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Abstract—Densification through small cells and caching in
base stations have been proposed to deal with the increasing
demand for Internet content and the related overload on the
cellular infrastructure. However, these solutions are expensive
to install and maintain. Instead, using vehicles acting as mobile
caches might represent an interesting alternative. In our work,
we assume that users can query nearby vehicles for some time,
and be redirected to the cellular infrastructure when the deadline
expires. Beyond reducing costs, in such an architecture, through
vehicle mobility, a user sees a much larger variety of locally
accessible content within only few minutes. Unlike most of the
related works on delay tolerant access, we consider the impact on
the user experience by assigning different retrieval deadlines per
content. In our paper, we provide the following contributions: (i)
we model analytically such a scenario; (ii) we formulate an opti-
mization problem to maximize the traffic offloaded while ensuring
user experience guarantees; (iii) we propose two variable deadline
policies; (iv) we perform realistic trace-based simulations, and we
show that, even with low technology penetration rate, more than
60% of the total traffic can be offloaded which is around 20%
larger compared to existing allocation policies.

I. INTRODUCTION

THE widespread availability of handheld devices, such as
smartphones or tablets, and the content-centric nature

of Web 2.0 applications are driving a massive increase in
the mobile traffic demand [1]. While operators are slowly
upgrading their networks to LTE and considering a number
of communication technologies for beyond 4G networks (e.g.,
massive MIMO, Collaborative Multi-Point), such upgrades are
quite expensive, and might not even be able to keep up with the
demand. As an alternative, operators are turning towards den-
sification through small cells (SCs) which promises improved
spectral efficiency at smaller capital/operational expenditures
(CAPEX/OPEX). However, introducing a large number of SCs
requires significant upgrades to the backhaul network which
is predicted to become the new bottleneck [2].

Caching popular content in SCs has been proposed as a
solution to alleviate the congestion of the backhaul and core
networks [3]–[5], but comes with its own drawbacks: (i)
extensive SC coverage is necessary to ensure enough traffic is
offloaded from the macro-cells, but the initial experience sug-
gests larger CAPEX/OPEX per site than initially predicted [6];
(ii) while caching popular content deep inside the operator’s
core network promises good hit rates [7], initial studies based
on real data are pessimistic [8]. Recently, instead of (or in
addition to) fixed operator-installed SCs, it has been proposed
the use of private or public transportation as storage points
and mobile relays to store popular content [9]. We refer to
such storage cloud as vehicular cloud which is the common

terminology used in related work [10], also motivated by the
fact that computing capabilities for vehicles are expected in
the future. These mobile caches can be controlled by mobile
network operators (MNOs) through a cellular interface. In
urban environments, the number of vehicles is expected to be
considerably higher than in any envisioned SC deployment.
Hence, the sheer number of vehicles along with the lower
CAPEX/OPEX involved makes this an interesting alternative.

In this paper, we exploit such a vehicular cloud to store
popular content (e.g., software updates, not real-time videos)
in order to offload part of the mobile traffic demand. We build
a model where a user requesting a content queries nearby
vehicles and, if the content is not found, is redirected to the
main cellular infrastructure. However, since caches will be
quite small compared to the daily catalogue of content, the user
might not be within range of any cache storing the requested
content at that time. To alleviate this, we propose that each
request can be delayed for a small amount of time, if there
is a local cache miss. While the idea of delay tolerance has
already been extensively discussed in literature, in this work
we introduce three fundamental novelties:

Vehicle storage capacity “virtually” extended. Delayed of-
floading to small cells (with and without local storage) has
already been considered (e.g., via WiFi access points [11],
[12]). However, most of these works require the user to move
in order to encounter new base stations and see new caches.
This is problematic as most users exhibit a nomadic behavior,
staying in the same location for long periods. As a result, it
has been consistently reported that such delayed offloading
architectures require TTLs (Time to Live) in the order of half
to a couple of hours to demonstrate performance benefits [11]–
[13]. Instead, when caches are on vehicles, especially in a
dense urban environment, a static or slowly moving user will
see a much larger number of caches within the same amount
of time, thus virtually extending the size of the accessible local
storage. This leads to better hit rates with considerably smaller
deadlines (in the order of a few minutes, see Section VI).

Variable deadlines. The majority of edge caching related
works are operator-centric, aiming at policies that exclusively
minimize the load on the cellular infrastructure. In most de-
layed offloading settings, the worst-case delay TTL guarantee
offered to the user is usually fixed for all content requests and
set to large values in order to offload a considerable amount of
traffic, as explained earlier. Conversely, in this work we allow
the operator to set different deadlines for different content.
This variability in the TTL brings two advantages: first, it
allows to increase the percentage of the traffic offloaded as we
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will see in the rest of the paper; second, these deadlines can be
adapted according to the specific characteristics of the content
(e.g., size) in order to improve user Quality of Experience
(QoE) as we explain below.

User QoE-aware offloading. QoE is a measure of the delight
or annoyance of a user’s experience with a service (e.g.,
phone call, streaming). While other models can be possible, we
choose to evaluate the user QoE according to the experienced
slowdown which has become popular in recent queuing theory
literature [14]. This metric relates the waiting delay with the
“net” download time. For example, a user requesting a web
page of a few MBs (normally taking some seconds) will
be quite frustrated if she has to wait an extra 1-2 minutes
to encounter a vehicle caching that web page. However, a
user downloading a large video or software file might not
even notice an extra 1-2 minutes delay. Specifically, in our
framework an MNO can calibrate the user experience by
setting a required slowdown which upper bounds the tail
behavior of the response time. Unlike related works that
use large TTLs, tuning the waiting time per content ensures
maximum offloading with little QoE degradation.

While there are a number of additional architectural and
incentive-related questions to consider (see Section VII), the
main focus of this paper is on the modelling of the above
scenario and on the formulation of a corresponding (nontrivial)
optimization problem. We provide more details about related
work and respective novelty in the next section. The main
contributions of the paper can be summarized as follows:

1) We model the problem of maximizing the percentage of
traffic offloaded through the vehicular cloud considering
the user QoE and a large range of realistic conditions.

2) We solve the problem in 1) presenting two variable dead-
line caching policies: QoE-Aware Caching (QAC) which
introduces an approximation on the generic formulation;
QoE-Aware Caching for Small Content (QAC-SC) which
provides better offloading gains for content of small sizes.

3) We validate our findings using simulations with real traces
for vehicle mobility and content popularity. We show that
our system can offload a considerable amount of bytes
with modest technology penetration (< 1% of vehicles
participating in the cloud) and low mean slowdown (that
leads to average deadlines of a few minutes).

4) We study the impact of different user QoE guarantees on
operator- and user-related performance, and compare our
QAC and QAC-SC with some fixed deadline policies.

The rest of the paper is organized as follows: in Sec-
tion II we compare our work with the previous literature;
in Section III, we define the system model with the main
assumptions; then, in Section IV, we present the mathematical
formulation of the problem, and we solve a reasonable approx-
imation (since the original problem is hard); in Section V we
introduce two policies specific for small content; we validate
our results through real-trace based simulations in Section VI;
finally, we discuss about architectural details and incentives
in Section VII, and conclude our paper with a summary and
future work in Section VIII.

II. RELATED WORK

The rapid increase in the mobile traffic demand has led to a
large number of proposals to mitigate the load on the cellular
infrastructure. The ones most closely related to our approach
can be roughly categorized as follows.

