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Abstract. This paper presents CSOM, a Cellular Self-Organising Map
which performs weight update in a cellular manner. Instead of updating
weights towards new input vectors, it uses a signal propagation originated
from the best matching unit to every other neuron in the network. Inter-
actions between neurons are thus local and distributed. In this paper we
present performance results showing than CSOM can obtain faster and
better quantisation than classical SOM when used on high-dimensional
vectors. We also present an application on video compression based on
vector quantisation, in which CSOM outperforms SOM.
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1 Introduction

The work presented in this paper is part of the SOMA project? (Self-organising
Machine Architecture [1]). This project aims at developing an architecture based
on brain-inspired self-organisation principles in a digital reconfigurable hardware.
Self-organising neural models play a central role in this project. As we wish to
deploy the architecture in a manycore substrate, the scalability and decentrali-
sation of the architecture needs to be ensured.

Cellular computing approaches [2] appear as a promising solution for tackling
the scalability limitations of current hardware implementations of self-organising
maps. Cellular computing refers to biological cells that interact with their neigh-
bour cells, but not with remote ones, at least not directly. While parallel comput-
ing deals with a small number (tens up to tens of thousands in supercomputers)
of powerful processors able to perform a single complex task in a sequential man-
ner, cellular computing is based on another philosophy: simplicity of basic pro-
cessing cells, their vast parallelism, and their locality. The two latter properties
induce another fundamental property: decentralisation. In the SOMA project,
we propose to combine cellular and neural properties to enable cellular struc-
tures to behave like biologically-inspired neural models. In this context, we have
defined a cellular version of self-organising maps, that we call CSOM. The aim

3 The authors thank the Swiss National Science Foundation (SNSF) and the French
National Research Agency (ANR) for funding the SOMA project ANR-17-CE24-
0036.
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of this paper is to study the specific properties of this model in terms of vector
quantisation performance. We do not focus on scalability and decentralisation
aspects, though such requirements are our first motivation to define CSOM.

This paper describes CSOM in section 2 by comparing it to standard SOM.
We present the algorithm in detail and we explain its behaviour. Then in sec-
tion 3, we present two experiments. The first aims at comparing and analysing
the behaviour of CSOM and SOM when learning increasingly dimensional and
sparse data. The second experiment compares SOM and CSOM algorithms for
video compression by replacing a sequence of video frames (images) by a code-
book of thumbnails learnt by SOM and CSOM. Section 4 concludes with per-
spectives on other aspects of the SOMA project.

2 Self-organising maps : SOM and Cellular SOM
2.1 SOM: self-organising maps

Self-organising maps (SOM), initially proposed by Kohonen [3], consist of neu-
rons organised on low-dimensional arrays (most often 2D) that project patterns
of arbitrary dimensionality onto a lower dimensional array of neurons. Each neu-
ron has an associated weight vector, or prototype vector. Its dimension is defined
by the nature of input data, not by the dimensionality of the neural array. All
neurons receive the same input pattern and an iterative mechanism updates the
neuron’s weights so as to learn to quantise the input space in an unsupervised
way. This mechanism first selects the neuron whose weights best fit the given
input pattern, and then brings the weights of all neurons more or less closer to
the current input pattern, depending on the distance to the winner neuron in
the neural array (Fig. 1). As with any vector quantisation method, the result is a
codebook: it is the set of all neuron weight vectors, or codewords. Self-organising
maps are known to define "topological” codebooks: after learning, two vectors
that are close in the input space will be represented by codewords of close neu-
rons in the neural map. Thus, neighbouring neurons in the map have similar
weight vectors.

