ = (1, . . . , 1, 0, . . . , 0)T : 1’s in δ correspond to constraints
0 ≤ p̃

(1|0)
x1...xd1

≤ 1 and 0’s correspond to constraints 0 ≤
p̃
(i|i−1)
x1...xdi

≤ p̃(i−1|i−2)
x1...xdi−1

.

Thus, we write every constraint in matrix form and introduce the
following compactly formed constraint set:

Cα−k,αk = {p ∈ [0, 1]d : Ap ≤ α−k, b
Tp = αk, Dp ≤ δ}.

• Utility function Uα−k,αk (p), can be written as

Uα−k,αk (p) =
1

αk
cTp,

where c = (py=1
x1...xd · px1...xd)

T .
Proposition 5 and Lemma 1 show that the problem of maximiz-

ing precision (or equivalently, other metrics, see Proposition 1) can
be solved through a linear program when the selection sizes sizes



(α−k, αk) are given constants. This shows that the utility maxi-
mization problem in general form can be written as:

U∗(α−k, αk) = max
p∈Cα−k,αk∩Cf

1

αk
cTp, (10)

where

Cα−k,αk = {p ∈ [0, 1]d : Ap ≤ α−k, b
Tp = αk, Dp ≤ δ},

Cf = {p ∈ [0, 1]d : Fp = 0}.

Proof of Proposition 1
We prove the equivalence only for accuracy (denoted ACC); the
proof for other metrics follows the same idea. By expanding ACC,
we obtain:

ACC = P (ŷk = y) = P (ŷk = 1, y = 1) + P (ŷk = 0, y = 0)

= P (ŷk = 1, y = 1) + (P (y = 0)− P (ŷk = 1, y = 0))

= 2 · P (ŷk = 1, y = 1) + P (y = 0)− P (ŷk = 1)

= 2 · P (ŷk = 1) · P (y = 1|ŷk = 1)

+ P (y = 0)− P (ŷk = 1).

Since the terms P (ŷk = 1) and P (y = 0) are constant, maximiza-
tion of precision is equivalent to maximization of ACC.

Proof of Proposition 2
(1) We present the proof only for demographic parity, the proof for
equal opportunity follows the same idea. We do the proof by induc-
tion. First consider a 2-stage selection algorithm ŷ = (ŷ1, ŷ2). By
considering the following quantity:

P (ŷ2 = 1|ŷ1 = 1, xs = 0) =
P (ŷ2 = 1, ŷ1 = 1, xs = 0)

P (ŷ1 = 1, xs = 0)

=
P (ŷ2 = 1, ŷ1 = 1, xs = 0) +

=0︷ ︸︸ ︷
P (ŷ2 = 1, ŷ1 = 0, xs = 0)

P (ŷ1 = 1, xs = 0)

=
P (ŷ2 = 1, xs = 0)

P (ŷ1 = 1|xs = 0)P (xs = 0)
=
P (ŷ2 = 1|xs = 0)

P (ŷ1 = 1|xs = 0)
,

the fairness constraint for LF1 at the second stage is:

P (ŷ2 = 1|xs = 0)

P (ŷ1 = 1|xs = 0)
=
P (ŷ2 = 1|xs = 1)

P (ŷ1 = 1|xs = 1)
.

Since we impose fairness at the first stage, then P (ŷ1 = 1|xs =
0) = P (ŷ1 = 1|xs = 1), so the condition above is equivalent to

P (ŷ2 = 1|xs = 0) = P (ŷ2 = 1|xs = 1),

that is exactly the second constraint for the LF2 notion. Thus, the
statement is true for a 2 stage selection algorithm.

