
HAL Id: hal-02131798
https://hal.inria.fr/hal-02131798v2

Submitted on 7 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A type-safe arbitrary precision arithmetic portability
layer for HLS tools

Luc Forget, Yohann Uguen, Florent de Dinechin, David Thomas

To cite this version:
Luc Forget, Yohann Uguen, Florent de Dinechin, David Thomas. A type-safe arbitrary pre-
cision arithmetic portability layer for HLS tools. HEART 2019 - International Symposium on
Highly Efficient Accelerators and Reconfigurable Technologies, Jun 2019, Nagasaki, Japan. pp.1-6,
�10.1145/3337801.3337809�. �hal-02131798v2�

https://hal.inria.fr/hal-02131798v2
https://hal.archives-ouvertes.fr

A type-safe arbitrary precision arithmetic portability layer for
HLS tools

Luc Forget
Yohann Uguen

Florent de Dinechin
Univ Lyon, INSA Lyon, Inria, CITI

Villeurbanne, France
first-name.last-name@insa-lyon.fr

David Thomas
Imperial College

London, United Kingdom
d.thomas1@imperial.ac.uk

ABSTRACT
Recent studies have shown that High-Level Synthesis (HLS) is an
efficient way to design operators for floating-point arithmetic, or
for emerging alternative formats such as posits. However, HLS tools
support different supersets of different subsets of the C language
– for example, support for arbitrary-sized bit vectors may be pro-
vided through vendor-specific data-type libraries such as ac_int,
ap_int, or int1 to int64, while others only support the standard C
integer types. This is a problem when carefully tuning an operator’s
internal data-path, as there is no portable HLS standard for arbi-
trary width integers, and vendor libraries may introduce implicit
casts and extensions that can hide subtle bugs. Each vendor also
offers varying support for important operator-building primitives,
such as platform-optimized leading-zero count. To address such
problems, this work introduces Hint (hardware integer), a header-
only compatibility layer offering a consistent and comprehensive
interface to signed and unsigned arbitrary-sized integers. To avoid
bugs Hint is strongly typed, requiring exact matching of expression
widths and types – this type-checking is performed statically using
the C++ template system, and adds no overhead at synthesis time.
The current implementation wraps ac_int and ap_int with no
performance or resource overhead when synthesized on Xilinx or
Intel FPGAs. It also offers a Boost::multiprecision backend for fast
simulation. Hint is open-source and extensible, and aims to provide
an optimized superset of existing library primitives. This work is
evaluated with arithmetic operators useful when implementing
floating-point and posit operators (shifter, leading zero counter,
fused shifter+sticky) deployed using two mainstream HLS tools
(Xilinx VivadoHLS, and IntelHLS). A complete posit adder opera-
tor has also been written using Hint, showing no overhead when
compared to the original operator written for Xilinx FPGAs.

ACM Reference Format:
Luc Forget, Yohann Uguen, Florent de Dinechin, and David Thomas. 2019.
A type-safe arbitrary precision arithmetic portability layer for HLS tools.
In The 10th International Symposium on Highly-Efficient Accelerators and
Reconfigurable Technologies (HEART 2019), June 6–7, 2019, Nagasaki, Japan.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3337801.3337809

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
HEART 2019, June 6–7, 2019, Nagasaki, Japan
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7255-8/19/06. . . $15.00
https://doi.org/10.1145/3337801.3337809

1 INTRODUCTION
A body of recent work has shown that High-Level Synthesis (HLS)
tools [6] are mature enough to implement advanced arithmetic
components such as floating-point [2, 10], the emerging posit com-
petition [7, 12], or non-standard application-specific operators [11].
When compared to a more classical HDL-based approach such as
VFLOAT [13] or FloPoCo [5], this approach of implementing opera-
tors in HLSmeans that new operators can be added via libraries, and
instantiated operators can benefit from all the high-level scheduling
optimizations performed by HLS compilers.

A key advantage of implementing operators using HLS is that
the operators can be both platform-independent and efficient, pro-
viding open-source and debuggable operators with similar perfor-
mance to vendor IP cores. However, this performance relies on the
use of highly-optimized vendor-specific libraries for custom-width
integers, such as ap_int and ac_int. Floating-point and posit op-
erators also rely on some less common integer operations, such as
leading-zero counts and shifting while normalizing. These specific
operations have efficient hardware implementations, but the inter-
face as well as the implementation may vary for each target FPGA
family and HLS tool. A naive implementation can increase area and
reduce performance.

