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ABSTRACT

Road detection in high-resolution satellite images is an im-
portant and popular research topic in the field of image pro-
cessing. In this paper, we propose a novel road extraction and
tracking method based on road segmentation results from a
convolutional network, providing improved road detection.
The proposed method incorporates our previously proposed
connected-tube marked point process (MPP) model and a
post-tracking algorithm. We present experimental results on
the Massachusetts roads dataset to show the performance of
our method on road detection in remotely-sensed images.

Index Terms— road detection, convolutional network,
connected tube model, MPP, road tracking

1 Introduction

Road detection from high-resolution satellite images has been
an important research topic for years. Since new roads are
constructed frequently, it is essential to update road maps with
up-to-date high-resolution satellite images, which makes au-
tomated road detection important. However, this problem is
very challenging due to the complexity of road networks. For
instance, roads can vary greatly in width and color, and there
could be noise and occlusions from cars, trees, etc.

Many approaches have been proposed to solve this prob-
lem in the past decades, some of them approaching it as a road
skeleton detection problem [1], and others as a road segmen-
tation problem [2]. Due to the complexity of road networks,
traditional methods can be very complex and ineffective.

With the development of deep learning, many neural net-
works have been constructed for road segmentation. In [3],
Mnih and Hinton trained a supervised deep Neural Network
to segment roads in high-resolution aerial images. In [4],
Ronneberger et al. proposed the U-Net convolutional network
for biomedical image segmentation, which has been shown
to work well for road segmentation also. Zhang and Liu et
al. [5], built a deep residual U-Net by combining residual
unit [6] with U-Net. Buslaev et al. [7] proposed a network
consisting of ResNet-34 pre-trained on ImageNet and a de-

coder adapted from vanilla U-Net, which showed superior
results in the DeepGlobe 2018 Road Extraction Challenge.
Zhou et al. [8] obtained good IoU scores in DeepGlobe 2018
Road Extraction Challenge with their D-LinkNet.
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Fig. 1: Upper row: original satellite images; middle row: segmen-
tation results from D-LinkNet34; bottom row: the results of road
network extraction by the tube-MPP model.

The road segmentation results from these deep convolu-
tional networks are impressive. These methods can overcome
the problem of occlusions and shadows; see Fig 1 (d), (e).
However, there still exist some road connectivity problems
and incorrect detections, such as in Fig 1 (f). Moreover, the
binary segmentation masks are not sufficient for higher level
road analysis (such as obtaining certain statistical information



and analyzing the structure of the road network). Filin, Za-
para and Panchenko [9] proposed a post-vectoring algorithm
combined with their EOSResUNet to extract the roads as vec-
tors. This partially solves the connectivity problem in small
gaps but is not able to fill larger gaps or extend roads.

Unsupervised line network extraction by MPP is another
choice for road detection. Lacoste, Descombes and Zeru-
bia [10] proposed the Quality Candy model for line network
extraction. Schmidt et.al [11] presented a forest point process
for the automatic extraction of networks. We proposed in a
previous paper [12] a connected-tube MPP model for strip
feature extraction. These MPP based models provide good
results in many cases, but they assume the gray level varia-
tion between a road and the background is large, which is not
always true.

Considering the promising road segmentation results from
deep convolutional networks, we apply our connected-tube
MPP model to the segmentation results. In this way, we accu-
rately extract the roads as connected tubes, which can be used
for higher level road analysis. Moreover, we propose a post
road-tracking algorithm based on the extracted tube networks
for solving road connectivity problems.

The remainder of this paper is organized as follows: In
Section 2, we review the segmentation methods based on U-
Net and the connected-tube MPP model. In Section 3, we
introduce our tracking algorithm. In Section 4, road detection
results from the Massachusetts roads dataset [13] are given
and discussed. Finally, conclusions are drawn in Section 5.

Fig. 2: The architecture of U-Net.

