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Abstract
Monoids are one of the simplest theories in which we can compose elements of a set. Similarly, monads
have been used extensively to treat composition of effectful code and its denotational semantics.
During the last forty years the theory of monoids has been extended with diverse merge-like
operators. In this article, we replicate several of these extensions at the level of monads. Building on
a well-known relation between monads and monoids, we introduce monads with additional structure
that account for merging. We show how monads with merging generalise and relate to models for
well-known algebraic theories for concurrency such as classic process algebras and the more recent
concurrent monoids. With these results, we aim to facilitate the generalisation and comparison of
different approaches to concurrency.
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1 Introduction

One of the basic questions a computational model has to answer is how to represent the
sequencing of computation. Monoids are one of the simplest theories in which we can compose
elements of a set, so they are a fundamental building block in program semantics. If we
generalise from sets to functors, monoids turn into monads. This generalisation has been
extremely profitable: Monads have been used extensively to model composition of effectful
code, both in denotational semantics [24] and in the structuring of programs [30].

When tackling the problem of concurrency, sequencing is not enough: we also need a way
to model programs which execute concurrently. Algebraic models of processes such as ACP,
CCS or π-calculus introduce merge operators, where the details vary in each model. Some
concrete examples of monoids with a merge operator are the models of process algebra PAδ,
which is a simplified version of ACP [4] without communication (Section 3), and concurrent
monoids (Section 4), which is a recent approach developed by Hoare et al [15].

In this article we aim to extend the generalisation from monoids to monads, to account
for a merge operator, hence obtaining monads with merging. Extensions of monoids at the
level of monads proved useful for organising additional structure on a monad, and often
suggested correspondence with structures used in the functional programming practice. We
obtain a process monad (Section 3) which lifts process algebras to the level of functors, and
a concurrent monad (Section 4), which lifts concurrent monoids to functors. We show how
one may use a certain lax slice category to model Plotkin triples and recover the rules from
separation logic that hold for concurrent monoids (Section 5). We expect the introduction of
process monads and concurrent monads to lay the groundwork for future work leading to a
more unified categorical approach to concurrency (Section 6).
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2 Preliminaries

We will work mainly with cartesian products. The product of objects A and B will be
denoted by A×B, its projections by π1 : A×B → A and π2 : A×B → B, and its pairing
〈f, g〉 : C → A×B for f : C → A and g : C → B. The coproduct of objects will be denoted
by A+B, the terminal object by 1 and its unique morphisms by ! : A→ 1.

We recall the definition of a monad in two variants: first in its classical definition, and
then as an extension system (or Kleisli triple).

I Definition 2.1. A monad on C is triple (T, µ, η) where T : C → C is a functor, and
η : Id→ T and µ : T · T → T are natural transformations such that the following identities
hold

µX ◦ TµX = µX ◦ µTX , µX ◦ TηX = idTX , µX ◦ ηTX = idTX .

There is an alternative definition of a monad as an extension system. In some cases, this
definition is more convenient to work with as there is no iteration of the functor T [22]:

I Definition 2.2. An extension system on C is a triple (T, -#, η) where T : Ob(C)→ Ob(C),
ηA : A → TA for A ∈ Ob(C), and f# : TA → TB for f : A → TB in C such that the
following equations hold:

ηA
# = idTA, f# ◦ ηA = f, g# ◦ f# = (g# ◦ f)#

.

As both presentations are equivalent [22] (take µ = idTA#, f# = µ ◦ Tf), we will use one
definition or the other depending on convenience. Given a monad (T, -#, η) on C, its Kleisli
category, K̀ (T ), has as objects those of C, and morphisms are those of type f : X → TY in
C (which we denote as f : X →T Y when regarded as morphisms in K̀ (T )). Composition for
this category is defined as f • g = f# ◦ g and identity is defined as idX = ηX .

I Example 2.3. Let (M, ·, ε) be a monoid. Then, we have a monad (T, µ, η) on the category
Set of sets and functions, where TX = M × X, the multiplication is µX(m1, (m2, x)) =
(m1 ·m2, x), and the unit is ηX(x) = (ε, x).

We will work with functors and monads which are strong with respect to the cartesian
product. Strength is a form of compatibility between functors and the cartesian structure.

I Definition 2.4 (Strong Functor). A functor F : C → C is strong if it comes equipped with a
natural transformation σX,Y : FX × Y −→ F (X × Y ) such that the following equations hold:

π1 = F (π1) ◦ σX,1, σ ◦ (σ × id) ◦ α = F (α) ◦ σ

where α = 〈〈π1, π1 ◦ π2〉, π2 ◦ π2〉 expresses the associativity of the cartesian product.