2.2 CSOM: cellular self-organising maps

As Kohonen’s SOM, CSOM is a vector quantisation algorithm which aims to
represent a probability density function into a codebook, i.e. a set of prototype
vectors or codewords. Is is also a neural network composed of an n-dimensional
array of neurons. In this paper we will only consider the case of the 2-dimensional
architecture. The main difference with SOM is that the neighbourhood notion
is replaced by a notion of local connectivity and propagation of influence. Each
neuron has a number of associated synapses that define which neuron will have
an influence onto which other. Synapses can be seen as interconnection matrices.
In this paper, we assume that synapses are simply interconnecting every neuron
to its four physical neighbours. With this restriction, the neural structure of
CSOM is similar to the 2D grid of the usual SOM. But more complex synaptic
interconnections can be used, such as resulting from pruning as in [4].
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Fig. 1. Weight update rule on SOM and CSOM.

Unlike SOM, CSOM performs a weight update rule which moves network
weights towards neighbour neurons weights instead of input patterns. Figure 1
illustrates this update: the green node represents a new input pattern, the orange
node represent the BMU, which updates its weight towards the new pattern in
both cases, and the blue nodes represent the remaining neurons on the SOM.
While in SOM, weight update is influenced by every new input pattern in a
direct manner, in CSOM the influence is indirect: neuron weights are influenced
by the neighbour weights, starting from the BMU.

2.3 Algorithms

Common notations and mechanisms Each neuron in a SOM or CSOM is
represented by a d-dimensional weight vector, m € R?, also known as prototype
vector or codeword, m = [myq,...,mq], where d is the dimension of the input
vectors, x. Neurons are located in a n-dimensional map (Usually n = 2). In
this map, r; are the coordinates of neuron i and m; is its weight vector. For
SOM, these coordinates are the basis of distance computations to define neigh-
bourhood relations. For CSOM, we simply consider in this paper that synaptic
interconnections are set to connect all adjacent neurons in the map.

In the algorithm of both SOM and CSOM, learning starts with an appropri-
ate (usually random) initialisation of the weight vectors, m;. Input vectors are
presented to the neural map. For each input vector x, the distance from x to
all the weight vectors is calculated using a distance measure noted ||-||, which
is typically the Euclidean distance. The neuron whose weight vector gives the
smallest distance to the input vector x is called the best matching unit (BMU),
denoted by ¢, and determined according to: ||x — m.| = min ||x — my]||

2

SOM algorithm The basic version of SOM learning is an on-line stochastic
process* which has been inspired by neurobiological learning paradigms, but
other extensions exist [5, 6]. For each iteration, an input is randomly drawn, and
its BMU c is computed. Then all neurons ¢ update their weights according to:

llre—r: ||

m;(t+1) = m;(t) + e(t)(x(t) — m;(t))e 2°® (1)

where ¢ denotes the time/iteration, x(¢) is an input vector randomly drawn
from the input data set at time ¢, and €(t) the learning rate at time ¢. The

4 A batch version of SOM learning exists, but the on-line mode training provides us
with a more detailed evolution to observe, and we apply our models to applications
with huge redundant learning databases for which batch-learning is quite inefficient.
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learning rate €(t) defines the strength of the adaptation, which is application-
dependent. Commonly €(t) is constant or a decreasing scalar function of ¢. The
term ||r. — r;|| is the distance between neuron ¢ and the winner neuron ¢, and
o(t) is the standard deviation of the gaussian neighbouring kernel.

CSOM algorithm The CSOM learning algorithm is an on-line mode training.
For each iteration, an input is randomly drawn, and its BMU c is computed. First
the BMU updates its weight vector according to: m, = m. + «(t)(x(t) — m.)
where a(t) is the learning rate at time/iteration ¢. Then every other neuron i # ¢
in the map updates its weight vector as follows:

(=Y _hops(c.i)
Z (m; —m;)e 7 Tmi=mylD (2)

JEInfl(7)

1
#Infi(i)

where hops(c, i) is the number of propagation hops to reach neuron ¢ from the
BMU through synaptic connections, InfI(i) is the set of the influential neurons
of neuron i, and #Infl(i) is the number of influential neurons for neuron i.
An influential neuron of neuron ¢ is defined as the neuron from which neuron i
received the propagating learning signal. For a neuron with hops(c,i) = h, the
influential neuron(s) will be every neuron j connected to i with hops(c, j) = h—1.
The parameter a(t) is the learning rate at time ¢, and 7(t) is the elasticity of
the network at time ¢. This latter parameter is modulated by v/d so as to take
into account the range [0,v/d] of euclidean distances in dimension d.