2 Related Work

2.1 Road Segmentation with U-Net
The architecture of U-Net, as in Fig 2, mainly consists of an
encoder part, a decoder part and shortcuts. In the encoder and
decoder parts, there are 5 basic convolutional blocks each. If
we add a residual connection between the input and output for
each convolutional block, then we turn the UNet to ResUNet
[5]. If we use the ResNet-34 pretrained on ImageNet dataset
as the encoder, then the network becomes a LinkNet [14].
Then if we apply the dilation convolution [15] to the bridge
part (the middle part of U-Net), the network turns into D-

LinkNet [8].
The training process for U-Net is tricky. First, data aug-

mentation is essential for training the network. The com-
mon augmentation strategies include flip, rotate, add noise
and change illumination. The selection of loss function is
also important. The BCE (binary cross entropy)+ dice coeffi-
cient loss [8] works well for road segmentation. And Mosin-
ska [16] proposed a loss function that is aware of the higher-
order topological features of linear structures.
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Fig. 3: (a) The shape model of a tube; (b) Tracking illustration.

2.2 Connected-Tube MPP Model
Let Y denote the observed image, S the image lattice, S ⊂
IR2. A point process on S is a set of points {S1, S2, ..., Sn} ⊆
S, with the random variable Si representing the random loca-
tion of the ith point. In a marked point process, for each point
Si, there is an associated mark, which consists of random
variables from a mark spaceM describing an object located at
point i. For our tube MPP model, the mark of a tube is defined
by the vector (a, b, θ), as in Fig 3 (a). The random variables a,
b are the major and minor axes, which control the size of the
tube, and θ controls the orientation. The white region is the
inner area, the red region is the outer area, which has width
of 2 pixels, the blue region and the yellow region are the front
connection area and back connection area, respectively. Mark
spaceM = [amin, amax]×[bmin, bmax]×[0, π], for some pa-
rameters amin, amax, bmin, bmax. A marked object is defined
as a vector Wi = (Si,Mi) ∈ W , where W ⊆ S ×M . Let
ΩW be the configuration space, which denotes the space of
all possible realizations of W . Then w = (w1, ..., wn) ∈ ΩW

is a possible object configuration, where n is the number of
objects in this configuration. Then the density of the marked
point process is given by

f(w|y) =
1

Z
exp{−Vd(y|w)− Vp(w)} (1)

where Z is the normalizing constant, Vd(y|w) is the data en-
ergy, which describes how well the objects fit the observed
image. In this paper we apply the contrast based data en-
ergy [17]. Vp(w) is the prior energy introducing the prior
knowledge on the object configuration. Here we consider



the overlap prior, tube length prior and connection prior as
in [12]. State transitions in the configuration space are real-
ized by three types of kernel: Birth and death kernel, pertur-
bation kernel and switch kernel.

After converting the output (a probabilistic image) of net-
works from U-Net family to a binary image by a threshold, as
in the images in Fig 1 (d), (e), (f), we take this binary image
as the input to our connected-tube MPP model. Then we can
extract the roads as a connected-tube network, as shown in
Fig 1 (g), (h), (i).

Fig. 4: The framework of the proposed method.

3 Road Tracking
In order to fill some gaps and large missing parts of roads
in the segmentation result from deep learning, we propose
a tracking algorithm that takes the connected tubes and the
original image and extends roads using the method described
in this section. The framework is shown in Fig 4.

The open and half open tubes in the extracted connected-
tube networks are selected as tracking seeds, which are the
tubes with blue edges in Fig 1 (i).

In our work, tracking roads is an iterative process. Given
a tube object Pi, our goal is to find a Pi+1(as in Fig 3 (b))
which is connected to Pi, has similar features to Pi, and does
not conflict with other tube objects. We repeat this process
until the whole road has been extracted.

We take the HSV histogram [18] of the inner area of the
tube as the color feature Ci of a road segment. This feature is
updated in the tracking process by Ci = γCi−1 + (1− γ)C,
where γ is the update ratio and C is the color feature of the
inner area of the object being tracked. Within the tracking
process, we calculate a tracking score TS for each potential
tracking object. Tracking score is formulated as:

TS = ωcdist(Ci, C)− ωddist(C,Co) + ωoad (2)

where Co is the color feature of the outer area of the tracking
object; Ci is the color feature of the road in the ith step; ad is
the angle deviation from the original tube object; ωc, ωd, ωo

are weights; and dist(x, y) is the Euclidean norm function.
The first term in (2) encourages the tracked object to have

similar color to the previous road segments. The second term
encourages the tracking object to have larger color difference
between inner and outer areas. The third term penalizes the
angle deviation.

