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Abstract—Functional connectivity (FC) is a graph-
like data structure commonly used by neuroscientists to
study the dynamic behaviour of the brain activity. How-
ever, these analyses rapidly become complex and time-
consuming, as the number of connectivity components
to be studied is quadratic with the number of electrodes.
In this work, we address the problem of clustering
FC into relevant ensembles of simultaneously activated
components that reveal characteristic patterns of the
epileptic seizures of a given patient. While k−means is
certainly the most popular method for data clustering,
it is known to perform badly on large dimensional data
sets, and to be highly sensitive to noise. To overcome
the co-called curse of dimensionality, we propose a new
tensor decomposition to reduce the size of the data set
formed by FC time series recorded for several seizures,
before applying k-means. The contribution of this paper
is twofold: First, we derive a method that we compare
to the state of the art, emphasizing one variant that
imposes sparsity constraints. Second, we conduct a
real case study, applying the proposed sparse tensor
decomposition to epileptic data in order to infer the
functional connectivity graph dynamics corresponding
to the different stages of an epileptic seizure.

Index Terms—dynamic networks, graph decompo-
sition, clustering, dimensionality reduction, sparsity,
tensor decompositions, HOSVD, HOOI, functional con-
nectivity, iEEG.

I. Introduction
Epilepsy is one of the most common neurological disor-

ders in the world population. About 40% of the patients are
drug-resistant and a surgical operation can be considered
to extract the epileptogenic area. To locate this area and
understand the evolution of epilepsy, practitioners often use
intracranial electroencephalography (iEEG) recordings [1],
[2]. The patient makes a stay in the hospital for several days
with electrodes implemented in the brain to record multiple
epileptic seizures. The stages of a seizure are distinguished
by similar evolutions of the recorded iEEG signals in
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different areas of the brain. Functional Connectivities (FC)
that quantify along time these similarities are calculated
between all pairs of signals, usually by means of the spectral
coherence or the Phase Locking Value [3]. Considering
electrodes as nodes and FCs as weights on the edges,
neuroscientists try to find in the data, graph-like structures
evolving through time (see Fig. 1). The study of the FCs
is a complex and expensive task, with a typical experiment
consisting of about 100 electrodes, hence ≈ 5000 FC times
series. Also, since it is generally assumed that the FC
dynamics are comparable from one seizure to another
for a same patient, another asset of iEEG monitoring
is the possibility to record several seizures. The joint
analysis of these repetitions should ease the identification
of a dynamical FC pattern, common to all seizures, and
characteristic of the patient’s health disorder. All this
calls for a method able to extract relevant ensembles of
simultaneously activated components, viewed as the edges
of sub-graphs of a FC network inferred from the iEEG
signals.
More concretely, for each seizure, the recorded iEEG

signals yield L pairwise Functional Connectivity measures
(FC) as time series of T samples. The corresponding data
matrix X ∈ RL×T is referred to as an Epoch. As we
observe S different seizures for a same patient, the resulting
epochs are stacked in a 3-modes tensor X ∈ RL×T×S .
Our objective is then, to identify characteristic clusters of
dynamical FCs, using unsupervised k-means applied to the
underlying dynamic graph.
The current generalisation of k-means to find relevant

clusters in a tensor X , first imposes to unfold it as a
matrix. Here, since it is the L time series that are to
be grouped, this leads to cluster FC components that lie
in a high dimensional T × S space, a situation where k-
means is known to perform poorly [4]. In addition, such
generalisation does not explicitly take advantage of the
natural tensor structure of the data. Then, a first step will
be to reduce the tensor X into a factor matrix F ∈ RL×K
with K � T × S, and to apply k-means on F. We propose
to perform this dimension reduction directly on X using
tensor decompositions and imposing relevant structural
constraints to the solution, such as sparsity.
Treating dynamic graphs as tensors is not new and

previous works have already explored this idea, e.g. for
sampling [5], dynamic graph inference [6] or community
detection [7]. But the method we are developing here can
be seen as a decomposition of dynamical graphs, where the
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(a) (b)

(c) (d)

Fig. 1: (a) 4 simulated iEEG signals, (b) FC computed between
the 6 pairs of signals by PLV, (c) & (d) Graphs with electrodes
1,2,3 and 4 as nodes and PLV measures as the weight of edges,
at t=300 and t=2200 (red/blue bars on Fig. (a) and (b)).

data is decomposed into a structural (e.g., sub-graphs of
functional connectivity) and temporal (e.g., time varying
activation) signature of individuals (e.g. epileptic seizure).
This procedure could be used in other contexts involving
dynamic graphs, such as social face-to-face interactions [8],
[9] or transportation networks [10].

Besides the necessary survey on the state-of-the-art
methods for tensor reductions, our contribution in this
paper is manyfold. Firstly, we propose new algorithms for
reducing data dimension, that impose pertinent structural
constraints on the solutions. Then, based on these latters,
we design an original data processing workflow, depicted in
Fig. 2, to infer spatio-temporal patterns in non-stationary
relational data. To assess the ability of the proposed
methods at compressing data while enhancing structural
features, we apply k-means to cluster the reduced factor
matrix X obtained from our algorithm and compare it
with other dimensionality reduction approaches (including
tensor decompositions). Finally, we apply our spatio-
temporal decomposition of dynamic graphs to real iEEG
recordings, to characterise the prime lineament of func-
tional connectivity during epileptic seizures of a patient.

The article is organized as follows. Section II recalls
the general notations, background and state-of-the-art.
Section III describes the methods (from k-means to tensor
reduction methods) mobilized in the article. Then, Section
IV describes the new proposed tensor decomposition. In
Section V, the different possible approaches are compared
on a simple, yet flexible model of iEEG FCs, highlighting
the performance and the limits of our method. Section VI
applies the method on real data, exhibiting its capacity to
infer a dynamic graph characterizing the evolution of the
seizure. We conclude the article in Section VII.

II. Notations and state-of-the-art

A. Notations

To keep the presentation as clear as possible we introduce
the following notation coming from [11], [12]. We also
refer to these works as good introductions to tensor
decomposition theory, and to [13] for a more recent and
deep introduction. A D-modes array (where D correspond
to the number of dimensions used to write the data) is
called a vector if D = 1, a matrix if D = 2 and a tensor
if D = 3 or more. In this work, we use only 3-modes
tensors, but the presented theory can be generalized to
higher dimensions. Tensors are denoted with bold case
calligraphic letters X , matrices and vector are denoted
respectively in bold upper-case and lower-case X, x, and
scalars by lower-case letters x. Notice that : l, t, s, k, n will
be used as indices, and L, T, S,K,N will be reserved to
denote their index upper bounds. Here, they correspond to
the FC mode, time mode, epoch (or trial) mode, number
of factors and number of clusters, respectively. Then, x:t,
resp. xl:, corresponds to the column t, resp. to the row l,
of the matrix X ∈ RL×T . The matrices Xl::, X:t: or X::s
correspond to the slices of the tensor X ∈ RL×T×S . The
slice for each trial X::s is referred to as an epoch.

