-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Verifying constant-time implementations in a verified
compilation toolchain
Alix Trieu

» To cite this version:

Alix Trieu. Verifying constant-time implementations in a verified compilation toolchain. Cryptography
and Security [cs.CR]. Université Rennes 1, 2018. English. NNT: 2018REN1S099 . tel-01944510v3

HAL Id: tel-01944510
https://hal.inria.fr /tel-01944510v3

Submitted on 17 Jun 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/213347269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/tel-01944510v3
https://hal.archives-ouvertes.fr

UNIVERSITE

BRETAGNE UNIVERSITE DE €

RENNES 1

THESE DE DOCTORAT
UNIVERSITE DE RENNES 1

Rapporteurs avant soutenance :

M. Frank PIESSENS - Professeur — Katholieke Universiteit Leuven
Mme. Marie-Laure POTET - Professeur des universités - ENSIMAG

Composition du jury :
Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition ne comprend que les membres présents
Président : Prénom Nom Fonction et établissement d’exercice
Examinateurs : Mme. Stéphanie DELAUNE - Directrice de recherche — CNRS, IRISA
M. Frank PIESSENS - Professeur — Katholieke Universiteit Leuven
Mme. Marie-Laure POTET - Professeur des universités — ENSIMAG
M. Alejandro RUSSO - Professeur — Chalmers University of Technology

Dir. de thése : Mme. Sandrine BLAZY - Professeur des universités — Université de Rennes 1
Co-dir. de thése: M. David PICHARDIE - Professeur des universités — ENS Rennes

Contents

1 INTRODUCTION

4.1

METHODOLOGY

2 CONTEXT
2.1 FORMAL VERIFICATION OF PROGRAMMING TooOLs
2.1.1 CoQ PROOF ASSISTANT .
212 CoMPCERT
2.13 VERASCO
2.2 VERIFICATION OF SECURITY PROPERTIES
2.2.1 NON-INTERFERENCE . . .
2.2.2 TAINTING
2.2.3 HiIGH ASSURANCE CRYPTOGRAPHY v o v v v v v v
3 VERIFICATION AT THE C LEVEL
3.1 THE WHILE LANGUAGE
3.2 CONSTANT-TIME SECURITY . . .
3.3 REDUCING SECURITY TO SAFETY .
3.4 ABSTRACT INTERPRETER
3.5 CORRECTNESS OF THE ABSTRACT INTERPRETER
3.6 IMPLEMENTATION AND EXPERIMENTS v v ...
3.6.1 CONTEXT SENSITIVITY .
3.6.2 MEMORY SEPARATION . .
3.6.3 CRYPTOGRAPHIC ALGORITHMS« v v v v i i oo
3.7 CONCLUSION
4 VERIFICATION AT THE ASM LEVEL

4.2 DEFENSIVE ENCODING OF ANNOTATIONS . . « + « v v v v v v oo e e e

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

ANNOTATION SYNTAX . .

LOWERING OF ANNOTATIONS « v v v vt v e e e e e e o

ANNOTATION ENCODING
ANNOTATION SEMANTICS
CORRECTNESS THEOREM

11
11
11
14
25
26
26
27
28

31
32
35
37
43
47
52
53
54
55
57

59
60
62
62
63
64
65
66

1ii

Contents

4.3 RELATIVE-SAFETY CHECKING« . &« v v v e ettt e e e e e
43.1 OVERVIEW o ittt it et e e e e e e e
4.3.2 PROGRAM PRODUCT+ v v v i ittt e e e e e e
433 VALID PRODUCT . . . « v v v i vt e e et e e e e e i e
4.3.4 SIMULATION v v ittt e i e e e e e e e
4.4 EXPERIMENTAL RESULTS « v v v it i i et e e e e e e
45 CONCLUSION . . . v v v ittt e e e e e e e e s e e
PRESERVATION OF CRYPTOGRAPHIC CONSTANT-TIME SECURITY
5.1 FRAMEWORK i i ittt ittt e e e e e e e e e s e
52 EXAMPLES e e e
5.2.1 STACK ALLOCATION . . .« v v v i vt i e et e e e e
5.2.2 MEMOIZATION v it i i e e e e e e e e e e
5.3 APPLICATION TO COMPCERT v v v vttt i e et
5.4 RELATED WORK AND CONCLUSION v v v v v i i e et oo
CONCLUSION
6.1 SUMMARY ot e
6.2 PERSPECTIVE o v i ittt et e e e e e e e e e e
6.2.1 CONSTANT-TIME SECURITY PRESERVATION AGAIN
6.2.2 TIMING ATTACK MITIGATIONS o v v v i e i e e
6.2.3 A DIFFERENT SECURITY MODEL « v v v v v v v e

AUTHOR’S CONTRIBUTIONS

BIBLIOGRAPHY

iv

75
78
86
86
88
88
94

97
97
98
98
100
101

103

105

List of Figures

1.1
1.2

2.1

2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5

Exemple de Simple Power Analysis de [Koc+11] ix
Principe d’une attaque parcache xi
Simple Power Analysis example from [Koc+11] 3
General principle of an cache attack 4

Star Forward Simulation (Hypotheses in plain lines, conclusion in

dashedlines) 18
Forward simulations 0. 19
Architecture of the CompCert compiler 20
Syntax of the RTL intermediate language 21
Coq definition of the RTL syntax 21
Coq definition of the RTL semantics 24
Architecture of the Verasco static analyzer 25
Example of aliasing L L. 32
Syntax of While programs L. 32
Semantics of While programs o oL 34
Methodology 38
Diagram relating the different semantics 39
Tainting semantics for While programs 40
Structure of an abstract interpreter L. 44
Abstract taint lattice T 45
Abstract execution of statements Lo 47
Definition of the collecting semantics - 48
An example program that is analyzed as constant time 55
SHA256 Example 56
Overview of the methodology 61
Asimple program L 62
General structure of the shadow stack 65
An example of function product Lo oL 70
Product of critical instructions L oL 71

