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Abstract

We present a coordinate-free description of Carlsson-
Weinshall duality between scene points and camera pin-
holes and use it to derive a new characterization of pri-
mal/dual multi-view geometry. In the case of three views,
a particular set of reduced trilinearities provide a novel
parameterization of camera geometry that, unlike existing
ones, is subject only to very simple internal constraints.
These trilinearities lead to new “quasi-linear” algorithms
for primal and dual structure from motion. We include some
preliminary experiments with real and synthetic data.

1. Introduction
The idea of picking a few scene features as anchors to

simplify the solution of structure-from-motion (SFM) prob-
lems dates back to the 1990s, notably with the pioneering
work of Koenderink & van Doorn [14] and Faugeras [4],
among others [11, 17]. This approach involves fewer pa-
rameters than traditional ones [4, 14] and leads to the so-
called Carlsson-Weinshall (in this presentation, CW) dual-
ity [1], where camera pinholes and scene points play sym-
metric roles and can easily be swapped in SFM algorithms.
However, methods based on this type of “relative” multi-
view geometry are reputed to lead to poor-quality recon-
structions, in part because the corresponding algorithms
do not benefit from traditional data preconditioning meth-
ods [9]. We propose to revisit this approach from a geo-
metric perspective, shedding new light on some well-known
problems with a string of new results (Props. 2.3, 2.5, 3.4,
4.3), and dispelling through experiments some of its bad
reputation.

1.1. Background

As shown in [19, 23] for example, point correspondences
across multiple images can be characterized by studying in-
cidence relations among the corresponding visual rays. This
approach has the merit of making explicit the geometric
constraints defining correspondences, which are often hid-
den behind algebra in the traditional multilinear approaches

to structure from motion [1, 5, 6, 7, 12, 15, 16, 21, 25]. In
particular, Ponce, Sturmfels and Trager introduced in [19]
the concurrent lines variety Vn formed by all n-tuples of
lines in P3 that meet at some point, and showed that con-
straining the lines in each tuple to pass through n fixed and
distinct points yields a three-dimensional sub-variety of Vn
isomorphic to Triggs’s joint image [24], that can either be
seen as the set of all possible images taken by n fixed per-
spective cameras (Fig. 1 [a]), or as the set of all possible im-
ages of n fixed points (Fig. 1 [b]), revealing a profound ge-
ometric duality between camera pinholes and scene points.

Unfortunately, this duality collapses when one intro-
duces image measurements, since the retinal plane of a cam-
era (or, equivalently, the line bundle of its pinhole) must be
equipped with a coordinate system for the measurements
to make sense. Contrary to images and the corresponding
bundles (Fig. 1 [c]), however, scene points are not associ-
ated with coordinate systems. It was shown by Carlsson
and Weinshall that this disparity can be addressed by us-
ing four fiducial scene points observed by all cameras, and
by algebraically manipulating the coordinates of pinholes
and scene points before inverting their roles (see [4, 12, 15]
for related work). In particular, as argued in [1, 12], this
implies that any algorithm for solving the structure-from-
motion (SFM) problem from m images of n scene points
also provides a (dual) solution to the SFM problem from
n− 4 images and m+ 4 scene points. Carlsson and Wein-
shall’s take on duality is however mainly analytical. Our
point of departure in this presentation is to bridge the gap
between their approach and the geometric viewpoint advo-
cated earlier.

1.2. Objectives and contributions

Our aim in this presentation is threefold:
(1) To explain CW duality [1] which, in its classical text-
book form [12], emerges from seemingly accidental al-
gebraic symmetries like Venus from the sea. Concretely,
we introduce in Sect. 2 a new, coordinate-free derivation
of the duality between scene points and camera pinholes
(Prop. 2.3). Our viewpoint hopefully clarifies the geometry
that underlies CW duality, and also emphasizes that analyt-
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Figure 1. The sub-variety of the concurrent lines variety formed by all concurrent n-tuples of lines passing through n fixed points represents
(a) the set of all perspective images of these points, as well as (b) the set of all images taken by the corresponding pinholes. The introduction
of image (or equivalently, bundle) coordinate systems (c) breaks this duality, but it can be restored by (d)-(e) using four fiducial points
observed by all cameras to define the corresponding image coordinate systems.

ical formulations of duality can be given any scene and im-
age coordinate systems (Prop. 2.5 and Fig. 1[d,e]) [1, 4, 12].
(2) To characterize reduced multi-view geometry. We
present in Sect. 3 a description of multi-view geometry in
terms of the reduced joint image and its dual (Prop. 3.4). We
also introduce a new parametrization of trinocular geometry
in terms of both primal and dual reduced trilinearities. An
interesting feature of these conditions is that, unlike trifocal
tensors [10, 21, 25], they are subject to very simple internal
constraints [6, 7, 12] (Prop. 4.3).
(3) To add to the three-view SFM arsenal. Our re-
duced trilinearities lead to new algorithms for structure from
motion from primal and dual trilinearities, with compet-
itive performance in experiments with real and synthetic
data (Sect. 5).

1.3. Notation and elements of line geometry

Much of our presentation will distinguish purely geo-
metric, coordinate-free properties of point configurations
from analytical properties established in some coordinate
system. To avoid confusion, we will use a teletype font
to designate points in Pn, e.g., x, y, and a bold italic font
to designate their homogeneous coordinates in some coor-
dinate frame, e.g., x, y. Whether we speak of points or
their homogeneous coordinates should thus be clear, and
we will often call both representations points for simplic-
ity. We will call the first n + 1 points of any projective
basis (x1, . . . , xn+1, xn+2), with coordinates (1, 0, . . . , 0)T

to (0, . . . , 0, 1)T , the coordinate points. The last one, xn+2,
with coordinates (1, . . . , 1)T , is called the unit point. Let
us also recall here some basic concepts of line geometry.
The join operator associates with two distinct points x and
y the unique line x ∨ y passing through them. Given some
coordinate system for P3, this geometric operator admits
an analytical counterpart, and the line l = x ∨ y join-
ing two points with coordinates x = (x1, . . . , x4)

T and
y = (y1, . . . , y4)

T has homogeneous Plücker coordinates

l =

[
u
v

]
withu =

x4y1 − x1y4x4y2 − x2y4
x4y3 − x3y4

 ,v =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1

 . (1)

The vectors u and v in (1) are orthogonal by construction,
and Plücker coordinates identify the four-dimensional set

of lines in P3 with a quadratic hypersurface of P5, known
as the Klein quadric. Two lines with Plücker coordinates
l = (u;v) and l′ = (u′;v′) intersect (or, equivalently, are
coplanar) if and only if u · v′ + u′ · v = 0. The line bun-
dle associated with a point x in P3 is the set of lines pass-
ing through that point. It corresponds to a two-dimensional
projective subspace of the Klein quadric, (projectively) iso-
morphic to any plane π not passing through x, each line in
the bundle being associated with the point where it inter-
sects π. Finally, the following result from [18] will be used
repeatedly in the sequel.

Proposition 1.1 ([18]). A necessary (and generically suffi-
cient) condition for three lines with Plücker coordinates l,
l′, l′′ to intersect is that the four minors

T1 =
l2 l
′
2 l
′′
2

l3 l
′
3 l
′′
3

l4 l
′
4 l
′′
4

, T2 =
l3 l
′
3 l
′′
3

l1 l
′
1 l
′′
1

l5 l
′
5 l
′′
5

, T3 =
l1 l
′
1 l
′′
1

l2 l
′
2 l
′′
2

l6 l
′
6 l
′′
6

, T4 =
l4 l
′
4 l
′′
4

l5 l
′
5 l
′′
5

l6 l
′
6 l
′′
6

(2)

of the 6× 3 matrix [l, l′, l′′] all vanish. In addition, the van-
ishing of a single minor Tk (k = 1, 2, 3, 4) is a necessary
and sufficient condition for these lines to admit a common
transversal through the kth coordinate point.

