

Actualisation en ligne d'un score d'ensemble

Benoît Lalloué, Jean-Marie Monnez, Eliane Albuisson 51^e Journées de Statistiques Juin 2019, Nancy

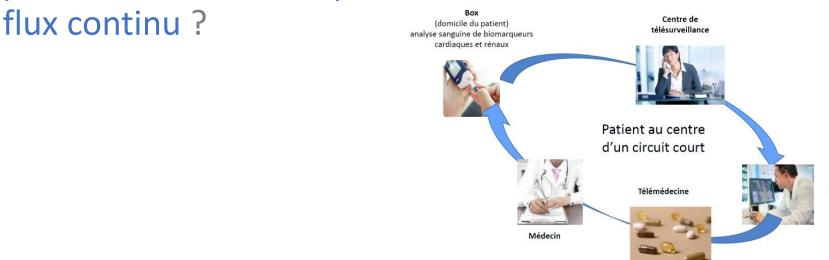
Introduction

• Problématique générale : prédiction des valeurs d'une variable dépendante y à partir de variables observées $x^1, ..., x^p$

- Illustration : identifier les patients ayant un risque d'hospitalisation ou de décès à court terme (≤ 30 jours) pour progression de leur insuffisance cardiaque.
- Une possibilité : construire un score à l'aide d'une méthode d'ensemble

Apprentissage en ligne

• Problématique : comment mettre à jour les paramètres du score quand les données arrivent en



 Stocker et réutiliser à chaque fois toutes les données déjà obtenues jusqu'à présent : peu pratique (voire impossible)

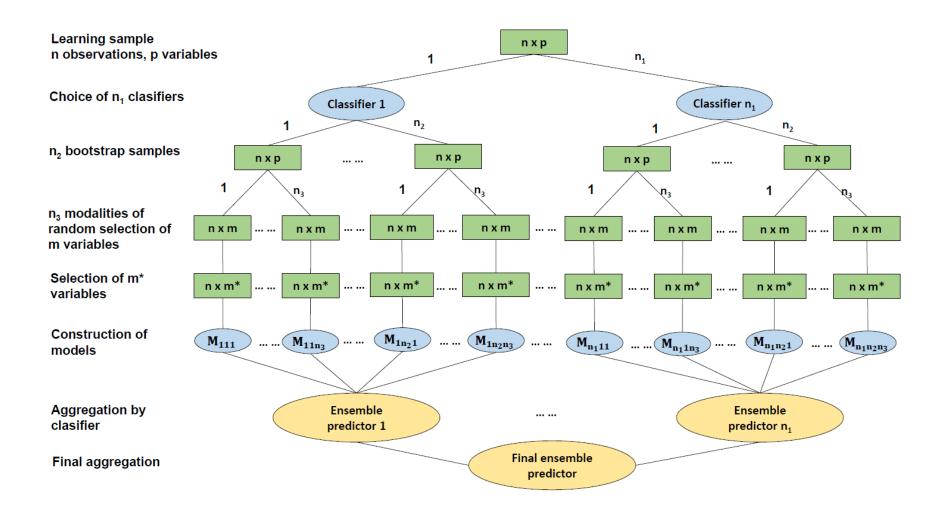
Score d'ensemble « batch »

• Méthode de construction d'un score d'ensemble proposée par Duarte, Monnez et Albuisson

- Inspirations: bagging (Breiman 1996), forêts aléatoires de modèles logistiques (Tufféry 2015), random generalized linear models (Song, Langfelder & Horvath 2013)
 - → mais en utilisant plusieurs règles de prédiction

 Application sur des données cliniques de patients atteints d'insuffisance cardiaque

Score d'ensemble « batch » (2)



Score d'ensemble « en ligne »

 Choix des règles de classifications : définies par le score initial qu'on cherche à actualiser

- Mise à jour des échantillons par bootstrap Poisson
 (Oza & Russel 2001):
 - Pour chaque nouvelle observation et chaque échantillon bootstrap b_i :
 - simuler $k_i \sim \mathcal{P}(1)$
 - ajouter k_i fois l'observation à l'échantillon b_i

Variables sélectionnées : définies par le score initial

Score d'ensemble « en ligne » (2)

- Mise à jour des prédicteurs :
 - Méthode dépendant des règles de prédiction
 - Pour la régression logistique et la LDA :
 - Processus de gradient stochastique
 - Standardisation en ligne des données pour éviter les explosions numériques

Régression linéaire en ligne

Soit:

- R(p,1) et S(q,1) deux vecteurs aléatoires
- A l'étape n : arrivée de m_n nouvelles données (R_i, S_i) échantillon iid de (R, S)

•
$$M_n = \sum_{i=1}^n m_i$$
; $I_n = \{M_{n-1} + 1, ..., M_n\}$

$$\bullet \ \overline{R}_{M_n} = \frac{1}{M_n} \sum_{i=1}^{M_n} R_i$$

•
$$\bar{S}_{M_n} = \frac{1}{M_n} \sum_{i=1}^{M_n} S_i$$

• Γ_n (resp. Γ_n^1) la matrice diagonale des inverses des écarts-types des composantes de R (resp. S) calculées récursivement à partir des données (R_i, S_i) , $i \leq n$

On cherche à estimer le vecteur θ des coefficients de la régression linéaire de S par rapport à R.