I Definition 2.5 (Strong Monad). A monad (T, µ, η) on C is strong if the underlying functor
T is strong and the strength is compatible with µ and η:

ηA×B = σA,B ◦ (ηA × id), σA,B ◦ (µA × id) = µA×B ◦ TσA,B ◦ σTA,B

There is a similar definition of strength σ̄X,Y : X × FY −→ F (X × Y ) acting on the
right, but as the cartesian product is symmetric, we can obtain it from the left strength as
σ̄ = Fγ ◦ σ ◦ γ where γ = 〈π2, π1〉 swaps the elements in a cartesian product.

There is another way in which a functor can be made compatible with cartesian structure.
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IDefinition 2.6 (Monoidal Functor). A monoidal functor is a functor F : C → C equipped with
a monoidal structure (m, e) where m : FX × FY −→ F (X × Y ) is a natural transformation
and e : 1 −→ F1 is a morphism such that standard coherence diagrams commute. In addition,
if the monoidal structure is compatible with γ, then the monoidal functor is symmetric.

I Definition 2.7 (Monoidal Monad). A monad T is monoidal when there is a monoidal
structure (m, e) on its underlying functor T such that e = η1 and the monoidal and monadic
structure are compatible:

ηA×B = mA,B ◦ (ηA × ηB), mA,B ◦ (µA × µB) = µA×B ◦ TmA,B ◦mTA×TB .

Given a strong monad T , then T as a functor can be equipped with two canonical
monoidal structures:

ϕ : TA× TB −→ T (A×B)
ϕ = µ ◦ T σ̄ ◦ σ

ψ : TA× TB −→ T (A×B)
ψ = µ ◦ Tσ ◦ σ̄

and e = η1 : 1 −→ T1 in both cases. A monad is said to be commutative when these two
monoidal structures coincide.

In this article we will work mainly in the setting of C = Set, the category of sets and
functions, and all the monads presented will be taken to be on it. The terminal object
1 = {?} is a singleton set. A particular consequence of this is that every functor F and monad
T will be strong, and there is only one possible strength σ (σ̄) for each. For example, the
powerset monad P (and its finite variant Pf) has strength σ(X, y) = X×{y}. In general, the
formula for strength for a Set functor might be expressed as σ(v, y) = F (λx : X.(x, y))(v).
When T is commutative, we have that there is only one possible monoidal structure on it. In
turn, if a monad is monoidal then it is commutative [21].

We close this section by stating the following lemma, which will guide our discussion on
extending monads with additional operators.

I Lemma 2.8 (Wolff [31]). Given a monad T on Set, T1 can be given two monoid structures
a ·ϕ b = T (!)(ϕ(a, b)) and a ·ψ b = T (!)(ψ(a, b)).

This lemma provides a basic sanity check: if monads generalise monoids then we should be
able to obtain a monoid from a monad. We provide a similar lemma for every generalisation
of an algebraic structure that we introduce.

3 Monads and the axiom system PAδ

The Algebra of Communicating Processes (ACP) was initially developed by Bergstra and
Klop [4] when they were investigating the solutions of unguarded recursive equations. They
proposed a complete algebra of processes that can account for concurrency with and without
communication. Focusing on merging, we will restrict ourselves to PAδ, a subset of the
theory without communication. We will first introduce a subset of PAδ, called BPAδ, which
provides only non-deterministic processes, and then show how to extend it to cover PAδ.

3.1 Basic Process Algebra
Let A be a set of atomic actions over which the processes are constructed. The atoms are
combined into processes by using the operators

· : P × P −→ P, + : P × P −→ P, δ : P.
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These operations satisfy the following laws:

x+ y = y + x (A1)
(x+ y) + z = x+ (y + z) (A2)

x+ x = x (A3)
(x+ y) · z = x · z + y · z (A4)
(x · y) · z = x · (y · z) (A5)

x+ δ = x (A6)
δ · x = δ (A7)

This system is known as BPAδ. Notice that the operator · is not necessarily commutative,
and that it only distributes on one side with +, and therefore the operations x · (y + z) and
x · y + x · z are different a priori. We will assume that there is a successfully terminating
process ε which works as the unit of the · operator. This system is sometimes referred to as
BPAδε [3, 2], but for simplicity we will continue calling it BPAδ.

If we want a parallel to Wolff’s lemma for BPAδ models, we need to have an additional
monoid like structure on a monad T that gives us new operations on T1. We will relate
the monoid structure given by · with the monad structure, and for the + operation we will
relate a monoid structure on the functor T with respect to the cartesian product of functors.
This means that we will structure BPAδ at the level of monads as a monad with some form
of non-determinism. The operation + behaves as a non-deterministic operator, and δ as
a neutral element for the non-deterministic operation. We call this kind of monad a basic
process monad.

I Definition 3.1 (Basic process monad). A monad (T, µ, η) has basic process structure if it
is equipped with natural transformations

ςX : TX × TX −→ TX, δX : 1 −→ TX,

such that the following equalities hold.