The details of the tracking process can be seen in Algo-
rithm 1.

Algorithm 1 Road Tracking Function

TrackingFunc(currentObj, colorfeature, TrackingArray):
if currentObj’s front/back end is OPEN then

BestScore = 1000
A = currentObj’s front/back middle point
for ad in range (−30, 30) do

for len in range (−2, 2) do
newObj.a = currentObj.a+len
newObj.θ = (currentObj.θ + ang)%360
newObj’s back/front middle point = A
TSnew = newObj’s score calculated by (2)
if TSnew <BestScore then

BestScore = TSnew

BestObj=newObj
end if

end for
end for
if BestScore< Ts and BestObj not overlap then

TrackingArray.add(BestObj)
colorfeature = BestObj.colorfeature ∗ (1− γ) +
colorfeature ∗ γ
TrackingFunc(BestObj, colorfeature, TrackingArray)

end if
end if

4 Experiments
To demonstrate the performance of our method in high-
resolution satellite images, we test it on the Massachusetts
roads dataset1 (with the resolution of 1.2 meter). We mainly
focus on its ability to extract roads as connected tubes and to
solve connectivity problems in road segmentation. For quan-
titative evaluation, the Jaccard index [19] (ie., Intersection
over Union) is used. For sets A and B, it is defined as:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(3)

We apply the D-LinkNet34 [8] for road segmentation and the
tube-connected MPP model for road segment extraction. The
parameters for the tube model are set as amin = 4, amax =
16, bmin = 2, bmax = 8. For our tracking algorithm, we set
ωc = 0.5, ωd = 0.3, ωo = 0.02, γ = 0.88, Ts = 0.38 by trial
and error.

In Fig 5, we present 5 test results to show our method
can work for different connection problems. The 512 × 512
images are cropped from the test set in Massachusetts roads
dataset. For the first test, we can see there are some small

1https://www.cs.toronto.edu/˜vmnih/data/



Fig. 5: First column: original images; second column: the ground truth; third column: segmentation results from D-LinkNet34; fourth
column: improved segmentation results by our tracking method; fifth column: road network detection results (red tubes are the extracted
tubes from connected-tube MPP model; blue tubes are the tracking seeds; green tubes are the tracking tubes).

disconnection parts in the red circle and one segment of road
lost in the green circle. In the second test, a small gap appears
in the corner of two roads. In the third test, only the middle
part of the road has been segmented out. For the fourth test,
in the red circle the highway is not segmented out, and in the
green ellipse, there is a disconnection problem. By running
the proposed algorithm, the gaps have been filled. The fifth
test is very challenging, since the missing part of the road in
the red ellipse is heavily occluded by trees. With the same
experimental parameters, our method would lose the part in
the blue box due to heavy occlusion. When we increase the
threshold Ts, we detect the whole road as Fig 5 shows. But if
we keep this high threshold, there could be some false alarms
in other tests. The IoU of these tests are listed in Table 1.

5 Conclusions and Future Work

Road segmentation by deep learning method provide interest-
ing results. However, it still exhibits some connectivity prob-
lems and incorrect detection. To deal with the connectivity
problems in road segmentation, we propose a post-processing
method by combining the tube-connected MPP model and a
tracking algorithm. This method not only relieves the prob-

lem of disconnection in road segmentation, but also can pro-
vide a connected-tube network for higher level road analysis
(such as obtaining the statistics of roads or road networks).
The experiments on the Massachusetts roads dataset demon-
strate the performance of our method. In future research, we
will try to learn the parameters in our model automatically
and test our method on other applications, such as blood ves-
sel detection.

test1 test2 test3 test4 test5
DLinkNet34 0.495 0.600 0.607 0.344 0.460
Improved
by tracking

0.535 0.635 0.617 0.545 0.569

Table 1: IoU values of the tests in Fig 5.
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