Second, assuming that the statement is true for ŷ = (ŷ1, . . . , ŷi),
i > 2, let us consider the (i + 1)-stage selection algorithm. By
analogy, considering the quantity

P (ŷi+1 = 1|ŷi = 1, xs = 0) =
P (ŷi+1 = 1, ŷi = 1, xs = 0)

P (ŷi = 1, xs = 0)

=
P (ŷi+1 = 1, xs = 0)

P (ŷi = 1|xs = 0)P (xs = 0)
=
P (ŷi+1 = 1|xs = 0)

P (ŷi = 1|xs = 0)

we obtain that the fairness constraint for LF1 at the stage i+ 1 is

P (ŷi+1 = 1|xs = 0)

P (ŷi = 1|xs = 0)
=
P (ŷi+1 = 1|xs = 1)

P (ŷi = 1|xs = 1)
.

As P (ŷi = 1|xs = 0) = P (ŷi = 1|xs = 1) by the assumption of
induction, we have P (ŷi+1 = 1|xs = 0) = P (ŷi+1 = 1|xs = 1).

The point (2) follows from the definitions of LF2 and GF, since
the problem GF is less constrained than LF2.

Proof of Proposition 3
(1) For a given α−k, assume that the program attains its maximum
U∗(α−k, αk) at point p and let α′−k ≥ α−k, where ≥ is meant
component-wise.

By setting p′ = p, we obtain that p′ ∈ Cα′−k,αk
and thus:

U∗(α−k, αk) = Uα−k,αk (p) = Uα′−k,αk
(p′) ≤ U∗(α′−k, αk).

Let us consider a problem, when α−k = α′
−k, it attains its maxi-

mum U∗(α′
−k, αk) at the point p′. Analogously, let for the second

problem α−k = α′′
−k, and it attains its maximum U∗(α′′

−k, αk) at
the point p′′. Then for any λ ∈ [0, 1] the point λp′ + (1− λ)p′′ ∈
Cλα′

−k+(1−λ)α′′
−k,αk

and:

λU∗(α′, αk) + (1− λ)U∗(α′′
−k, αk) = λ

1

αk
cTp′

+ (1− λ) 1

αk
cTp′′

=
1

αk
cT (λp′ + (1− λ)p′′)

= Uλα′
−k+(1−λ)α′′

−k,αk
(λp′ + (1− λ)p′′)

≤ U∗(λα′
−k + (1− λ)α′′

−k, αk).

(2) For a given αk, assume that the program attains its maximum
U∗(α−k, αk) at point p. Let α′k = αk/γ, where γ ∈ [1,+∞).
Then consider p′ = p/γ. We have p′ ∈ Cα−k,α

′
k

and p′ ∈ Cf
and:

U∗(α−k, αk) = Uα−k,αk (p) =
1

αk
cTp

=
1

αk/γ
cTp/γ = Uα−k,α

′
k
(p′) ≤ U∗(α−k, α′k).

Proof of Proposition 4
Let us consider the trivial locally fair algorithm. It selects candidates
randomly with probability α1 at the first stage and with probability
αi/αi−1, ∀1 < i ≤ k. The utility of such random algorithm is equal
to Urandom(α−k, αk) = P (y = 1). It is obvious by definition that

Urandom(α−k, αk) ≤ U∗LF (α−k, αk) ≤ U∗GF (α−k, αk).

To obtain an upper bound of U∗GF (α−k, αk) we suppose that all
features are available for the selection, meaning that αi = 1, ∀i <
k. Then U∗GF (α−k, αk) ≤ U∗un(α1 = 1, . . . , αk−1 = 1, αk) ≤
min(P (y = 1)/αk, 1). Thus,

PoLF (α−k, αk) ≤
min(P (y = 1)/αk, 1)

P (y = 1)

= min

(
1

P (y = 1)
,

1

αk

)
.

Appendix C Additional experimental results
In this appendix, we provide additional experimental results that
support the claims in the paper—in particular by reproducing the
curves in the paper for other datasets and other fairness metrics.

C.1 The Price of Local Fairness (PoLF )
Figure 6 displays the CDF of PoLF as in Figure 3 but including the
results for EO as well.