ςX = ςX ◦ γ (A1’)
ςX ◦ (ςX × id) = ςX ◦ (id× ςX) ◦ α (A2’)

ςX ◦∆ = id (A3’)
µX ◦ ςTX = ςX ◦ (µX × µX) (A4’)

ςX ◦ 〈id, δ◦!〉 = id (A6’)
µX ◦ δTX = δX (A7’)

where ∆ = 〈id, id〉 duplicates objects. These primed equations for basic process monads
correspond to the non-primed equations for BPAδ. There is no equation A5’ because the
equivalent to A5 already holds from the monad structure.
I Remark 3.2. When commutativity (A1) and idempotency (A3) axioms are dropped
from BPAδ, we have a near-rig structure. If we remove the equations corresponding to
commutativity (A1’) and idempotency (A3’) from basic process monads, we obtain a form
of non-deterministic monad which was previously considered in relation to the MonadPlus
type-class in Haskell [27, 29].

In the monadic presentation we do not take a set of atomic actions, as we do not need
it to express the axioms categorically. The axioms (A4’) and (A7’) require that σ and δ
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are algebraic operations [26], and therefore they could be equivalently presented as generic
operations, in this case simply constants

ς ′ : 1 −→ T (1 + 1), δ′ : 1 −→ T0

where 0 represents the inital object of Set, the empty set. This presentation might be useful
for finding possible instances of non-determinism structures on a monad, in a similar spirit
to that of Dahlqvist et al. [8].

I Example 3.3. The canonical monads that represent non-determinism are powerset P and
its finitary variant Pf . Both are basic process monads, but they also satisfy the additional
axioms

µX ◦ TςX = ςX ◦ (µX × µX) ◦ 〈Tπ1, Tπ2〉, µX ◦ TδX ◦ T ! = δX◦!

that are the equivalent to right distribution of + and δ over the · operator.

This example might be generalised as follows. Given a monad T with a distributive law
on the (finite) powerset λ : T ◦ P −→ P ◦ T , it is well-known that P ◦ T is a monad [23].
Moreover, T has a basic process monad structure inherited from P . This is true in particular
of theories with linear equations [23]. Somewhat similar in spirit is the following example.

I Example 3.4. The continuation monad with answer type a semilattice with unit R,
ContRX = RR

X , has a basic process monad structure. The zero operation is given by the
constant function returning the unit of the semilattice, while the addition is obtained by
pointwise application of the semilattice operation. In particular, for R = 2 there are two
natural basic process monad structures given by conjunction and disjunction.

We can define a category of basic process monads, where the morphisms are monad
morphisms which additionally preserve the additive structure, and perform an analysis similar
to what Uustalu [29] did for other kinds of non-determinism. For example, Eilenberg-Moore
algebras for a basic process monad have the structure of a semilattice with unit by using ς
and δ. Similarly, we obtain the following result.

I Lemma 3.5. The initial object in the category of basic process monads is Pf .

Proof. Let (T, µ, η, ς, δ) be a basic process monad. The unique morphism ¡T : Pf → T

is given by assigning the set {x1, . . . , xn} to ς(η(x1), ς(η(x2), . . . ς(η(xn−1), η(xn)))). This
morphism is uniquely defined by the fact that it has to map {x} to η(x). J

Using the formula for the coproduct of monads with a free monad [19], we can construct
a basic process monad on a functor.

I Example 3.6. Let F : Set→ Set be a functor such that the free monad on F exists. The
coproduct between the free monad on F and Pf is a basic process monad, and its carrier
functor has the following form:

F+X = µZ.Pf (X + FZ)

The formula is similar to that of free (list) non-deterministic monads, but replacing the list
constructor with the finite powerset. The coproduct between Pf and a free monad always
exists (Corollary VIII.14 in [1]).

We verify that our definition is on the right track by showing that a version of Wolff’s
lemma hold, i.e. that we recover a BPAδ model from applying a basic process monad to the
singleton 1.
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I Lemma 3.7. Let (T, µ, η) be a basic process monad. Then T1 is a model of BPAδ.

One might wonder if there are two basic process algebras on T1 for a basic process monad, as
there are two monoid structures on a monad applied to 1. In this case, the lack of symmetry
of BPAδ with respect to + and δ rule out the alternative structure.

In the spirit of Example 2.3, where we obtain a monad from a monoid, we might wonder if
we can obtain a basic process monad from a BPAδ model. In this case, setting TBX = B×X
would not work, as there are no natural morphisms TBX × TBX → TBX and 1→ TBX.

3.2 Process Algebra
Having generalised from basic process algebras to basic process monads, we focus on the
next step, which is to define a free merge operation that works by taking two processes and
expressing all the possible interleavings between them. The axiom system PAδ consists of
the axioms for BPAδ together with operations

‖ : P × P −→ P, T : P × P −→ P

called merge and left merge respectively, subject to the following axioms:

x ‖ y = xT y + y Tx (M1)
a Tx = a · x (M2)

(a · x)T y = a · (x ‖ y) (M3)
(x+ y)T z = xT z + y T z (M4)

The variable a used in axioms M2 and M3 is restricted to atomic actions. These equations
specify the operations ‖ and T in the initial model of BPAδ.