The matricization corresponds to the matrix representa-
tion of a tensor. It can be made for each mode of a tensor.
For a 3-mode tensor they are noted X(L) ∈ RL×TS (mode-
1 matricization), X(T ) ∈ RT×LS (mode-2 matricization)
and X(S) ∈ RS×LT ( mode-3 matricization) [12]. Writing
[A,B] the concatenation of two matrices A and B with
the same number of rows, the mode-1 matricization reads:

X(L) = [X::1,X::2, ...,X::S ]. (1)

Similarly, the vectorisation of a matrix X ∈ RL×T , denoted
by vec(X) ∈ R1×LT converts a matrix to a vector [12]:

vec(X) = [x1:,x2:, ...,xL:]. (2)

Considering x,y ∈ RL, 〈x,y〉 =
∑L
l=1 xlyl is the scalar

product between two vectors and || x ||F=
√
〈x,x〉 the

Frobenius norm. These notations can be extended to D-
mode arrays [12], [14], e.g. 〈X,Y〉 =〈vec(X), vec(Y)〉 or
|| X ||F=|| vec(X(L)) ||F . The L1-norm for a matrix
corresponds to:

|| X ||1=
L∑
l=1

T∑
t=1
| xlt |. (3)

Finally we define the Kronecker product between two
matrices, noted C = A⊗B with A ∈ RL×T , B ∈ RK×N
and C ∈ RLK×TN , as:

C =

a11B . . . a1TB
...

...
aL1B . . . aLTB

 . (4)
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Fig. 2: Model of the data processing workflow: tensor X is
reduced to a factor matrix F, and k-means is applied on F

B. State-of-the-art

Several approaches to cluster functional connectivity
have been proposed, using various techniques: community
detection [15] to discriminate FC characterizing different
states of an epileptic seizure; spectral clustering [16] to
combine electrodes so as to cluster FC graphs; non-negative
matrix factorisation [17] to discover subgraphs of FC
with evolutionary activation over time; k-means for the
clustering of FC or time states [17], [18], [19]. The clustering
method used here is the k-means algorithm [4], as it
is simple to use, yet performs well against other more
recent clustering method [20] like dbscan [21] or spectral
clustering [22]. Moreover, its limitations are well studied. In
particular, the performance of k-means drastically decrease
on high dimensional data [4], and each iteration of this
algorithm has a computational cost of o(LTK) if one want
to partition the matrix X ∈ RL×T into K clusters. Clearly,
this hampers its use with large dataset, notably because of
the number of repetitions - with different initial conditions
- needed to warrant a satisfactory local minima. Moreover,
since FC measurements are often noisy due to spurious
similarities between iEEG signals, many local minima exist,
that corresponds to irrelevant clustering solutions. Finally,
k-means can be seen as a constrained matrix factorisation
[23], [24]. This last observation motivates the need for
dimensionality reduction, before factorizing the matrix with
k-means: the dataset is reduced into a matrix F ∈ RL×K
on which k-means is applied. Actually, this pre-processing
has a double advantage: it filters the data by removing
spurious content and it avoids to apply k-means on high
dimensional data sets.
The most used dimensionality reduction for k-means

is the singular value decomposition (SVD) [25]–[27]. The
tandem of SVD and k-means clustering was applied to
network applications [25], [28], in medical imaging [29] or
FC analysis [17] and it was thoroughly studied in gene
expression [26]. The denoising properties of the SVD are
well understood [30] and recent theoretical results points to
the similarity between the best clustering results that we
can have from a dataset and its reduction via SVD [31], [32].
However, as it will be detailed in Section III-B, this tandem
has its own limitations [33], [34] and existing extensions,
like the sparse SVD, are promising alternative to overcome
these. The use of sparse methods for FC is recent. The
authors of [35] show an interesting link between k-means,
SVD and sparse decompositions, and they also comment
on their use for FC grouping. In [36], a sparse non-negative

matrix factorisation is proposed, that leverages the non-
negativity of the data, to produce sparse FC graphs and
their associated temporal evolution.

In addition, we would like to take advantage of the tensor
structure of the data. Tensor factorisations methods were
developed, which avoid concatenating epochs of different
seizures [36], or, having to use the averaged epochs [19]
to perform matrix factorisation. The work in [37] reports
an interesting survey on the use of tensor decomposition
methods in the context of brain data, including FC.
Different tensor decompositions applied on FC data can also
be highlighted: the article [38] proposes to use a canonycal
polyadic decomposition (or CP, PARAFAC) to exhibit the
principal patterns of data. However, this decomposition
does not necessarily identify the pattern common to all
seizures, which is a severe limitation for our application.
In [39], the high order SVD (HOSVD) is used to extract
a representative epoch from a 4-modes dataset . In this
setting, the functional connectivities of one epoch at a
given time step are represented by a N × N matrix. At
the end of the procedure, the data is chopped into several
steps, each one being associated to a particular FC graph.
The authors of [40] use a higher order robust principal
component analysis applied to the same dataset as in [39]
and following the same goal, but the graph they obtain is
more regular. However, both methods suffer from a lack of
sparsity in their resulting graphs, entailing results that are
difficult to analyse as they do not single out any critical
functional connectivity that would characterise the seizure
onset.

III. Problem and background
Combining dimensionality reduction (with tensor or

matrix factorisation) and clustering (k-means here) has
given promising results to cluster dynamic FCs in structural
and temporal components. Our problem is to develop a
tensor factorisation which both extracts temporal patterns
common to epoch of each seizure, and constrains F to be
sparse. The sparsity constraint appears to be important
because, in comparison to the case without this constraint,
F becomes closer to a cluster assignment matrix. Moreover,
it limits the complexity of clusters by reducing the number
of FC they contain. This is important in the context of
epileptic data where a large number of FC measurements
can be passively implied in a neurological process (during
the discharge of the seizure for example).
Then, our proposed approach seeks to perform the

following decomposition:

X(L) ≈ F(w⊗V)t (5)

where w ∈ RS is a vector performing a weighted
average of the S epochs in order to extract common
patterns, F ∈ RL×K is sparse and scaled such that
|| w ||2F=|| v:k ||2F= 1 (to remove scaling indeterminacy
and transfer all the energy in our factor matrix). Finally,
V ∈ RT×K will also be constrained to be sparse so as to
select specific temporal steps of FC activation, eliminating
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thus, periods where there is no common activation of
FC clusters. This decomposition is close to a Block term
decomposition [41] with one component and with an
additional sparsity constraint imposed on the two first
modes. It is also a variant of a parsimonious Tucker
decomposition, presented in [42] or [43], with the difference
that factorisation with a core tensor is not used in our
model (it would be difficult to use if we want for each
sparse FC patterns a sparse temporal activation profile).
After reduction, the k-means step enforces the graphs

to be binary, sparse and simple to study. In order to
understand the proposed tensor decomposition, we show
how to rewrite k-means algorithm so as to highlight its
link with the SVD and its extensions. Then, two useful
extensions of SVD are presented, which will serve as the
building blocks of our proposed tensor decomposition.

A. k-means clustering and dimensionality reduction
Applying k-means algorithm [4] on the tensorX amounts

to find the N matrices Θn::, centroids of the N clusters
that best characterise the data. The l-th slice Xl:: of the
tensor, belongs to the cluster n (noted l ∈ Cn), if its
nearest centroid is Θn::. As shown in Appendix A-A, this
is equivalent to applying k-means clustering on the rows
of the matrix X(L), where the centroids of the clusters
are now vectors θn: ∈ RTS , solutions of the optimization
problem :

argmin
θ1:,θ2:,...,θN:

N∑
n=1

∑
l∈Cn

|| X(L)l: − θn: ||2F (6)

Moreover, as we show in appendix A-B, the solution to
(6) amounts to find the matrix A ∈ RL×N that maximises
the following norm (the optimal solution of the following
problem is called A∗):

argmax
A

|| AtX(L) ||2F (7)

and such that the columns a:i of A form a standard basis of
a subspace of RL, i.e. A is unitary, sparse and non-negative.
Now, in order to both highlight relevant and filtered FC
factors (e.g. sparse and common to every seizure) and
compensate for the curse of dimensionality, we consider
performing dimensionality reduction on X before applying
k-means. The goal is to run the k-means procedure on a
reduced data set, called factor matrix and noted F ∈ RL×K .
For that we seek to replace, in Eq. (7), the raw data matrix
X(L) by this lower dimension factor matrix F, leading to
the following optimal solution:

argmax
A

|| AtF ||2F (8)

where A should have the same structure as in (7). It is
important to remark that, in a general case, the optimal
solutions of Eqs (7) and (8) are not the same. Indeed,
the dimensionality reduction is not only performed to
compensate the curse of dimensionality, but it also helps
clustering as it denoises the data into more relevant
components. In addition, if the reduction is able to impose

to F some constraints that A must verify in Eq. (7), then
the clustering solution can be improved [24].