C.2 The Violation of Local Fairness (V oLF )
Figure 7 displays the CDF of V oLF as in Figure 7 but including the
results for EO as well.
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Figure 6: The cumulative distribution function of PoLF for α2 =
0.3 .
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Figure 8: Joint distribution of V oLF and PoLF for COMPAS
dataset and α2 = 0.3.

C.3 V oLF vs PoLF for Various Datasets
Figures 8 and 9 display the joint distribution of V oLF (y-axis)
and PoLF (x-axis) as in Figure 5 but for the other two datasets:
COMPAS and German respectively.
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Figure 9: Joint distribution of V oLF and PoLF for German
dataset and α2 = 0.3.
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Figure 10: The cumulative distribution function of PoLF of 3-stage
algorithm for α3 = 0.3.

C.4 PoLF of 3-stage algorithm
In this subsection we present the results for PoLF of 3-stage se-
lection algorithm. The procedure to calculate the PoLF values is
similar to the one we used for two-stage algorithm. We suppose that
we observe only one feature at every stage, we suppose that the one
of the rest features is a sensitive xs and consider the cases when it is
observed at first, second or third stage of selection process. We cal-
culate the value of PoLF for every possible 4 feature combinations
(three decision variables and one being sensitive) out of 6 and for ev-
ery discretized value of α1 and α2, such that α3 = 0.3 ≤ α2 ≤ α1.
Figure 10 displays the empirical CDFs of PoLF for 3-stage algo-
rithm. The observations are the same as in two-stage case: later the
sensitive attribute xs is revealed, larger is the price of imposing local
constraints.

On Figure 11 we show the joint distribution of PoLF when the
xs (shown on top of each subfigure) is observed at the first stage
(we call it PoLF1) and PoLF when the xs is observed at the sec-
ond stage (PoLF2) for Adult dataset. We observe that the value
of PoLF1 is sufficiently smaller than the corresponding value of
PoLF2.

On Figure 12 we show the joint distribution of PoLF when the
xs is observed at the second stage (we call it PoLF2) and PoLF
when the xs is observed at the third stage (PoLF3) for Adult
dataset. We again observe that the value of PoLF2 is smaller than
the corresponding value of PoLF3, since the most of the points lie
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Figure 11: Joint distribution of PoLF1 and PoLF2 of 3-stage algo-
rithm for Adult dataset and α3 = 0.3.
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Figure 12: Joint distribution of PoLF2 and PoLF3 of 3-stage algo-
rithm for Adult dataset and α3 = 0.3.

above the diagonal line which is marked as dashed red line.
On Figures 13-16 we display the joint distributions in the same

manner as on Figures 11 and 12 but for COMPAS and German
Credit datasets.

Appendix D Data Description
As mentioned in the paper, we binarize all features of datasets. In
this appendix we describe this step in more detail.

D.1 Adult dataset
In the Adult dataset from the UCI repository [Dua and Graff, 2017]
there are 48842 candidates, each described by 14 features. The la-
bel income denotes if candidate gains more than 50.000 dollars an-
nually. For all our experiments we binarize and leave only the 6
following features: sex (is male), age (is above 35), native-country
(from the EU or US), education (has Bachelor or Master degree),
hours-per-week (works more than 35 hours per week) and relation-
ship (is married).

D.2 COMPAS Dataset
The COMPAS dataset [Larson et al., 2016] is a dataset that is used to
train the COMPAS algorithm. It contains information about prison-
ers, such as their name, gender, age, race, start of the sentence, end
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Figure 13: Joint distribution of PoLF1 and PoLF2 of 3-stage algo-
rithm for COMPAS dataset and α3 = 0.3.
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Figure 14: Joint distribution of PoLF2 and PoLF3 of 3-stage algo-
rithm for COMPAS dataset and α3 = 0.3.
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Figure 15: Joint distribution of PoLF1 and PoLF2 of 3-stage algo-
rithm for German Credit dataset and α3 = 0.3.

of the sentence, charge description etc. and a label y=recidivism,
that is y = 1 if person is likely to reoffend and 0, otherwise.