We might try to translate this model to monads. Our point of departure will be a basic
process monad, and then we will add two operations with signature

m : TX × TY −→ T (X × Y ), m` : TX × TY −→ T (X × Y ).

These will correspond to operators ‖ and T respectively. We quickly get stuck if we attempt
to write the PAδ axioms. The main problem is that we do not have a way to refer to the
atomic actions as in axioms M2 and M3. The solution we propose is to work with monads T
which come together with a natural transformation a : A −→ T that represent the inclusion
of the atomic actions abstracted by a functor A. This functor, for example, could represent
a signature of algebraic operations supported by the monad T . In this way, we can write the
axioms M2 and M3 using the natural transformation a.

I Definition 3.8 (Process monad). A basic process monad (T, µ, η) is said to be a process
monad over the functor A if it comes equipped with an inclusion of atomic actions

a : A −→ T

together with natural transformations

m : TX × TY −→ T (X × Y ), m` : TX × TY −→ T (X × Y ).

such that the following equations hold.

mX,Y = ςX,Y ◦ (m`
X,Y × (Tγ ◦m`

Y,X ◦ γ)) ◦∆ (M1’)
m`
X,Y ◦ (aX × id) = ϕ ◦ (aX × id) (M2’)

m`
X,Y ◦ ((µX ◦ aTX)× id) = µX×Y ◦ aT (X×Y ) ◦Am`

X,Y ◦ σTX,TY (M3’)
m`
X,Y ◦ (ςX × id) = ςX×Y ◦ (m`

X,Y ×m`
X,Y ) ◦ dist (M4’)



E. Rivas and M. Jaskelioff 7

where dist = 〈〈π1 ◦ π1, π2〉, 〈π2 ◦ π1, π2〉〉 distributes the cartesian product on itself.

In this case, the transformations m and m` are not algebraic operations, as their signatures
do not match the pattern (TX)a → (TX)b natural in X.

As we are adding structure to our monad, examples become scarce. The following
sophisticated example, given by the resumption monad transformer on a basic process monad,
is quite general and covers all the cases known to us.

I Example 3.9. Let (T, µ, η) be a basic process monad. Then, the resumption monad
transformer on T

RTX = µZ.T (X + Z)

has a process monad structure on the atomic actions given by T . It was shown by Cenciarelli
and Moggi [7] that RT has monad structure, which can be seen as the coproduct in the
category of monads of T and the free monad on the identity functor. The additive structure
ς and δ is defined from the structure T , while the merging operators m and m` are defined
by mutual induction (the implementation is analogous to the merge operation in [27]).

This example is related to the construction of permuting parsers introduced by Swierstra
and Dijkstra [28], which was presented more abstractly in the setting of near-semirings [27].
A similar structure has been studied by Goncharov and Schröder when considering models
of processes using a coinductive construction [11].

I Example 3.10. As a particular case, the resumption monad transformer can be applied to
a basic process monad constructed on a functor F as in Example 3.6. In that case, using the
diagonal lemma, we obtain a process monad from a functor F : Set→ Set as follows:

RFX = µZ.Pf (X + Z + FZ)

Just as for basic process monads, Wolff’s lemma can be adapted to the case of process
monads, which give rise to a model of PAδ when applied to 1.

I Lemma 3.11. Let (T, µ, η) be a process monad on the functor A. Then T1 is a model of
PAδ on the set of actions A1.

4 Monads and concurrent monoids

We now move to an alternative approach to concurrency that was introduced by Hoare et
al [15]. In this approach, a simple model for concurrency is given based on classical algebraic
structures. Interestingly, from this model one can recover the laws of separation logic. We
will be interested in two of their algebraic structures: ordered bimonoids and concurrent
monoids. Ordered bimonoids capture the notion of a set equipped with two operations that
behave like sequencing and merging, and equipped with a notion of order which measures
the degree of sequentiality imposed on its elements. Concurrent monoids are a particular
case of ordered bimonoids in which the units of the two monoid structures coincide and a
natural rule of interchange holds.