B. The singular value decomposition
This last point can be done partially using the SVD [24].

By imposing only the orthogonality constraint in Eq. (7),
the solution A∗ corresponds to the projection of X(L) on
its N first right singular vectors. As a result, the truncated
SVD of X(L) can be seen as a relaxation of the k-means
clustering problem [24]. Indeed, the SVD of X(L) can be
written as [27]:

X(L) = UΛZt, (9)

where U ∈ RL×L and Z ∈ RTS×TS are unitary matrices,
and Λ ∈ RL×TS is a positive diagonal matrix such that,
if L ≤ TS, λ11 ≥ λll ≥ λLL. The best low order
approximation according to the Frobenius norm of X(L) is
U(K)Λ(K)Z(K)t with U(K) = U:[1,...,K], Z(K) = Z:[1,...,K]
and Λ(K) = U(K)tXZ(K). This dimensionality reduction
method is in fact the application of k-means clustering on
FSVD = U(K)Λ(K), as in Eq. (8). The columns of FSVD
are also referred to as the principal components of X(L).
The SVD reduction is also used for data denoising –

limiting the noise to the reduced signal subspace only [30].
Hence it should yield a clustering that is less sensitive to
spurious FC. According to [31], another property is that,
under some hypothesis, FSV D is a good approximation of
X(L) to obtain the best clustering solution A∗ of Eq. (7).
However, this property is limited for our problem since it
does not lead to clusters of components that are sparse and
common to each seizure. Also, in high dimensions, relevant
information is more likely to be masked by misleading
dimensions (in our case, corresponding to periods of time
where there is no relevant activation of FC). The euclidean
distance between FCs becomes less discriminatory, exposing
thus the SVD to the curse of dimensionality too. To
overcome these weaknesses of the SVD, we propose in
the following to use sparsity to favour more relevant
dimensionality reductions.

C. The sparse singular value decomposition
Finding a sparse SVD (sSVD) (or sparse PCA) was

declined in different manners, e.g. [44], [45]. The ideal
constraints would be both at sparsity and orthogonality.
Yet, we will use the relaxed version [44] to find a low-rank
approximation of X(L) under sparse constraints. Mathemat-
ically speaking, this sparse version of the SVD looks for the
low-rank matrices U ∈ RL×K and Z ∈ RTS×K , solutions
of the following constrained optimization problem:

argmin
U,Z

|| X(L) −UZt ||2F +γ1 || U ||1 +γ2 || Z ||1 (10)

where the meta-parameters γ1 and γ2 allow for tuning the
trade-off between accuracy and sparsity of the approxima-
tion. Finally, we choose to normalize the columns of U and
of Z such that || z:k ||2F= 1 ∀k ∈ 1, ...,K in order to avoid
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scaling indeterminacies. To solve problem (10), we use the
SPAMS library on matlab [46].

Combined with k-means, the low dimension factor matrix
F to be plugged in Eq. (8) would simply read here
FsSV D = U. The optimization problem in (10) can be
seen as a dictionary learning task, with parsimony imposed
both to the dictionary Z and to the coefficients U. Notice
that we could impose sparsity uniquely on U or on Z,
but empirically both options give poorer results. Let us
remark also that instead of sparsity, we could impose
a non-negativity constraint to the optimization problem
(10), leading thus to the so-called non-negative matrix
factorisation (NMF) [47]. NMF is also viewed as a soft
clustering method [48], but its use for dimensionality
reduction prior to k-means clustering is less common.
Still, we will compare the use of the corresponding low
dimension factor matrix FNMF = U in Eq. (8) and check
its performance against other alternatives.

D. Higher order SVD
In our problem, since data takes on the form of a tensor

X , it is logical to use a higher-order version of the SVD
rather than applying SVD to the concatenation of the
seizures. Actually, there are several extensions of SVD to
tensors [49]. The most popular one is certainly the canonical
polyadic decomposition [50], which extends the SVD in the
sense that it decomposes the data into a sum of rank one
tensors, like SVD decomposes the data in a sum of rank
one matrices. It amounts to find the matrices U ∈ RL×K ,
V ∈ RT×K and W ∈ RS×K that minimize the norm:

argmin
U,V,W

|| X −
K∑
k=1

u:k × v:k ×w:k ||2F , (11)

where × corresponds to the tensor product (let u ∈ RL
and v ∈ RT , the tensor product u×v = M ∈ RL×T is such
that mlt = ulvt [11]). To warrant the existence of a global
solution for this decomposition, it is recommended to add
non-negativity constraints to all factors [51], leading to
to the non-negative canonycal polyadic decompostion [52]
(nnCP). After rescaling U such that || v:k ||2F=|| w:k ||2F= 1
∀k ∈ 1, ...,K in order to avoid scaling indeterminacies,
we get FnnCP = U to be substituted in Eq. (8). By
construction, this decomposition is not intended to identify
common patterns in one particular mode (e.g. for all
epochs); each factor u:k has a proper activation w:k
alongside the epoch mode, and the odds to get seizure
specific patterns increase with K. This is a limiting for our
application.
Interestingly though, the canonical polyadic decompo-

sition is a particular case of a more general SVD in high
dimensions, for which the core tensor is hyperdiagonal, with
the same size K for all modes. Relaxing these two con-
straints and imposing on each matrix to be unitary yields
the high order singular value decomposition (HOSVD)
[14], another possible extension of the SVD. It amounts
to find three unitary matrices U ∈ RL×L, V ∈ RT×T and
W ∈ RS×S such that the following decomposition holds:

X(L) = UG(L)(W⊗V)t. (12)

Like it is the case with SVD, HOSVD seeks for orthogonal
matrices that best characterise the data with respect to
each of its modes. In contrast to SVD though, the matrix
G(L) ∈ RL×TS is no longer diagonal and is dense in general.
To compute the decomposition (12), we use the HOSVD
algorithm proposed in [14] and recalled in Algorithm 1.

Algorithm 1 Estimate U, V and W via HOSVD.
Require: X ∈ RL×T×S

U = left−L−SV D(X(L)) . 1

V = left−T−SV D(X(T ))
W = left−S−SV D(X(S))

1: U(K) = left−K−SV D(X) denotes the algorithm comput-
ing the first K singular components of X.
Now HOSVD can be seen, as SVD, as a dimension

reduction of the data before clustering. In other words,
we are looking for lower rank matrices U(KL) ∈ RL×KL ,
V(KT ) ∈ RT×KT and W(KS) ∈ RS×KS that are now
solutions of the optimal approximation:

argmin
U(KL),V(KT ),W(KS )

|| X(L)−U(KL)G(L)(W(KS)⊗V(KT ))t ||2F ,

(13)
with G(L) ∈ RKL×KTKS , a dense matrix. However, in
contrast to the SVD, the sought low rank matrices do not
simply stem from truncating the solution U (resp. V, W)
to its first KL (resp. KT , KS) columns. Instead, we need to
resort to an iterative optimization algorithm as the Higher
Order Orthogonal Iteration of Tensors (HOOI) proposed
in [43], [53] and depicted in Algorithm 2. The work in
[54] shows that in most cases, HOOI reaches the optimal
solution of (13), with good convergence performance.