2. Point configurations and CW duality
2.1. Geometric point of view

Moving together scene points and cameras without
changing their relative positions will not change the images
of the scene recorded by the cameras. This is sometimes re-
ferred to as the projective ambiguity of structure from mo-
tion, but we propose here instead to capture the underlying
“projective rigidity” in terms of projective configurations.

Definition 2.1. Two k-tuples of points in Pn are isomorphic
if they are related by a projective transformation of Pn. Iso-
morphism is an equivalence relation, and its equivalence
classes are called k-configurations.

The configuration associated with k points x1 to xk is de-
noted by 〈x1, . . . , xk〉. For k ≤ n+2, generic point configu-
rations are always isomorphic, so we will assume k > n+2
from now on. Given some pinhole c in P3 and some retinal
plane π not passing through c, the corresponding perspec-
tive projection can be defined in a purely geometric manner



Figure 2. Image point and viewing ray configurations are isomor-
phic and independent of the retinal plane.

as the mapping that associates with any point x 6= c in P3

the point y where the viewing ray joining c to x intersects
π. In turn, this mapping induces an isomorphism between
k-configurations of points in different image planes π and
π′, and a second isomorphism between these and the cor-
responding k-configurations of visual rays through c, seen
as elements of a line bundle (Fig. 2). This is of course just
a retelling of a familiar story in the language of configu-
rations. But it also shows that perspective projection may
be viewed as a mapping between the scene configurations
〈x1, . . . , xk, c〉 that determine the visual rays c ∨ xi and
their image counterparts 〈y1, . . . , yk〉. We will sometimes
write a scene configuration as 〈x1, . . . , xk | c〉 instead of
〈x1, . . . , xk, c〉 to emphasize that the last point is viewed as
a pinhole. In this setting, swapping the roles of pinhole and
scene point results in permuting the corresponding elements
of a scene configuration. The effect of permutations on
point configurations can be described in terms of so-called
Cremona transformations of P3, as explained by Coble in a
paper from 1915 [2] (see also [3] for a more recent account
on this topic). As we will argue in the next section, the an-
alytical map (x1, x2, x3, x4)

T 7→ (x−11 , x−12 , x−13 , x−14 )T

that is used in the standard formulation of CW duality is
indeed an example of a Cremona transformation. For the
moment, we can state the following more general geomet-
ric result that follows from Coble’s theory (see [2, Sect. 7]
or [3, Chap. 6]).

Lemma 2.2. If Z = (z1, . . . , z4) is a quadruple of fixed
points of P3 in general position, then there exists a family of
birational involutions TZ : x 7→ x̂ (Cremona involutions),
defined on a dense open set of P3, such that for any points x
and y in that set 〈z1, z2, z3, z4, x, y〉 = 〈z1, z2, z3, z4, ŷ, x̂〉
holds (with equality as configurations). Any two such invo-
lutions are related by a projective transformation of P3 that
fixes Z.

Note that this statement does not involve pinholes and
scene points. However, we obtain as an immediate corollary
a geometric and coordinate-free formulation of Carlsson-
Weinshall duality, valid for any Cremona involution associ-
ated with a quadruple of points Z.

Figure 3. Geometric Carlsson-Weinshall duality between scene
point and pinhole configurations.

Proposition 2.3 (Figure 3). If x 7→ x̂ is a Cremona
involution relative to a quadruple Z = (z1, . . . , z4),
then any two scene configurations 〈z1, z2, z3, z4, x | c〉 and
〈z1, z2, z3, z4, ĉ | x̂〉 are equal, and thus give rise to the
same image configuration 〈y1, . . . , y4, y〉. Here y can be
thought of as either the projection of x from c or that of ĉ
from x̂.

2.2. Analytical point of view

Let us now introduce a local parameterization of the
space of k-configurations in Pn, with k > n + 2: we pick
n + 2 of the points and assign them arbitrary but fixed ho-
mogeneous coordinates (it is often convenient, but by no
means necessary, to choose these points as a basis for Pn).
Assuming that the points are in general position and the co-
ordinates assigned to any n + 1 of them are linearly inde-
pendent, this uniquely defines a coordinate system for Pn,
dependent on the choice of the n + 2 points, but intrinsic
to the whole configuration. In particular, the coordinates
of the k − n − 2 remaining points can be used to parame-
terize the configuration. In our setting, this translates into
assigning arbitrary coordinates to the four fixed points z1
to z4 in the form of a 4 × 4 matrix Z = [z1, z2, z3, z4],
and assigning to the pinhole arbitrary coordinates c. This
freezes the coordinate system of P3 and provides a parame-
terization of the configurations 〈z1, . . . , z4, x | c〉 using the
coordinates x of the point x. We also pick the four visual
rays l1 to l4 joining the pinhole to the points z1 to z4 as
reference points for the corresponding bundle, and assign
them arbitrary coordinates in the form of a 3 × 4 matrix
U = [u1,u2,u3,u4]. This freezes the coordinate frame
for the bundle and provides a parameterization for the con-
figurations 〈l1, . . . , l4, l〉 of its lines by the coordinates u
of the ray l. This also provides, of course, a parameteriza-
tion of the configurations 〈y1, . . . , y4, y〉 of the correspond-
ing image points using the coordinates u of the point y. The
following result follows from some straightforward compu-
tations (see the supplementary material for details).

Proposition 2.4. Given arbitrary general matrices U and
Z, the perspective projection associated with pinhole c can
be represented analytically as the projective map Pc from



P3 to P2 defined by1

Pc(x) = [u1,u2,u3,u4]



|x,z2,z3,z4|
|c,z2,z3,z4|

|z1,x,z3,z4|
|z1,c,z3,z4|

|z1,z2,x,z4|
|z1,z2,c,z4|

|z1,z2,z3,x|
|z1,z2,z3,c|

 , (3)

where we assume wlog that the coordinates vectors ui have
been scaled so u1 + u2 + u3 + u4 = 0.

ForZ = Id4 andU = [Id3,−13], we have that Pc(x) =
(x1/c1, x2/c2, x3/c3, x4/c4)

T , and the projection matrix
associated with Pc is the reduced camera model appearing
in different guises in [1, 4, 12]:

Pc =

1/c1 0 0 −1/c4

0 1/c2 0 −1/c4
0 0 1/c3 −1/c4

 . (4)

In this case, the expression for Pc(x) is symmetric in x and
ĉ, where y 7→ ŷ = (y−11 , y−12 , y−13 , y−14 )T is the standard
Cremona involution. This is a Cremona transformation in
the sense of Lemma 2.2 since one easily sees that two sex-
tuples z1, . . . ,z4,y1,y2 and z1, . . . ,z4, ŷ2, ŷ1 are always
related by a projective transformation of P3. More gener-
ally, we have the following result, which can be shown by
direct computations (see the supplementary material).

Proposition 2.5 (Analytical Carlsson-Weinshall duality).
The rational map of P3 given by

ŷ = Z

[
1

|yz2z3z4|
,

1

|z1yz3z4|
,

1

|z1z2yz4|
,

1

|z1z2z3y|

]T
(5)

is a Cremona involution relative to the points in P3 with co-
ordinates Z. Using this Z and arbitrary image coordinates
U in (3), we have that Pc(x) = Px̂(ĉ).

3. Reduced multi-view geometry
We now restrict our study to the case where Z = Id4

and U = [Id3,−13] so that all cameras can be represented
by projection matrices in the “standard” reduced form of
Eq. (4), and thus identify from now on scene points x and
their images y with their coordinates x and u in P3 and P2.

3.1. Reduced joint images

Let S denote the set of triples (c,x,u) in P3 × P3 × P2

such that Pc(x) = u where Pc is a reduced camera as
in (4). For fixed c and x, there is of course a single u such
that (c,x,u) belongs to S. More generally, we have the
following result which describes the set S (see the supple-
mentary material for details).

1Although Pc obviously depends on U and Z, we leave this depen-
dency implicit in the notation to avoid clutter.

Figure 4. The twisted cubic formed by the points c such that c∨ x
has constant coordinates relative to c ∨ z1, c ∨ z2, c ∨ z3, c ∨ z4.