List of Figures

vi

5.1

5.2

5.3

54
5.5

6.1

Leak-preserving lockstep diagram (Hypotheses in plain lines, conclusion
indashedlines)
Trace preserving simulations (Hypotheses in plain lines, conclusion in
dashedlines)
2-simulation diagram (Hypotheses in plain lines, conclusion in dashed
lines)
Indistinguishability definition
2-simulation diagram from [BGL18] (Hypotheses in plain lines, conclu-
sionindashedlines),

Simplification of constant-time security preservation

RESUME ETENDU EN FRANCAIS

Depuis des temps immemoriaux, les hommes ont essayés de communiquer de maniére
privée en public, c’est-a-dire que seuls les participants pouvaient comprendre les com-
munications mémes en présence d’espions. Un des premiers exemples est celui de
I’empereur Jules César qui encodait ses correspondances militaires et privées en util-
isant le chiffrement de César. Le principe de cette technique de chiffrement était de
substituer les lettres du texte original par une lettre décalée dans I’alphabet de la pre-
miére par un nombre fixé. Le texte encodé de “bonjour” serait alors “erqmrxu” avec un
décalage de 3, b est devenu e, o est devenu r, etc.

La cryptographie est la discipline de la sécurisation des communications en présence
d’attaquants. Les primitives cryptographiques sont des algorithmes basiques qui four-
nissent des services cryptographiques tels que coder ou décoder un message. Ces
algorithmes sont généralement prouvés par leur créateurs comme étant calculatoire-
ment sécurisés, c’est-a-dire qu’il faudrait un temps ridiculeusement long a un attaquant
afin d’outrepasser les sécurités de ’algorithme en utilisant une immense puissance
de calcul. Les protocoles cryptographiques sont construits en utilisant ces primitives
comme briques de base, ils spécifient comment utiliser ces primitives afin de communi-
quer de maniere sire.

Les communications électroniques devenant de plus en plus importantes dans notre
monde par la démocratisation d’Internet, des cartes bancaires, du paiement sans contact,
des smartphones, etc. La cryptographie est devenue une piéce centrale dans la protection
de notre vie privée. Ainsi, des erreurs dans la création ou I'implémentation de primitives
cryptographiques ou de protocoles pourraient avoir des conséquences désastreuses,
que ce soit en terme d’argent ou de vies. Par exemple, les applications mobiles pour
communiquer en privé sont devenus répandues dans les pays ou la liberté d’expression
n’est pas garantie. Si ces communications étaient révélées, cela pourrait mettre leurs
auteurs en grand danger.

Un autre exemple est celui du bug informatique Heartbleed. En avril 2014, un bug de
sécurité a été découvert dans la librairie cryptographique OpenSSL', une des, si ce n’est

1D’aprés https://arstechnica.com/information-technology/2014/04/
critical-crypto-bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/.

vii

List of Figures

pas la plus populaire des librairies cryptographiques sur Internet. A cette période, la
librairie fournissait une implémentation du protocole TLS utilisé par les sites Internet
afin de s’authentifier auprés des utilisateurs et d’assurer une communication sécurisée
entre eux. Cette implémentation était utilisée par deux tiers de tous les sites Internet’,
ce qui les a rendus par conséquence vulnérable au bug Heartbleed. Ce bug était dii au
fait qu’une vérification des bornes était manquante dans le code source d’OpenSSL.
Des attaquants ont pu exploiter ce bug afin de récupérer aléatoirement des bouts de
données privées depuis les serveurs hébergeant les sites Internet affectés. Ces bouts de
mémoire pouvaient tout aussi bien contenir des informations ordinaires que des mots
de passe ou encore des clés privées rendant ce bug extrémement dangereux.

Bien que les cryptographes ont concu leur schémas de cryptage ou leur protocoles
de communication afin qu’ils soient mathématiquement corrects et sécurisés, il reste
néanmoins que I'implémentation sous-jacente est exécutée dans le monde physique.
L’exécution de ces implémentations affecte donc le monde de diverses fagons qui pour-
raient faire fuire des informations confidentielles, ces différentes maniéres sont appelées
des canaux cachés. Par exemple, la consommation d’électricité, le bruit engendré, ou
encore la durée d’exécution peuvent tous étre utilisés afin de récupérer des secrets
cryptographiques

Dans le cas de la consommation d’électricité, un exemple peut étre trouvé dans [Koc+11]
et est reproduit dans la Figure 1 qui illustre la consommation d’électricité mesurée
par un oscilloscope d’une puce calculant une boucle de I'exponentiation module de
I'algorithme RSA. La trace montre une séquence de différentes opérations qui peu-
vent étre utilisées pour récupérer la clé secrete. Afin de décoder un message avec
I’algorithme RSA, I’exponentiation modulaire est utilisée. Le message encrypté est la
base, la clé secréete est Iexposant et le module est choisi au début de ’algorithme RSA.
Une implémentation que 'on pourrait retrouver dans des livres de cours est présentée
ci-dessous.

int modular_exp(int base, int exponent, int modulus)
{
int result = 1;
base = base % modulus;
while (exponent > 0) {
if (exponent % 2 == 1) {
result = (result * base) % modulus;
}
exponent = exponent >> 1;
base = (base * base) % modulus;