A. Caching at the edge

Caching at the edge of the network has been deeply
investigated by researchers lately. In this context, traditional
solutions concern adding storage capacity to SCs [4], [5]
and/or to some intermediate nodes within the network [15].
Golrezaei et al. [4] propose to replace backhaul capacity with
storage capacity at the SC access points (APs), called helpers;
the challenge faced by the authors was in the analysis of the
optimum way of assigning content to the helpers in order to
minimize the expected download time. Poularakis et al. [5]
focus their attention on video requests trying to optimize the
service cost and the delivery delay; in their framework, pre-
stored video files can be encoded with two different schemes
in various qualities. Finally, Zhou et al. [15] introduce an
information-centric heterogeneous network framework aiming
at enabling content caching and computing; due to the virtual-
ization of the whole system, communication, computing, and
caching resources can be shared among all users associated
with different virtual service providers.

While such distributed caching schemes for SCs provide
very interesting theoretical insights and algorithms, they face
some key shortcomings. A large number of SCs is required
for an extensive enough coverage, which comes at a high
cost [6]. E.g., in a macro-cell of a radius of a few kilometers,
it is envisioned to place 3-5 SCs, of range a few hundred
meters. By contrast, in an urban environment, the same area
will probably contain thousands of vehicles. Furthermore, the
smaller size of edge caches and smaller number of users
per cell, raises the question whether enough overlap in user
demand would be generated locally to have a high enough hit
ratio, when real traffic is considered. Delayed content access
is supposed to overcome such limitation as explained next.
Another key difference is that SCs are static and user locations
are supposed to be known. In our approach, we actually
allow more generic mobility patterns (e.g., no assumptions
about user locations) and also introduce delayed access which
“mixes” SCs and users.

B. Delayed content access

To alleviate the aforementioned problem of requests overlap
at a low cost, a number of works introduce delayed access.
This can be seen as an enforced delay until a WiFi access
point is encountered to offload the cellular connection to a less
loaded Radio Access Technology (RAT) [11]–[13], or until to
reach peer nodes in a P2P infrastructure [16]. For example,
Balasubramanian et al. [11] develop a system to augment
mobile 3G capacity with WiFi, using two key ideas: delay
tolerance and fast switching. This enforced delay virtually
extends the coverage of WiFi APs, allowing a larger ratio of
connections to be offloaded than the mere physical coverage
of WiFi APs allows. In other works [17], a different deadline
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is assigned to each content. However, these deadlines are
problem input parameters and cannot be used to improve
performance (e.g., the amount of data offloaded, QoE), as
we do in our paper. Nevertheless, as explained earlier, these
approaches require the user to move in order to encounter new
base stations and new caches. User mobility is often nomadic
and slow, requiring the respective algorithms to enforce very
large content access delays (often in the order of hours), before
any performance improvement is perceived by the operator.
Instead, in our paper we present two main novelties: (i) having
the SC and cache move, naturally happening when placed
on vehicles, the operator can offload up to 60% of its traffic
with minimum QoE impact; (ii) while other works consider
pre-assigned deadlines, we allow variable delay tolerance per
content, and also allow the operator to optimize it (by setting
an upper limit on the slowdown) in order to improve QoE or
maximize the offloaded data.

C. Caching on mobile devices

Apart from small cells, researchers have also been proposing
to use mobile devices to offload content through opportunistic
communications [3], [18]. Bao et al. [3] exploit the possibility
of serving user requests from other mobile devices located
geographically close to the user; the goal of the work is
to explore a practical way of offloading cellular traffic via
D2D communications, exploiting the observation that cellular
networks are strained when many people located in a small
area request for content (e.g., concerts, stadiums). In the
work of Han et al. [19], mobile devices store content and
propagate the information opportunistically; the challenge is
to find a set of users where to offload the information. In
addition, Li et al. [18] also takes into account the analysis of
social behavior and preference of mobile users. Nevertheless,
having mobile devices in tethering mode, storing even a small
subset of the total content catalogue and having them to serve
constantly incoming requests from other users seem to put an
unrealistically high toll on the already limited battery, storage
and processing resources of handheld devices. On the other
hand, placing and powering up a large hard disk and a simple
AP somewhere inside the vehicle seems to pose much fewer
challenges for modern cars. To sum up, compared to user
equipments acting as relays and caches, the vehicular cloud
offers considerably more storage and processing power, thus
lowering the adoption barrier significantly.

D. Vehicles as cellular infrastructure helpers

Recently, a few works have suggested to exploit vehicular
networks to store content [20]–[22]. Zhang et al. [20] propose
a P2P scheme to improve the performance of content sharing
in intermittently connected vehicular networks. Zhao et al. [21]
adopt the idea of carry and forward content where a moving
vehicle carries information until a new vehicle moves into
its vicinity: the authors make use of the predictable vehicle
mobility to reduce the content delivery delay. Nevertheless,
the majority of these works do not consider a common cloud
maintained by the mobile network operator. Conversely, in
a previous work, we have introduced the idea of vehicular

Fig. 1: An MNO pushes content in vehicles according to the
chosen policy; when a mobile device is in the communication
range of a vehicle, some of the requested chunks are offloaded;
if the download is not finished within the deadline, the device
is redirected through the cellular infrastructure.

cloud used to offload part of the traffic and accessible by
handheld devices [22]. However, the paper only mentions ini-
tial thoughts about the architecture, without dealing with QoE
or variable deadlines. The hype around vehicular networks as
part of the cellular infrastructure has been confirmed by the
launch of new companies like Veniam which offers network
connectivity to public transportation, and is rapidly spreading
around the world [9].

III. SYSTEM MODEL

In this section we introduce the system model with the
related assumptions that will be used to formulate an opti-
mization problem maximizing the traffic offloaded through the
vehicular cloud while accounting for the end-user QoE.

A. Content access protocol

We consider a network with three types of nodes:
• Infrastructure nodes (I): base stations or macro-cells; their

role is to seed content into vehicles and to serve user requests
when the deadline expires.

• Helper nodes (H ): vehicles such as cars, buses, taxis, trucks,
etc., where |H | = h; these are used to store popular content
and to serve user requests at low cost through a direct vehicle
to mobile node link.

• End-user nodes (U): mobile devices such as smartphones,
tablets or netbooks; these nodes request content to H and
I nodes (the last ones are only contacted when the deadline
expires and the content is still not entirely downloaded).
The basic protocol is made up of three phases (Fig. 1):

• Backhaul link (I → H ): I nodes place content in H nodes
according to the chosen allocation policy. These policies are
the main outcome of this paper. We refer to this phase as
seeding. This phase is repeated at the beginning of operator
selected time windows to adjust to varying content access
patterns. If seeding is performed during off-peak times, its
cost can be considered equal to 0. In our work, without
loss of generality, we will focus on this scenario1. Vehicles
could be treated as end devices, in which case this becomes
a normal radio access link.

1The generic case (i.e., non-null seeding cost) is a straightforward extension
when seeding time windows are large enough to amortize content seeding.
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• Fronthaul link (H → U): an end user node can request
content i to the vehicles that are inside her communication
range2. If content i is found, then the U node can download
bytes from the vehicle during the contact. If the download
is not terminated, then the requesting mobile user will query
nearby vehicles for a time equal to yi . This deadline is
decided for that content i by the MNO according to the
allocation policy chosen3. The related local access cost is
assumed to be 0. This link could use the operator’s main
RAT or a different RAT like WiFi, and be controlled by the
operator (so subject to central scheduling). Alternatively, the
devices themselves could communicate directly (e.g., using
WiFi direct). Depending on these choices, the initial content
request could be made directly to nearby H or I nodes that
can decide to redirect the user to the cloud.

• (I → U): in case of a content not successfully downloaded
within yi , the U node’s request will be served (partially
or entirely) by the cellular infrastructure. The cost to get
content i from I is equal to the number of bytes downloaded
from the cellular infrastructure.
As a final note, in some settings H nodes could also

communicate with each other, e.g., to update their local caches
or to fetch a content over multiple hops, in case of a local miss.
Nevertheless, such multi-hop (MANET-type or DTN-type)
schemes might considerably increase the complexity of our
approach, while only bringing incremental benefits. Further
details about the architecture are provided in Section VII.