Figure 5. Left: A reduced joint image characterizes all converging
visual rays from three pinholes. Right: A dual reduced joint image
characterizes all perspective images of three scene points.

Proposition 3.1. (1) For fixed c and u, the set of points
x such that (c,x,u) belongs to S is a line with Plücker
coordinates

ξ = Qcu where Qc =


c1c4 0 0
0 c2c4 0
0 0 c3c4
0 −c2c3 c2c3
c1c3 0 −c1c3
−c1c2 c1c2 0

 . (6)

(2) For fixed x and u, the set of points c such that (c,x,u)
belongs to S is a twisted cubic passing through z1, . . . ,z4
and x (Fig. 4).

Variants of this proposition can be found in [1, 4, 12].
The formula for Qc in Eq. (19) is of course an instance
of the classical (transposed) line projection matrix. It will
play a key role in the rest of this presentation. We now
consider n pinholes c1, . . . , cn, and the associated reduced
cameras Pc1

, . . . , Pcn
. Following [22, 24], we describe the

geometry of these cameras using the joint image in (P2)n.

Definition 3.2. The reduced joint image VZ(c1, . . . , cn) as-
sociated with n fixed pinholes c1, . . . , cn is the set of n-
tuples (u1, . . . ,un) in (P2)n such that the corresponding
visual rays are concurrent or, equivalently, such that there
exists some point x such that (ci,x,ui) belongs to S.

The reduced joint image is a special case of Triggs’s joint
image [24] where image (or bundle) basis points are in cor-
respondence. Projective transformations of P3 do not af-
fect the joint image, so VZ(c1, . . . , cn) is completely deter-
mined by 〈c1, . . . , cn, z1, . . . z4〉 (Fig. 5, left). Let us now
consider instead n fixed scene points x1, . . . ,xn.

Definition 3.3. The dual reduced joint image
V̂Z(x1, . . . ,xn) associated with n scene points x1, . . . ,xn



is the set of n-tuples (u1, . . . ,un) in (P2)n that are image
coordinates for the points x1, . . . ,xn for some reduced
camera Pc with (unknown) pinhole c or, equivalently, such
that there exists some point c such that (c,xi,ui) belongs
to S. Note that this condition imposes that n twisted cubics
passing through z1, z2, z3, z4 intersect at a point c.

The set V̂Z(x1, . . . ,xn) characterizes all perspective im-
ages of n fixed points (Fig. 5, right). It is invariant to projec-
tive transformations of P3, and completely determined by
〈x1, . . . , xn, z1, . . . z4〉 in P3. Algebraic characterizations
of dual multi-view constraints are mostly absent from the
literature (see [15] for an exception), but the following re-
sult is an immediate corollary of CW duality.

Proposition 3.4. The dual reduced joint image associated
with n scene points x1, . . . ,xn is the reduced joint image
associated with their images x̂1, . . . , x̂n under any Cre-
mona involution relative to z1, z2, z3, z4.

In particular, like their primal counterparts [22], dual
joint images induce multilinear constraints on point corre-
spondences.

3.2. Reduced multilinearities

Let us now apply the general approach presented so far
to the bilinear and trilinear constraints associated with point
correspondences for reduced cameras of the form (4). Given
two image points u and u′ associated with cameras with
pinholes c and c′, a necessary and sufficient condition for
u and u′ to form a correspondence is that the visual rays
l = Qcu and l′ = Qc′u′ intersect each other or, equiva-
lently, (l | l′) = 0. This immediately yields a bilinear rela-
tion uTFu′ = 0. When c = 14, F is the reduced funda-
mental matrix of [1, 12] (see also [4]). In turn, substituting
x̂′, x̂′′ for c′, c′′ in this equation, we also obtain the expres-
sion for the reduced dual fundamental matrix, which char-
acterizes the dual reduced joint image V̂Z(x,x′) for two
fixed scene points x,x′. We can use the same approach to
characterize correspondences in three images. Indeed, sub-
stituting Qcu, Qcu′, and Qcu′′ to l, l′ and l′′ in Eq. (2)
from Prop. 1.1 immediately yields the following result.

Proposition 3.5. Taking c = (1, 1, 1, 1)T , a necessary (and
generically sufficient) condition for u, u′ and u′′ to form
a correspondence for the reduced cameras Pc, Pc′ , Pc′′ is
that the four determinants T1 to T4, respectively given by

u2, ĉ
′
3u
′
2, ĉ
′′
3u
′′
2

u3, ĉ
′
2u
′
3, ĉ
′′
2u
′′
3

v1, ĉ
′
4v
′
1, ĉ
′′
4v
′′
1

,
u3, ĉ

′
1u
′
3, ĉ
′′
1u
′′
3

u1, ĉ
′
3u
′
1, ĉ
′′
3u
′′
1

v2, ĉ
′
4v
′
2, ĉ
′
4v
′′
2

,
u1, ĉ

′
2u
′
1, ĉ
′′
2u
′′
1

u2, ĉ
′
1u
′
2, ĉ
′′
1u
′′
2

v3, ĉ
′
4v
′
3, ĉ
′′
4v
′′
3

,
v1, ĉ

′
1v
′
1, ĉ
′′
1v
′′
1

v2, ĉ
′
2v
′
2, ĉ
′′
2v
′′
2

v3, ĉ
′
3v
′
3, ĉ
′′
3v
′′
3

(7)
all vanish, with vi = ui+2 − ui+1, v′i = u′i+2 − u′i+1 and
v′′i = u′′i+2 − u′′i+1, and index addition modulo 3.

The proposition follows immediately from (2) and the
form of the matrix Qc. Its dual involves three scene points
x,x′,x′′ instead of three pinholes, and is obtained by sub-
stituting x̂ for c in the primal trilinearities from Prop. 3.5.

Proposition 3.6. Taking x = (1, 1, 1, 1)T , a necessary
(and generically sufficient) condition for u, u′ and u′′ to
be projections of x,x′,x′′ for a reduced camera Pc (for
some unknown c) is that the four determinants T̂1 to T̂4,
respectively given by

u2, x
′
3u
′
2, x
′′
3u
′′
2

u3, x
′
2u
′
3, x
′′
2u
′′
3

v1, x
′
4v
′
1, x
′′
4v
′′
1

,
u3, x

′
1u
′
3, x
′′
1u
′′
3

u1, x
′
3u
′
1, x
′′
3u
′′
1

v2, x
′
4v
′
2, x
′
4v
′′
2

,
u1, x

′
2u
′
1, x
′′
2u
′′
1

u2, x
′
1u
′
2, x
′′
1u
′′
2

v3, x
′
4v
′
3, x
′′
4v
′′
3

,
v1, x

′
1v
′
1, x
′′
1v
′′
1

v2, x
′
2v
′
2, x
′′
2v
′′
2

v3, x
′
3v
′
3, x
′′
3v
′′
3

(8)
all vanish.

4. Algebraic constraints on trilinearities
In this section, we investigate the special primal and

dual trilinear conditions (7) and (8). In particular, we show
that the coefficients of these polynomial forms are sub-
ject to very simple algebraic constraints. This contrasts
with the classical trifocal tensor and the induced trilinear-
ities [10, 21, 25], which also characterize correspondences
among three views, but are known to satisfy very complex
internal constraints [6, 7, 12]. This feature suggests that the
coefficients of our trilinearities can be estimated easily from
image data and used in reconstruction algorithms. This will
be confirmed by our experiments in Section 5.

Our first observation is that the conditions (7) and (8)
can be seen as polynomials in the “mixed” coordinates u’s
and v’s (as defined in Prop. 3.5), or also in the “pure” image
coordinates u’s (by replacing the v’s with the corresponding
expressions). Depending on this choice of variables, the
trilinearities have different coefficients. These coefficients
are related by a (non-invertible) linear transformation but
present some differences, as shown next.