The principle of this algorithm results from a combination of cellular comput-
ing principles and dynamic adaptation as found in the Dynamic SOM (DSOM)
model [7]. Each neuron weight vector gets influenced by the weight vectors of
its influential neurons through which the cellular propagation signal has been
received, instead of being influenced by the input vector through its BMU. The
learning rate is modulated by the proximity of the weight vector with the weight
vectors of its influential vectors, so that learning gets faster when close neurons
do not have close weight vectors. The BMU first influences lateral neurons di-
rectly connected to it (for them hops = 1) through synapses. Equation 2 updates
the weight of neighbouring neurons by attracting their weight towards the win-
ning codeword m.. After being updated, these neighbouring neurons will update
their own neighbouring neurons by means of the same equation 2. This results
in a gradient permitting the overall network weights to get influenced by ev-
ery new input vector through local influences. The elasticity parameter can be
understood as how much the resulting map is expected to maintain its underly-
ing structure in the codeword space. In figure 2, for instance, a lower elasticity
results in a final network topology closer to its initial random configuration.

Complexity From a sequential® complexity point of view, SOM and CSOM
have a comparable cost. If we consider that exponential values are pre-computed
and stored (neural distances as well as numbers of hops can only take a finite
number of values), the main computational difference between them is that all

5 The question of a parallel complexity comparison between SOM and CSOM is not
discussed here, even if the cellular version targets parallel hardware implementations.
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Fig. 2. Learned codebook for CSOM with a 2D distribution with two main clusters,
using different elasticity parameters

influential neurons are taken into account in CSOM, thus inducing an approxi-
mately doubled complexity for CSOM with respect to SOM since most neurons
have two influential neurons in a 2D structure. Let us mention the fact that
randomly choosing only one influential neuron for each neuron leads to similar
behaviors and leads to the same computational complexity for the two models®.

Parameter tuning SOM and CSOM algorithms depend on the number of
learning iterations I. They also depend on parameters that evolve along training:
e(t) and o(t) for SOM, «a(t) and n(t) for CSOM. Classically, these parameters
linearly decrease during training from an initial value to a final value. Thus, a
fair comparison of SOM and CSOM raises the question of choosing €;nit, €final,
Oinity O finaly Qinity O finaly, Minity 7 final, ISOM and IC’SOM~ In this paper, we set
these parameters by means of a simple "manual” exploration for our tests on
artificial distributions, and by means of an optimisation by genetic algorithm
in the case of a video compression application. In these two cases, using the
same optimisation technique for SOM and CSOM thus provides performance
comparisons on a fair basis even if the choice of each optimisation technique
rather than another one can be discussed.

3 Experimental setup and Results

We propose here two kinds of tests: learning more or less sparse data generated
from artificial statistical distributions in variable dimensions, then learning to
quantise images in a video compression application.

3.1 Quantisation of artificial d-dimensional distributions

We have tested our algorithm by presenting input vectors drawn from statistical
distributions in various dimensions. In dimension d, the chosen distribution uses

5 Tt is important to notice that this complexity equivalence requires anyway a careful
handling of the iteration order among neurons of CSOM: influential neurons must
be updated before the neuron they influence. A simple possible way to ensure this
property is to consider that the BMU position defines four sectors (top-left, top-
right, bottom-left, bottom-right) in the neural map and to update weights sector
per sector, always starting from the BMU corner.
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d uniform clusters of data with a § sparsity coefficient: data are generated as
{Zl = U([O, 1- 5]), ey i1 = U([O, 1- 5]),Ij = U([5, 1]),Ij+1 = U([O, 1-
0]),...,zq = U([0,1 — 6])}, where the coordinate number j is randomly chosen
for each new generated vector, and U([a, b]) is the uniform distribution in [a, b].
When é = 0, it results in d-dimensional uniform distributions. When § = 0.8 data
are distributed in d rather small clusters for which all coordinates are between 0
and 0.2, except one that is between 0.8 and 1. These distributions are illustrated
in 3D on figure 3.