B. Main assumptions

A.1 - Catalogue. Let K be the set of all possible contents
that users might request (also defined as “catalogue”), where
|K | = k. Let further c be the size of the cache in each vehicle.
We make the natural assumption that c � k. A content i ∈ K
is of size si (in MB) and is characterized by a popularity
value φi measured as the expected number of requests within
a seeding time window from all users and all cells. Similar
to a number of works on edge caching [5], [23], we assume
this time window to be a system parameter chosen by the
MNO. Every time window, the MNO refreshes its caches
installed in vehicles according to the new estimated popularity.
However, while it is reasonable to assume the content size
is known, predicting the popularity of a content is more
challenging. Nevertheless, several studies have confirmed that
simple statistical models (e.g., ARMA) along with content type
characteristics can help to have good estimation of the number
of requests, at least in the immediate future [24].

A.2 - Mobility model. We assume that the inter-meeting
times Ti j between a user requesting content i ∈ K and a vehicle
j ∈ H are IID random variables characterized by a known

2The communication range depends on the physical layer technology used
between U and H nodes.

3In reality, deadlines might be application-dependent. This can be easily
included in our framework by considering an individual maximum TTL per
content (depending on the application). As extreme case, preassigned TTLs
have already been discussed in related work [17]. TTLs could also be affected
by different types of users (e.g., roaming users might be willing to wait more
to get a content at lower cost). In this work, we only consider an average delay-
tolerance (which can be tuned by the MNO through the slowdown metric)
and we defer further study in this direction to future work.

cumulative distribution function (CDF) FT (t) = P[Ti j ≤ t] with
mean rate λ. Let further Ti be the inter-meeting times between
a user requesting content i ∈ K and any vehicle storing such
a content. This model does not make any assumption on the
individual user and vehicle mobility patterns and can capture
a number of inter-contact time models proposed in related
literature such as exponential, Pareto, or mixed models.

A.3 - Cache model. Let xi j ∈ {0,1}, i ∈ K, j ∈ H be an
indicator variable denoting if helper node j stores content i.
Hence, we assume H nodes to store the whole content, i.e.,
fractional storage is not allowed. Let further xi =

∑
j∈H xi j

denote the number of H nodes storing content i. The vector
x = {xi}i∈K will be the control variable for our optimal cache
allocation problem. Note that given the assumption of IID
mobility, it suffices to optimize the total number of copies
xi without considering the per vehicle variables xi j any more.

A.4 - Chunk download. Opportunistic meetings between
U and H nodes are described by the well-known “protocol
model” that uses a simplified description of the physical layer:
two nodes communicate if their physical distance is smaller
than some collaborative distance determined by the power
level for each transmission. We refer to such meetings as
contacts. Let bi j be the number of bytes downloaded from
content i by a U node during the j th meeting. bi j are positive
IID continuous random variables having equal mean µ and
variance σ2. Let further Mi be a point process counting the
number of contacts within yi . Then, we define Bi ,

∑Mi

j=1 bi j
as the number of bytes downloaded within yi from content i.

A.5 - QoE metric. First, we define ti , si/r as the net
download time of content i by a user, i.e., the amount of
time it takes to download the content (excluding any potential
waiting time to encounter vehicles holding the content), where
r is the download rate from the cellular infrastructure. As for
videos, ti can be thought of as the video duration (and r as
the playout rate). Then, we introduce the maximum slowdown
per content that ties content download time to its size as
ωi ,

yi+ti
ti
= 1+ yi

si/r
. This represents the maximum slowdown

imposed by our system, when the content is fetched from the
infrastructure. The larger ωi is, the worse the impact of the
allocation policy on user experience. This is in fact a worst
case metric, because if the content is downloaded before the
deadline expires, say at some time di < yi (i.e., there is a
cache hit), the real slowdown is lower and equal to 1 + di

ti
.

Nevertheless, we choose to use the maximum slowdown in
our theoretical framework as a more conservative approach
for the user, and keep analysis simpler. Furthermore, since the
operator’s goal is to consider the global QoE (and not only
per request), we consider a weighted average of the maximum
slowdown according to the content popularity defined as:

Ω(y) =
1∑k

i=1 φi
·

k∑
i=1

φi · ωi .

For simplicity, we will refer to Ω(y) as mean slowdown. An
MNO can use this metric to calibrate the global user QoE of
the system by setting a parameter ωmax > 1 to upper bound the
mean slowdown. This value can be seen as a sort of “budget”
available to the MNO that can be reallocated between contents.
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TABLE I: Notation used in the paper.

Control variables
xi Number of replicas stored for content i across vehicles
yi Deadline for content i

Content
k Number of content in the catalogue
φi Number of requests for content i
si Size of content i
c Buffer size per vehicle

Mobility
Ti j Inter-meeting time between U and H nodes
λ Mean inter-meeting rate with vehicles
Mi Number of contacts within yi
h Number of vehicles

Chunk download
bi j Bytes downloaded per contact
µ, σ2 Mean and variance of bi j
Bi Total bytes downloaded for content i
fBi Probability density function of Bi

FBi Cumulative density function of Bi

QoE parameters
r Download rate from cellular network (or video playout rate)
Ω Mean slowdown

ymax Maximum deadline
ωmax Upper bound on the mean slowdown

Moreover, it can set a maximum tolerable deadline ymax to
avoid excessively large TTLs for specific content.

We summarize the notation used in the paper in Table I.

IV. OPTIMAL CONTENT ALLOCATION

Based on the previous system model, we formulate an
optimization problem to reduce the load on the cellular
infrastructure. In Section IV-A, we show that this problem
is complex as it requires the knowledge of Bi . Then, in
Section IV-B, we solve the optimization problem under an
approximation for content of generic size.

A. Optimization problem

We formulate an optimization problem based on the fol-
lowing ideas: an ideal content allocation should replicate
content with higher popularity in many different vehicles in
order to increase the probability to find it from a requesting
user. Trivially, more replicas lead to smaller waiting times.
However, if the marginal gain from extra replicas is nonlinear,
it might be better to also have some less popular content at
the edge. As the storage capacity of each vehicle is limited,
our objective is thus to find the optimal replication factor per
content to minimize the total load on the cellular infrastructure
while accounting for end users QoE:

Problem 1. The solution to the following optimization problem
maximizes the bytes offloaded through the vehicular cloud:

maximize
x∈Xk ,y∈Yk

Φ(x,y) ,
k∑
i=1

φi · E [min{Bi(x,y), si}] , (1)

subject to st · x ≤ c · h, (2)
Ω(y) ≤ ωmax, (3)

where X , {a ∈ N | 0 ≤ a ≤ h} and Y , {b ∈ R | 0 ≤ b ≤
ymax} are the feasible regions for the control variables {x,y}.

For each request, the number of bytes offloaded through the
vehicular cloud is either equal to si , if the content is entirely
downloaded from vehicles, or to Bi , otherwise. For popular
content, we can consider the expected value of this quantity
since the envisioned number of requests during a seeding
time window is large (Eq. (1)). The optimization problem is
completed by two inequality constraints: Eq. (2) is a constraint
on the total capacity, and Eq. (3) on the mean slowdown.

Lemma 4.1. The following equivalence holds:

Φ(x,y) ≡
k∑
i=1

φi ·

∫ si

0

(
1 − FBi (t)

)
dt,

where FBi is the CDF of Bi .