Régression linéaire en ligne (2)

Si:

- $a_n \rightarrow 0^+$; $\sum_{n=1}^{\infty} a_n = \infty$
- $B_n \to B = Covar(R)$; $F_n \to F = Covar(R, S)$
- (et quelques autres conditions classiques)

Alors le processus stochastique suivant converge vers θ :

$$X_{n+1} = X_n - a_n (B_n X_n - F_n)$$

On utilise toutes les observations jusqu'au pas n :

•
$$B_n = \Gamma_{M_n} \left(\frac{1}{M_n} \sum_{i=1}^n \sum_{j \in I_i} R_j R'_j - \bar{R}_{M_n} \bar{R}'_{M_n} \right) \Gamma_{M_n}$$

•
$$F_n = \Gamma_{M_n} \left(\frac{1}{M_n} \sum_{i=1}^n \sum_{j \in I_i} R_j S_j' - \bar{R}_{M_n} \bar{S}'_{M_n} \right) \Gamma_{M_n}^1$$

Régression logistique en ligne

Soit:

- R vecteur aléatoire réel et S v.a. à valeurs dans $\{0, 1\}$
- A l'étape $n: m_n$ nouvelles données (R_i, S_i) échantillon iid de (R, S)
- \bar{R}_{M_n} le vecteur des moyennes des R_i jusqu'au pas n
- Γ_{M_n} la matrice de diagonale de l'inverse des écart-types des R_i jusqu'au pas n (calculés récursivement)
- $\tilde{Z}_j = \Gamma_{M_{n-1}} (R_j \bar{R}_{M_{n-1}})$ $(j \in I_n)$ les données standardisées en ligne
- $h(u) = \frac{e^u}{1+e^u}$ la fonction logistique

On cherche à estimer le vecteur θ des coefficients de la régression logistique de S par rapport à R.

Régression logistique en ligne (2)

Si:

•
$$a_n > 0$$
, $\sum_{n=1}^{\infty} a_n = \infty$, $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}} < \infty$, $\sum_{n=1}^{\infty} a_n^2 < \infty$

• (et quelques autres conditions classiques)

Le processus de gradient stochastique suivant converge vers θ :

$$X_{n+1} = X_n - a_n \frac{1}{m_n} \sum_{j \in I_n} \tilde{Z}_j \left(h(\tilde{Z}_j X_n) - S_j \right)$$

Résultats d'application

- Application sur des données issues d'un essai clinique (EPHESUS) :
 - 21382 couples patients-visites
 - 317 événements à 30 jours
 - 27 variables explicatives
- Score « batch » construit sur ces données avec :
 - $n_1 = 1$ (Régression logistique)
 - $n_2 = 100$ échantillons bootstrap
 - $n_3 = 3$ modalités de sélection de variables
 - → 300 prédicteurs

Résultats d'application (2)

- Score « en ligne » construit avec :
 - Simulation d'un flux de données par tirage au sort dans le jeu de données
 - Régression logistique
 - Même nombre d'échantillons bootstrap ($n_2 = 100$)
 - Même nombre de variables sélectionnées (avec les mêmes modalités) pour chaque couple échantillonmodalité
 - Initialisation des 300 processus avec le vecteur nul

Résultats d'application (3)

Comparaison entre scores « batch » et « en ligne » :

- Cosinus entre les vecteurs des coefficients des scores d'ensemble
- Corrélations entre les scores obtenus

Processus simple		N	2N	3N	4N	5N
10 nouvelles obs	Cos	0.9995	0.9998	0.9998	0.9998	0.9998
par étape	Cor	0.9443	0.9642	0.9683	0.9721	0.9728
100 nouvelles obs	Cos	0.9998	0.9998	0.9998	0.9998	0.9998
par étape	Cor	0.9507	0.9599	0.9638	0.9646	0.9684

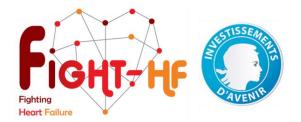
Processus moyennisé à pas constant par paliers (50)		N	2N	3N	4N	5N
10 nouvelles obs	Cos	0.9998	0.9999	0.9999	0.9999	0.9999
par étape	Cor	0.9715	0.9923	0.9930	0.9948	0.9950
100 nouvelles obs	Cos	0.9999	0.9999	0.9999	0.9999	0.9999
par étape	Cor	0.9865	0.9861	0.9900	0.9926	0.9933

Conclusion

• Méthode de mise à jour d'un score d'ensemble en ligne grâce au bootstrap Poisson et à des processus de gradient stochastique

 Résultats satisfaisants de convergence de la méthode sur un jeu de données réelles

- Perspectives :
 - Ajouter la régression linéaire/LDA pour reproduire le score de Duarte et al.
 - Optimiser le temps de calcul



Merci!

Méthodes d'ensemble

- Méthode d'ensemble ?
 - → Construire de nombreux prédicteurs à partir de variantes (échantillons bootstrap, variables sélectionnées, ...) autour de méthodes simples (régression linéaire ou logistique, k-nn, arbres de décision, ...)
 - → Les agréger (par moyenne, par vote, ...)
 - → On s'attend à ce que le prédicteur d'ensemble donne de meilleurs résultats que chaque prédicteur individuel
- Rarement utilisées en médecine : souvent jugées trop « boite noire »