4.1. Trilinearities in mixed coordinates

The four reduced primal trilinearities in “mixed” coordi-
nates u’s and v’s can be written explicitly as follows

T1 = −ρ23v1u′3u′′2 + ρ24u2u
′
3v
′′
1 + ρ32v1u

′
2u
′′
3

−ρ34u3u
′
2v
′′
1 − ρ42u2v

′
1u
′′
3 + ρ43u3v

′
1u
′′
2 ,

T2 = ρ13v2u
′
3u
′′
1 − ρ14u1u

′
3v
′′
2 − ρ31v2u′1u′′3

+ρ34u3u
′
1v
′′
2 + ρ41u1v

′
2u
′′
3 − ρ43u3v

′
2u
′′
1 ,

T3 = −ρ12v3u′2u′′1 + ρ14u1u
′
2v
′′
3 + ρ21v3u

′
1u
′′
2

−ρ24u2u
′
1v
′′
3 − ρ41u1v

′
3u
′′
2 + ρ42u2v

′
3u
′′
1 ,

T4 = ρ12v3v
′
1v
′′
2 − ρ13v2v′1v′′3 − ρ21v3v′2v′′1

+ρ23v1v
′
2v
′′
3 + ρ31v2v

′
3v
′′
1 − ρ32v1v′3v′′2 ,

(9)

with ρij = ĉ′iĉ
′′
j . The six non-zero coefficients of Ti are ρjk

with j, k distinct in {1, 2, 3, 4} \ {i}. Hence, sextuples of



valid coefficients for Ti are vectors in R6 that have no zero
entries and can be written in the form (aibj)i 6=j with a, b
in R3. These vectors are completely characterized by the
following result.

Proposition 4.1. A vector d = (d12, d13, d23, d21, d31, d32)
in R6 can be written as dij = aibj for some vectors
a = (a1, a2, a3)

T , b = (b1, b2, b3)
T in R3 if and only if

d12d23d31 = d21d32d13 holds.

Proof. By replacing dij with aibj , we see that the condition
is necessary. Conversely, if an element (say) d12 of d is not
zero and d satisfies the condition, we can always set a1 = 1
and solve for all the remaining entries.

The coefficients of each trilinearity are thus constrained
by a single cubic relation. On the other hand, each pair of
trilinearities shares two coefficients, so we expect additional
constraints for the consistency of T1, . . . , T4. This is rele-
vant for the reconstruction method that will be described in
Section 5, in which the trilinearities (7) evaluated on point
correspondences are treated as linear conditions on a single
vector ρ = (ρij) in R12, such that ρij = ĉ′iĉ

′′
j with dis-

tinct i, j in {1, 2, 3, 4}. In this case, the conditions for ρ in
R12 to be a valid solution are given by the following result.
The proof is analogous to that of Prop. 4.1. We refer to the
supplementary material for details.

Proposition 4.2. A vector d = (dij) in R12 with no zero
entries can be written as dij = aibj for some vectors
a = (a1, a2, a3, a4)

T , b = (b1, b2, b3, b4)
T in R3 if and

only if dijdkl = dildkj holds for all permutations (i, j, k, l)
of (1, 2, 3, 4).

4.2. Trilinearities in image coordinates

A reduced trilinearity expressed in terms of mixed u’s
and v’s has very simple coefficients, but its variables are
not independent. We now describe the trilinearities in pure
image coordinates. Remarkably, the internal constraints of
each trilinearity are completely linear in this setting. To
simplify our presentation, we focus on the trilinearity T1.
The trilinearities T2, T3 are identical to T1 up to permuta-
tion of indices. The trilinearity T4 has a different analytical
form, but it encodes the same geometric information and
also enjoys similar properties. A general treatment of all the
trilinearities can be found in the supplementary material.

A simple computation shows that

T1 =(−ĉ′3ĉ′′2 + ĉ′4ĉ
′′
2 )u2u

′
2u
′′
3 + (ĉ′2ĉ

′′
3 − ĉ′2ĉ′′4 )u2u

′
3u
′′
2 +

(−ĉ′4ĉ′′2 + ĉ′2ĉ
′′
4 )u2u

′
3u
′′
3 + (−ĉ′4ĉ′′3 + ĉ′3ĉ

′′
4 )u3u

′
2u
′′
2 +

(ĉ′3ĉ
′′
2 − ĉ′3ĉ′′4 )u3u

′
2u
′′
3 + (−ĉ′2ĉ′′3 + ĉ′4ĉ

′′
3 )u3u

′
3u
′′
2 .

(10)
The six non-zero coefficients are linear combinations of the
scalars ρij = ĉ′iĉ

′′
j . We now address the internal constraints

that are satisfied by these coefficients.

Proposition 4.3. If we allow ĉ′, ĉ′′ to take complex values,
then a vector τ in R6 represents a set of feasible coefficients
for T1 in (10) if and only if its elements sum to zero. In this
case, up to scale factors, there are two pairs of (possibly
complex) solutions for (ĉ′2, ĉ

′
3, ĉ
′
4)

T and (ĉ′′2 , ĉ
′′
3 , ĉ
′′
4)

T .

Proof sketch. We write τ = (τijk) with τijk being the co-
efficient of uiu′ju

′′
k in T1. It follows from (10) that it is

necessary for the elements of τ to sum to zero. For the con-
verse, we note that τ = Aρ1, where

τ =


τ223
τ232
τ233
τ322
τ323
τ332

 , A=


0 0 −1 0 1 0
1 −1 0 0 0 0
0 1 0 0 −1 0
0 0 0 1 0 −1
0 0 1 −1 0 0
−1 0 0 0 0 1

 ,ρ1 =


ρ23
ρ24
ρ32
ρ34
ρ42
ρ43

 . (11)

The matrix A1 has rank 5 and its rows and columns sum
to zero. In particular, a solution ρ1 of Eq. (11) can always
be written as ρ1 = ρ0 + t16 for some scalar t, where ρ0
is any solution of τ = Aρ0. Such ρ0 always exists if the
elements of τ sum to zero. In order for τ to be a valid set
of coefficients, the vector ρ1 must factor as ĉ′iĉ

′′
j . Accord-

ing to Prop. 4.1, this corresponds to a single equation in
the entries ρij , which we can use to solve for t. Moreover,
while this equation was cubic in ρij , it is easy to see that
there is a cancellation of the term t3, so we are left with a
quadratic equation in t. Each of the two (possibly complex)
solutions to this equation determines up to scale the vectors
(ĉ′2, ĉ

′
3, ĉ
′
4)

T and (ĉ′′2 , ĉ
′′
3 , ĉ
′′
4)

T .

Although the solutions in Prop. 4.3 may in principle be
complex conjugate, they will be real when the vector τ is
estimated from exact correspondences, and remain real un-
der small perturbations. We also note that the statement
of Prop. 4.3 holds without modifications for trilinearities
T2, T3. In the case of T4, there are 24 non-zero coefficients
rather than six, but these are also only constrained by lin-
ear conditions (in all cases, the set of valid coefficients is a
vector space of dimension five).

The fact that the coefficients of each trilinearity are not
subject to non-linear constraints may seem surprising. One
way to justify this property is to point out the close re-
lationship between our trilinearities and 2D trifocal ten-
sors. These (2 × 2 × 2)-tensors characterize correspon-
dences for triples of projections from P2 to P1. It was
shown by Quan [20] that the entries of these tensors are
also not bound by any internal constraints. In the supple-
mentary material, we argue that the reduced trilinearities
can be obtained by composing a 2D trifocal tensor with lin-
ear changes of coordinates. The idea behind this fact is that,
according to Prop. 1.1 [23], each trilinarity Ti imposes the
condition that three viewing rays admit a common transver-
sal passing through the point zi. If we fix a retinal plane



Figure 6. Trilinearities express the condition that three coplanar
lines intersect. These are the projections from zk of three viewing
rays converging at some scene point x in the primal case (left),
and some pinhole c in the dual one (right).

with appropriate coordinates, this is the same as requiring
three coplanar lines to meet at a point, which is the con-
dition imposed by a 2D trifocal tensor. See Fig. 6 and the
supplementary material for details.