We prepare original COMPAS dataset for our means by select-
ing statistics only for Caucasian and African-American defendants,
leaving only 6 features and binarizing them. The features that we
use are following: sex (is male), young (younger than 25), old (older



1.00 1.05 1.10
1.00

1.02

1.04

1.06

1.08

1.10
DP

sex

1.00 1.05 1.10
1.000

1.025

1.050

1.075

1.100

age

1.00 1.05 1.10
1.00

1.02

1.04

1.06

1.08

1.10
job

1.00 1.05 1.10
1.000

1.025

1.050

1.075

1.100

EO

1.00 1.05 1.10
1.000

1.025

1.050

1.075

1.100

1.00 1.05 1.10
1.00
1.02
1.04
1.06
1.08
1.10

Figure 16: Joint distribution of PoLF2 and PoLF3 of 3-stage algo-
rithm for German Credit dataset and α3 = 0.3.

than 45), long sentence (sentence was longer than 30 days), drugs
(the arrest was due to selling or possessing drugs), race (is Cau-
casian).

D.3 German Dataset
The German Credit data from [Dua and Graff, 2017] contains
information about applicants for credit. As with other datasets, we
binarize feature values. The label feature y=returns shows if ap-
plicant payed for his loan, and we binarize and use 6 features: job
(is employed), housing (owns house), sex (is male) savings (greater
than 500 DM), credit history (all credits payed back duly), age (older
than 50).

Appendix E Utility Maximization In Limit Of
n→∞

In this appendix we provide an intuition on multistage selection pro-
cess in limit of infinitely large n. In short, the optimal candidate
selection problem with finite number of candidates n appears to be
a k-stage stochastic optimization problem which is difficult to solve
exactly. By letting the number of candidates n to be infinitely large
allows us to reformulate the problem in a much simpler manner such
that we are able to find an optimal selection probabilities easily.

To prove the statements in this appendix we will exploit the two
following classical results from the probability theory, see [Rohatgi
and Saleh, 2015].

Lemma 2 (Chebyshev-Bienaymé inequality). Let X be a random
variable, then

P (|X − EX| ≥ ε) ≤ V ar(X)

ε2
.

Lemma 3 (Properties of convergence in probability ). Let Xn and
Yn be sequences of random variables.

1. If Xn
P−→ X and a is a constant, then aXn

P−→ aX .

2. If Xn
P−→ X and Yn

P−→ Y , then Xn + Yn
P−→ X + Y .

3. If Xn
P−→ X , then 1/Xn

P−→ 1/X .

4. If Xn
L−→ X and |Xn − Yn|

P−→ 0, then Yn
L−→ X .

The following lemma gives us the limit on the proportion of se-
lected at stage i candidates as n→∞.

Lemma 4. Let by n(i)
x1...xdi

denote the number of candidates having
features x1 . . . xdi that are selected at the stage i, then for n→∞:

n
(i)
x1...xdi

n

L−→ px1...xdi

i∏
j=1

p(j|j−1)
x1...xdj

.

Before proving the above lemma let us define the budget Bn(i)
at the stage i as Bn(i) = 1

n

∑
x1...xdi

n
(i)
x1...xdi

. Then using prop-

erty 2 from Lemma 3 and Lemma 4 we obtain that Bn(i)
L−→∑

x1...xdi
px1...xdi

∏i
j=1 p

(j|j−1)
x1...xdj

.
The precision is the proportion of good candidates among se-

lected then using Lemma 3, the argument in Lemma 4 and fact the
the final stage selection size is fixed to αk, the precision converges
in law to 1

αk

∑
x1...xd

px1...xdp
y=1
x1...xd

∏k
j=1 p

(j|j−1)
x1...xdj

as n goes to
infinity. Hence, the equations (4)–(5) hold as the number of candi-
dates n→∞. Let us prove Lemma 4 by induction on stage number
i.