Proof. The objective function of Eq. (1) can be rewritten as

Φ(x,y) =
k∑
i=1

φ · E [min{Bi, si}]

=

k∑
i=1

φi ·

(∫ si

0
t · fBi (t) dt +

∫ +∞

si

si · fBi (t) dt
)
,

where fBi is the pdf of Bi . The first integral becomes equal
to si · FBi (si) −

∫ si

0 FBi (t)dt by integration by parts, while the
second integral is trivially equal to si · (1 − FBi (si)). After
simplifying the null terms, we obtain Eq. (1). �

Solving Problem (1) requires the knowledge of FBi and,
therefore, of Bi . We prove that the following proposition holds:

Proposition 4.2. Assume the number of vehicles participating
in the vehicular cloud to be large and the mean inter-
meeting rate with such vehicles to be small. Then, Bi can
be approximated by a compound Poisson process.

Proof. Let {Ti j(t), t > 0, j ∈ H s.t. xi j = 1} be xi identical
and independent renewal processes corresponding to the inter-
contact times with vehicles storing content i. The CDF of Ti j is
FT (t) with mean λ (see Assumption A.2). Let further {Ti(t), t >
0} be the superposition of these processes. According to the
Palm-Kintchine theorem [25], {Ti(t)} approaches a Poisson
process with rate λ · xi if xi is large4 and λ is small. A Poisson
process can be defined as a counting process that represents
the total number of occurrences up to time t. Thus, the total
number of contacts within the deadline Mi = {Ti(yi)} is again
a Poisson process.

Remember that Bi ,
∑Mi

j=1 bi j . Observe that the reward
(bytes downloaded) in each contact is independent of the inter-
contact times, i.e., Mi and bi j are independent, and bi j are IID
random variables with same distribution. Since Mi is a Poisson
process, then Bi is a compound Poisson process. �

Corollary 4.3. The following statements can be derived from
the previous proposition:

4While this assumption (i.e., xi large) might not always be true, exponential
inter-meeting times have been largely used in literature and considered as a
good approximation, especially in the tail of the distribution.
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1) The first two moments of Bi are given by:

E[Bi] = µ · λ · xi · yi,

Var[Bi] = (µ
2 + σ2) · λ · xi · yi .

2) The CDF of Bi is given by:

FBi (si) = 1 − L−1
{
e(b

∗
i j (s)−1)·λ·xi ·yi /s

}
(si), (4)

where b∗i j(s) is the Laplace transform of bi j .

Proof. 1) Using conditional expectation, the expected value of
a compound Poisson process corresponds to:

E[Bi] = E
[ Mi∑
j=1

bj

]
= E

[ Mi∑
i=1

µ

]
= E[Mi · µ] = E[Mi] · µ,

where the expectation is calculated using the Wald’s equation.
It is easy to see that E[Mi] = λ · xi · yi . Similarly, it is possible
to compute the moment of second order of Bi , and then its
variance using the total law of variance.

2) A random sum of IID random variables has a Laplace
transform that is related to the transform of the summed
random variables and of the number of terms in the sum,
i.e., B∗i (s) = M∗i (b

∗
i j(s)), where B∗i (resp. b∗i j) is the Laplace

transform of Bi (resp. bi j) and M∗i is the Z-transform of Mi .
Since the number of meetings within yi is Poisson distributed
(see proof of Theorem 4.2), we can write B∗i (s) as follows:

B∗i (s) = e(b
∗
i j (s)−1)·λ·xi ·yi .

Moreover, it is well known that the CDF of a continuous
random variable X is given by FX (x) = L−1

{
L{ fX }

s

}
(si)

where L−1{F(s)}(t) is the inverse Laplace transform of F(s).
Thus, FBi (si) corresponds to Eq. (4). �

Corollary 4.4. Assume Mi to be large. Then, the probability
density function of Bi can be approximated by a normal
distribution.

Proof. In principle, the distribution of Bi is hard to determine.
However, since in urban environments the number of contacts
is expected to be considerably large, Bi can be approximated
by a normal distribution [26]. �

All the quantities needed to solve the optimization problem
are known from Corollary 4.3, and can be plugged in Eq. (1).
However, due to the large number of contents to consider,
the related maximization problem cannot be solved efficiently.
For this reason, further insights, approximations and specific
scenarios will be discussed in the rest of the paper.

B. QoE-Aware Caching (QAC)

Problem (1) is a mixed-integer nonlinear programming
(MINLP) problem. MINLP refers to optimization problems
with continuous and discrete variables and nonlinear functions
in the objective function and/or the constraints, i.e., it includes
both nonlinear programming (NLP) and mixed-integer linear
programming (MILP) as subproblems.

Proposition 4.5. Problem (1) is an NP-hard combinatorial
problem.

Content size
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Fig. 2: Error introduced by Φqac for a fixed value of E[Bi].

Proof. The problem is NP-hard since it includes MILP as a
subproblem [27]. �

What is more, this problem is in general non-convex. This
means that the solution can be computed by global optimiza-
tion methods, but this is generally not an efficient solution
as it does not scale to a large number of contents. Similarly
to a number of works we consider the continuous relaxation
of a MINLP which is identical to the mixed-integer problem
without the restriction that some variables must be integer. The
continuous relaxation brings two fundamental advantages: (i) it
is possible to evaluate the quality of a feasible set of solutions;
(ii) it is much faster to optimize than the integer problem.

In order to improve tractability of Problem (1), we convert it
in a convex problem through an approximation of its objective:

Φqac(x,y) =
k∑
i=1

φi ·min{E[Bi], si}. (5)

Lemma 4.6. Let e , Φqac − Φ be the error introduced by
Eq. (5). The following statements hold:

1) For a given E[Bi], as the content size si tends to 0 or
becomes large, the approximation becomes exact, i.e.,
limsi→0 e = limsi→+∞ e = 0.

2) The error e is equal to

e =
k∑
i=1

φi ·
[
α(si) · |si − E[Bi]| + σBi · fBi (si)

]
,

where α(si) = min{FBi (si),1 − FBi (si)}.

Proof. The proof can be found in Section IX. �

A qualitative analysis of e can be found in Fig. 2 where
we can see that the error is concentrated in the region where
si ≈ E[Bi], and it tends to 0 otherwise. Using the above
approximation, Problem (1) can be converted in a convex
problem that can be solved extremely efficiently and reliably:

Theorem 4.7. Consider the approximation introduced by
Eq. (5). Then, the solution to the following convex problem
maximizes the bytes offloaded through the vehicular cloud:

maximize
x̃∈X̃k ,ỹ∈Ỹk

log

(
k∑
i=1

φi · ex̃i+ỹi
)
,

subject to x̃i + ỹi ≤ log
(

si
µ · λ

)
, ∀i ∈ K,∑

i

si · ex̃i ≤ c · h,

Ω(ỹ) ≤ ωmax,
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where x̃i , log xi , ỹi , log yi , X̃ , {a ∈ R | −∞ ≤ a ≤ log h},
Ỹ , {b ∈ R | − ∞ ≤ b ≤ log ymax}.

Proof. We rewrite the objective function Φqac(·) in an equiv-
alent form that removes the min function:

Φqac(x,y) =
k∑
i=1

φi ·min{E[Bi], si}

=

k∑
i=1

φi · E[Bi], s. t. E[Bi] ≤ si, ∀i ∈ K, (6)

where the equivalence is true since the related maximization
problem will choose the control variables x and y such that 0 ≤
E[Bi] ≤ si , as any scenario where E[Bi] > si is suboptimal.
Remember that E[Bi] = µ · λ · xi · yi from Corollary 4.3.
According to Eq. (6), Lemma 1 becomes:

maximize
x∈Xk ,y∈Yk

k∑
i=1

φi · xi · yi,

subject to xi · yi ≤
si
µ · λ

, ∀i ∈ K,

st · x ≤ c · h,

Ω(y) ≤ ωmax .