5. A quasi-linear three-view SFM algorithm
We now show that the four trilinearities (primal or dual)

can be used to solve structure from motion when sufficient
correspondences are available. Let us first consider primal
trilinearities. As noted in the previous section, each point
correspondence imposes four linear conditions on the vector
ρ whose entries are ρij = ĉ′iĉ

′′
j . Given p correspondences

we can stack the corresponding linear equations to form a
4p × 12 matrix T and write all the constraints as Tρ = 0.
However, it is easy to realize that T112 = 0, independently
of the image coordinates. In the absence of noise, the ker-
nel of T is thus always at least two-dimensional, since it
contains 112 and the “true” solution ρ to our problem. We
address this issue by exploiting the special form of the vec-
tor ρ. In particular, let e be a vector independent of 112 in
the kernel, so that we may write ρ = e + λ112 for some
scalar λ, and thus ρij = ĉ′iĉ

′′
j = eij + λ for j 6= i. We

have, for example ĉ′′3 = (e13 + λ)c′1 = (e23 + λ)c′2, and
ĉ′′4 = (e14+λ)c

′
1 = (e24+λ)c

′
2. This allows us to eliminate

λ, obtaining (e23 − e24)ĉ′1 + (e14 − e13)ĉ′2 = 0. Collecting
all similar constraints finally yields the following equations:


e23 − e24 e14 − e13 0 0
e32 − e34 0 e14 − e12 0
e42 − e43 0 0 e13 − e12

0 e31 − e34 e24 − e21 0
0 e43 − e41 0 e21 − e23
0 0 e41 − e42 e32 − e31

 ĉ
′ = 0, (12)


e32 − e42 e41 − e31 0 0
e23 − e43 0 e41 − e21 0
e24 − e34 0 0 e31 − e21

0 e13 − e43 e42 − e12 0
0 e14 − e34 0 e32 − e12
0 0 e14 − e24 e23 − e13

 ĉ
′′ = 0 (13)

These equations are sufficient to determine ĉ′ and ĉ′′ and
thus c′ and c′′. Three correspondences (in addition to the
four “reference” correspondences) are necessary to obtain a

unique solution for the 11 unknowns.2 Note that although
the vector ρ must satisfy certain algebraic constraints in or-
der to be of the form ρij = c′ic

′′
j (see Prop. 4.2), our strategy

bypasses this difficulty by directly recovering the vectors c′

and c′′. In other words, this “quasi-linear” method is always
guaranteed to return a valid solution (which will approxi-
mate the “true” solution in the presence of noise). In prac-
tice, we pick four reference points among the (known) cor-
respondences between these pictures, and apply appropriate
image coordinate changes so they become basis points. We
then use singular value decomposition and the remaining
points to find the least-squares solution e of the system of
equation in ρ associated with T which is orthogonal to 112,
and finally use Eq. (13) to compute the position of the pin-
holes. Linear least-squares can then be used again to recon-
struct all scene points from the known pinholes and image
coordinates. We repeat this process for random quadruples
of reference points and a fixed number of iterations, and re-
port the results.

The dual algorithm is very similar except that this time
we fix three points x, x′, and x′′ instead of three images.
We again repeatedly pick four random reference correspon-
dences, and use all images (at least three) of x, x′ and x′′

to reconstruct them. The procedure is the same as above,
replacing c, c′, c′′ with x̂, x̂′, x̂′′.

5.1. Preliminary experiments

We have implemented both the primal and dual versions
of the proposed algorithm and we present below some pre-
liminary experiments with real and synthetic data. We em-
phasize that the main thrust of our presentation is theoret-
ical, with the objective of reaching a better understanding
of multi-view geometry. We do not make any claim here of
outperforming the state of the art, and our experiments are
only included as a proof of concept to validate two points:
(1) our algorithm gives reasonable reconstructions on real
data in a least-squares setting; and (2) its primal version
also gives reasonable results on synthetic data with additive
Gaussian noise in a setting with only 7 correspondences.
Inria toy house data [17]. This dataset consists of 6 images
of the same 38 points. It is small by any standard, but with
enough views and correspondences to demonstrate both the
primal and dual versions of our algorithm. It also makes it
easy to visualize the results since it contains edges linking
the data points (this information is of course only used for
display). Figure 7 shows the reconstructions obtained for
the best choice among 5, 20 and 50 different quadruples of
reference points based on the reprojection error. The recon-
structions are overlaid on the ground-truth 3D points after
projective registration, along with the corresponding mean

2The minimum number of correspondences for three-view structure
from motion is six [12]. The proposed algorithm is not “minimal” and
the solution is over-determined.



reprojection errors in pixels, and the mean relative recon-
struction errors in percentage of the radius of the scene.3

Reprojection errors are quite reasonable in both cases for
20 different choices, and the reconstructions themselves are
also quite reasonable after 5 random choices only. For com-
parison, we have also tested the code for linear estimation
of the trifocal tensor by Juliá and Monasse [13]4, dubbed
here 3LTFT. It yields mean reprojection and reconstruction
errors of 0.7 pixel and 0.3% respectively but, unlike our
method, benefits from Hartley’s data preconditioning [9].

5.7 pixel / 1.7% 2.6 pixel / 0.7% 1.8 pixel / 0.7%

18.0 pixel / 1.6% 5.2 pixel / 1.4% 3.8 pixel / 1.3%

Figure 7. Experiments on the Inria house data [17]. Registered
reconstruction (in red) vs. ground truth (in blue) for the primal
(top) and dual (bottom) versions of our algorithm. The results are
shown, from left to right, for 5, 20, and 50 different choices of
image basis points.

Synthetic noisy data [13]. We have also compared our
primal method with 3LTFT on synthetic data with various
amounts of additive Gaussian noise. In this setting, the cam-
era parameters are estimated from 7 correspondences from
three images (the minimum number for both LTFT and our
algorithm). The quality of the reconstruction is evaluated
by measuring how well it predicts the reprojection of the re-
maining points in the dataset as well as their 3D reconstruc-
tion, once again registered to the ground truth through a ho-
mography. This is the setting where both methods could be
used in practice to establish correspondences via RANSAC,
for example, before a final bundle adjustment step. Fol-
lowing [13], we have constructed a scene consisting of 100
points randomly distributed in a cube of side 400mm ob-
served by three 1200 × 1800 35mm cameras with 50mm
lenses about 1m away, and added Gaussian noise with a
standard deviation σ varying between 0 and 2 pixel to image
coordinates. Figure 8 shows the median values of the mean

3Here, the “best” basis is the one minimizing the mean reprojection
error over the three images, without of course using 3D ground-truth infor-
mation.

4Available at https://github.com/LauraFJulia/TFT_vs_
Fund.

reprojection and reconstruction errors, given respectively in
pixel and mm, for 40 random choices of the 7 point corre-
spondences and different values of σ.5 The 3LTFT plots are
shown in black, and the curves for our method are drawn in
blue, green and red for the best random draw among 5, 10,
and 20 choices of 4 reference points among the original 7.
As shown in Fig. 8, 3LTFT does better in general than our
primal method but both algorithms give reasonable repro-
jection and reconstruction errors for low levels of noise.
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Figure 8. Experiments with synthetic data [13]. See text for details.

6. Conclusion
We have proposed a new coordinate-free approach to

multi-view geometry that explains Carlsson-Weinshall du-
ality and leads to new algorithms for primal and dual struc-
ture from motion. We believe that this type of work, whose
objective is to complete our understanding of the geometric
underpinnings of 3D computer vision, must be pursued for a
clear and unified picture of multi-view geometry to emerge.
Although, we do not claim by any means to establish a new
state of the art with the proposed algorithms, we also believe
that our preliminary experiments demonstrate that they can
serve as yet another useful toolset in the existing arsenal of
approaches to SFM.
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5We use the median instead of the mean because the latter is occasion-
ally totally off course for certain choices of the 7 correspondences for both
methods. See supplemental material for details.
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We present some proofs that were not included in the main
part of the paper and some additional results of our algorithm on
synthetic data.

A. Analytical cameras and duality
The analytical expression for Pc(x) given in Proposition 2.4

follows easily from the following general result.