In the reported experiments, the network topology has been defined as a
2-D array mesh of 8x8 neurons. Each neuron has 4 synapses connected to neigh-
bour neurons. Weights have been uniformly initialised with U([0, 1]). Parameters
€init, €finals Tinits O finals Qinits Ufinal, Minit, Nfinal, Isom and Icsonr have been
optimised by means of a simple "manual” exploration method, considering the
small computation time. The performance is measured by the average quanti-
sation error (AQE) computed on independent test sets drawn from the same
distributions: 1K

AQE = & D %k — mpary e |
k=1

where K is a number of input test vectors, and xj is one of them. In the
experiments presented here, K has been set to 500, while each learning epoch
uses 100 input vectors, randomly drawn from the distribution at each learning
iteration.

Figure 4 shows the ratio of the results ﬂ% obtained for 50 runs on
several dimensions and for sparsity coefficients 0 = 0 and § = 0.9. An increase in

dimensions favours CSOM, especially for sparse distributions. The main property
of CSOM is a faster convergence in most cases. We assume that the decorrelation
between elasticity and weight attraction in CSOM makes it able to tolerate less
organised codewords, at least temporary, so that this model does not require to
attract all neuron weights close to each other at the beginning of learning before
unfolding in the input space, as it is usually observed with SOM. Nevertheless
we have not yet been able to quantify this phenomenon and further studies are
still required to validate this assumption.

3.2 Video compression

In order to evaluate how CSOM behave in real-world applications, we have de-
cided to train them on data extracted from image sequences. Self-organising

w0 ., 08 %y

(a) Sparsity § = 0.8 (b) Sparsity 6 = 0.55

Fig. 3. Statistical distribution in 3D for § = 0.8 and ¢ = 0.55
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maps can be interestingly applied to lossy image compression [8-10,4]. The
principle is to split the image into non overlapping thumbnails, then learn a
good quantisation of these thumbnails. Compressing the image is performed by
replacing each thumbnail by the index of the closest codeword (or codeword
of its BMU). The list of thumbnail indexes is further compressed by classical
methods such as entropy coding. Uncompressing the image can be performed by
replacing each decoded index by the corresponding thumbnail (codeword). The
result is similar to the original image, but with every thumbnail replaced by the
codeword learned by its BMU (see further an example on figure 5(c)). Com-
pared to other quantisation techniques, SOM preserve topological properties, so
that close parts of an image that are often similar will be coded by neighbouring
neurons. It makes it possible to further reduce the size of the compressed file
by efficiently coding codeword indexes thanks to a differential coding performed
before entropy coding [9].

In order to see how fast CSOM and SOM respectively adapt to changing
data, we extend this application to video compression as follows:

1. The first L x H frame is split into thumbnails of [ x h pixels.

2. A SOM and a CSOM of n x n neurons learn these thumbnails, using a set of
parameters optimised for processing a first frame (see below). Each neuron
has a [ x h weight vector, that can be interpreted as a thumbnail codeword.

3. Each consecutive frame is processed in the following way:

(a) The L x H frame is split into thumbnails of [ X h pixels.
(b) The previously learned SOM and CSOM learn these new thumbnails,
using a set of parameters optimised for processing consecutive frames.