}

return result;

viii

13

List of Figures

01-01--0000001--01--01--0 010 1=-=1== 1= 0 1-=0 0 1= 1== 1--

Figure 1: Exemple de Simple Power Analysis de [Koc+11]

La boucle itére sur les bits de 'exposant, c’est-a-dire la clé secrete. Les multiplications
consomment plus d’énergie que calculer un carré et apparaissent donc avec des pics plus
hauts dans la trace. Puisque les multiplications ne sont exécutées seulement lorsque
le bit 'exposant est 1, alors que le calcul du carré est effectué a chaque itération de
la boucle, le bit 1 est representé par un léger pic suivi dans grand pic, alors qu’'un 0
est représenté par un pic court. Cela nous permet de décrypter la trace illustrée dans
la Figure 1. Une limitation de cette approche est qu’elle nécessite un acces direct a
Iappareil.

Une autre attaque possible consiste a utiliser le temps déxécution du programme, ce
qui peut étre accompli a distance (par le réseau par exemple) lorsque les fluctuations
sont assez grandes, ce qui est généralement le cas en pratique [Ber05a]. A nouveau
dans le cas de 'exponentiation modulaire, lorsque le bit évalué de '’exposant est 1,
une multiplication et un calcul de modulo sont effectués en plus par rapport au cas ou
I'exposant est 0. Par conséquent, la durée de ’exécution est proportionnelle au nombre
de bits a 1 dans la clé secréte. Cela diminue grandement le nombre de clés possibles.

D’autres attaques exploitant la durée d’exécution sont présentées dans [Koc96;
YGH17; Ber05a], ces attaques exploitent ce qu’on appelle un canal caché temporel.
Nous nous concentrons dans cette thése sur le canal caché temporel car il est considéré
I'un des canaux cachés les plus dangereux. En effet, il est exploitable a distance alors
que des canaux cachés reposant sur la consommation d’énergie ou le bruit demandent
un acces physique a ’appareil visé.

Sécurité constant-time Afin de fermer le canal caché temporel, les cryptographes,
les développeurs de librairies cryptographiques ainsi que les ingénieurs de sécurité

X

List of Figures

suivent une disciple de programmation trés stricte appellée programmation constant-
time”. Ce nom est légérement inapproprié. En effet, les programmes ne sont pas
écrits afin que leur exécutions soient litérallement en temps constant, mais seulement
en temps constant par rapport aux secrets. C’est-a-dire que le temps d’exécution ne
dépend pas des secrets. Cela est accompli en s’assurant que le flot de controle (les
branchements conditionnels) et les acccées mémoire des programmes ne dépendent
pas de secrets. Le temps d’exécution d’un programme n’est pas seulement affecté par
son flot de controle, mais aussi par ses accés mémoire qui sont affectés par le cache.
Considérez le scénario suivant illustré dans la Figure 2, un programme cryptographique
est exécuté dans le cloud et ses données sont chargées en cache dans la Figure 2a. Dans
la Figure 2b, I'attaquant qui partage la méme machine dans le clooud exécute a son tour
un programme qui va remplacer certaines des lignes de cache par d’autres données. Le
programme cryptographtique continue son exécution et charge a nouveau ses données
mises en cache. Du point de vue de I'attaquant, il n’est pas possible de savoir a qui
appartiennent les données en cache, comme illustré dans la Figure 2c par les cases
grises. Lorsque l'attaquant essaie de charger ses propres données, deux scénarios sont
possibles. Soit 'accés mémoire est lent, car les données du premier programme ont été
remises en cache comme illustré par la Figure 2d, ou 'acces mémoire est rapide car le
programme cryptographique n’a pas utilisé cette partie de la mémoire comme montré
par la Figure 2e. Dans le premier cas, ’attaquant apprend quelle ligne de cache a été
utilisée par le programme cryptographique. Cela est dangereux car certains algorithmes
cryptographiques tels qu’AES utilisent des acces mémoire de la forme table[secret &
oxff1], I'attaquant peut donc apprendre que la valeur secret & 0xff est bornée entre
40 et 47 par exemple dans le cas de la Figure 2d au lieu d’étre bornée entre 0 et 255.

Certaines personnes ont proposé des mitigations différentes consistant a repousser
la fin des calculs, ce qui permet d’effacer observationnellement I'influence des données
sur le temps d’exécution. Cependant, il a été démontré que ces mitigations ne sont pas
suffisantes. En effet, [Z518] présente une attaque sur 'exemple de ’exponentiation
modulaire précédent combinant les canaux cachés énergétiques et temporels. En sup-
posant que des instructions inutiles aient été rajoutés a la branche else du branchement
conditionnel afin d’équilibrer les temps d’exécution, il est possible de retrouver les
temps “originaux” en suivant la consommation énergétique puisque les instructions
rajoutées consomment moins d’énergie que les autres.

Importance de la vérification formelle Comme la plupart des librairies cryp-
tographiques sont écrites en C, adhérer a la discipline de programmation constant-time
demande d’écrire les programmes de fagons souvent compliquées et enclins a étre
éronnées. Il est en effet souvent nécessaire d’utiliser des fonctionnalités basniveau de C

2Voir par exemple, https://www.bearssl.org/constanttime.html ou https://cryptocoding.net/
index.php/Coding_rules.