Proposition A.1. The unique projective transformation of Pn that
maps n+ 2 general points x1, . . . ,xn+2 to the standard basis of
Pn can be described by

y 7→



|x2...xn+1y|
|x2...xn+1xn+2|

|x1x3...xn+1y|
|x1x3...xn+1xn+2|

...

|x1...xny|
|x1...xnxn+2|


. (14)

Proof. It is clear that (14) describes a projective transformation,
since all the expressions are linear in the coordinates of y. It also
follows from elementary properties of determinants that (14) maps
x1, . . . ,xn+2 to the standard basis.

We now turn to Cremona transformations and justify the gen-
eral formula (5) given in the paper.

Proposition A.2. The rational map of P3 given by

ŷ = Z


1

|yx2x3x4|
1

|z1yz3z4|
1

|z1z2yz4|
1

|z1z2z3y|

 , (15)

where Z has columns z1, . . . , z4, is a Cremona transformation
relative to z1,z2,z3,z4 (in the sense of Lemma 2.2 from the main
part of the paper).

Proof. We need to show that z1, . . . , z4,y1,y2 are in the same
projective configuration as z1, . . . ,z4, ŷ2, ŷ1. Indeed, a projec-
tive transformation relating the two sets of points is given by

x 7→ Z



|xz2z3z4|
|y1z2z3z4||y2z2z3x4|

|z1xz3z4|
|z1y1z3z4||z1y2z3x4|

|z1z2xz4|
|z1z2y1z4||z1z2y2x4|

|z1z2z3x|
|z1z2z3y1||z1z2z3y2|


, (16)

where y1,y2 are considered fixed. Note that when z1, . . . , z4 are
basis points then (15) yields the standard Cremona transformation

ŷ =

(
1

y1
,
1

y2
,
1

y3
,
1

y4

)T

, (17)

and (16) becomes

x 7→
(

x1
y11y21

,
x2

y12y22
,

x3
y13y23

,
x4

y14y24

)T

, (18)

where x = (x1, x2, x3, x4)
T , y1 = (y11, y12, y13, y14)

T and
y2 = (y21, y22, y23, y24)

T .

We next prove Proposition 3.1 from the main part of the paper.
We recall that the set S in P3 × P3 × P2 was defined as the set
of triples (c,x,u) such that Pc(x) = u where Pc is a reduced
camera.

Proposition 3.1. (1) For fixed c and u, the set of points x such
that (c,x,u) belongs to S is a line with Plücker coordinates

ξ = Qcu where Qc =


c1c4 0 0
0 c2c4 0
0 0 c3c4
0 −c2c3 c2c3
c1c3 0 −c1c3
−c1c2 c1c2 0

 . (19)

(2) For fixed x and u, the set of points c such that (c,x,u) be-
longs to S is a twisted cubic passing through z1, . . . ,z4 and x.

Proof. To show (1), we define ξj = c ∨ zj (j = 1, . . . , 4). With
our choice of coordinate system, we have

ξ1 =


c4
0
0
0
c3
−c2

 , ξ2 =


0
c4
0
−c3
0
c1

 , ξ3 =


0
0
c4
c2
−c1
0

 , ξ4 = −


c1
c2
c3
0
0
0

 .
(20)

We write ξ = ρ1u1ξ1 + ρ2u2ξ2 + ρ3u3ξ3, where the scalars
ρ1, ρ2, ρ3 have been chosen so that ξ4 = ρ1ξ1 + ρ2ξ2 + ρ3ξ3.
A simple calculation shows that ρ1 = −c1/c4, ρ2 = −c2/c4,
ρ3 = −c3/c4, and (19) immediately follows.

For the second statement, we first note that the set S is charac-
terized algebraically by the relation

rk

c1x4 − c4x1 u1c1
c2x4 − c4x2 u2c2
c3x4 − c4x3 u3c3

 = 1. (21)

This expression follows fromu1

u2

u3

 ∼ Pc(x) =
x1/c1 − x4/c4x2/c2 − x4/c4
x3/c3 − x4/c4

 , (22)

after we clear denominators and eliminate a factor of c4. We now
observe that for fixed x and u, the three quadratic equations in c
from the minors of (21) define a twisted cubic curve. Indeed, as
shown for example in [8, p.14], if L1, L2, L3, M1,M2,M3 are
linear forms in c1, c2, c3, c4, then the projective set defined by

rk

[
L1 L2 L3

M1 M2 M3

]
= 1, (23)

is a twisted cubic if and only if for any (λ, µ) the three linear forms
λLi + µMi (i = 1, 2, 3) are independent. It follows that (21) is a
twisted cubic in x if and only if−λx4 + µu1 0 0 λx1

0 −λx4 + µu2 0 λx2
0 0 −λx4 + µu3 λx3

 (24)



has rank three for all λ, µ. This is true if the coordinates u1, u2, u3

are all distinct and not zero, and the coordinates x1, x2, x3 are not
zero, which is indeed the case under our genericity assumptions.

A.1. Reduced 2D trifocal tensors and trilinearities
We begin by presenting some properties of the SFM problem

for projections from P2 to P1. We represent an analytical projec-
tion of this type using a 2×3 real matrixP defined up to scale. As
for traditional cameras, the center of this projection is the point of
P2 associated with the null-space ofP . Note that ifP ,P ′ are two
projections with distinct centers, then every pair of points (t, t′) in
P1 × P1 will be a “correspondence” for P ,P ′, i.e., there will al-
ways exist a point x in P2 such that Px ∼ t and P ′x ∼ t′. This
follows from the fact that two lines in P2 always intersect. Thus,
the first interesting case of multi-view geometry is for n = 3.

Proposition A.3. Given three projectionsP ,P ′,P ′′ with disjoint
centers, there exists a 2 × 2 × 2 “trifocal tensor” T such that
(t, t′, t′′) in P1 × P1 × P1 correspond if an only if

T ijktit
′
jt
′′
k = 0, (25)

where we use Einstein notation for summation. Entries for T are
given by

T ijk = (−1)ijk|P3−iP
′
3−jP

′′
3−k|, i, j, k ∈ {1, 2}, (26)

where |PiP
′
jP
′′
k | denotes the determinant of the 3 × 3 matrix ob-

tained by stacking the i-th row of P , the j-th row of P ′, and the
k-th row of P ′′. Finally, the trifocal tensor T satisfies the follow-
ing properties:

1. Any general 2× 2× 2 tensor is a “valid” trifocal tensor.

2. Given a general trifocal tensor T , there are two (possi-
bly complex) projectively distinct sets of parameters for
P ,P ′,P ′′.

Proof. These facts are shown in [20], but we give a short proof
here for completeness. We first note that for any 2 × 3 projection
matrix P there is an associated 3 × 2 “inverse projection” matrix
Q that maps points in P1 to the corresponding viewing lines in P2

for P (expressed using dual coordinates). The relation between P
andQ is simply

Q = P T

[
0 −1
1 0

]
. (27)

Since three lines in P2 written in dual coordinates as l, l′, l′′ con-
verge if and only if |l, l′, l′′| = 0, we see that (t, t′, t′′) in
P1 × P1 × P1 form a correspondence for P , P ′,P ′′ if and only
if

Qt Q′t′ Q′′t′′ = 0, (28)

where Q, Q′,Q′′ denote the inverse projection matrices for
P , P ′,P ′′. The expansion of this determinant, together
with (27), immediately yields (25) and (26).