The above optimization problem is a geometric program (GP).
A GP is an optimization problem where the objective is
a posynomial function and the constraints are posynomial
or monomial functions. The main trick to solve a GP effi-
ciently is to convert it to a nonlinear but convex optimization
problem, since efficient solution methods for general convex
optimization problem are well developed [28]. The conversion
of a GP to a convex problem is based on a logarithmic
change of variables and on a logarithmic transformation of
the objective and constraint functions. We apply the following
transformations to the above optimization problem:

x̃i , log xi ⇔ ex̃i , xi; ỹi , log yi ⇔ eỹi , yi .

We obtain a problem expressed in terms of the new variables
x̃ and ỹ. By taking the logarithm of objective function and
constraints, the related problem becomes convex [28]. �

While this problem seems more complicated in its formu-
lation, NLP is far trickier and always involves some compro-
mise such as accepting a local instead of a global solution.
Conversely, a GP can actually be solved efficiently with any
nonlinear solver (e.g., MATLAB, SNOPT) or with common
optimizers for GP (e.g., MOSEK, GPPOSY). Finally, we use
randomized rounding [29] on the content allocation which
is a widely used approach for designing and analyzing such
approximation algorithms. We expect the rounding error to
be low since the number of copies per content is usually
large (then the decision whether rounding up or down has
only a marginal effect in the objective function). To validate
this, in Table II we compare the objective value from our
allocation to the one corresponding to the continuous solution
of Lemma 4.7 (we report the percentage of traffic offloaded).
As the latter is an upper bound on the optimal solution of the
mixed-integer problem, the actual performance gap is bounded

TABLE II: Estimated offloading gains of rounded allocation
vs. continuous relaxation for different cache sizes (in percent-
age of the catalogue size).

Cache size 0, 1% 0, 2% 0, 5% 1%

Rounded (QAC) 34,25% 44,10% 52,88% 60,75%
Continuous 34,29% 44,12% 52,89% 60,75%
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Fig. 3: Example of an allocation for QAC (semilog scale).

by the values shown in Table II. We refer to this policy as
QoE-Aware Caching (QAC).

In Fig. 3, we show an example of the allocation provided
by the QAC policy. In this example, the content catalogue is
of 1000 content items with power-law popularity and random
content size, the number of vehicles h is 500 and the cache
capacity per vehicle is equal to the 0,5% of the catalogue.
As expected, due to the skewed content popularity, the policy
assigns a lot of copies to a few contents (Fig. 3a). However,
the content size introduces some randomness in the number of
replicas, i.e., contents with more replicas are not necessarily
the most popular ones.

V. SPECIFIC POLICIES FOR CONTENT OF SMALL SIZE

In this section, we discuss a model that provides a tighter
approximation of the problem when a content (of small size)
can be entirely downloaded from the vehicular cloud during
a single contact. This scenario can be considered reasonable
when: (i) content size is small (e.g., short videos, news,
ads); (ii) contact duration is large due to future envisioned
improvements in Vehicle-To-Device communications. We for-
mulate the corresponding offloading optimization problem in
Section V-A and we propose two specific policies to optimally
cache small popular content in the vehicular cloud when
deadlines are variable (Section V-B) or fixed (Section V-C).

A. Optimization problem for content of small size

The optimization problem can be reformulated as follows:

Problem 2. Let a content be entirely downloaded during a
contact with high probability. The solution to the following
optimization problem maximizes the bytes offloaded through
the vehicular cloud:

maximize
x∈Xk ,y∈Yk

Φqac−sc(x,y) =
k∑
i=1

φi · si · (1 − e−λ·xi ·yi ), (7)

subject to the same constraints as Problem (1).

Proof. Given the previous assumption, the number of bytes
downloaded from the cellular infrastructure for content i is
equivalent to the probability to get the content i within yi
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multiplied by its size. We have seen in the proof of Proposi-
tion 4.2 that the superposition of the processes formed by the
inter-meeting times with vehicles storing a content i (denoted
by {Ti(t), t > 0}) approaches a Poisson process. Thus, the
following equivalence holds:

Φqac−sc =

k∑
i=1

φi ·si ·(1 − P[Ti > yi]) =

k∑
i=1

φ·si ·
(
1 − e−λ·xi ·yi

)
.

We can replace the expression of Φqac−sc in Eq. (1) to obtain
the objective function of the lemma. �

B. QoE-Aware Caching for Small Content (QAC-SC)

Problem (2) is a MINLP. Similarly to Section IV-B, we
consider a continuous relaxation of the problem.

Corollary 5.1. Problem (2) is a biconvex optimization problem
with separable constraints.

Proof. Eq. (7) is a twice-differentiable function on the vari-
ables {x,y}. In order to analyze the convexity of the function,
we need to examine its matrix of second partial derivatives
H(x,y). We find that det|H | = (2 · λ · xi · yi − 1) · e−λ·xi ·yi
which is greater than 0 when xi · yi > 1

2λ . Since we can found
pairs which makes the determinant of the Hessian negative, we
have proved that the function is not convex. Rather, we note
that Φqac−sc is convex on Xk for each y ∈ Y k and convex on
Y k for each x ∈ Xk . Thus, the objective function is biconvex.
Since the constraints are linear and the feasible regions for the
control variables are convex, the problem is biconvex. �

Different from convex optimization, a biconvex problem is a
non-convex problem which may have a large number of local
minimum points, and thus not easy to solve. Theoretically, its
convex substructure can be exploited to solve such a problem
as proposed by Floudas et al. [30]. However, their global
optimization algorithm does not scale to our scenario since
it requires to solve 2k nonlinear subproblems in each iteration
to obtain a new lower bound to the problem. As an alternative,
we propose the Multi-Start Alternate Convex Search algorithm
(Algorithm 1) that modifies the one described by Wendell and
Hurter [31]. In our algorithm, at every step, only the variables
of an active block are optimized while those of the other block
are fixed. Since the resulting subproblems are convex, convex
minimization methods can be used to solve them efficiently:
we use Lagrangian relaxation which is well suited to limited
resource allocation problems. Here the details of the algorithm:
1) Let y0 ∈ Y k denote an arbitrary initial feasible set of

solutions for Problem (2).
2) Solve the following convex nonlinear problem:

x0 ← max
x∈Xk

k∑
i=1

φi · si · e−λ·xi ·y
0
i , (8)

subject to the same constraints as in Problem (1). The solu-
tion can be easily found through the Lagrangian multiplier
method, and gives

x0
i =

1
λ · y0

i

· ln

(
λ · y0

i · φi

ρx

)
, (9)
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Fig. 4: Example of an allocation for QAC-SC (semilog scale).

where ρx is an appropriate Lagrangian multiplier.
3) The set x0 is used as input for the same convex nonlinear

problem optimized for y ∈ Y k . Similarly,

y1
i =

1
λ · x0

i

· ln

(
λ · x0

i · s
2
i

ρy

)
, (10)

where ρy is an appropriate Lagrangian multiplier.
4) If the stopping criterion (see below) is satisfied, then stop

and {x0,y1} is the solution. Otherwise, go to 2) such that
y0 ← y1.

There are several ways to define the stopping criterion in Step
4). For example, one can consider the absolute value of the
difference of the objective function comparing the vectors of
solutions {x0,y0} and {x0,y1}. Moreover, the order of Step
2) and Step 3) can be permuted. Since every iteration of
the algorithm produces a partial optimum solution [32], we
iterate the procedure described above for different arbitrary
initial feasible sets, and we select the vectors {x,y} that
maximize Eq. (7). The accuracy of the solution depends on
the number of iterations and on the parameter ε chosen to stop
the search. While there is still no theoretical guarantee about
the convergence to the optimal solution, this version of the
algorithm can reach the global optimum with large probability.
Additionally, it is possible to use a cutting-plane algorithm to
eventually generate global optimal solutions. We refer to this
policy as QoE-Aware Caching for Small Content (QAC-SC).