The API of vendor-specific libraries tends to be designed for ease-
of-use, with features such as automatic sign-extension of types,
and implicit conversions. Such features are useful for writing DSP
applications, where padding only reduces performance. However,
when implementing a floating-point operator, each bit matters, so
silent padding or conversion of types may mask a logic error or
un-handled corner case.

To support the development of truly cross-platform open-source
custom operators for HLS, this article introduces a new library
called Hint – “hardware integer” – which provides a lightweight
type-safe abstraction over vendor libraries. As well as basic integer
operations, it also provides optimized implementations of the more
obscure integer operations needed for implementing floating-point
and posit operators, taking advantage of template techniques to
construct optimized data-paths and provide information to the HLS
compiler. The main contributions are:

• Anewopen-sourceAPI calledHint, which provides a platform-
independent API and strongly-typed semantics for defining
custom-width integer data-paths.

• An extension API for adding new backends by defining a
small number of shared operations, and a set of back-ends
for widely used HLS tools.

https://doi.org/10.1145/3337801.3337809
https://doi.org/10.1145/3337801.3337809

HEART 2019, June 6–7, 2019, Nagasaki, Japan Luc Forget, Yohann Uguen, Florent de Dinechin, and David Thomas

• New compile-time optimized operators for: shifting and com-
puting stickies; performing leading zero counts (lzc); com-
puting combined shifts and lzc. All these operators use C++
templates to optimize each instance for the exact operand
widths and shift values requested.

• An evaluation of the library using two different HLS tools
(VivadoHLS and IntelHLS) with the above mentioned opera-
tors.

• The implementation of a complete posit adder (from [12])
using Hint.

The proposed API and vendor-specific back-ends are available as
an open-source library at:

https://github.com/yuguen/hint

2 BACKGROUND AND MOTIVATION
2.1 Integers and HLS
The support of arbitrary-sized bit vectors is not standard in HLS
tools. The nearest to a common standard is the ac_int templatised
C++ library developed at Mentor Graphics [9]. It is supported by
the commercial tools Intel HLS and CatapultC, and the academic
tool GAUT. However, the HLS tool with the most traction in re-
configurable computing is probably Xilinx VivadoHLS, and it uses
a proprietary library called ap_int [1, Ch. 4]. While ap_int and
ac_int provide almost functionally equivalent support for basic
arbitrary-sized signed and unsigned integers, their interfaces are
different and they do not have equivalent support for operations
such as leading zero count. Other tools only support widths up to
64-bits: the academic tool Augh [8] defines 64 new non-standard
base types int1 to int64. Two other academic tools, LegUp [3]
and Panda/Bambu [6] only support the standard C integer types so
code must be written with only 8-, 16-, 32-, and 64-bit integers. If
only standard-width types are available, a 17-bit integer must be
emulated in the code using 32-bit numbers and bit-masks – hope-
fully the compiler will truncate it to 17-bits during optimization,
but this may not occur until late in the synthesis process, so it will
be scheduled as if it were the full 32-bits.

2.2 The need for arbitrary-sized integers
Arbitrary-sized integers are extremely useful when designing cus-
tom operators: for example, for double-precision floating-point
operators we have 11-bit exponents and 52-bit fractions at the in-
puts and outputs. Then inside an adder data-path we find a 53-bit
explicit fraction and a 56-bit data after effective addition, while
for multipliers, we have an intermediate mantissa product of 106
bits. This was for the standard 64-bit floating-point format, but
reconfigurable computing can also take advantage of non-standard
formats. Such non-standard floating-point formats have already
been expressed using C++ templates [10], but these must be adapted
for each HLS vendor’s integer library.

2.3 Type safety
Another issue is to define the exact meaning of compound expres-
sions involving implicit intermediate types and implicit type con-
versions. For instance, in the expression (a+b)+c, the type of the
intermediate result (a+b) is implicit and implementation-defined.

In addition, libraries such as ap_int and ac_int use operator over-
loading to define the types and semantics, so the behavior of the ad-
dition is defined in the library implementation, which may silently
involve implicit casts if a and b have different types.