The properties (1) and (2) can be shown computationally. Al-
ternatively, one can explicitly a describe method for reconstructing
two projectively distinct projection mappings from a general ten-
sor. We do this below in the case of “reduced” tensors. The fact

that every tensor is a valid trifocal tensor can also be argued in-
formally by noting that each projection has 5 degrees of freedom,
so after removing projective ambiguity (with 8 parameters) we are
left with 5 + 5 + 5 − 8 = 7 which correspond to all 2 × 2 × 2
tensors up to scale.6

We now consider “reduced” projection mappings from P2 to
P1. Similarly to the 3D case discussed in the paper, a reduced
projection is determined by a center together with 3 fixed points
in P2 in general position. In the following, we will always assume
that the three fixed points are basis points for a projective reference
frame. This leads to projection matrices of the form

Pc =

[
1/c1 0 −1/c3
0 1/c2 −1/c3

]
=

[
ĉ1 0 −ĉ3
0 ĉ2 −ĉ3

]
, (29)

where c = (c1, c2, c3)
T is the center of projection, and we write

ĉi = 1/ci for convenience. Specializing (26) for three reduced
cameras Pc, Pc′ , Pc′′ with c = (1, 1, 1)T , c′ = (c′1, c

′
2, c
′
3)

T ,
c′′ = (c′′1 , c

′′
2 , c
′′
3 )

T , yields

T 111 = 0, T 112 = ĉ′3ĉ
′′
1 − ĉ′2ĉ′′1

T 121 = ĉ′1ĉ
′′
2 − ĉ′1ĉ′′3 , T 122 = ĉ′1ĉ

′′
3 − ĉ′3ĉ′′1 ,

T 211 = ĉ′2ĉ
′′
3 − ĉ′3ĉ′′2 , T 212 = ĉ′2ĉ

′′
1 − ĉ′2ĉ′′3 ,

T 221 = ĉ′3ĉ
′′
2 − ĉ′1ĉ′′2 , T 222 = 0.

(30)

In addition to T 111 = 0 and T 222 = 0, we note that the expres-
sions for the remaining six coefficients always sum to zero. In-
deed, there are three “synthetic” constraints arising from the fact
that the standard basis points in each image provide by construc-
tion three correspondences. However, these three are the only con-
straints that such a tensor must satisfy. In fact, we can give the
following simple algorithm for 2D reduced SFM.

1. Change coordinates in each image P1 using three triples of
correspondences to restrict to reduced projection matrices as
in (29).

2. Estimate the six non-zero coefficients a, b, c, d, e, f of the
reduced trifocal tensor (30), under the condition that they
sum to zero, using an arbitrary number of correspondences
(at least five) in the new image coordinates.

3. Use (30) to recover ĉ′1, ĉ′2, ĉ′3 and ĉ′′1 , ĉ′′2 , ĉ′′3 , and hence c′, c′′

from the six coefficients a, b, c, d, e, f . There are in general
two solutions, which can be computed as follows. Writing
ρij = ĉ′iĉ

′′
j , we have that (30) yields the following linear

relation
0 0 −1 0 1 0
1 −1 0 0 0 0
0 1 0 0 −1 0
0 0 0 1 0 −1
0 0 1 −1 0 0
−1 0 0 0 0 1




ρ12
ρ13
ρ21
ρ23
ρ31
ρ32

 =


a
b
c
d
e
f

 .
(31)

The matrix on the left has rank 5, with a null-space generated
by (1, 1, 1, 1, 1, 1)T . This means that we may write ρij =

6To make this argument more precise, one needs to observe that pro-
jective transformations act freely on triples of cameras (i.e., no projective
transformation of P2 fixes P ,P ′,P ′′ simultaneously).



eij + t where (e12, e13, e21, e23, e31, e32) is any vector that
satisfies (31) and t is unknown. However, we may solve for
t using the fact that ρij must satisfy

ρ12ρ23ρ31 − ρ13ρ21ρ32 = 0. (32)

This yields a constraint on t, which is actually quadratic
rather than cubic, since the cubic term in t cancels out from
the two summands. Given a valid set of ρij , it is straightfor-
ward to recover ĉ′i and ĉ′′j . Indeed, it is sufficient for example
to set

(ĉ′1, ĉ
′
2, ĉ
′
3) = (ρ12/ρ32, ρ21/ρ31, 1),

(ĉ′′1 , ĉ
′′
2 , ĉ
′′
3 ) = (ρ21/ρ23, ρ12/ρ13, 1).

(33)

Note that this procedure is very similar to the method used in
the proof of Proposition 4.3 in the paper. Indeed, the trilinearities
T1, T2, T3, T4 are closely related to the 2D reduced trifocal tensor,
and we will now spell out this relation in detail. We first recall the
following fact from [23] (see also Proposition 1.1 in the paper).

Proposition A.4. Three image points u,u′,u′′ satisfy the trilin-
earity Ti if and only if the three associated viewing lines ξ, ξ′, ξ′′

admit a common transveral through the basis point zi.

The geometric condition from Proposition A.4 can be ex-
pressed by considering an arbitrary projection Pzi with center zi,
and imposing that the projections l, l′, l′′ of ξ, ξ′, ξ′′ under Pzi

are lines in P2 that converge at a point. This is why 2D trifocal
tensors come into play.

In what follows, we write c′r, c′′r for the points in P2 ob-
tained from c′, c′′ by excluding the r-th coordinate (e.g., c′2 =
(c′1, c

′
3, c
′
4)

T ).

Proposition A.5. The trilinearity Tr (r = 1, 2, 3, 4) applied to
u,u′,u′′ can be written as

T ijk
r (Mru)i(Mru

′)j(Mru
′′)k = 0, (34)

where T ijk
r is the reduced 2D trifocal tensor associated with

(1, 1, 1)T , c′r , c′′r (see (30) for the coefficients) and

M1 =

[
0 1 0
0 0 1

]
, M2 =

[
1 0 0
0 0 1

]
,

M3 =

[
1 0 0
0 1 0

]
, M4 =

[
1 0 −1
0 1 −1

]
.

(35)

Proof. This property can be verified computationally with a com-
puter algebra system using the expressions for Ti (given in Propo-
sition 8 of the paper), and for the reduced trifocal tensor (30). A
geometric justification based on Proposition A.4 is as follows.

Let us focus on T1, for notational simplicity. The argument
is identical for the other trilinearities. We consider the following
simple projection with pinhole z1

Pz1 =

0 1 0 0
0 0 1 0
0 0 0 1

 . (36)

Any triple of image points u,u′,u′′ (in distinct images) deter-
mines three lines l, l′, l′′ in the image plane of Pz1 , which con-
tain the points (1, 1, 1)T , c′1 = (c′2, c

′
3, c
′
4)

T , c′′1 = (c′′2 , c
′′
3 , c
′′
4 )

T .

These three points are in fact the images of c, c′, c′′ under Pz1

(i.e., they are three epipoles). We can parameterize the three bun-
dles through c1, c′1, c′′1 using the reference frame induced by the
three points Pz1(z2), Pz1(z3), Pz1(z4). This way, converging
triplets l, l′, l′′ are described by a reduced 2D trifocal tensor.

Finally, the coordinates in P1 of the lines associated with
u,u′,u′′ are given simply by M1u, M1u

′, M1u
′′. This is

because M1 is the unique projection matrix that maps (0, 1, 0)T ,
(0, 0, 1)T , (1, 1, 1)T (which are images of z2,z3,z4 for all three
cameras) to the standard basis of P1.

In conclusion, a triplet u,u′,u′′ satisfies T1 if and only if the
associated lines l, l′, l′′ in the image plane of Pz1 converge, and
this in turn is equivalent to the fact thatM1u,M1u

′,M1u
′′ are

three points in P1 which satisfy the constraint from the reduced
2D trifocal tensor.