List of Figures

(a) (b) (c)
(d))

Figure 2: Principe d’une attaque par cache

xi

List of Figures

telles que des manipulations au niveau des bits. Par exemple, simplement choisir entre
deux variables x et y selon un booléen b, i.e., return b ? x : y peut étre réecrit de
maniére compliquée. Dans la librairie OpenSSL, cela est défini ainsi’.

unsigned int constant_time_select(bool b,
unsigned int x,
unsigned int y)
{
unsigned int mask = - (unsigned int) b;
return (mask & x) | (~mask & y);

En C, un bool représente un seul bit 0 ou 1. Ainsi, lorsque b est transtypé en unsigned,
b reste 0 ou 1 mais est maintenant représenté sur 32 ou 64 bits selon I'architecture
machine. En exploitant le comportement des nombre non signés, mask peut soit étre 0
sibest 0, ou@xf...f sibest1. Enfin, en utilisant le ET bit a bit & et le OU bit a bit |, la
valeur de retour est x sibest 1 ouy sib est 0.

Malgré que la sécurité constant-time soit une discipline de programmation facile a
définir, il est difficile de 'appliquer comme le montre la citation suivante de [AP16]:

At the time of its release, Amazon announced that s2n had undergone three
external security evaluations and penetration tests. We show that, despite
this, s2n — as initially released — was vulnerable to a timing attack [...].

Cela démontre que les audits de sécurité, bien que nécessaires, sont insuffisants
afin de s’assurer que des librairies de cryptographie soient sans erreurs. Puisque les
conséquences de telles erreurs peuvent étre disastreuses, 'utilisation de méthodes
formelles devient critique. Les méthodes formelles sont un ensemble de techniques et
d’outils reposant sur des bases mathématiques qui peuvent étre utilisées afin de vérifier
que des implémentations satisfont une spécification donnée.

La vérification formelle est une forme plus stricte de méthode formelle ou la rigueur
mathématique nécessaire a l'utilisation de différentes techniques est déléguée a un
programme informatique appelé un assistant de preuve. Cela permet de fournir un
niveau de confiance sans précédent puisqu’il n’est plus nécessaire de faire confiance au
raisonnement des preuves, mais uniquement au vérificateur de preuve qui se trouve
étre généralement petit et vérifiable manuellement.

SExtrait de https://github.com/openssl/openssl/blob/0d66475908a5679ee588641c43b3ch6a2d6b164a/
include/internal/constant_time_locl.h#L220-1225, le code original utilise directement un
“mask” comme argument a la place d’un bool. L’exemple est réecrit pour souci d’illustration.

xii

List of Figures

Un des plus récents succes de la vérification formelle est CompCert [Ler06], un
compilateur pour le langage C formellement vérifié, le premier compilateur vérifié pour
un langage réaliste.

Un compilateur est un outil prenant en entrée des programmes écrits dans un langage
source et les traduit (compile) dans un langage cible. La correction d’un compilateur est
prouvé par un théoréme dit de préservation sémantique. L’intuition de ce théoréme est
d’exprimer que le compilateur n’introduit pas de bug dans les programmes qu’il compile.
CompCert prouve un tel théoréme et démontre l'utilité de la vérification formelle dans
les domaines critiques comme le montre cette citation de [Yan+11] cherchant des bugs
dans des compilateurs:

The striking thing about our CompCert results is that the middle-end bugs
we found in all other compilers are absent. As of early 2011, the under-
development version of CompCert is the only compiler we have tested
for which Csmith cannot find wrong-code errors. This is not for lack of
trying: we have devoted about six CPU-years to the task. The apparent
unbreakability of CompCert supports a strong argument that developing
compiler optimizations within a proof framework, where safety checks are
explicit and machine-checked, has tangible benefits for compiler users.

Contributions et Organisation Nous avons démontré 'importance d’assurer la
propriété de sécurité constant-time au début. Il est par conséquent naturel de la joindre
a la vérification formelle. Dans cette these, nous essayons de répondre a deux défis
suivants en appliquant les techniques des méthodes formelles au domaine de la sécurité
constant-time.

1. Comment pouvons nous nous assurer qu un programme satisfait a la sécurité
constant-time ?

2. Comment pouvons nous étre certain que le code qui est réellement exécuté est
constant-time ?

Les deux questions ciblent des niveaux différents de la chaine de compilation. La
premiere correspond au code source, le programmeur a-t-il bien respecté la sécurité
constant-time ? La seconde question cible le code assembleur, le compilateur a-t-il
bien respecté I'intention du programmeur ? Est-ce que le code assembleur est encore
constant-time ?

+ Le chapitre 2 présente les outils sur lesquels nous nous appuierons. Plus pré-
cisémemt, I’assistant de preuve Coq, le compilateur C CompCert et ’analyseur
statique Verasco. Nous présenterons aussi une étude des domaines de recherche
liés a la sécurité constant-time et plus généralement de la cryptographie high-
assurance.

xiii

List of Figures

+ Le chapitre 3 présente notre premiere contribution correspondant a une méthodolo-
gie pour améliorer un interprete abstrait et en faire un vérificateur de sécurité
constant-time. Un prototype a été implémenté en s’appuyant sur ’analyseur
statique Verasco. Ce chapitre est une version longue du travail présenté au 22¢™¢
European Symposium on Research in Computer Security (ESORICS) [BPT17] et
a aussi été accepté pour publication au Journal of Computer Security [BPT18].

« Le chapitre 4 présente une méthodologie pour transmettre des résultats d’analyses
au niveau source jusqu’a un niveau inférieur. Cela permet d’utiliser des infor-
mation hautement précise qui n’auraient pas été possibles d’obtenir directement
au niveau assembleur. Cette méthodologie a été utilisée afin d’implémenter un
analyseur de sécurité constant-time au niveau assembleur. Ce chapitre est basé
sur du travail fait en collaboration avec Gilles Barthe et Vincent Laporte, il a été
présenté 30°™¢ Computer Security Foundations Symposium (CSF) [Bar+17].