Mainstream tools such as VivadoHLS or CatapultC tend to chose
the implicit intermediate types in a way that ensures that no infor-
mation is lost. For instance, if both a and b are 32-bit integers, the
implicit type of (a+b) should be a 33-bit integer to hold the possible
carry out, unless the result of (a+b)+c is itself finally stored in a
32-bit integer, in which case all the arithmetic may happen modulo
232.

Things are a bit trickier with shifts: left shifts may or may not
lose the shifted out bits. Right shifts always lose the shifted-out bits,
but in the signed case they may perform a sign extension, where the
size of the intermediate format will matter. The interested reader is
invited to compile and run the following program:

include < ios t r eam >
in t main () {

in t a , b , s ;
a = 2 5 5 ;

s = 3 1 ;
b = (a<<s) >>s ;
s t d : : cou t << b << s t d : : end l ;

s = 3 3 ;
b = (a<<s) >>s ;
s t d : : cou t << b << s t d : : end l ;

}

At time of writing, on a Linux 64-bit PC, using Clang or GCC, the
first assignment to b computes -1: this can be explained by the fact
that all arithmetic is performed in unsigned 32 bits. The second
assignment may compute 255 (with optimization level -O0) or 0
(with -O2). This can be explained by different intermediate types
for the intermediate result (a 64-bit int in the -O0 case, a 32-bit type
in the -02 case). We leave it to the reader to check the generated
assembly code: our main message is that the ease of use of HLS
may hide subtleties that incur bizarre behaviors, but also hidden
hardware or latency overheads. The “type-safe” part in the title of
this work really means to give back to the designer some control
of what is happening in a HLS tool.

2.4 Core arithmetic primitives for
floating-point and posits

Most floating-point operators (be it IEEE-754, posit-like, or other)
rely on the following basic components:

• Arbitrary-precision addition, subtraction, multiplica-
tion. Multiplication can be implemented out of addition, but
on reconfigurable targets it can also be built by assembling
DSP blocks in a clever way. Therefore, multiplication should
be a primitive, and its implementation is best left to back-end
tools that know the target. Division and square root can be
implemented either out of addition and tabulation, or out
of multiplications. Whether or not this algorithmic choice

https://github.com/yuguen/hint

A type-safe arbitrary precision arithmetic portability layer for HLS tools HEART 2019, June 6–7, 2019, Nagasaki, Japan

shifter
by max. d

/ wi

/
⌈log2 d⌉

/ wo

shifter

/ wf + 2

/
⌈log2(wf + 2)⌉

/ 2wf + 3

Figure 1: A generic shifter (left) instantiated (right) in a
floating-point adder withwf fraction bits

should be left to the back-end tools is out of the scope of this
article.

• Arbitrary precision shifters. There are standard operators
in C/C++ for shift operations: << and >>. As we have already
observed, it doesn’t mean that their behavior is defined by
the standard. In a processor, we usually have shift instruc-
tions that input the shift value and an integer, and output an
integer of the same size (with possible loss of information).
The C shift operators expose these instructions. Now if we
are generating hardware, it is interesting to generalize as
depicted in Figure 1: a shifter may be defined by an input
widthwi , a maximum shift distance d , and an output width
wo . The shift input will be an integer on ⌈log2 d⌉ bits. The
shifter can be errorless (no shifted-out bits) ifwo ≥ wi + d .

• Arbitrary precision leading-zero counter, leading-one
counter, and leading-bit counter. The latter counts ones
if the leading (leftmost) bit is a one, and counts zeroes if the
leading bit is a zero.

2.5 Fused arithmetic primitives
To reduce the data-path width and improve the delay, it is often
useful to merge these operators:

• Amultiply-add computes A × B +C .
• Addition with carry-in is in principle no more expensive
than plain addition. Writing a + b + 1, or a + b + c where
one of the three variables is a single bit, should translate to
a single adder.

• A shifter-sticky is a shifter whose output size is the same
as the input size. Therefore, bits may be shifted out. This
operator incrementally computes the logical OR of all the
shifted-out bits (historically called sticky bit). This slightly
saves on the latency, and more importantly saves the hard-
ware that would have shifted further all these bits.

• A normalizer is a combined leading-zero counter and
shifter. It is a leading-zero counter that, at the same time,
shifts the input so that the leading bit of the output is the
first non-zero bit. It outputs the normalized result, along
with the number of zero bits that were counted. Posits make
use of a similar combined leading-bit-counter and shifter.