Algorithm 1 Multi-Start Convex Search Algorithm
Ensure: x, y
1: function MAIN
2: max_f← 0
3: output← {∅, ∅}
4: for i← 1 to max_iter do
5: y0← arbitrary feasible solution
6: x0← Eq. (9)
7: y1← Eq. (10)
8: while f (x0, y1) - f (x0, y0) > ε do
9: y0←y1

10: x0← Eq. (9)
11: y1← Eq. (10)
12: if f (x0, y1) > max_f then
13: output← x0, y1
14: return output

In Fig. 4, we show an example of the allocation provided
by the QAC-SC policy with the same setup used in Fig. 3.
Differently from QAC, this policy tends to assign a lower
number of copies to a larger number of contents. This reflects
the fact that the policy assumes a content to be downloaded
during a single contact: once the probability to meet a vehicle
is large enough (depending to the number of copies in the
cloud), QAC-SC privileges less popular content which have
not been cached yet.
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C. Content offloading with fixed deadlines (FIXED)

Here we assume that deadlines are fixed for all content.
This scenario is interesting for three main reasons: (i) fixed
deadlines are very common in literature [22], and our model
also includes vehicles mobility; (ii) it is possible to obtain
closed-form results which are easy to analyze from an analyt-
ical point of view; (iii) this scenario will be used as baseline in
the simulation section in order to evaluate the improvements
provided by variable deadlines.

In this policy, we set yi = y0 ∀i ∈ K (fixed deadlines)
such that the QoE constraint of Eq. (3) is satisfied. Hence, the
objective function of the optimization problem can be rewritten
as in Eq. (8). The related optimization problem is a knapsack
bounded problem with a nonlinear objective function, and
is thus NP-hard. We solve the continuous relaxation of the
problem to obtain a closed-form real-valued solution, which
then we discretize through probabilistic rounding.

Theorem 5.2. Let yi = y0 ∀i ∈ K denote equal deadlines such
that Eq. (3) is satisfied. Then, the optimal number of replicas
that solves Problem (2) is given by

x∗i =


0, if φi < L

1
λ·y0 · ln

(
λ·y0 ·φi

ρ

)
, if L ≤ φi ≤ U

h, if φi > U

where L , 1
λ·y0 , U , eh ·λ·y

0

λ·y0 , and ρ is an appropriate
Lagrangian multiplier.

Proof. The proof can be found in Section IX. �

We refer to this policy as FIXED.

VI. PERFORMANCE EVALUATION

We build a simulator based on real traces to evaluate
the performance of our proposed policies and to compare it
with related work. As for the vehicle mobility, differently
than other traces either related to freeways and peripheral
routes or focusing on microscopic mobility, we consider the
mobility of taxis within San Francisco city center. Hence,
our customized tool is specifically designed for a downtown
type of urban envirnoments, as targeted by the paper. The
implementation details are given in Section VI-A. Then, we
compare different allocation strategies concerning the amount
of data offloaded (Section VI-B), the user QoE (Section VI-C)
and other architectures (Section VI-D).

A. Simulator description

The tool simulates YouTube video requests in the centre
of San Francisco over a period of a few days. We develop
a modular simulator with four main building blocks (Fig. 5):
input data, caching policies, core algorithm, output. In the rest
of the subsection we discuss in detail each of these blocks and
how they are linked each other.

1) Input data: The inputs of the simulator are network
parameters and (real or synthetic) traces for mobility and
content popularity. In our simulations, we show the results
based on real traces (except for user mobility), although we
observed similar outcomes for synthetic ones. Specifically:
• Vehicle mobility. We use the Cabspotting trace [33] to

simulate the vehicle behaviour; this trace records the GPS
coordinates for 531 taxis in San Francisco with granularity
of 1 minute. To improve the accuracy of our simulations, we
increase the granularity to 10 seconds by linear interpolation.
We also use this trace to extract the necessary mobility
statistics for our model (e.g., the mean inter-meeting rate).

• User mobility. We use synthetic traces based on SLAW mo-
bility model [34]. Specifically, according to this model, users
move in a limited and defined area around popular places.
The mobility is nomadic where users alternate between
pauses (heavy-tailed distributed) and travelling periods at
constant (but random) speed.

• Content. We infer the number of requests per day from a
database with statistics for 100.000 YouTube videos [35].
The database includes static (e.g., title, duration) and dy-
namic information (e.g., views, shares, comments). In or-
der to increase the number of simulations and to provide
sensitivity analysis for content size, buffer capacity and
cache density, we randomly select 10.000 contents from
the catalogue. Content size is generated from either a
truncated normal or a bounded Pareto distribution5 (instead
of using the content size from the YouTube trace) in order
to experiment different characteristics of the catalogue.
We set r = 1 Mbps which approximates the playback of a

720p video (remember that r corresponds to the playout rate in
the case of videos - see Assumption A.5). We set the cache size
per vehicle in the range 0,1− 1% of the total catalogue which
is an assumption that has also been used in other works [5],
[23] (we use 0,2% as a default value). Finally, we consider
ωmax = 3 which corresponds to an average deadline of only
a few minutes (compared to video durations up to 1,5 hours).

2) Caching policies: The role of the caching policies block
is to compute the number of replicas and the deadline per con-
tent given popularity and network parameters. The following
allocation policies will be compared in the rest of the section:
• QAC. This policy solves the optimization problem with a

reasonable approximation for content of generic size. This
policy is described in Section IV-B.

• QAC-SC. This policy solves the optimization problem when
a content can be downloaded with large probability in one
contact. This policy is suitable for content of small size, and
is described in Section V-B.

• FIXED. This policy solves the optimization problem when
a content can be downloaded with large probability in on
contact, and deadlines are fixed. This policy is described in
Section V-C.

• MP. This policy stores the most popular content in vehicle
buffers until caches are full while any other content gets 0
copies. Deadlines are fixed. This policy is optimal for sparse
scenarios where caches do not overlap.

5Since content size and popularity are not correlated (from the analysis of
the trace), we randomly assign content size to the catalogue.
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TABLE III: Parameters used in the simulations.

Param Value Param Value
h 531 vehicles c 0, 2% · k
k 10.000 contents E[s] 50-200 MB
r 1 Mbps (720p) ωmax 3
y0 ∼9 minutes ymax 10 · y0

λsr 0,964 day−1 λlr 2,83 day−1

• RAND. Content is allocated randomly. Deadlines are fixed.
3) Core algorithm: The simulator implements a time slot-

ted system where each iteration is equivalent to 10 seconds.
During each time slot, a set of users request some contents.
In practice, the tool links each content request to a user
(characterized by a path according to the SLAW model afore-
mentioned). This link is randomly generated as we assume that
the correlation between locations and content requests is low
which is a realistic assumption in small areas. We also build a
request generator to assign a timestamp to each request6: inter-
arrival times between successive requests are exponentially
distributed according to the IRM model [36] which is the de
facto standard in the analysis of storage systems.

The core algorithm is made up of two modules:
• Content download module. Since better signal strength im-

plies higher signal-to-noise ratio at the receiver (and thus
less errors), wireless data rate is indeed proportional to the
signal strength [37]. Although other factors affect the signal
strength (e.g., interference, physical barriers), distance plays
a main role. For this reason, as most wireless protocols
implement some rate adaptation mechanism, our simulator
also varies the communication rate according to the distance
between the user and the vehicle she is downloading from,
with a mean of 5 Mbps. Inline with proposed protocols
for vehicle communications (e.g., 802.11p, LTE ProSe), we
set the maximum communication range between U and H
nodes to 100 m (short range) or 200 m (long range).