« Le chapitre 5 présente une méthodologie de preuve pour montrer qu'un compi-
lateur préserve la propriété de sécurité constant-time en adaptant les preuves
standards de simulation.

« Finalement, le chapitre 6 conclut cette thése et présente différentes suites possi-
bles.

Xiv

CHAPTER 1

INTRODUCTION

Since immemorial times, people have tried to communicate privately in a public
setting, i.e., only participants could understand the communication even in presence
of eavesdroppers. One early example is Julius Caesar which encoded his military
and private correspondence using the eponymous Caesar’s cypher. The idea of this
encryption technique was to substitute each letter in the original text (plaintext) with a
different letter some fixed number of positions down the alphabet. The encoded text
(cyphertext) of “hello” would thus be “khoor” with a right shift of 3, i.e., a becomes d, b
becomes e, etc.

Cryptography is the discipline of securing communication in the presence of an
attacker. Cryptographic primitives are basic algorithms to provide cryptographic
services such as encrypting or decrypting a message. These algorithms are usually
proven by their designers to be computationally secure, i.e., it would take a ludicrous
amount of time for an attacker with a great amount of computational power to break
its security properties by brute force. Cryptographic protocols are then built on top
of these primitives, they specify how to use the primitives in order to communicate
securely.

As electronic communications become more and more prevalent in our world through
the democratization of the Internet, credit cards, contactless payment, smartphones,
etc, cryptography has also become a centerpiece in ensuring that our privacy is secured.
Therefore, mistakes in the design or the implementation of cryptographic primitives
or protocols could have devastating consequences, whether economical or even life
endangering. For instance, applications to privately communicate have become widely
used in countries where freedom of speech is not a right and if those communications
were revealed, it could considerably endanger their author’s lives.

Another example is the Heartbleed bug. In April 2014, a security bug was discovered
in the OpenSSL cryptography library', one of if not the most popular cryptography

1According to https://arstechnica.com/information-technology/2014/04/
critical-crypto-bug-in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/.

Chapter 1 Introduction

library on the Internet. At the time, it provided an implementation of the TLS protocol
which is the protocol used by websites to authenticate themselves to the end user
and ensure secure communication between them. That implementation was used by
two thirds of all websites', which consequently made them vulnerable because of
the Heartbleed exploit. This bug was due to a missing bounds check in the OpenSSL
source code. Attackers could exploit this in order to recover random chunks of private
memory data from servers running the affected websites. Those chunks of memory
could contain mundane information but also passwords or private keys making this
bug rather harmful.

While cryptographers design their encryption schemes or communication protocols
to be mathematically sound and secure to use, there still remains an underlying imple-
mentation that runs in the physical world. Execution of these implementations affects
the world in ways that could leak confidential information, we call these different ways
to affect the world side-channels. For instance, power consumption, noise, duration of
execution can all be used to recover cryptographic secrets.

In the case of power consumption, an example can be found in [Koc+11] and is
reproduced in Figure 1.1 illustrating the power consumption of a chip computing a
modular exponentiation loop in RSA measured using an oscilloscope. The trace shows
a sequence of different operations that can be used to recover the secret key. In order
to decode a message in RSA, modular exponentiation is used. The coded message
is considered the base, the secret key is the exponent and the modulus chosen at the
beginning of the RSA algorithm is needed. A textbook implementation of modular
exponentiation in C is provided below.

int modular_exp(int base, int exponent, int modulus)
{
int result = 1;
base = base % modulus;
while (exponent > 0) {
if (exponent % 2 == 1) {
result = (result * base) % modulus;
}
exponent = exponent >> 1;
base = (base * base) % modulus;

}

return result;

The loop iterates over the bits of the exponent, i.e., the secret key. Multiplications
consume more power than squares and thus appear as higher peaks in the trace. As

. -WWWMMWWW

Figure 1.1: Simple Power Analysis example from [Koc+11]

the multiplications are only executed when a bit of the exponent is 1, while the square
operation is executed at every iteration of a loop, a 1 bit is represented as a short bump
followed by taller bump, while a 0 bit is represented by a short bump, which allows us
to decrypt the trace as illustrated in Figure 1.1. One shortcoming of this approach is
that it requires direct access to the device.

Another possible attack is (ab)using the execution duration of the program which can
be done remotely (i.e., over the network) when fluctuations are noticeable enough, it is
generally the case in practice [Ber05a]. Again, in the case of modular exponentiation,
when the inspected bit of the exponent is 1, an additional multiplication and a modulo
operation are performed. This has for consequence that the execution duration of the
function is proportional to the number of 1 in the secret key, which sensibly decreases
the number of possible keys.

Other attacks exploiting execution duration have been documented in [Koc96; YGH17;
Ber05a], they all exploit what is called a timing side-channel. We focus in this thesis on
timing side-channels. They are considered one of the most dangerous side-channels
since they can be remotely exploitable while side-channels based on power consumption
or noise require physical access to the attacked device.

Constant-time security In order to close the timing side-channel, cryptographers,
cryptography libraries developers and security engineers follow a very strict program-
ming discipline called cryptographic constant-time programming”. This name is a
bit of a misnomer, as they do not intend to make the programs they write literally
constant-time, but constant-time with regards to secrets, i.e., the running times of pro-
grams do not depend on secrets. This is achieved by ensuring that neither control-flow

2See for example, https://www.bearssl.org/constanttime.html or https://cryptocoding.net/
index.php/Coding_rules.