Algorithm 2 Estimate U(KL), V(KT ) and W(KS) via
HOOI.
Require: X ∈ RL×T×S , The parameter for reduction

(KL,KT ,KS), increment tolerance ε > 0, imax.
i = 0
[U0,V0,W0] = HOSV D(X )
while i < imax or || G(L)i ||2F − || G(L)i−1 ||2F> ε do

U(KL)
i+1 = left−KL−SV D(X(L)(W

(KS)
i ⊗V(KT )

i ))
V(KT )
i+1 = left−KT−SV D(X(T )(U

(KL)
i+1 ⊗W(KS)

i ))
W(KS)

i+1 = left−KS−SV D(X(S)(V
(KT )
i+1 ⊗U(KL)

i+1 ))
G(L)i+1 = U(KL)t

i+1 X(L)(W
(KS)
i+1 ⊗V(KT )

i+1 )
i = i+1

end while

IV. New tensor reductions for clustering
Our aim here is to highlight the component of FC

dynamics that is common to all seizures. So, setting KS = 1
in (13), leads to a vector W(1) ∈ RS×1 that measures the
contribution rate of each seizure to the common pattern.
For instance, a constant vector (W(1)

s = 1√
S
∀s ∈ 1, ..., S)
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means that the common pattern is simply the average of all
seizures. Whereas, if the seizures share no common features,
the retained component will match the seizure s for which
|| X::s ||2F is maximum. In general though, the common
component is a linear combination of all seizures’ patterns
and it is always good practice to have a close look at W(1)

to see how heterogeneous the seizures are.
For the sake of simplicity and without loss of generality,

we will consider in the following that KL = KT = K, and
propose a modification of the HOOI procedure for this
specific case. This new procedure has the advantage to
converge more rapidly to the optimal solution, moreover
some simple modification can be done in order to add
constraints on the reduction.

A. modified HOOI (mHOOI)

In Algorithm 2, matrices U(K)
i and V(K)

i are computed
by extracting the left singular components of two different
matrices. By noting that the common epoch (associated to
W(1)) is a matrix, the idea behind the modification consists
in extracting the left and the right singular components of
this one matrix in order to obtain U(K)

i and V(K)
i . Then,

the three steps of the original algorithm are reduced to
two. Notice that if KS > 1 (we take KS = 2 for the
example), the tensor X will be compressed in two Epoch
forming a tensor, and the respective mode-L and mode-
T matricization of this tensor will be two matrices with
different dimensions, implying the impossibility to extract
U(K)
i and V(K)

i from the same matrix factorisation.
The proposed modified HOOI (noted mHOOI) is as

follows, iterating 2 steps in alternance:
(A) At iteration (i + 1) we assume W(1)

i to be known.
From this vector we compute the common Epoch corre-
sponding to X(L)(W

(1)
i ⊗ I) ∈ RL×T , with I ∈ RT×T

the identity matrix (it corresponds to the mode-L
matricization of the contraction product between the
tensor X and the vector W(1)t [12]). We then compute
the low rank approximations U(K)

i+1 and V(K)
i+1 as the K

first components of the singular value decomposition
of X(L)(W

(1)
i ⊗ I) = Ui+1Λi+1Vt

i+1.
(B) In order to update W(1)

i+1 we first filter the tensor
X by projecting it on the subspaces spanned by the
matrices U(K)

i+1 and V(K)
i+1 . W(1)

i+1 is then obtained by
a special HOOI decomposition on the filtered tensor
with KL = L, KT = T and KS = 1. As shown in
Appendix B-A, because only one mode is reduced
(the Epoch mode here), the optimal decomposition
can be found analytically. Both the filtering and
the decomposition, in order to get W(1)

i+1, reduce to
the problem of computing the dominant left singular
vector of X(S)(V

(K)
i+1 ⊗U(K)

i+1).
We summarize in Algorithm 3, this modified HOOI

method (mHOOI) and how to obtain the corresponding
lower dimension factor matrix FmHOOI . Worth noticing
too, we use an angular metric between two successive
estimates of W(1) as the stopping criterion of the iterative

Algorithm 3 Estimation of FmHOOI
Require: X , K, angular tolerance ε > 0, et imax.
i = 0
W(1)

0 = left−1−SV D(X(3))
while i < imax or acos(< W(1)

i ,W(1)
i−1 >)>ε do

(A). [U(K)
i+1 ,Λi+1,V(K)

i+1 ] = K−SV D(X(L)(W(1)
i ⊗ I))

(B). W(1)
i+1 = left−1−SV D(X(S)(V(K)

i+1 ⊗ U(K)
i+1))

i = i+ 1
end while
FmHOOI = U(K)

i Λi

procedure, sparing thus the unnecessary computations of
G(L)i. As the two steps (A) and (B) yield unique and
optimal solutions, and provided the calculation of SVD does
not degenerate [54], we expect the procedure to converge.
In fact, it empirically converges more rapidly than HOOI
to an optimal solution, as shown in Appendix B-B.

B. High Order sparse SVD (HOsSVD)

The previous algorithm requires several SVD and the
final matrix FmHOOI is not sparse in general. As we
already noticed, sparsity constraints is wanted to get FC
graphs with few edges, and because the SVD is impacted
by the curse of dimensionality it is desirable to limit
its use. Following the same rationale, and in order to
perform a decomposition as proposed in Eq. (5), we
develop a sparse version of mHOOI, where we replace the
computation of the SVD in step (A), by the sparse SVD of
Eq. (10). We call this decomposition a High Order sparse
SVD (HOsSVD). Since the matrix Ui+1 is not necessarily
orthogonal anymore, we compute the subspace spanned by
this matrix by performing its QR decomposition, and we
retain only the first K column vectors of the Q part. The
same goes for Vi+1. Writing qr(Vi+1,K) this operation,
Algorithm 4 presents the computation of FHOsSV D, the
lower dimension factor matrix stemming from this high
order sparse SVD reduction (HOsSVD).
As a final remark, let us stress that in this work, we

focused on the tensor extension of the sparse SVD. But
similarly, other matrix factorisations could be used instead
(NMF [47], sparse NMF [36] , or a k-SVD dimensionality
reduction [35]). However, the approach proposed here
empirically performs the best on synthetic and real data.

Algorithm 4 Estimation of FHOsSV D
Require: X , K, γ1, γ2, angular tolerance ε > 0, et imax.
i = 0
W(1)

0 = left−1−SV D(X(3))
while i < imax or acos(< W(1)

i ,W(1)
i−1 >)>ε do

(A). Ui+1, Vi+1 minimising (10) with X(L)(W(1)
i ⊗ I).

A = qr(Ui+1,K), B = qr(Vi+1,K)
(B). W(1)

i+1 = left−1−SV D(X(S)(B ⊗ A))
i = i+ 1

end while
FHOsSV D = U(K)

i
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V. Comparison on a model

In this Section, we evaluate the performance of the
proposed methods and compare them to the state of the
art methods for dimensionality reduction of data, prior to
their k-means clustering. To this end, and because we are
primarily interested in iEEG signals, we first present an
original and oversimplified model of functional connectivity
that, still, integrates four sources of uncertainty able to
reproduce most experimental variabilities.