Proof. Base of induction. Before we do any selection:

n(0)
x1...xd1

∼ Bin
(
n, px1...xd1

)
,

then using Chebyshev–Bienaymé inequality:

P

(∣∣∣∣∣n
(0)
x1...xd1

n
−
n · px1...xd1

n

∣∣∣∣∣ ≥ ε
)
≤
npx1...xd1 (1− px1...xd1 )

ε2n2

≤ 1

ε2n

hence
n
(0)
x1...xd1
n

P−→ px1...xd1 , n→∞.
After, when we perform the selection at the first stage:

n(1)
x1...xd1

|n(0)
x1...xd1

∼ Bin
(
n(0)
x1...xd1

, p(1|0)x1...xd1

)
.

P

(∣∣∣∣∣n
(1)
x1...xd1

n
−
n
(0)
x1...xd1

n
p(1|0)x1...xd1

∣∣∣∣∣ ≥ ε
)
≤

≤
n
(0)
x1...xd1

p
(1|0)
x1...xd1

(1− p(1|0)x1...xd1
)

ε2 · n2
≤ 1

ε2n
,

so using properties 1 and 4 from Lemma 3, we obtain that
n
(1)
x1...xd1
n

L−→ px1...xd1 p
(1|0)
x1...xd1

.
Induction Step. Let us consider the stage i+1. By the assumption

of induction:

n
(i)
x1...xdi

n

L−→ px1...xdi

i∏
j=1

p(j|j−1)
x1...xdj

.

After making the selection at the stage iwe observe the new features
di + 1, . . . , di+1, so

n(i)
x1...xdi+1

|n(i)
x1...xdi

∼ Bin
(
n(i)
x1...xdi

, pxdi+1...xdi+1
|x1...xdi

)
,

where pxdi+1...xdi+1
|x1...xdi

:= P (xdi+1 . . . xdi+1 |x1 . . . xdi).
Then

P

∣∣∣∣∣∣
n
(i)
x1...xdi+1

n
−
n
(i)
x1...xdi

n
pxdi+1...xdi+1

|x1...xdi

∣∣∣∣∣∣ ≥ ε
 ≤

≤
n
(i)
x1...xdi

pxdi+1...xdi+1
|x1...xdi

(1− pxdi+1...xdi+1
|x1...xdi

)

ε2 · n2

≤ 1

ε2n
,



hence
n
(i)
x1...xdi+1

n

L−→ px1...xdi+1

∏i
j=1 p

(j|j−1)
x1...xdj

.
When we perform the selection at the stage i+ 1:

n(i+1)
x1...xdi+1

|n(i)
x1...xdi+1

∼ Bin
(
n(i)
x1...xdi+1

, p(i+1|i)
x1...xdi+1

)
then again using Chebyshev-Bienaymé inequality for

n
(i+1)
x1...xdi+1

n
:

P

∣∣∣∣∣∣
n
(i+1)
x1...xdi+1

n
−
n
(i)
x1...xdi+1

· p(i+1|i)
x1...xdi+1

n

∣∣∣∣∣∣ ≥ ε
 ≤

≤
n
(i)
x1...xdi+1

p
(i+1|i)
x1...xdi+1

(1− p(i+1|i)
x1...xdi+1

)

ε2 · n2
≤ 1

ε2n
,

so

∣∣∣∣∣n
(i+1)
x1...xdi+1

n
−

n
(i)
x1...xdi+1

·p(i+1|i)
x1...xdi+1

n

∣∣∣∣∣ P−→ 0, n → ∞ and fi-

nally:
n
(i+1)
x1...xdi+1

n

L−→ px1...xdi+1

i+1∏
j=1

p(j|j−1)
x1...xdj

.