The first denotational accounts of semantics of concurrency used sets of computation traces,
and concurrency was handled using the merge operation we saw in the previous section. This
semantics reduces the notion of concurrency to that of interleaving, as it is expressed in terms
of non-determinism using the + operation. To avoid this kind of reduction, the natural choice
is to look for an algebraic structure that has only concurrency and sequential composition.
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It was well established that sequencing and concurrency were monoidal structures, with the
latter being commutative, but the relation between them was missing. A quick thought might
indicate that an interchange equation (a ∗ b); (c ∗ d) = (a; c) ∗ (b; d) might hold. However,
under the presence of this kind of law, one could apply the Eckmann-Hilton argument and
show that both structures coincide:

I Theorem 4.1 (Eckmann-Hilton argument). Let X be a set with two binary operations ; and
∗ such that ; has a unit e;, ∗ has a unit e∗ and the interchange law (a∗b); (c∗d) = (a; c)∗(b; d)
holds. Then, both operations ; and ∗ coincide, and they are both commutative and associative.

Proof. We first show that both units coincide:

e; = e;; e; = (e∗ ∗ e;); (e; ∗ e∗) = (e∗; e;) ∗ (e;; e∗) = e∗ ∗ e∗ = e∗

Since units coincide we simply call it e. We now show that both operations coincide:

a; b = (e ∗ a); (b ∗ e) = (e; b) ∗ (a; e) = b ∗ a = (b; e) ∗ (e; a) = (b ∗ e); (e ∗ a) = b; a

From the same argument we see that the operation must be commutative. The proof of
associativity is analogous. J

This argument then shows that the interchange law cannot be used to model concurrency:
otherwise not only sequencing and concurrency would coincide, but also sequencing would
become commutative, which is unacceptable. However, some sort of relation between both
operations must be imposed, and the interchange equation is not completely misguided. The
solution proposed to handle independence, or true concurrency, was to consider an order on
processes.The idea of concurrent monoids is to use this order and weaken the interchange
equation using this order.

As we are using an order combined with algebraic structures, we need a notion of
compatibility of operations with an order. Let (A,v) be a partial order, then we say that
an operation ⊕ : A × A → A is compatible with the order if a v b and c v d implies that
a⊕ c v b⊕ d. We define a first approximation to the notion of a concurrent monoid, which
has two monoidal structures, and an order compatible with them, but no special relation
between them.

I Definition 4.2 (Ordered bimonoid). An ordered bimonoid is a partially ordered set (A,v)
together with monoid structures (A, ∗,nothing) and (A, ; , skip) such that ∗ and ; are compatible
with v and ∗ is commutative.

This notion of ordered bimonoid was used in the setting of languages with a merge operation [5],
although they required nothing = skip.

I Definition 4.3 (Concurrent monoid). A concurrent monoid is an ordered bimonoid such
that both units coincide, i.e. nothing = skip, and the following interchange law

(a ∗ b); (c ∗ d) v (a; c) ∗ (b; d) holds.

As we said, in this structure, unlike process algebras, there is no reduction of the operation
∗ to an interleaving of the ; operator. The order is bridging both structures without reducing
one to the other. Hoare et al. [15] develop their theory around two main models for ordered
bimonoids, which we introduce now.
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I Example 4.4 (Trace model). Fix a set A. Then TracesA is the set of finite sequences over
A, i.e. the free monoid on A. The finite sets of traces, which is described as the powerset
Pf(TracesA), is the carrier set of the model. The interleaving P ∗Q is the set of interleaving
of traces in P and Q, and the sequencing P ;Q is the set of concatenation of traces in P and
Q. The set {ε} consisting of only the empty word is the unit for both ; and ∗. The order is
given by subset inclusion.

I Example 4.5 (Resource model). Let (Σ, •, u) be a partial commutative monoid. The
powerset P(Σ) has an ordered commutative monoid structure (∗, emp) defined by p ∗ q =
{σ0 • σ1 | (σ0, σ1) ∈ dom(•) ∧ σ0 ∈ p ∧ σ1 ∈ q} and emp = {u}. The set of monotone maps
P(Σ) −→ P(Σ) is the carrier set of the model. The operations and their units are defined by
the following formulas

(F ∗G) Y =
⋃
{FY1 ∗GY2 | Y1 ∗ Y2 ⊆ Y }

nothing Y = Y ∩ emp
(F ;G) Y = F (G(Y ))

skip Y = Y

The order on the model is given by the reverse pointwise ordering, i.e. F v G is ∀X ⊆
P(Σ), FX ⊇ GX.

Clearly in the traces model both units coincide, and the interchange law holds, and thus it is
a concurrent monoid. In the resource model we see that ; and ∗ have distinct units.

We are interested in lifting the ordered bimonoid and concurrent monoid structures
at the level of functors, in a similar fashion to what we did in Section 3 with process
algebras. As before, the sequence operator ; will be modelled after the monadic multiplication
and its unit skip after the monadic unit. Three ingredients are missing: the merging
operation ∗, the merging unit nothing, and the order v. The merging operation will be
modelled as the free merge operation we introduced for process algebras, i.e. a natural family
mA,B : TA × TB −→ T (A × B). As we require that ∗ is a commutative monoid, in this
case we will require that T has a symmetric monoidal functor structure, including a unit
morphism e : 1 −→ T1 that will represent skip.