• Mobility module. The goal of this module is to determine
the vehicles to which a user can connect at a given time and
the potential download rate. For each iteration, a function
analyzes the user and vehicle mobility traces according to
the parameters set by the content download module.
Given the setup described, a user is allowed to download

a certain number of bytes while being in the communication
range of a vehicle storing the requested content (this infor-
mation is provided by content download + mobility modules).
When the deadline expires, the potential remaining bytes are
assumed to be downloaded from the cellular infrastructure.

4) Output: We generate content requests over a period of
5 days. For each request, we take note of the amount of bytes
offloaded and the time needed to completely download the
content. We define the following metric used to compare the
different caching strategies:

Definition 6.1. We refer to offloading gain as the sum of bytes
offloaded over the total number of bytes requested.

We summarized the main parameters in Table III.

6We assume that content requests are concentrated at day-time.

Fig. 5: Simulator building blocks.
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Fig. 6: Offloading gains when E[s] = 200MB.

B. Caching policies evaluation

In Figs. 6-7 we plot the offloading gains for different
allocation policies given the parameters listed in Table III.
Mean content size is of 200 MB (Fig. 6) and of 50 MB (Fig. 7).
These plots also include the 95% confidence interval. From the
analysis of the plots, we get the following findings:
• For large content, QAC offloads a much larger fraction traffic

than any other policy in any situation (additional gains of
around 20%). For instance, when long range communica-
tions are considered, offloading gains are in the order of
60% for QAC, and no more than 40% for QAC-SC, FIXED
and MP. This is due to (i) variable deadlines and (ii) a model
dealing with partial downloads.

• Although QAC-SC is expected to benefit from the deadline
variability, this policy performs similar to fixed deadline
policies since the assumption that a content can be down-
loaded in one contact is unrealistic for a content of 200 MB.

• As mean content size decreases, QAC-SC outperforms the
other policies since its model is tailored to small content.

• QAC still performs better than fixed deadline policies,
confirming the fact that its model provides a reasonable
approximation for any content size.

• Not substantial differences have been observed for different
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Fig. 7: Offloading gains when E[s] = 50MB.
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content size distributions: however, from additional experi-
ments we have noticed that, as the coefficient of variation
of the content size distribution decreases (i.e., contents have
similar size), the percentage of traffic offloaded by variable
and fixed deadline policies becomes similar.

• A random policy perform poorly in any scenario due to the
skewness of the content popularity.

Fig. 8 depicts the fraction of data offloaded by the vehicular
cloud as a function of number of vehicles, buffer size and mean
content size for long range communications when content
size distribution is truncated normal. Specifically, in Fig. 8a
we perform sensitivity analysis according to the number of
vehicles h in the cloud which varies from 100 to 500. When
h is larger than 200, more than 40% of the traffic can be
offloaded by QAC. While the number of envisioned connected
vehicles in the centre of San Francisco is expected to be
much larger, the low technology penetration rate analyzed still
provides considerable amount of data offloaded. This result is
important to promote the start up phase of the vehicular cloud.
However, it is interesting to note that in a sparse scenario
(h = 100), QAC performs poorly. This happens because the
value of E[Bi] = λ · µ · xi · yi that has been used in QAC
holds only if the number of vehicles participating in the
vehicular cloud is large (see Theorem 4.2). What is more, from
Corollary 4.4, the error of the approximation used by QAC is
proportional to the standard deviation of Bi which increases
in a sparse environment.

Fig. 8b compares different buffer capacities per vehicle.
Buffer size goes from 0,1% to 1% of the catalogue (where
h = 531). Interestingly, considerable performance gains can
be achieved with very reasonable storage capacities. Here the
simulations are performed on a set of 10.000 contents, but in
a scenario with a larger realistic catalogue (e.g., 1000 times
larger), it seems doable to store 0,1-0,5% of the contents
needed to achieve good savings. E.g., if one considers the
entire Netflix catalogue (∼3PB), a mobile helper capacity
of about 3 TB (0,1%) already suffices to offload more than
40% of the total traffic for long range communications (while
around 30% for fixed deadline policies). What is more, our
simulations consider a very low technology penetration rate
where only 1% of the expected number of vehicles in San
Francisco is part of the vehicular cloud. However, when the
number of caches grows, buffer capacities can be smaller
to achieve (at least) the same offloading gains. As a final
note, as the cache capacity increases, QAC-SC offloads much
more traffic than FIXED, while this is less evident when the
cache size per vehicle is lower. Basically, as the cache size
increases, offloading gains are mainly provided by the deadline
variability rather than the cache policy chosen.

In Fig. 8c we analyze the effect of content size by varying
the mean content size from 30 MB to 200 MB. As expected,
for small content (say for E[s] < 80 MB), QAC-SC offloads
more traffic than any other policy. After this threshold, since
the assumption of entire download of a content during a
contact becomes inaccurate, this policy offloads less traffic. A
similar behavior can be seen for FIXED that exploits the same
assumption. What is important to notice, however, is that the
traffic offloaded by QAC is quite stable for any content size.

C. QoE analysis

In this subsection, we perform an analysis of the user QoE
by allowing different values of ωmax . In Fig. 9, we show
the upper bound on the mean slowdown ωmax that an MNO
should set in order to reach some specific offloading gains,
from 30% to 60%. We consider long range communications,
and content size drawn from a truncated normal distribution
with mean 200MB, but similar results can be obtained for
short range communications or other content size distributions.
The required mean slowdown to offload more traffic increases
slowly for variable deadline policies while we notice an
exponential growth for fixed deadlines. Basically, Fig. 9 can
be seen as a description of the effect produced by additional
gains on the QoE: for instance, an MNO should double the
value of ωmax (100% increase) with FIXED policy to offload
10% more traffic, while the mean slowdown only increases in
the range of 15-40% for QAC and QAC-SC to have the same
improvement in the offloading gains. This low impact on the
slowdown highlights the advantages introduced by our QoE-
aware policies. Knowing the function that ties user experience
and slowdown (e.g., linear, logarithmic) can lead to a better
interpretation of the plot. However, this behavioural analysis
goes beyond the scope of the paper.

D. Mobile vs. static helpers

We refer to the well-known femtocaching framework de-
scribed in Golrezaei et al. [4] as the state-of-the-art in mobile
data offloading. The goal of the authors is to optimally
store content in a distributed cloud storage built with SCs to
maximize the traffic offloaded. Instead, our proposed caching
policies are modeled according to a futuristic cloud based
on mobile helpers, which brings the traditional femtocaching
framework a step further. Our claim is that vehicle speed
can be successfully exploited to increase the percentage of
traffic offloaded by the caches. In this subsection, we perform
simulations based on the Cabspotting trace to validate the
above conjecture.

In our simulations, we build the femtocaching environment
such that the estimated CAPEX and OPEX are comparable
to the costs needed for our vehicular cloud. A cost analysis
based on [38] (which we omit due to space limitations, and
can be found in [39]) estimates that our architecture can
introduce a ten-fold cost reduction compared to small cells.
Therefore, we consider a sparser deployment with only 53
SCs (note that we have 531 vehicles) such that the total
cost is equalized. SC helpers are distributed in the considered
area proportionally to the popularity density, i.e., areas with
a higher number of requests have higher SC density (this
is a common operator policy since SCs are deployed to
alleviate traffic “hotspots”). As previously described, users
move according to the previously described SLAW trace, and
they can also download video chunks at low cost from a nearby
SC if it stores the requested video.

Fig. 10 compares the offloaded gains for vehicular cloud
and the femtocaching implementation described above. As
expected, gains provided by the vehicular cloud are consid-
erably higher than femtocaching for both short and (mainly)
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long range communications. This plot reveals the potential
of an additional low cost infrastructure made up of vehicles.
This study can be considered relevant since it provides some
evidence of the potentiality of the vehicular cloud, and may
speed up its adoption.