Chapter 1 Introduction

table[0]...table[7]

table[0]...table[7]

table[0]...table[7]

table[8]...table[15] ?

table[16]...table[23] table[16]...table[23] table[16]...table[23]

table[24]...table[31] table[24]...table[31] table[24]...table[31]
?

table[32]...table[39]
table[40]...table[47] ;
table[48]...table[55] table[48]...table[55]
table[56]...table[63] table[56]...table[63] table[56]...table[63]

(a) (b) (©)

table[48]...table[55]

table[0]...table[7]

table[0]...table[7]

D)

)

table[16]...table[23]

table[16]...table[23]

table[24]...table[31]

table[24]...table[31]

D)

table[40]...table[47]

table[48]...table[55]

?

table[48]...table[55]

table[56]...table[63]

table[56]...table[63]

(d)

(e)

Figure 1.2: General principle of an cache attack

(branchings) nor memory access pattern of the programs depends on secrets. Indeed,
not only control flow affects the execution duration of a program, memory accesses also
affect it due to cache. Consider the scenario illustrated in Figure 1.2, a cryptography
program executing in the cloud has its data loaded into cache in Figure 1.2a. In Fig-
ure 1.2b, the attacker program sharing the same host computer replaces some cache
lines. The first program continues again and reloads its data, from the point of view
of the attacker, it is unknown whose data is in the cache, as illustrated in Figure 1.2c.
When the attacker program attempts to load its data, two possible scenarios can happen.
Either the memory access is slow because the first program’s data has been reloaded
into cache as in Figure 1.2d, or the memory access is fast because the first program
has not tried to access this part of the memory as in Figure 1.2¢. In the first scenario,
the attacker learns which cache line the cryptography program tried to access. This is
dangerous because some cryptographic algorithms such as AES have memory accesses
of the form table[secret & 0xffl, the attacker can thus learn that secret & oxff is
restricted between 40 and 47 for instance in the case of Figure 1.2d instead of the most
general bounds possible 0 and 255.

People have proposed different mitigations by delaying the return time of computa-
tions, thus observationally removing the data-dependent timing channel. However, it

has been shown that it is not sufficient as attackers become more and more shrewd. For
instance, [Z518] shows an attack that combines the power and timing side-channels
on the previous modular exponentiation loop routine where bogus instructions have
been added to the else branch of the conditional branching so that the branchings are
balanced timing-wise, each loop iteration thus takes the same time. They use a power
attack in order to recover the “actual” timings of the modular exponentiation loop
in RSA as the added delays noticeably consume less power. The usual timing attack
described earlier can then be used to recover the secret. Cryptographic constant-time
programming would have avoided this attack and is sufficiently secure in practice with
“success story after another of constant-time code” as noted by Daniel Bernstein, and

proposing other protections is “ridiculous”™.

Importance of formal verification As most cryptography libraries are written in
C, adhering to the constant-time programming discipline usually involves writing
programs in a certain way that is oftentimes tricky and error prone as it regularly
requires using low-level features of C such as bit-level manipulations. For instance,
simply selecting between two variables x and y based on a selection bit b, i.e., return
b ? x : vy, can be rewritten in a complex manner. In OpenSSL, this is defined as
follows".

unsigned int constant_time_select(bool b,
unsigned int x,
unsigned int y)
{
unsigned int mask = - (unsigned int) b;
return (mask & x) | (~mask & y);
}

In C°, a bool is represented by a single bit 0 or 1. Thus, when casted to unsigned, b
is still 0 or 1 but is now represented over 32 or 64 bits depending on the architecture
instead of only a single bit. Next, by exploiting the wrap around behavior of unsigned
integers, mask is either 0 if b is 0, or @xf. . .f if b is 1. Finally, using the bitwise AND
operator & and bitwise OR operator |, x is returned if b is 1 and y is returned if b is 0.

Even though constant-time security is a programming discipline simple to define, it
is still difficult to correctly enforce as illustrated by the following quote from [AP16]:

3Source: https://twitter.com/hashbreaker/status/902422845069946880.

4Taken from https://github.com/openssl/openssl/blob/0d66475908a5679ee588641c43b3ch6a2d6b164a/
include/internal/constant_time_locl.h#L220-L225, the original code directly takes a “mask” as
argument instead of a bool, it was slightly rewritten for illustration purpose.

5More precisely, since C99, when <stdbool.h> is included.

Chapter 1 Introduction

At the time of its release, Amazon announced that s2n had undergone three
external security evaluations and penetration tests. We show that, despite
this, s2n — as initially released — was vulnerable to a timing attack [...].

This shows that security audits, albeit necessary, are not enough to be sure that
industrial-strength cryptography libraries are free from errors. Because the conse-
quences of implementation errors can be disastrous, the use of formal methods become
critical. Formal methods are a set of techniques and tools relying on a mathematical
foundation that can be used to verify that implementations satisfy a given specification.
For instance, a program analysis is a form of formal methods, i.e., it is a tool that takes
a program as input and verifies that it satisfies a specification.

Formal verification is a stricter form of formal methods where the mathematical
rigor necessary to the application of the different techniques is verified by a computer
program called a proof assistant. This provides a high-level of confidence as one does
not have to trust the reasoning of the proofs, but only trust in the proof checker. The
proof checker itself is usually very small in size such that it can be manually verified.

Formal verification has had a list of illustrious successes in recent years in the
theoretical areas to more applied areas. For instance, in 2012, Gonthier and his team
finally finished specifying and proving the Feit-Thompson theorem (also known as the
odd order theorem) in the Coq proof assistant [Gon+13]. In 2006, Leroy and his team
presented CompCert [Ler06], a formally verified C compiler, the first verified compiler
for a realistic language.