2.6 Support of these primitives in HLS tools
All the tools support those primitives which are part of C (ad-
dition, multiplication, shifts), although the actual behavior may
be implementation-defined in some cases. Sometimes, they are

implemented as highly optimized IP cores. Sometimes, they are
implemented as libraries.

The most notable missing basic operation is the leading bit count.
Among the fused operations, only the add with carry-in is some-
times supported.

3 TYPE SAFETY FOR
ARBITRARY-PRECISION INTEGERS IN HLS

Current HLS integer libraries perform very little compile-time san-
ity checks. This section describes a Hint variable declaration and its
elementary methods along with their type-checking. These basic
methods are used to build more complex operators.

3.1 Variable declaration
The Hint library is a templated wrapper above underlying backends.
A user must write it’s function as a template function to be able tar-
get all the backends. In that case, it’s function will have as template
parameter template<unsigned int , bool> class HintWrapper.
This defines a type that a user can use to declare it’s variable:
HintWrapper<W, s> var; defines a variable var on W bits and has
a sign s.

3.2 Variable assignment
In vendor tools, assignment to a variable of mismatched size is a
cause of silent truncation and potentially unused bits. The proposed
library diverges from ac_int and ap_int as it only allows assign-
ments of identical size variables. Furthermore, it only allows for
assignments with matching signedness. The variable assignment is
performed by using the usual "=" operator.

This restriction requires the programmer to explicitly truncate
their variables when a part is not needed. A compiler error will be
thrown if these properties are not ensured. Enforcing this behavior
helped us discover several bugs in our operators.

3.3 Slicing
As a preliminary note, it is interesting to remark that the slicing
methods for ac_int and ap_int have different restrictions, andmay
therefore not be interchangeable. In ac_int, a bit slice of size S start-
ing as bit weight l of the variable var is written var.slc<S>(l).
Conversely, the ap_int slicing method is var.range(h,l) where
h and l are the weights of the MSB (most significant bit) and LSB
(least significant bit) from which to slice var.

The difference is that the value of S must be known at compile
time. Therefore, a slice whose size varies in a loop will compile
using ap_int but not using ac_int.

Neither of these two libraries is able to check at compile time
if the slice is out of bounds. By having S as a template parameter,
ac_int ensures that the size of the output is known at compile
time. However, if the user assigns the result of the slice to a larger
or smaller variable, the result might be truncated without warning.
When using ap_int, no compile-time checks can be performed.
The result of an out-of-bound slice will have some of its bits set to
0.

For Hint, we choose to be even more restrictive in order to allow
checks at compile-time that slices are in range. A Hint slice is of
the form var.slice<h,l>() where h and l are the weights of the

HEART 2019, June 6–7, 2019, Nagasaki, Japan Luc Forget, Yohann Uguen, Florent de Dinechin, and David Thomas

MSB and LSB of the slice of var. As h and l are known at compile
time, sanity checks are performed and the output size is known.
Therefore the program won’t compile if h<l or l<0 or if h>=W with
W being the size of var. The size of the returned integer is h-l+1. It
cannot be truncated implicitly, as we have seen that assignments
are only allowed between matching sizes.

3.4 Concatenation
Both libraries are able to know at compile time the size of the result
of a concatenation. However, there may still be silent truncation
when assigning this result to a smaller variable. The proposed
concatenation method is var1.concatenate(var2); where the
result is of size of var1 + the size of var2.

3.5 Others
The Hint API can be extended with any other methods with the
same spirit that all types must be checked at compile time. For
example, the current implementation contains:

• bitwise operations such as and, or, xor that from two identical
W width variables returns aW bits variable containing the
corresponding bitwise operation:
e.g. var1.bitwise_and(var2)

• and/or reductions that returns a single bit result:
e.g. var1.and_reduction()

• a signal inverter that transforms each bit to it’s opposite:
var1.invert()

• an operator that computes the reverse of a variable (the lsb
takes the msb and so on): var1.backwards()

• a padding operator that performs the extension of a Hint
variable to a larger one; only available if is result size is larger
than the original size: var1.leftpad<newsize>()

• a generator of a sequence of a given length containing identi-
cal bits: e.g. HintWrapper<W, s>::generateSequence(bit);
where bit is a single bit to be replicated.