VII. DISCUSSION

A. Communication protocol

The recent increasing interest in vehicular networks has led
to the proliferation of new standards and protocols for high
mobility environments. The IEEE 802.11p protocol, which has
been developed for the specific context of vehicular networks,
is considered as the de facto standard. It includes physical
and MAC layer specification as well as upper-layer protocols.
Specifically, IEEE 802.11p is expected to be particularly
suitable for medium range communications and delay-sensitive
applications. According to the modulation used, throughput
can be from 2-3 Mbps (with BPSK up to 150 m) to 15-
20 Mbps (with 64QAM up to 25 m). While this protocol
actually covers simplicity (uncoordinated access mechanism,
no authentication) and low delay (few hundreds milliseconds
in crowded areas), its decentralized nature imposes limitations
on reliability, congestion (due to higher beaconing frequency),

and scalability. Concerning battery drain, it has also been
shown that it is possible to implement a low battery con-
sumption version in modern mobile devices without compro-
mising performance. Given the diverse performance require-
ments from a wide spectrum of vehicular networking appli-
cations, recently several standardization bodies and research
consortium have shown increasing interest in adopting LTE
Advanced to support device-to-device communications and
vehicular network applications. Specifically, 3GPP Release 12
has introduced Proximity Services (ProSe) for LTE Advanced
which envisages two basic functionalities: ProSe discovery that
identifies the ProSe-enabled devices in proximity and ProSe
communication that enables establishment of communication
paths via PC5 interface between two or more ProSe-enabled
devices that are in direct communication range.

B. Business model and incentives

While the number of cars with some sort of networking
ability today is small, it is estimated that around 90 percent of
all manufacturers’ new models are likely to have Internet con-
nectivity by 2020. For instance, BMW, that has already been
embedding SIM cards for mobile connectivity in all its new
cars, has recently unveiled the Vehicular CrowdCell project
where a mobile femtocell optimizes the mobile radio reception
inside vehicles and is also capable to enhance the capacity
and coverage of mobile radio networks. Specifically, cellular
operators see the connected car as another device to be hooked
up to their networks, and they have started to propose data plan
dedicated to vehicles (e.g., AT&T in United States). Cellular
operators might offer economic incentives (e.g., subscription
reduction) to users that decide to join the vehicular cloud with
their private vehicles. This should lead to a double benefit, thus
increasing their market share by offloading part of the mobile
traffic. What is more, modern cities might decide to install
these cheap devices into buses or trams to provide additional
services. An interesting example is given by Portugal where
the company Veniam has recently built the largest vehicular
network in the world [9]. Specifically, they can offer Wi-Fi
features in public transportation, increasing number of pas-
sengers, reducing emissions and generating additional revenue.
Furthermore, vehicular networks can produce real-time city-
scale data from cheap sensors which can be used to increase
safety and efficiency of municipal operations.
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C. Cache refresh

MNOs periodically update their caches (e.g., every two
days, once a week) when cellular infrastructure is underloaded
(i.e., at night time or off-peak hours) with incremental changes,
keeping the vehicular cloud up-to-date. However, caching is
optimized only if a fresh view of the system is maintained,
but content popularity prediction can be a challenging task
because of its time-varying nature. In our work, we have
assumed content popularity to be stable in the time interval
considered. While this is not true in general, some contents
(e.g., software updates, YouTube videos) show a quite stable
behaviour, making this assumption a good approximation.
What is more, prediction techniques for video popularity based
on history are accurate for short-medium terms.

We propose two more options to manage varying popularity:
• Randomized seeding time window. Content seeding is tem-

porally shifted for different vehicles, or distributed solutions
where the decision to cache or not is left to each vehicle.

• Dynamic adaption of content popularity. Caches are updated
dynamically as new contents are introduced in the catalogue,
and/or existing contents exhibit a significant change in
popularity. Adapting to changing content popularity is not
only important to introduce new contents and delete obsolete
ones, but also to increase the potential performance gains.
The details are described in our previous work [22].

VIII. CONCLUSION AND FUTURE WORK

Compared to similar works in mobile edge computing, this
work introduces several contributions: (i) it considers mobile
relays (vehicles) that virtually increase the cache size seen by
pedestrian users; (ii) while the majority of the works consider
fixed deadlines, our paper deals with variable TTLs by intro-
ducing a QoE metric; (iii) the generic model includes partial
downloads from vehicles. In this paper, we propose caching
policies that can be exploited by MNOs in different contexts
and scenarios. These policies have been largely validated an-
alytically and through real trace simulations. The comparison
with traditional approaches shows a large increment in the
percentage of traffic offloaded. We have also given insights to
an operator on how to correctly choose the policy to use, and
how to set the QoE parameters.

As future work, it would be interesting to tune the user QoE
taking into account the content type along with the content
size. While we have shown that QAC performs well in the
majority of the situations, it would be interesting to study
closer approximations for the generic formulation of the prob-
lem. Also mixed policies to tie QAC to QAC-SC can probably
bring additional gains. Furthermore, potential extensions of our
current simulation framework may be helpful: for instance,
one can use a realistic vehicular simulator to also take into
account the potential overhead in the network layer and an
improved interference model. Further developments may lead
to the realization of a testbed implementation in real vehicles.
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IX. ADDITIONAL PROOFS

A. Proof of Lemma 4.6

1) The following equalities hold:

lim
si→0
Φqac = lim

si→0
Φ =

k∑
i=1

φi · si

lim
si→+∞

Φqac = lim
si→+∞

Φ =

k∑
i=1

φi · E[Bi].

2) It is easy to see that

E[min{Bi, si}] = FBi (si)E[Bi |Bi ≤ si] + si(1 − FBi (si)). (11)

E[Bi |Bi ≤ si] corresponds to the truncated mean of Bi upper
bounded by si . If the number of meetings within yi is large, Bi

can be considered as a normal distribution from Corollary 4.4.
Thus, we can write its truncated mean as

E[Bi |Bi ≤ si] = E[Bi] − σBi ·
fBi (si)
FBi (si)

,

where σBi is the standard deviation of Bi , and can be inferred
from Corollary 4.37. If E[Bi] > si , the error e introduced by
Φqac(·) can be evaluated as follows:

e =
k∑
i=1

φi · |min{E[Bi], si} − E[min{Bi, si}]|

=

k∑
i=1

φi · |si − E[min{Bi, si}]|. (12)

Then, we compute the second term of Eq. (12) from Eq. (11),
and, after some calculations, we obtain

e =
k∑
i=1

φi · [FBi (si) · |E[Bi] − si | + σBi · fBi (si)].

We repeat the same steps for E[Bi] ≤ si .

B. Proof of Theorem 5.2

Proof. Note that the constraint on deadlines is satisfied by
assumption. The value of y0 can be directly inferred by Eq. (3)
where, solving for yi = y0, we obtain:

y0 ≤
(ωmax − 1)∑k
i=1 φi · r/si

·

k∑
i=1

φi .

The derivative of the Lagrangian function of the problem is:

∂L

∂x∗i
= −λ · y0 · φi · si · e−λ·x

∗
i ·y

0
+ li − mi − ρ · si,

where li and mi are appropriate Lagrangian multipliers related
to the bounds of x. According to the method of the Lagrangian

7Note that σBi , σ, the latter being the standard deviation for a single
contact.
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multipliers, this equation must be equal to 0. Making explicit
x∗i , we obtain:

x∗i =
1

λ · y0 · ln
(
λ · y0 · si · φi
si · ρ − li + mi

)
.

Finally, the system constraints create three regimes depending
on the content popularity. �
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