As an example, we consider sequences of 384 x 288 images subdivided into
6912 thumbnails of 4 x 4 pixels. Using a 8 x 8 SOM or CSOM (b = 6), the
compression ratio already reaches a very high value of 7 before even further
compressing the index list using differential and entropy coding (see [10] for
details on computing the exact compression ratio).

For each model and image sequence, we optimise the main parameters of the
learning algorithms (einity €finals Tinity O finaly, Qinity; Xfinals MNinits T final, ISOM
and Icson) by means of a genetic algorithm with 0.1 mutation probability,
20 % of the population considered as elite, 32 individuals in the population and
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Fig. 5. SOM (red) vs CSOM (blue) for lossy video compression (city video example)

20 generations, each individual fitness being evaluated by learning 20 randomly
initialised SOM or CSOM. We compute the performance of the resulting SOM
and CSOM after each "epoch” of 216 randomly chosen thumbnails among the
6912 available. Two sets of parameters are evolved for each model and image
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sequence: one for learning the quantisation of the first frame, the other one for
learning the quantisation of a frame after having learned the quantisation of
the previous frame in the sequence. In this second case, the number of learning
iterations per ”"epoch” is reduced to 43, since learning the next frame is quite
fast when the SOM or CSOM has already learned the previous frame so that its
codewords are already very satisfactory with respect to the new frame.

Based on experiments using various image sequences from the CAVIAR
project [11] as well as from the CVD project [12], CSOM significantly improve
the mean pixel error (normalised in [0,255]) with respect to standard SOM. We
also observe a significant perceptual improvement of the visual result that is
illustrated by the usual peak signal-to-noise ratio (PSNR) to be maximised:

L H

2552 1 2
PSNR = 10 x log;o({ o) where  MSE = ——— ;;(PM —-P..)

Figure 5 shows results of SOM and CSOM learning to compress a video taken
in a city with many buildings and moving pedestrians in addition to a circular
movement of the camera (see 5(a) and 5(b)). Learning results for the first frame
are averaged on 32 randomly initialised maps. CSOM main advantages are a
faster and smoother learning (see 5(g) for mean pixel error and 5(h) for PSNR).
CSOM learning of consecutive frames also takes advantage of a more progressive
performance when dealing with the next 30 frames of this sequence, always
using the same evolving 32 SOM and CSOM: while SOM first seem to unlearn
their previous satisfactory codebook before converging again towards an even
more satisfactory one for the newly presented frame, CSOM do not suffer such a
temporary degradation of their performance (5(i) for mean pixel error and 5(j)
for PSNR). Similar results are obtained for other videos though sometimes less
contrasted (see for example figure 6(a) with a stationary camera in a commercial
centre), or even in the few cases when SOM reach a slightly better performance
for the first frame (see for example figure 6(b) with a shaky camera in a circular
movement outdoor).
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4 Conclusion

This paper presented the Cellular SOM algorithm, a Self-Organising Map based
on cellular computing. The behaviour exhibited by the algorithm on the exper-
iments presented in this paper shows that CSOM outperforms classical SOM
when applied to high dimensional sparse data. It can achieve a better quanti-
sation and is faster than SOM. However, on lower dimensional and less sparse
data SOM can be better. The fast algorithm convergence of CSOM is of particu-
lar interest for dynamic problems. When data statistical properties change over
time, at it can be the case on a video, CSOM is able to re-adapt faster in order
to match new input vectors, maintaining a low quantisation error over time.

Further work will focus on including pruning and sprouting mechanisms [4]
in order to remove and re-create synapses or create connections with remote
neurons. This feature should lead to a better quantisation of sparse data, and
rebuild the network when the dynamicity of the problem may impose it. CSOM
has been initially designed taking into account the constraints imposed by cellu-
lar computing: a cellular substratum of processing elements. Future works will
implement CSOM on a real cellular hardware architecture in order to drive the
self-organisation of a manycore hardware according to new input data, as tar-
geted by the SOMA project.
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