• a sign inverter: var1.invert()
• an equality operator "==" that only compares identical width
and sign Hint variables

• a multiplexer operator that takes a control bit and two iden-
tical width variables: mux(control, var1, var2)

• amodular addition (var1.modularAdd(var2)) that performs
the sum on two W bits variables and return the sum of these
two values on W bits when the user knows the addition won’t
overflow. Similarly, Hint also provides a modular subtraction
(var1.modularSub(var2))

• a adder with carry that takes two W bits variables with a 1
bit carry and returns a W+1 bits sum of the three:
var1.addWithCarry(var2, carry)

All the types are safely deduced by the compiler using the auto
keyword as each operator returns a specific type depending on its
inputs.

This list is subject to grow, following applications needs, hence
requiring each backend to implement these basic functionalities.
However, this set of basic functionalities allows for building higher-
level operators.

4 PORTABILITY TO MAINSTREAM HLS
TOOLS

There are several ways to implement vendor-specific back-ends
for the proposed interface. This section presents three approaches,
each with their pros and cons.

4.1 Class duplication for each backend
In order to have compile-time decision of which backend to im-
plement, one can simply enable/disable the Hint class definitions
depending on environment variables (using #if-based conditional
compilation) . This implementation is the less elegant way of im-
plementing such a portability layer. It is also the most error prone:
bit-for-bit portability relies on each backend implementing the
same methods and the same static verification semantics, despite
sharing no code and compiling to different libraries.

This poor engineering approach was nevertheless used to check
the feasibility of a portability layer. A complete posit adder imple-
mentation initially written for ap_int was ported to Hint ([12]).
When compiled to VivadoHLS, no degradation of the quality of
results was observed. Meanwhile, the posit operator could now be
compiled with IntelHLS.

4.2 A shared class interface
The approach of using a conventional interface that each backend
follows is a bit more elegant. There is an implicit interface that each
backend must implement in order for the operators built upon to
compile. This is also true regarding the static verification which are
duplicated in each backend. Thus two backends might not perform
the same static verification.

4.3 Curiously recurring template pattern
(CRTP)

An elegant way of centralizing the static checks is to use a CRTP
class [4]. A front class is provided to the user for instantiating a
custom hint. It is templatised by a width, a sign and, a backend. A
given backend inherits from the associated specialised Hint class.
Therefore the Hint class is the frontend of the library. It implements
all the API methods and is in charge of performing the static veri-
fication. If such verification are satisfied, a call to the underlying
backend implementing the same method is issued.

This approach allowed for correct software simulations for both
VivadoHLS and IntelHLS. Indeed, this approach only uses features
from C++11. Unfortunately, synthesis results showed here that
both tools were unable to pipeline complex operators in this case.
Further investigations showed that a templated hint function, when
implemented as a CRTP, results in a monolithic block that cannot
be pipelined. The recursive template calls insert registers that the
optimizer is unable to remove, resulting in a high latency, resource
hungry operator.

We expect that future versions of the vendor tools will catch up.
In the meantime, the second approach will be used. There is also
some longer-term hope that “concepts” introduced in C++20 will
make CRTP useless.

A type-safe arbitrary precision arithmetic portability layer for HLS tools HEART 2019, June 6–7, 2019, Nagasaki, Japan

Table 1: Synthesis of lzc and shifters on Arria 10 (achieved
clock target of 240MHz)

N ALMs FFs MLABs cycles
native type 26 32.5 32 0 1

lzc 55 86.5 91 1 5
256 465.5 710 1 8

hint type 26 32.5 32 0 1
lzc 55 86.5 91 1 5

256 465.5 710 1 8
28 93 106 0 2

hint lzc 57 218.5 213 0 2
+ native shift 64 296.5 340 0 3

256 1487 1238 13 7
279 1603 1322 14 7
28 88.5 72 0 1

hint 57 212 209 0 2
lzc + shift 64 279.5 308 0 3

256 1388 1960 0 6
279 1455.5 1544 0 4

5 EVALUATION
All the presented results are given after place-and-route. VivadoHLS
2016.31 was used when targeting Kintex 7; IntelHLS 19.1 when
targeting Arria 10.

The evaluation is divided in four parts: ensuring that no over-
head is generated, implementing combined operators that reduce
resource consumption, then latency, and demonstrate the Hint li-
brary a larger project.