A. A dynamic graph model for FC
Epileptic seizure implies a pathological FC that starts

in a focal brain onset, then spreads to the other connected
regions, and sometimes split to give rise to new FC
components. Fig. 3 displays a characteristic example of
actual FC time series measured by the phase lock value
(PLV) [3]. The model we propose is aimed at reproducing
the global structured pattern of FCs’ activation, and
the uncertainties of the measures. More precisely, we
consider a matrix X ∈ RL×T , where xlt is set to a high
value if the FC of index l ∈ {1, . . . , L} is active at time
t ∈ {1, . . . , T}, and to a low value otherwise (to account
for the non ON-OFF discrepancy of the PLV measurement,
we choose values equal to 0.7 and 0.2, respectively). A
cluster Cn, n ∈ {1, . . . , N}, is composed of all FCs that
are activated over the same period of time Tn. This is for
the deterministic part of the model, defining the structural
and temporal pattern of FCs activation, common to all
seizures. Superimposed to it, we add a seizure dependant
random component, composed of four uncertainty sources:
i Random duration: each activation period Tn is uni-
formly distributed between a minimum duration (here,
5 time steps) and T

N time steps (the binary variable α
allows to able (1) or disable (0) this random mode).

ii Activation error: with probability β ∈ [0, 1], each FC
of a given group Cn incurs the risk to be replaced by
any other randomly chosen FC.

iii Connectivity noise: we add to xlt a white centered
Gaussian noise of power σ2 (SNR = σ−2).

iv Jitter: All FCs of the same group start activating with
independent jitters, uniformly distributed in

[
− δ2 ,

δ
2
]
.

Figure 3 displays one realization of these synthetic FC
time series. Compared to real data, the model succeeds in
reproducing a realistic global pattern. More importantly,
as it allows a control of the nature and the intensity of
variability between epochs, it will serve to evaluate the
sensitivity and the robustness of the different dimension
reduction methods for clustering, with respect to each
source of uncertainty.
To this end, we simulate different seizures of a same

patient as i.i.d. realizations of our model with the same
set of parameters b = [α, β, σ, δ]. As for real data, the S
modeled seizures are then stacked in a tensor X ∈ RL×T×S .
Figure 4 displays the unfolded matrix X(L) corresponding
to the particular choice [α = 1, β = 0.2, σ = 0.05, δ = 0],
L = 66, T = 1000 and S = 4.

Fig. 3: Real data vs example of model we can get for one seizure
with noise parameters b = [1, 0.2, 0.1, 0.1].

Fig. 4: realization of X(L) corresponding to 4 simulated seizures
(or epochs) with noise parameters b = [1, 0.2, 0.05, 0].

B. Experimental setup
Using the FC model introduced above, we can now

study and compare the different methods for reducing
data dimensionality, derived in Section IV, to the state-
of-the-art methods recalled before. Each method yields a
lower dimension factor matrix F that serves as an input to
k-means. Performance refer here to the ability at retrieving
the FC clusters of the global pattern. Table I summarizes
the 8 methods we considered, indicating for each, which
implementation was used and the best (empirically deter-
mined) hyper-parameters values. As benchmarks, we also
consider the two straightforward approaches that consist in
applying k-means directly on the unfolded tensor FDirect =
X(L), or on the seizures average Fmean =

∑S
s=1 X::s.

Method Section Implementation Parameters
1 - Direct V-B (1) -
2 - Mean V-B (1) -
3 - NMF III-C (1) ε = 10−4

4 - nnCP III-D (2) ε = 10−6

5 - SVD III-B (1) -
6 - mHOOI IV-A (1)-(3) ε = 10−3

7 - sSVD III-C (1)-(4) λ1 = 0.1, λ2 = 1,
ε = 10−3

8 - HOsSVD IV-B (1)-(3)-(4) λ1 = 0.1, λ2 = 4,
ε = 10−3

TABLE I: Comparative method to convert the tensor X
to a factor matrix F

The links for the different toolbox for implementation and
our code. (in Matlab) :

• (1) Algorithms used in this article: FCTensDec
• (2) N-way toolbox version 3.30 [55]
• (3) MATLAB Tensor Toolbox Version 2.6 [56]
• (4) SPAMS toolbox version 2.6 [46]

The reduced dimension K is varied from 1 to 4, and
we retain, in our comparisons, the value yielding the
best grouping score for each method. Regarding k-means

https://github.com/FrusqueGaetan/FCTensDec
https://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox\protect \T1\textdollar ?focused=5224598&tab=function
https://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html
http://spams-devel.gforge.inria.fr/
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algorithm, we used k-means++ version [57] that we stopped
after 1000 iterations and repeated 120 times with different
seeds. The number of sought groups is set to N = 4. Finally,
to assess the clustering performance of each method, we
use the Adjusted Rand Index (ARI) score [58], computed
between the resulting grouping and the ground truth:
the score equals 1 for a perfect match and 0 if the
correspondence does not outperform a random grouping.

C. Results and discussion
Under these experimental conditions, we evaluate all

methods for various configurations of uncertainty (different
configurations are resumed in table II). Fig. 5 displays
the ARI scores (mean and variance estimated out of 120
independent realizations of X ) for 6 different combinations
of (i) random duration, (ii) activation error and (iii)
connectivity noise. Here, the jitter uncertainty is disabled.
Fig. 6, displays the same but with (iv) the jitter activated.
We do not show the results with only random duration as
all methods perform equally in this case.
From Fig. 5, we observe that the methods with di-

mensional reduction have better performances than the
standard methods. Tensor methods perform better than
their matrix counterparts, and sparse methods generally
outperform conventional methods. On the opposite, the
non-negativity constraint does not seem to be helpful
here. Globally, HOsSVD distinguishes itself systematically,
and especially for weak SNRs. Focusing on the case with
only connectivity noise (experiment b1), we can see that
HOsSVD clearly outperforms other methods.
We isolated in Fig. 6 the impact of jitter since it is

the sole uncertainty source for which HOsSVD does not
systematically reach the best performance. From that
perspective, the worst case corresponds to the combination
of jitter and random duration and jitter alone (case b2)
where our method performs just better than the direct
methods, but worse than matrix dimensionality reduction.
For the case b10 the results are similar to that of the other
dimensionality reduction methods and for the case b7 both
of our proposed approach (mHOOI, HOsSVD) get similar
results, slightly better than those of the other methods.
Experimentally it corresponds to situations where we could
get better results if we would perform tensor reduction with
KS > 1. Indeed the complexity generated by the jitter
impact the common activation of clusters and can mix
different groups of FC. A solution to this problem with a
similar method as ours, includingKS > 1 scenario, could be
to extract only the left factor matrix on both temporal and
FC mode since it is impossible to do it simultaneously. This
is not pursued further here. Finally, HOsSVD dominates
again in the presence of connectivity noise.

Conclusion Globally HOsSVD performs generally bet-
ter (or equal) than all other reduction methods except for
two case, it outperforms other method for models with
connectivity noise. Methods mHOOI and sSVD get good
performances overall. The non-negativity constraint does
not seem advantageous in any scenarios.

bi = [α, β, σ, δ] 1 2 3 4 5 6 7 8 9 10 11 12 13 14
α X X X X X X X
β X X X X X X X X
σ X X X X X X X X
δ X X X X X X X X

TABLE II: Checkmark when the uncertainty in configuration
bi is present

Fig. 5: ARI score for each method, for 6 models associated to
vector bi without jitter uncertainty

Fig. 6: ARI score for each method, for 7 models associated to
vector bi with jitter uncertainty