The order structure was not present in the process algebra monad (at least not explicitly,
just as the order is not explicitly presented in the algebraic presentation of semilattices).
Intuitively, what we need now is an order on computations that measures the degree of
sequentiality on them. This is an order structure vI on TI for each set I, subject to some
compatibility with the rest of the structure that models computations. We start by specifying
the compatibility condition for the functor action of T , for which we follow Hughes and
Jacobs [18].

I Definition 4.6 (Ordered functor). An order for a functor F is an assignment of a partial
order vI on FI for each set I, such that for any morphism f : I −→ J , the morphism
Ff : FI −→ FJ is a monotone map with respect to vI and vJ .

Notice that an order vI on TI is the same as an order on the set Set(1, T I) = K̀ (T )(1, I)
which we denote by the same vI .

Next, we specify compatibility of the monad structure. In order to do this, we use a
family of order structures which is an instance of what Katsumata and Sato defined as an
ordered monad [20]. Following their discussion, we give a definition of order for a monad as
follows.
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I Definition 4.7 (Ordered monad). An order for a monad (T, µ, η) is an assignment of
an order vI on TI for each set I, such that the Kleisli category of T is enriched in the
category of orders with the order corresponding to K̀ (T )(A,B) defined by f vA,B g iff
∀a : 1→ A, f ◦ a vB g ◦ a.

I Remark 4.8. There is no need to require that T is an ordered functor: this automatically
holds as the functor action T might be expressed as T (f)(v) = (η ◦ f) • ṽ with ṽ : 1→ TA

representing the element v ∈ TA.

I Remark 4.9. Goncharov and Schröder [12] require an additional condition on the monadic
strength for compatibility with the order. In our setting this is not necessary as the strength
might be represented in terms of functor application (see Section 2) and, as shown in the
previous remark, the underlying functor is already compatible with the order.

The notion of order defined above only relates to the monadic structure. Comparing
with ordered bimonoids, it corresponds to the condition of ; being compatible with v. The
compatibility between ∗ and v is still missing. We postulate it as follows.

I Definition 4.10 (Ordered monoidal functor). Let T be a functor with monoidal structure
(m, e) and an assignment of an order vI on TI to each set I. We say that the order is
compatible with (m, e) if v vA v′ and w vB w′ imply that m ◦ 〈v, w〉 vA×B m ◦ 〈v′, w′〉 for
any v, v′ : 1 −→ TA and w,w′ : 1 −→ TB.

With all these ingredients, we define monad variants of ordered bimonoids and concurrent
monoids as follows.

I Definition 4.11 (Ordered monoidal monad). A monad (T, -#, η) is an ordered monoidal
monad if it is endowed with a symmetric monoidal functor structure

mX,Y : TX × TY −→ T (X × Y ), e : 1 −→ T1

and an order relation v on T compatible with (m, e).

I Remark 4.12. We write f ? g for m ◦ (f × g).

We use the name ordered monoidal monad instead of the more “congruent” ordered bimonad
to avoid confusion with bimonads [6].

I Definition 4.13 (Concurrent monad). An ordered monoidal monad T is a concurrent monad
if e = η1 : 1 −→ T1 and the interchange law

(h ? i) • (f ? g) v (h • f) ? (i • g) holds.

I Remark 4.14. The requirement e = η1 defines η on all its components, as the following
reasoning by Yoneda shows that there is an equivalence between natural transformations
Id −→ T and elements in T1:

Nat(Id, T ) ∼= Nat(Set(1,−), T ) ∼= T1 ∼= Set(1, T1)

This implies that most of the time the reasoning on η can only be done on e, and the result
follows from naturality.

We can test our definition by showing that commutative monads (as commutative monoids)
are concurrent monads (as concurrent monoids).
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I Example 4.15. Let (T, µ, η) be a commutative monad. Then T has a unique monoidal
monad structure (m, η1), and we can define the order structure by the diagonal (equality)
order. The interchange law reduces to the monoidal monad conditions.

As we did with basic process monads and process monads, we want to show that these
structures at the monad level are generalising those at the set level.

I Lemma 4.16. Let (T, µ, η) be an ordered monoidal monad (concurrent monad). Then T1
is an ordered bimonoid (concurrent monoid).

Proof. As we remarked before, T1 ∼= Set(1, T1), so we give directly the structure on the latter
form. The order v is defined directly from the order enrichment on Set(1, T1) = K̀ (T )(1, 1).
For elements p, q : 1→ T1, we define

p; q = q • p, p ∗ q = T ! ◦ (p ? q) ◦∆.

The units are skip = η1 and nothing = e. J

As in the case of monoids, there are two ordered bimonoid structures on T1, which result
from the symmetry of ordered bimonoid axioms.

In this structure, as in monoids, we can also go in the other direction: given an ordered
bimonoid, we can lift it to an ordered monoidal monad.