The overhead evaluation is performed on the implementation
of a lzc. The lzc algorithm chosen in this paper has been imple-
mented using ac_int, ap_int and Hint. The synthesis results are
given in Tables 1 (top) and 2 (top) for Intel and Xilinx respectively.
VivadoHLS provides a builtin lzc, which is also presented here. The
sizes (N) of the inputs corresponds to real world examples. Indeed,
26 and 55 bits are the width of the lzc needed in single and double
precision floating-point adders while a 256 bits lzc is needed for a
32 bit posit quire.

The comparison between the native type implementation and
the hint type implementation shows no overhead when using Hint.
Furthermore, the implemented lzc algorithm outperforms the Vi-
vadoHLS builtin lzc both in term of resources and latency.

The first combined operator presented is the shifter+sticky; re-
ducing resource consumption. The shifted out bits are not discarded,
but ORed in a “sticky” bit. The fused operator attempts to OR these
bits inside of the shifter, before they are shifted out. This saves the
logic that otherwise shift these bits to their final place before the
final wide OR.

The synthesis results of the shifter+sticky are presented in Tables
3 and 4. The sizes (N) of the operators comes from the floating-point
adder in single (27 bits) and double (56 bits) precision. As both tables

1This older version of VivadoHLS is used because 2018.3, the latest version, at the
time of writing, proved very unstable, with numerous crashes and sometimes silent
production of incorrect hardware. VivadoHLS 2016.3 is the best compromise between
stability and quality of results in our case.

Table 2: Synthesis of lzc and shifters on Kintex 7 (achieved
target delay of 3ns)

N LUTs FFs SRLs cycles
builtin lzc 26 50 81 0 4

55 85 111 0 4
256 475 559 11 9

native type 26 26 57 1 4
lzc 55 68 87 10 5

256 233 516 5 7
hint type 26 26 57 1 4

lzc 55 69 87 11 5
256 234 516 5 7
28 96 81 0 8

hint lzc 57 222 144 0 9
+ native shift 64 264 142 0 8

256 1532 1045 0 11
279 1691 1131 0 12
28 102 122 0 4

hint 57 254 297 0 5
lzc + shift 64 292 275 0 6

256 1164 1568 0 8
279 1958 2265 0 10

Table 3: Synthesis of shifters+stickies on Arria 10 (achieved
clock target of 240MHz)

N ALMs FFs MLABs
native 27 134 63 2

shift + sticky 56 277 212 3
hint 27 82 40 0

shift + sticky 56 179.5 128 0

Table 4: Synthesis of shifters+stickies on Kintex 7 (achieved
target of 3ns)

N LUTs FFs Cycles
native 27 113 110 3

shift + sticky 56 309 234 4
hint 27 84 65 3

shift + sticky 56 203 133 3

show, this optimization saves a considerable amount of logic on both
targets. Table 3 does not report the number of cycles required for
said operators. Indeed, IntelHLS was giving untrustworthy latency
results. However, the circuits were cosimulated to ensure that they
produced the correct mathematical results using ModelSim.

The second combined operator presented is a lzc+shifter; reduc-
ing latency. A lzc is usually followed by a shift as mostly used in
floating-point or posit normalizer. Combining these two operators
allows to reduce the latency of the design. Indeed, both the shift
and the lzc are divided in stages where one can an lzc step as well as
a shift step. This removes the data dependency of the complete lzc
computation before issuing the shift at the expense of more logic.

HEART 2019, June 6–7, 2019, Nagasaki, Japan Luc Forget, Yohann Uguen, Florent de Dinechin, and David Thomas

To evaluate such an operator, a combined hint lzc+shift is com-
pared to a hint lzc followed by a native shift (>>). Tables 1 (bottom)
and 2 (bottom) provide synthesis results of these implementations
for both Intel and Xilinx FPGAs. In addition to sizes previously pre-
sented for the lzc, we added the sizes of a 16 bits quire normalizer
(64 bits) and of a 32 bits Kulisch accumulator normalizer (279 bits).

For both Intel and Xilinx, the latency of the combined lzc+shift
is improved compared to a serial implementation. In some cases,
the tools are even able to reduce resource consumption. This might
be due to them being able to compress multiple stages of lzc+shift
in a better way than with a separated design.

Finally, a complete posit adder [12] has been rewritten using
Hint without overhead compared to the original version written
using ap_int. The architecture involves the use of two lzc+shift
and two shifters+stickies as long as additions, comparisons, logic
functions, concatenation, etc.