Expanding (34) for r = 1, 2, 3 we obtain the expressions for
T1, T2, T3 given in equation (10) of the main part of the paper. For
completeness, we include here the explicit expanded form of all
the trilinearities:

T1 =u2u
′
2u
′′
3 (−ĉ′3ĉ′′2 + ĉ′4ĉ

′′
2 ) + u2u

′
3u
′′
2 (ĉ
′
2ĉ
′′
3 − ĉ′2ĉ′′4 )+

u2u
′
3u
′′
3 (−ĉ′4ĉ′′2 + ĉ′2ĉ

′′
4 ) + u3u

′
2u
′′
2 (−ĉ′4ĉ′′3 + ĉ′3ĉ

′′
4 )+

u3u
′
2u
′′
3 (ĉ
′
3ĉ
′′
2 − ĉ′3ĉ′′4 ) + u3u

′
3u
′′
2 (−ĉ′2ĉ′′3 + ĉ′4ĉ

′′
3 ),

T2 =u1u
′
1u
′′
3 (−ĉ′3ĉ′′1 + ĉ′4ĉ

′′
1 ) + u1u

′
3u
′′
1 (ĉ
′
1ĉ
′′
3 − ĉ′1ĉ′′4 )+

u1u
′
3u
′′
3 (−ĉ′4ĉ′′1 + ĉ′1ĉ

′′
4 ) + u3u

′
1u
′′
1 (−ĉ′4ĉ′′3 + ĉ′3ĉ

′′
4 )+

u3u
′
1u
′′
3 (ĉ
′
3ĉ
′′
1 − ĉ′3ĉ′′4 ) + u3u

′
3u
′′
1 (−ĉ′1ĉ′′3 + ĉ′4ĉ

′′
3 ),

T3 =u1u
′
1u
′′
2 (−ĉ′2ĉ′′1 + ĉ′4ĉ

′′
1 ) + u1u

′
2u
′′
1 (ĉ
′
1ĉ
′′
2 − ĉ′1ĉ′′4 )+

u1u
′
2u
′′
2 (−ĉ′4ĉ′′1 + ĉ′1ĉ

′′
4 ) + u2u

′
1u
′′
1 (−ĉ′4ĉ′′2 + ĉ′2ĉ

′′
4 )+

u2u
′
1u
′′
2 (ĉ
′
2ĉ
′′
1 − ĉ′2ĉ′′4 ) + u2u

′
2u
′′
1 (−ĉ′1ĉ′′2 + ĉ′4ĉ

′′
2 ),

T4 =u1u
′
1u
′′
2 (−ĉ′2ĉ′′1 + ĉ′3ĉ

′′
1 ) + u1u

′
1u
′′
3 (ĉ
′
2ĉ
′′
1 − ĉ′3ĉ′′1 )+

u1u
′
2u
′′
1 (ĉ
′
1ĉ
′′
2 − ĉ′1ĉ′′3 ) + u1u

′
2u
′′
2 (−ĉ′3ĉ′′1 + ĉ′1ĉ

′′
3 )+

u1u
′
2u
′′
3 (ĉ
′
3ĉ
′′
1 − ĉ′1ĉ′′2 ) + u1u

′
3u
′′
1 (−ĉ′1ĉ′′2 + ĉ′1ĉ

′′
3 )+

u1u
′
3u
′′
2 (ĉ
′
2ĉ
′′
1 − ĉ′1ĉ′′3 ) + u1u

′
3u
′′
3 (−ĉ′2ĉ′′1 + ĉ′1ĉ

′′
2 )+

u2u
′
1u
′′
1 (−ĉ′3ĉ′′2 + ĉ′2ĉ

′′
3 ) + u2u

′
1u
′′
2 (ĉ
′
2ĉ
′′
1 − ĉ′2ĉ′′3 )+

u2u
′
1u
′′
3 (−ĉ′2ĉ′′1 + ĉ′3ĉ

′′
2 ) + u2u

′
2u
′′
1 (−ĉ′1ĉ′′2 + ĉ′3ĉ

′′
2 )+

u2u
′
2u
′′
3 (ĉ
′
1ĉ
′′
2 − ĉ′3ĉ′′2 ) + u2u

′
3u
′′
1 (ĉ
′
1ĉ
′′
2 − ĉ′2ĉ′′3 )+

u2u
′
3u
′′
2 (−ĉ′2ĉ′′1 + ĉ′2ĉ

′′
3 ) + u2u

′
3u
′′
3 (ĉ
′
2ĉ
′′
1 − ĉ′1ĉ′′2 )+

u3u
′
1u
′′
1 (ĉ
′
3ĉ
′′
2 − ĉ′2ĉ′′3 ) + u3u

′
1u
′′
2 (−ĉ′3ĉ′′1 + ĉ′2ĉ

′′
3 )+

u3u
′
1u
′′
3 (ĉ
′
3ĉ
′′
1 − ĉ′3ĉ′′2 ) + u3u

′
2u
′′
1 (−ĉ′3ĉ′′2 + ĉ′1ĉ

′′
3 )+

u3u
′
2u
′′
2 (ĉ
′
3ĉ
′′
1 − ĉ′1ĉ′′3 ) + u3u

′
2u
′′
3 (−ĉ′3ĉ′′1 + ĉ′3ĉ

′′
2 )+

u3u
′
3u
′′
1 (−ĉ′1ĉ′′3 + ĉ′2ĉ

′′
3 ) + u3u

′
3u
′′
2 (ĉ
′
1ĉ
′′
3 − ĉ′2ĉ′′3 ).

(37)
We can also use Proposition A.5 to prove theoretical properties

of all four trilinearities. The following statement is equivalent to
Proposition 4.3 in the main part of the paper.

Proposition A.6. The internal constraints of each trilinearity Tr

are linear. More precisely, the coefficients in R27 that are entries
of Ti for some choice of c′, c′′ form a linear space, of dimension



five. Moreover, the coefficients of Tr characterize c′r and c′′r up to
a two-fold ambiguity.

Proof. It follows from (34) that the coefficients of Tr are images
of the coefficients of T ijk

r under an injective linear map (note that
this map is completely described by the four matrices (35)). Since
the entries of a reduced 2D trifocal are only constrained by three
linear conditions, the coefficients of Tr form linear spaces of di-
mension five. Moreover, the knowledge of the Tr is equivalent to
that of T ijk

r , which means that c′r and c′′r are determined up to a
two-fold ambiguity.

Finally, we provide some details on the proof of Proposition
4.2 in the paper.

Proposition 4.2 A vector d = (dij) in R12 with no zero en-
tries can be written as dij = aibj for some vectors a =
(a1, a2, a3, a4)

T , b = (b1, b2, b3, b4)
T in R3 if and only if

dijdkl = dildkj holds for all permutations (i, j, k, l) of
(1, 2, 3, 4).

Proof. A factorization of d = (dij) exists if and only if there is a
rank-1 completion of

∗ d12 d13 d14
d21 ∗ d23 d24
d31 d32 ∗ d34
d41 d42 d43 ∗

 . (38)

Indeed, a completion corresponds to aT b ∈ R4×4. It is clear that
the constraints dijdkl = dildkj , which correspond to certain 2×2
minors, are necessary. Conversely, it is always possible to deduce
the diagonal elements, for example:

d11 =
d13d21
d23

=
d14d21
d24

=
d12d31
d32

=
d14d31
d34

. (39)

The constraints dijdkl = dildkj guarantee equality among all
these expressions. Indeed, we have that for example d12d23d31 =
d21d32d13 because

d12
d13

d23
d21

d31
d32

=
d42
d43

d43
d41

d31
d32

=
d42d31
d43d32

= 1. (40)

This shows that if the quadratic constraints hold, we can solve for
the diagonal elements in (38), and the resulting matrix will have
rank one.

B. Synthetic data experiment
For completeness, we show in Figure 9 the mean value of the

mean reprojection and reconstruction errors for the synthetic data
used in Section 5.2 of our submission. Recall that the quality
of the reconstruction was evaluated in that section by measuring
how well it predicts the reprojection of the remaining points in
the dataset as well as their 3D reconstruction, once again regis-
tered to the ground truth through a homography. We have used the
same data as in Section 5.2 to construct the curves shown in Fig-
ure 9. They show the mean values of the mean reprojection and
reconstruction errors, given respectively in pixel and mm, for 40
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Figure 9. Experiments with synthetic data using the mean of the
mean reprojection and reconstruction errors instead of their me-
dian. Compare to Figure 8 in our submission.

random choices of the 7 point correspondences and different val-
ues of the standard deviation σ (in pixel units) of Gaussian noise
added to the image coordinates. As noted in our submission, Fig-
ure 9 shows that both the linear trifocal tensor estimation are oc-
casionally thrown completely off course for “bad” choices of the
7 correspondences, without a clear winner in this case.