VI. Application on real data
Data: We consider real iEEG data from a patient with
focal epilepsy [1], [2]. The electrodes used are distributed
on stems implanted in the brain. The activity of the brain
is recorded via 5 to 10 electrodes per stem. The space
between two consecutive electrodes is 3.5 mm. Over a
recording time of 15 days, 4 seizures were selected. Each
seizure is delimited in time by a window of 100 seconds
centered on the beginning of the seizures. The signal is
sampled at 256 Hz. 33 equitably distributed contacts over
the initial 108 are selected to avoid too strong spatial
correlations. The functional connectivity metric used is
PLV [3]. A strong PLV between two signals means that
their phases are similar. The 528 FC (corresponding to each
pair of electrodes) were calculated over a sliding rectangular
window of 4 seconds duration, with a time step of one
second. After eliminating the points that suffer from border
effects, the data is formatted as a tensor X ∈ R528×96×4.
Application: From the tensor X , we obtain the matrix
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FHOsSV D (using Algorithm 4), where the parameters,
K = 4, γ1 = 1, γ2 = 1 and ε = 10−3 are empirically
fixed (It is current to consider between 3 and 5 different
steps in an epileptic seizure justifying K = 4; for γ1 and γ2
we search for the highest value of parameters where results
seem coherent). Fig. 7 (top) shows the temporal activation
profiles of the components of FHOsSV D (corresponding to
the matrix V(K) from Algorithm 4). There are 4 activation
periods that can be easily associated with 4 steps of the
seizures: before seizure, start, propagation and end of the
seizure. The time interval around time 50s is particularly
interesting as it shows no activated FC. This is likely to
correspond to the functional decoupling at the early start
of the seizure, a short period when iEEG activities in
different areas of the brain are suddenly decorrelated [59].
We apply k-means to FHOsSV D to identify the N = 5
corresponding FC groups. Since FHOsSV D is close to an
assignment matrix (a solution A∗ of Eq. (8)), we retain
the 4 groups of smaller sizes, which can be associated
with the 4 activation periods while the the 5th group
corresponds to the unsynchronized FCs. Figure 7 (bottom)
materializes the positions of the 33 electrodes projected on
the transverse plane (according to the lair of Tailarach). An
FC is represented by a link between the pair of electrodes
that are in phase. The four FC groups can be associated to
four snapshots of a time-varying graph: before the seizure,
only two electrodes interact in what could correspond to
the epileptogenic zone. At the beginning of the seizure:
spreading of FC activation with the appearance of a cluster
of FC localized around the epileptogenic zone. During
the crisis, other FC appears spontaneously in the other
hemisphere, at the same time the FC are diffused in the left
hemisphere. At the end of the crisis, the two hemispheres
interact with the appearance of common FC.

The graphs obtained are in agreement with the clinical
results, the focus of the beginning of the seizure being
close to the graphs "before-seizure" and "seizure start".
The propagation of seizures in the right hemisphere of the
brain is well represented by the graphs "Propagation" and
"Seizure end".

Fig. 7: (above) activation profile of HOsSVD (variable V of
algorithm 4 (under) Cluster of FC corresponding to the 4
activation steps of the seizures of the considered patient )

VII. Conclusion
In this work, we presented different dimensionality

reduction for k-means clustering with the objective of
clustering functional connectivity data over time and
different epochs. As we expect each trial (or epoch) to
have the same sorting of FC activation, but with different
temporal duration, we developed a tensor decomposition,
based on the existing HOOI algorithm, to select groups
of FC activation that are representative of all trials. We
compared the methods on a model of epileptic functional
connectivity, with 4 kinds of uncertainty. Globally, methods
using tensor decomposition and sparse constraints get the
best performance, in particular the proposed HOsSVD
reduction which consists in a sparse tensor decomposition.
This HOsSVD method is an interesting alternative for the
reduction of tensor data. Applied as pre-processing in raw
data, it significantly improves the clustering performance
of k-means. Applied to real iEEG data recorded during an
epileptic seizure, our method allowed us to identify the 4 FC
activation groups corresponding to the 4 significant time
periods of the evolution of the seizure. As a perspective of
this work, a more automated choice of the hyper-parameters
would lead for a more systematic and exhaustive analysis
of comparative performance. This would allow us to further
analyse the dynamics of functional connectivity in a richer
clinical dataset.

Appendix A
More about k-means clustering

A. K-means on tensor
The goal here is to perform k-means to cluster the first

mode of the tensor X ∈ RL×T×S . This lead to find N
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matrix centroids Θn:: ∈ RT×S to cluster the L slices Xl::.

argmin
Θ1::,Θ2::,...,ΘN::

N∑
n=1

∑
l∈Cn

|| Xl:: −Θn:: ||2F (14)

moreover, the L2-norm is invariant the linear function vec()
(|| X ||2F=|| vec(X) ||2F ), then :

argmin
Θ1::,Θ2::,...,ΘN::

N∑
n=1

∑
l∈Cn

|| vec(Xl::)− vec(Θn::) ||2F (15)

By considering mode-1 matricization of X with X(1)l: =
vec(Xl::) and noting θn: = vec(Θn::) we get Eq. (6).

B. K-means is matrix factorisation
We start from Eq. (6) and set X = X(1) to simplify

the notations. By calling S ∈ RL×N the matrix of binary
indicator variables such that :

sln =
{

1 if l ∈ Cn,
0 else

(16)

we can rewrite the cost function, Eq. (6) [23], as :
N∑
n=1

∑
l∈Cn

|| xl: − θn: ||2F =
N∑
n=1

L∑
l

sln || xl: − θn: ||2F , (17)

=|| X− SΘ ||2F , (18)
= Tr(XXt)− 2Tr(SΘXt) + Tr(SΘΘtSt), (19)
= Tr(XXt)− Tr(SΘXt), (20)

The passage from (19) to (20) is proved in the following
equations. When S is fixed, the centroids are found by least
square regression, using the Moore-penrose Pseudoinverse
of S, noted S† ∈ RN×L , (we recall that S†S = I):

Θ = (StS)−1StX = S†X, (21)

Note this result have a physical meaning, since S is column
orthogonal we have

θn: =
∑L
l=1 slnxl:∑L
l=1 sln

= 1
cn

∑
l∈Cn

xl:. (22)

with cn the cardinal of cluster Cn, so that it corresponds
to the average of all FC belonging to the cluster Cn. Then
the first term of Eq. (19) is:

Tr(XXt) =|| X ||2F= Cste (23)

By noticing that SS† is a projection matrix (and
(SS†)tSS† = SS†), the third term is:

Tr(SΘΘtSt) = Tr((SS†)tSS†XXt) (24)
= Tr(SΘXt), (25)

This proves the passage from Eq. (19) to (20). Finally:

Tr(SΘXt) = Tr(S(StS)−1SXXt), (26)
= Tr((StS)− 1

2 StXXtS(StS)− 1
2 ), (27)

=|| AtX ||2F , (28)

where A ∈ RL×N is to the normalized indication matrix,
A = S(StS)− 1

2 , such that:

aln =
{

1√
cn

if l ∈ Cn,
0 else

. (29)

As || X ||2F is fixed, we can see that minimizing Eq. (6) is
equivalent to maximizing the second element of Eq. (20).
By noticing that columns of A form a standard basis of
a subspace of dimension K of RL×L, the optimization
problem (6) becomes equivalent to [60]:

argmax
A

|| AtX ||2F (30)

s.t. a:i standard basis vector (31)

Appendix B
More about the proposed tensor decomposition
A. On the optimal result of (L,T,1) HOSVD
We want to find unitary matrix matrix Ū ∈ RL×L and

V̄ ∈ RT×T and a column orthogonal matrix W̄(KS) ∈
RS×KS minimizing the criteria (∀KS ∈ 1, ..., S):

|| X(L) − ŪḠ(W̄(KS) ⊗ V̄)t ||2F , (32)

Where Ḡ ∈ RL×T×K correspond to
Ḡ = ŪtX(1)(W̄(KS) ⊗ V̄) The optimal solution is
obtained by Algorithm 1 and considering the matrix
W(K) = W:[1,...,K]. We prove it by noting that the
Frobenius norm of a tensor is the same as the Frobenius
norm of his D-mode matricization (including the third):

J =|| X(S) −W(KS)G(L,T,KS)
(S) (V⊗U)t ||2F , (33)

Also we wave:

GL,T,K
(S) = IS→KSG(S), (34)

Where IS→KS ∈ RKS×S is a rectangular diagonal matrix
selecting only the firstK rows of the matrix G(S). Moreover
by using the third mode matricization of the full rank
HOSVD decomposition we can easily show that:

G(S)(V⊗U)t = WtX(S), (35)

Eq. (33) becomes (with X(S) = WΣZt the SVD of X(S)):

J =|| X(S) −W(KS)IS→KWtX(S) ||2F , (36)
=|| X(S) −W(KS)W(KS)tX(S) ||2F , (37)
=||WΣZt −W(KS)Σ(KS)Z(KS)t ||2F , (38)

=
S∑

s=KS+1
σ2
s . (39)

This corresponds, using the Eckart-Young-Mirsky theorem,
to:

min
rk(X)=KS

|| X(S) −X ||2F (40)

Then, we can conclude that the (L, T,KS)-core tensor
reduction via HOSVD minimize the criteria (32) because
it is the best low rank approximation of the mode-3
matricization of X .
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Fig. 8: tvar(t) for the first 100 iterations using the tensorXmodel

as input of the algorithm with a zoom of the last iteration and
the first value of ldvar(t)

B. Note on empirical convergence of mHOOI
To empirically observe the convergence towards the

optimal solution, with faster performance than HOOI
algorithm we propose the following experiment. We con-
sider a tensor Xmodel ∈ R66×1000×4 which corresponds
to the model of Section V-A, with a noise vector of
b = [0.2, 1, 1, 0.3]. We fix KL = KT = 4 and KS = 1.
We compare the performance of both HOOI and mHOOI
algorithm by computing the total variance at each iteration
tvar(t) =|| Gi ||2F for HOOI, tvar(t) =|| Fi ||2F (since
they are matrices containing all the variance) and the log
differential of the total variance between two consecutive
iterates ldvar(t) = log(tvar(t)− tvar(t−1))). Fig. 8 shows
the mean of tvar(t) for the first 100 iterations using 100
realisations of the tensor Xmodel as input of the algorithm.
A zoom of the last iteration is provided as well as the
first value of ldvar(t). The new proposed algorithm has
always better performances than HOOI, with exponential
convergence, on this scenario. This experiment, tested for
other configurations, gave similar results.

References

[1] M. Guenot, J. Isnard, P. Ryvlin, C. Fischer, K. Ostrowsky,
F. Mauguiere, and M. Sindou, “Neurophysiological monitoring
for epilepsy surgery: the talairach seeg method,” Stereotactic
and functional neurosurgery, vol. 77, no. 1-4, pp. 29–32, 2001.

[2] P. Chauvel, S. Rheims, A. McGonigal, and P. Kahane, “French
guidelines on stereoelectroencephalography (seeg): Editorial
comment.” Neurophysiologie clinique= Clinical neurophysiology,
vol. 48, no. 1, p. 1, 2018.

[3] P. van Mierlo, M. Papadopoulou, E. Carrette, P. Boon, S. Van-
denberghe, K. Vonck, and D. Marinazzo, “Functional brain
connectivity from EEG in epilepsy: Seizure prediction and
epileptogenic focus localization,” Progress in neurobiology, vol.
121, pp. 19–35, 2014.

[4] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
recognition letters, vol. 31, no. 8, pp. 651–666, 2010.

[5] G. Ortiz-Jiménez, M. Coutino, S. P. Chepuri, and G. Leus,
“Sampling and reconstruction of signals on product graphs,”
in 2018 IEEE Global Conference on Signal and Information
Processing (GlobalSIP). IEEE, 2018, pp. 713–717.

[6] Y. Shen, B. Baingana, and G. B. Giannakis, “Tensor decom-
positions for identifying directed graph topologies and tracking
dynamic networks,” IEEE Transactions on Signal Processing,
vol. 65, no. 14, pp. 3675–3687, July 2017.

[7] F. Sheikholeslami and G. B. Giannakis, “Overlapping commu-
nity detection via constrained parafac: A divide and conquer
approach,” in 2017 IEEE International Conference on Data
Mining (ICDM), Nov 2017, pp. 127–136.

[8] L. Gauvin, A. Panisson, and C. Cattuto, “Detecting the
community structure and activity patterns of temporal
networks: A non-negative tensor factorization approach,” PLOS
ONE, vol. 9, no. 1, pp. 1–13, 01 2014. [Online]. Available:
https://doi.org/10.1371/journal.pone.0086028

[9] R. Hamon, P. Borgnat, P. Flandrin, and C. Robardet, “Extrac-
tion of temporal network structures from graph-based signals,”
IEEE Transactions on Signal and Information Processing over
Networks, vol. 2, no. 2, pp. 215–226, June 2016.

[10] ——, “Nonnegative matrix factorization to find features in
temporal networks,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2014,
pp. 1065–1069.

[11] P. Comon, “Tensors: a brief introduction,” IEEE Signal Process-
ing Magazine, vol. 31, no. 3, pp. 44–53, 2014.

[12] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[13] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for signal
processing and machine learning,” IEEE Transactions on Signal
Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[14] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM journal on Matrix Analysis
and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[15] A. N. Khambhati, K. A. Davis, B. S. Oommen, S. H. Chen, T. H.
Lucas, B. Litt, and D. S. Bassett, “Dynamic network drivers
of seizure generation, propagation and termination in human
neocortical epilepsy,” PLoS computational biology, vol. 11, no. 12,
p. e1004608, 2015.

[16] A. Hegde, D. Erdogmus, and J. C. Principe, “Spatio-temporal
clustering of epileptic ecog,” in 2005 IEEE Engineering in
Medicine and Biology 27th Annual Conference. IEEE, 2006, pp.
4199–4202.

[17] J. Gonzalez-Castillo, C. W. Hoy, D. A. Handwerker, M. E.
Robinson, L. C. Buchanan, Z. S. Saad, and P. A. Bandettini,
“Tracking ongoing cognition in individuals using brief, whole-
brain functional connectivity patterns,” Proceedings of the
National Academy of Sciences, vol. 112, no. 28, pp. 8762–8767,
2015.

[18] F. Liu, Y. Wang, M. Li, W. Wang, R. Li, Z. Zhang, G. Lu,
and H. Chen, “Dynamic functional network connectivity in
idiopathic generalized epilepsy with generalized tonic–clonic
seizure,” Human brain mapping, vol. 38, no. 2, pp. 957–973,
2017.

[19] L. Geerligs, N. M. Maurits, R. J. Renken, and M. M. Lorist,
“Reduced specificity of functional connectivity in the aging brain
during task performance,” Human brain mapping, vol. 35, no. 1,
pp. 319–330, 2014.

[20] X. Shi, W. Wang, and C. Zhang, “An Empirical Comparison
of Latest Data Clustering Algorithms with State-of-the-Art,”
Indonesian Journal of Electrical Engineering and Computer
Science, vol. 5, no. 2, pp. 410–415, 2017.

[21] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, 1996, pp. 226–231.

[22] B. J. Frey and D. Dueck, “Clustering by passing messages
between data points,” science, vol. 315, no. 5814, pp. 972–976,
2007.

[23] C. Bauckhage, “K-means clustering is matrix factorization,”
arXiv preprint arXiv:1512.07548, 2015.

[24] C. Ding and X. He, “K-means clustering via principal compo-
nent analysis,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 29.

[25] K. Nur’aini, I. Najahaty, L. Hidayati, H. Murfi, and S. Nur-
rohmah, “Combination of singular value decomposition and K-
means clustering methods for topic detection on Twitter,” in Ad-
vanced Computer Science and Information Systems (ICACSIS),
2015 International Conference on. IEEE, 2015, pp. 123–128.