6 CONCLUSION
This work provides an open-source portability layer for custom-size
integer datatypes called Hint. It is strongly typed: no information is
lost or useless bits appended when performing operations on Hints
without explicit programmer request. This is enforced at compile
time with static type checks from the C++ compiler. These static
checks follow a well defined semantic, making every operation
explicit about the types it manipulates. This may sound very re-
strictive, but ultimately, most Hint variables can safely use the auto
C++ type, as all the widths and signedness are derived and checked
from the inputs.

The Hint library allows one to write a single operator that can
be synthetized using different vendor platforms. The component
can also be efficiently simulated using the Boost::multiprecision
backend. Using Hint, the computation results are guaranteed to be
identical on every platform.

Hint does not induce any overhead when using mainstream HLS
tools compared to their native types implementations.

In general, work on this project has been considerably slowed
down by vendor tools limitations. They are currently unable to
equate identical variable through the template layers involved by
the best implementation, although the programs are accepted and
properly simulated within the tools. In addition, depending on the
C++ construction used, two functionally equivalent programs can
result in drastically different synthesized hardware.

These issues are being understood and ironed out. The wider goal
is to build a larger collection of sophisticated arithmetic operators
upon this set of trusted operations. The first step towards this will
be to complete the port of existing open-source HLS works such
as floating-points [10] or posit [7, 12] operators. The next step will
then be to apply the same concepts to fixed-point formats (wrapping
ac_fixed and ap_fixed).

A longer-term objective is to build on the clear semantic of every
basic operation to build formal proofs of the correct behavior of
the hardware.

REFERENCES
[1] Vivado Design Suite User Guide: High-Level Synthesis (UG902). https:

//www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-
vivado-high-level-synthesis.pdf, 2018.

[2] S. Bansal, H. Hsiao, T. Czajkowski, and J. H. Anderson. High-level synthesis of
software-customizable floating-point cores. In 2018 Design, Automation & Test in
Europe, pages 37–42. IEEE, 2018.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski. LegUp: high-level synthesis for FPGA-based processor/accel-
erator systems. In ACM/SIGDA international symposium on Field-Programmable
Gate Arrays, pages 33–36, 2011.

[4] J. O. Coplien. Curiously recurring template patterns. C++ Report, 7(2):24–27,
1995.

[5] F. de Dinechin and B. Pasca. Designing custom arithmetic data paths with
FloPoCo. IEEE Design & Test of Computers, 28(4):18–27, July 2011.

[6] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A survey and evaluation of
FPGA high-level synthesis tools. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(10):1591–1604, Oct 2016.

[7] A. Podobas and S. Matsuoka. Hardware implementation of POSITs and their ap-
plication in FPGAs. In International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 138–145. IEEE, 2018.

[8] A. Prost-Boucle, O. Muller, and F. Rousseau. Fast and standalone design space
exploration for high-level synthesis under resource constraints. Journal of Systems
Architecture, 60(1):79–93, 2014.

[9] A. Takach. Algorithm c (AC) datatypes. https://github.com/hlslibs/ac_types,
2018.

[10] D. Thomas. Templatised soft floating-point for high-level synthesis. In IEEE
27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2019.

[11] Y. Uguen, F. de Dinechin, and S. Derrien. Bridging High-Level Synthesis and
Application-Specific Arithmetic: The Case Study of Floating-Point Summations.
In Field-Programmable Logic and Applications. IEEE, Sept. 2017.

[12] Y. Uguen, L. Forget, and F. De Dinechin. Evaluating the hardware cost of the
posit number system (Online). 2019.

[13] X. Wang, S. Braganza, and M. Leeser. Advanced components in the variable
precision floating-point library. In FCCM, pages 249–258. IEEE Computer Society,
2006.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://github.com/hlslibs/ac_types

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Integers and HLS
	2.2 The need for arbitrary-sized integers
	2.3 Type safety
	2.4 Core arithmetic primitives for floating-point and posits
	2.5 Fused arithmetic primitives
	2.6 Support of these primitives in HLS tools

	3 Type safety for arbitrary-precision integers in HLS
	3.1 Variable declaration
	3.2 Variable assignment
	3.3 Slicing
	3.4 Concatenation
	3.5 Others

	4 Portability to mainstream HLS tools
	4.1 Class duplication for each backend
	4.2 A shared class interface
	4.3 Curiously recurring template pattern (CRTP)

	5 Evaluation
	6 Conclusion
	References