A compiler is a tool that takes programs in a source language and translates (compiles)
them into a target language. The correctness of a compiler is proved through a theorem
that is named semantic preservation theorem, its intuitive meaning is that a compiler
does not introduce bugs in the programs it compiles. In order to give a formal definition
of the theorem, we need to introduce the notion of program behavior. A program
behavior can be defined in which case, the program either terminates normally with
a return value or diverges and the program loops forever. A program behavior can
also be undefined if the program performs illegal operations such as a division by zero,
out-of-bounds memory access, etc. The semantic preservation theorem can then be
stated as follows: for all source programs S, if S is safe (i.e., its behavior is defined)
and compiles into target program 7, then 7 behaves as S.

The behavior of a program is formally defined by its semantics, i.e., how it is executed.
For instance, the C standard (informally) defines the semantics of C programs. One of
the strengths of CompCert is that it gives a formal definition of the semantics for the C
language and other languages. This forms the basis on which the proofs in CompCert
are built upon. A second exploit accomplished by CompCert is that it gives a strong
argument in favor for the use of formal verification in critical domains as illustrated by
this quote from [Yan+11] which looked for bugs in compilers:

The striking thing about our CompCert results is that the middle-end bugs

we found in all other compilers are absent. As of early 2011, the under-
development version of CompCert is the only compiler we have tested
for which Csmith cannot find wrong-code errors. This is not for lack of
trying: we have devoted about six CPU-years to the task. The apparent
unbreakability of CompCert supports a strong argument that developing
compiler optimizations within a proof framework, where safety checks are
explicit and machine-checked, has tangible benefits for compiler users.

CompCert’s compiler correctness theorem holds for safe programs. This is needed as
compilers should be able to optimize away code that may exhibit undefined behavior.
For instance, if a variable is assigned the result of a division by zero but is never used
afterwards, the compiler should be able to optimize away this code as it is never used
for anything useful, i.e., computing a result.

However, how do we make sure that a program is safe? In 2015, the formally verified
Verasco static analyzer [Jou+15] bridged the gap and provides a way to verify that
a program is safe. A static analyzer is a special form of program analysis in which
the analyzed program is not run. However, Rice’s theorem [Ric53] states that all non-
trivial semantic properties are undecidable; they cannot be automatically verified by a
program. This has for consequence that a static analyzer such as Verasco is necessarily
incomplete, i.e., it may not be able to verify that a program is safe even though it
actually is. In order to be able to analyze as many programs as possible, static analyzers
are generally finely tuned and possess complex code. The ground breaking exploit of
the Verasco team is to have been able to formally verify a static analyzer and secondly,
to make it scale to realistic programs. This breakthrough provides a proof that formal
verification can be successfully applied to verifying constant-time security, which is a
challenge that we tackle in this thesis.

The beginning of this introduction has explained the importance of verifying constant-
time security, but what about the second part of this thesis’ title, namely “a verified
compilation toolchain”. Indeed, most cryptographic libraries are written in a high-level
source language such as C. However, the language actually understood by computers
is not C, but assembly. This raises the question of whether a source program that is
constant-time still stays secure after being compiled. Hence, the advantage of placing
our work within a verified compilation toolchain is twofold. First, a verified compiler
provides formal semantics for the languages it uses, this gives us a way to reason on
these languages and more specifically, to define what it means to be constant-time for
these languages. Second, this allows us to control the compiler and make sure it won’t
do anything unexpected to the code and remove all security measures.

Contributions and Organization of this Document. In this thesis, we describe
our answers to the following two challenges pertaining to constant-time security:

Chapter 1 Introduction

1. How can we help programmers be certain that their source code adheres to the
constant-time security policy ?

2. How can we make sure that the code that actually runs is constant-time ?

The two questions target different levels in the compiler toolchain. The first targets
the source code which in our case is written in C. We do not need to rely on a compilation
toolchain to answer this question. However, using CompCert allows us to reuse its
formal semantics of the C language and gives us a way to formally reason on C programs.

The second question targets the assembly code which is notoriously harder to analyze
than the source code as most abstractions have been lost during compilation. For
instance, structured control-flow such as conditional branchings and loops are no
longer available at the assembly level. Furthermore, types are also not available, i.e., it
is no longer possible to know whether the value contained by a variable represents an
integer, a float or a pointer, etc. We explain how we answer these different challenges
as follows.

+ In Chapter 2, we give more information on the multiple tools that we use. More
specifically, the Coq proof assistant, the CompCert C compiler and the Verasco
static analyzer. A particular focus is given to CompCert, upon which most of this
work is built upon. We explain the overall architecture of the compilation chain
and give background on the proof techniques used for the correctness proof. We
also present a survey of research domains related to constant-time security and
most specifically to the emerging area of high-assurance cryptography.

« Chapter 3 describes our first contribution which is a methodology to improve
an abstract interpreter into a verifier for constant-time security. A prototype for
verifying C programs has been made by leveraging the Verasco static analyzer.
This allows us to give precise feedback to the programmers and help them under-
stand where information leaks may appear. Experiments show that our tool is
competitive with state-of-the-art tools and manages to analyze previously out
of reach programs. This chapter is a longer version of the work that has been
presented in the 22°¢ European Symposium on Research in Computer Security
(ESORICS) in [BPT17] and has also been accepted for publication in the Journal
of Computer Security [BPT18].