[26] A. Ben-Hur and I. Guyon, “Detecting stable clusters using prin-
cipal component analysis,” in Functional genomics. Springer,
2003, pp. 159–182.

[27] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular value
decomposition and principal component analysis,” in A practical
approach to microarray data analysis. Springer, 2003, pp. 91–
109.

[28] A. H. Hossny, T. Moschuo, G. Osborne, L. Mitchell, and
N. Lothian, “Enhancing keyword correlation for event detection

https://doi.org/10.1371/journal.pone.0086028


SUBM. TO IEEE T-SIPN, MAY 2019 12

in social networks using SVD and k-means: Twitter case study,”
Social Network Analysis and Mining, vol. 8, no. 1, p. 49, 2018.

[29] F. Pisana, T. Henzler, S. Schönberg, E. Klotz, B. Schmidt, and
M. Kachelrieß, “High quality high spatial resolution functional
classification in low dose dynamic CT perfusion using singular
value decomposition (SVD) and k-means clustering,” in Medical
Imaging 2017: Physics of Medical Imaging, vol. 10132. Interna-
tional Society for Optics and Photonics, 2017, p. 101320M.

[30] A. A. Shabalin and A. B. Nobel, “Reconstruction of a low-rank
matrix in the presence of Gaussian noise,” Journal of Multivariate
Analysis, vol. 118, pp. 67–76, 2013.

[31] D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into
tiny data: Constant-size coresets for k-means, pca and projective
clustering,” in Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 2013, pp. 1434–1453.

[32] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay,
“Clustering large graphs via the singular value decomposition,”
Machine learning, vol. 56, no. 1-3, pp. 9–33, 2004.

[33] K. Allab, L. Labiod, and M. Nadif, “A Semi-NMF-PCA unified
framework for data clustering,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 29, no. 1, pp. 2–16, 2017.

[34] H. Zou and L. Xue, “A selective overview of sparse principal
component analysis,” Proceedings of the IEEE, vol. 106, no. 8,
pp. 1311–1320, 2018.

[35] N. Leonardi, “Dynamic brain networks explored by structure-
revealing methods,” EPFL, Tech. Rep., 2014.

[36] L. R. Chai, A. N. Khambhati, R. Ciric, T. M. Moore, R. C. Gur,
R. E. Gur, T. D. Satterthwaite, and D. S. Bassett, “Evolution
of brain network dynamics in neurodevelopment,” Network
Neuroscience, vol. 1, no. 1, pp. 14–30, 2017.

[37] A. Cichocki, “Tensor decompositions: a new concept in brain
data analysis?” arXiv preprint arXiv:1305.0395, 2013.

[38] M. J. Tobia, K. Hayashi, G. Ballard, I. H. Gotlib, and C. E.
Waugh, “Dynamic functional connectivity and individual differ-
ences in emotions during social stress,” Human brain mapping,
vol. 38, no. 12, pp. 6185–6205, 2017.

[39] A. G. Mahyari, D. M. Zoltowski, E. M. Bernat, and S. Aviyente,
“A tensor decomposition-based approach for detecting dynamic
network states from eeg,” IEEE Transactions on Biomedical
Engineering, vol. 64, no. 1, pp. 225–237, 2017.

[40] A. Ozdemir, E. M. Bernat, and S. Aviyente, “Recursive tensor
subspace tracking for dynamic brain network analysis,” IEEE
Transactions on Signal and Information Processing over Net-
works, vol. 3, no. 4, pp. 669–682, 2017.

[41] L. De Lathauwer, “Decompositions of a higher-order tensor in
block terms—part ii: Definitions and uniqueness,” SIAM Journal
on Matrix Analysis and Applications, vol. 30, no. 3, pp. 1033–
1066, 2008.

[42] M. Mørup, L. K. Hansen, and S. M. Arnfred, “Algorithms for
sparse nonnegative tucker decompositions,” Neural computation,
vol. 20, no. 8, pp. 2112–2131, 2008.

[43] A. Zhang and D. Xia, “Tensor SVD: Statistical and Compu-
tational Limits,” IEEE Transactions on Information Theory,
2018.

[44] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning
for matrix factorization and sparse coding,” Journal of Machine
Learning Research, vol. 11, no. Jan, pp. 19–60, 2010.

[45] D. Yang, Z. Ma, and A. Buja, “A sparse singular value de-
composition method for high-dimensional data,” Journal of
Computational and Graphical Statistics, vol. 23, no. 4, pp. 923–
942, 2014.

[46] J. Mairal, F. Bach, J. Ponce, G. Sapiro, R. Jenatton, and
G. Obozinski, “SPAMS: A SPArse Modeling Software, v2. 3,”
URL http://spams-devel. gforge. inria. fr/downloads. html, 2014.

[47] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in neural information processing
systems, 2001, pp. 556–562.

[48] C. C. Aggarwal and C. K. Reddy, Data clustering: algorithms
and applications. CRC press, 2013.

[49] P. Comon, “Independent component analysis, a new concept?”
Signal processing, vol. 36, no. 3, pp. 287–314, 1994.

[50] R. Bro, “PARAFAC. Tutorial and applications,” Chemometrics
and intelligent laboratory systems, vol. 38, no. 2, pp. 149–171,
1997.

[51] L.-H. Lim and P. Comon, “Nonnegative approximations of
nonnegative tensors,” Journal of Chemometrics: A Journal of
the Chemometrics Society, vol. 23, no. 7-8, pp. 432–441, 2009.

[52] Y.-D. Kim and S. Choi, “Nonnegative tucker decomposition,”
in 2007 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2007, pp. 1–8.

[53] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best
rank-1 and rank-(r 1, r 2,..., rn) approximation of higher-order
tensors,” SIAM journal on Matrix Analysis and Applications,
vol. 21, no. 4, pp. 1324–1342, 2000.

[54] Y. Xu, “On the convergence of higher-order orthogonal iteration,”
Linear and Multilinear Algebra, vol. 66, no. 11, pp. 2247–2265,
2018.

[55] C. A. Andersson and R. Bro, “The N-way toolbox for MATLAB,”
Chemometrics and intelligent laboratory systems, vol. 52, no. 1,
pp. 1–4, 2000.

[56] B. W. Bader and T. G. Kolda, “Matlab tensor toolbox version
2.5,” Available online, January, vol. 7, 2012.

[57] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of
careful seeding,” in Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 2007, pp. 1027–1035.

[58] L. Hubert and P. Arabie, “Comparing partitions,” Journal of
classification, vol. 2, no. 1, pp. 193–218, 1985.

[59] F. Wendling, F. Bartolomei, J.-J. Bellanger, J. Bourien, and
P. Chauvel, “Epileptic fast intracerebral eeg activity: evidence
for spatial decorrelation at seizure onset,” Brain, vol. 126, no. 6,
pp. 1449–1459, 2003.

[60] J. Watt, R. Borhani, and A. K. Katsaggelos, Machine learning
refined: foundations, algorithms, and applications. Cambridge
University Press, 2016.


	Introduction
	Notations and state-of-the-art
	Notations
	State-of-the-art

	Problem and background
	k-means clustering and dimensionality reduction
	The singular value decomposition
	The sparse singular value decomposition
	Higher order SVD

	New tensor reductions for clustering
	modified HOOI (mHOOI)
	High Order sparse SVD (HOsSVD)

	Comparison on a model
	A dynamic graph model for FC
	Experimental setup
	Results and discussion

	Application on real data
	Conclusion
	Appendix A: More about k-means clustering
	K-means on tensor
	K-means is matrix factorisation

	Appendix B: More about the proposed tensor decomposition
	On the optimal result of (L,T,1) HOSVD
	Note on empirical convergence of mHOOI

	References