I Lemma 4.17. Let (A,v, ∗,nothing, ; , skip) be an ordered bimonoid. Then we can turn
it into an ordered monoidal monad with support functor TAX = A × X, operations and
order. Moreover, if nothing = skip (i.e. it is a concurrent monoid), then e = η1 (i.e. it is a
concurrent monad).

The trace semantics example might be generalised to a concurrent monad by parametrising
the set on which we take the traces.

I Example 4.18. The monad TrL(X) = Pf (TracesL×X) is concurrent. The order structure
is defined by subset inclusion as before.

In this last example we have a notion of associative, commutative and idempotent addition
on each Tr(X) given by set union x⊕ y = x∪ y. We can recover the subset inclusion ordering
by noticing that x ⊆ y iff x⊕ y = y, or equivalently [2], by x v y iff there exists z such that
x⊕ z = y. This observation might be used to define orders on a monad. The existence of
this addition might indicate a connection to process monads introduced in Section 3. More
precisely, given a process monad T on A, the question is whether T is a concurrent monad
with the order induced by ς and taking m of the concurrent monad to be m of the process
monad. If this was true, then the set T1 must have a concurrent monoid structure with
∗ = ‖. The main problem then is that a concurrent monoid requires that ; is compatible
with the order, which seems to conflict with this order. For instance, take a, b, and c atoms,
and x = a and y = a+ b. Obviously, we have that x v y according to the order. However, if
we want ; to be compatible with v, we need to show that c;x v c; y. This reduces to show
that c; a+ z = c; (a+ b) for some z, but this is not true in general. Hence the question of the
relation between process monads and concurrent monads is still open.

5 Reasoning with Plotkin triples and the lax slice

In the preliminaries we introduced the Kleisli category of a monad. In the situation of
an ordered monad T , the corresponding Kleisli category has a richer structure: it has an
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ordered category structure. That means, given two objects A and B in K̀ (T ), the hom-set
K̀ (T )(A,B) = Set(A, TB) is not only a set, but an ordered set. It complies with the
following structure:

I Definition 5.1 (Ordered category). An ordered category is a category C in which each
hom-set C(X,Y ) has an order structure such that compositions

◦ : C(Y,Z)× C(X,Y ) −→ C(X,Z) are order preserving.

Then, by definition, we have that K̀ (T ) is an ordered category. As ordered categories are a
special case of 2-categories in which the local categories are thin, many of the constructions
of 2-categories might be applied in K̀ (T ). A particular case is the lax slice construction,
which, given an object X on an ordered category, produces a new category as follows.

I Definition 5.2 (Lax slice category). Let C be an ordered category, and X an object of it.
We define the lax slice category C �X which has as objects morphisms φ : A→ X in C and
morphisms from φ : A → X to ψ : B → X are the morphisms c : A → B in C such that
ψ ◦ c v φ in the order C(A,X). The composition of morphisms is defined by the composition
in C, and the same with identities.

This definition is almost the same as the usual slice construction, with the only difference
that we have replaced equality by v, hence obtaining more morphisms between objects.

We apply this construction to the Kleisli category K̀ (T ) of a concurrent monad T . We
take the slice construction using the terminal object 1, i.e. K̀ (T ) � 1. This structure can
be related to the Plotkin triples studied by Hoare et al. [15] in the setting of concurrent
monoids.

I Definition 5.3 (Plotkin triples). Let M be a concurrent monoid and φ, c and ψ elements
of it. Then, we say that a Plotkin triple φ→c ψ holds if φ w c;ψ.

The category K̀ (T ) � 1 might be seen as a typed version of Plotkin triples, where a triple
φ→c ψ corresponds to a morphism c : A→ TB from φ : A→T 1 to ψ : B →T 1 in K̀ (T )� 1.
Using the lax slice category, we have a natural separation between predicates and programs,
the first are represented by objects, while the latter by morphisms. Hoare et al. [15] have
shown that there is a number of rules from separation logic that hold in a concurrent monoid
if they are presented as Plotkin triples. We briefly state this result in the following theorem.

I Theorem 5.4 (Hoare et al. [15]). Given a concurrent monoid M , the following rules of
separation logic hold:
Consequence. φ→c ψ ∧ φ v φ′ ∧ ψ′ v ψ ⇒ φ′ →c ψ

′.
Skip. φ→skip φ.
Sequencing. φ→c ψ ∧ ψ →c′ χ ⇒ φ→c;c′ χ.
Concurrency. φ→c ψ ∧ φ′ →c′ ψ′ ⇒ φ ∗ φ′ →c∗c′ ψ ∗ ψ′.
We replicate this theorem at the level of the category K̀ (T ) � 1. We introduce the notation
(φ : A) c (ψ : B) to denote the fact that c is a morphism in K̀ (T ) � 1 from φ : A→T 1 to
ψ : B →T 1. We also have to take into account the natural replacements for the concurrent
monoid operations at the level of programs: skip becomes η, sequencing c; c′ becomes c′ • c,
and merging c ∗ c′ becomes c ? c′. At the level of predicates, we need a replacement for ∗ in
the concurrency rule: given predicates φ : A→T 1 and φ′ : C →T 1, we need to form a new
predicate on 1 that combines these two. We will encode it as the following morphism

A× C
φ×φ′

// T1× T1 m // T (1× 1) T ! // T1
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In conclusion, we have that there is an operator ∗ between predicates defined by φ ∗ φ′ =
T ! ◦m ◦ (φ× φ′) = T ! ◦ (φ ? φ′). Doing all these replacements, we can postulate a monadic
version of Theorem 5.4.

I Theorem 5.5. Let T be a concurrent monad, the following rules of separation logic in
K̀ (T ) � 1 hold:
Consequence. (φ : A) c (ψ : B) ∧ φ v φ′ ∧ ψ′ v ψ ⇒ (φ′ : A) c (ψ′ : B).
Skip. (φ : A) η (φ : A).
Sequencing. (φ : A) c (ψ : B) ∧ (ψ : B) c′ (χ : C) ⇒ (φ : A) c′•c (χ : C).
Concurrency. (φ : A) c (ψ : B) ∧ (φ′ : C) c′ (ψ′ : D) ⇒

(φ ∗ φ′ : A× C) c?c′ (ψ ∗ ψ′ : B ×D).

Proof. Most cases are straightforward, so we only give the most interesting one: concurrency.
We need to prove that given ψ • c v φ and ψ′ • c′ v φ′, we have that

(ψ ∗ ψ′) • (c ? c′) v φ ∗ φ′.

Expanding the definitions and using the exchange law, we obtain the proof

(ψ ∗ ψ′) • (c ? c′) = (T ! ◦m ◦ (ψ × ψ′)) • (c ? c′)
= T ! ◦ ((ψ ? ψ′) • (c ? c′))
vA×C T ! ◦ ((ψ • c) ? (ψ′ • c′))
vA×C T ! ◦ (φ ? φ′)
= φ ∗ φ′

J

The reasoning presented by Plotkin triples by Hoare et al. follows a similar structure
to postulating the existence of morphisms in the category K̀ (T ) � 1. In particular, if we
focus only on K̀ (T )(1, 1), we obtain the same structure as Plotkin triples in the concurrent
monoid T1.

6 Future and related work

In this article we have described two notions of monad with a merging structure. The two
of them replicate at the level of functors algebraic structures used to represent concurrency
at the level of sets. Building on the usual relation between monads and monoids, we have
introduced the notion of process monad and concurrent monad. The first reduces concurrency
to non-determinism, as the usual interleaving semantics does. The latter, instead, uses a
notion of order which intuitively measures simultaneity of events, and we could understand
it as true concurrency. We have also shown that part of the reasoning tools for concurrent
monoids can be understood in the monadic presentation as well. Many aspects remain as
further work, we discuss them briefly in the next paragraphs, providing the related work as
we describe it.

Concurrent Kleene Algebras

Hoare et al. have worked with further structure than concurrent monoids [16, 17]. Indeed
they define a notion of Concurrent Kleene Algebra (CKA), which is a concurrent monoid
which also has a notion of addition + and Kleene’s star iteration. It would be interesting to
see this whole structure replicated at the level of monads. Goncharov studied in [10, 13] the
notion of Kleene monad which captures a monadic version of Kleene algebras.
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Reasoning

The order structure on a monad provides the basis for reasoning which we would like to
explore further in the presence of a merging operator. Hasuo [14] studies a notion of generic
weakest precondition structure for an ordered monad. Goncharov and Schröder [12] provide
a complete calculus for Hoare logic when the monad has a complete semi-lattice order
structure and discuss the connection to Hasuo’s approach. One of the main differences is
that Goncharov and Schröder assume that there is a submonad relating to predicates, which
seems to work in the same spirit as the set A of assertions in a weak CKA [25].

Categorical Structures

It is well-known that if T is a monoidal monad, then K̀ (T ) has monoidal structure. Another
well-known result is that when C is a monoidal category, then C/M is a monoidal category
if M has a monoid structure in C. These two results seem to be the basis for the triples
presented in Section 5. It would be interesting to generalise the result to strong monads on
other categories than Set and other monoidal structures than cartesian product. Another
categorical structure that seems to be related is that of duoidal categories, which was used
by Garner and López Franco to study commutativity [9].

Functional Programming

A further point we would like to explore is the relation of these models with the practical
approach of functional programming to concurrency. For example, Haskell’s package async
provides a concurrent primitive concurrently :: IO a -> IO b -> IO (a,b); we would
like to investigate if it is possible to understand it in terms of concurrent monads.
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