« Chapter 4 describes a methodology to translate results of analyses at source
level down to assembly. This allows us to use highly precise information for
enhancing analyses at the assembly level. The methodology has been instantiated
on points-to information provided by Verasco and then used to design a verifier
for constant-time security at assembly level. This chapter is based on joint
work with Gilles Barthe and Vincent Laporte, it has been presented at the 30t

Computer Security Foundations Symposium (CSF) in [Bar+17]. Our personal
contribution in this work is the implementation of the defensive encoding of
points-to annotations as well as its formal proof of correctness.

While the previous chapter can be considered a possible answer to the second
question we asked, it uses a posteriori validation, meaning that each compiled
program must be checked for security. Chapter 5 provides a more direct answer to
the question by describing a proof methodology to show that a compiler preserves
constant-time security, i.e., if the source code is constant-time, then so is the
compiled code. It adapts the standard simulation-based proofs used for proving
safety preservation in formally verified compilers and details some experiments
in modifying CompCert. An early version of this work has been presented at the
workshop on Foundations of Computer Security (FCS) in 2018.

Finally, Chapter 6 concludes this thesis and summarizes the results we achieved.
Some perspectives are also offered and we also compare different views of how
the challenge presented in Chapter 5 can be tackled.

CHAPTER 2

CONTEXT

Before detailing our technical contributions in the next chapters, we present in this
chapter the tools that our work builds upon and we also present a survey of related
work on the verification of security properties.

2.1 FORMAL VERIFICATION OF PROGRAMMING ToOOLS

We present in this section the tools that our work builds upon, namely the Coq proof
assitant, the CompCert C compiler and the Verasco static analyzer.

2.1.1 Cogq proof assistant

The thesis is intended to be readable with very little knowledge of Coq, we only provide
here a broad overview of this proof assistant.

2.1.1.1 Proof assistant

The second half of the 20 century has seen the emergence of proof assistants, computer
programs that allow users to do logical reasoning within a mathematical theory. The
major reason for this emergence was due to the increasing complexity of mathematical
proofs for which experts must spend months or years to manage to understand some
proofs and vet them. A recent example is Mochizuki’s proofs for several famous
conjectures in number theory in 2012. Six years laters, in 2018, there is still no consensus
among the mathematical community towards acceptance of the proofs, not towards
their refutation. This is mainly due to the fact that these proofs rely on a brand new so
called inter-universal Teichmiiller theory and “the actual length [of the proof] is about
550 pages. But to understand his theory, one also has to know well various appropriate
prerequisites, so we are talking, approximately, about 1000 pages of prerequisites and

11

Chapter 2 Context

550 pages of IUT theory™’.

An example of success of proof assistants is Gonthier’s proof of the four color theorem
in 2005 which states that the regions of any planar map can be colored with only
four colors, in such a way that any two adjacent regions have different colors. The
original proof dates back from 1976 when Appel and Haken provided the first computer-
aided proof in history. The proof consisted in reducing the infinite number of possible
configurations to 1,936 configurations (and later 1,476). This reduction was proven
correct on paper and could be reasonably checked by fellow mathematicians. However,
the remaining configurations had to be checked one by one by a computer program,
which the mathematicians were not exactly comfortable with as they could not verify
its correctness. The advantage of using a proof assistant appears here, one can use it to
both program and verify at the same time. If one trusts the proof assistant, all that is
needed to do is then to check that the definitions are right and that theorems are the
ones we want. In the case of the four color theorem, this all fits on a single A4 page
according to Gonthier (p.14, [Geu09]), which is quite easily verifiable by a human.

Finally, with the proliferation of the usage of computers, more specifically in critical
systems, this also calls for the use of proof assistants in order to reason about programs
that are often too colossal to manually verify.

2.1.1.2 Coq

Coq is a proof assistant based on a dependently typed theory, the Calculus of Inductive
Constructions which allows users to write programs and proofs in the same language.
The verification of proofs is based on the Curry-Howard correspondence which presents
the analogy between proofs and programs. A type can be seen as the statement of a
property, while a term (program) of this type can be seen as a proof of this property.
This means that one only has to check that a term has a certain type to know that the
property is proved and true. One can wonder if a relatively massive proof assistant
such as Coq can be trusted, but a consequence of the Curry-Howard correspondence is
that we only need to trust its type-checker and not how the terms are constructed, this
is a reasonably smaller thing to manually verify.

Let’s illustrate the usage of Coq with an example. Inductive types can be defined in
Coq using the Inductive keyword and by providing a set of rules to construct its terms.
This means that a term of this type can only be constructed by using these rules, they
are also called constructors. For instance, below we define the type’ of conjunctions of
propositions.

Tvan Fesenko, http://www.ams.org/news?news_id=3711.

Zhttp://www.ams.org/notices/200811/tx081101382p.pdf

3Prop denotes the type of propositions in Coq, while Type correponds to data. This separation is not
necessary in theory but is useful for extraction of programs in OCaml or Haskell which only uses
the computational parts (i.e., the things in Type) of a development.

12

2.1 Formal Verification of Programming Tools

Inductive and (A B: Prop) : Prop :=
| conj (a: A) (b: B): and A B.

This means that a term of type and A B is necessarily of the form conj a b where
a is a proof (or a term) of A and b is a proof of B. Now, in order to prove that A A B
implies A for instance, we must build a term of the following type.

forall (A B: Prop), and AB -> A

This corresponds to a function that “projects” the left part of the conjunction.

fun (A B: Prop): and A B > A =>
fun (ab: and A B): A =>
match ab with
| conj ab=>a
end.

Naturally, manually building proof terms for complex properties rapidly becomes
impossible. Coq provides a set of tactics to interactively build the proof term. For
instance, here is a proof of the previous statement.

Lemma projl: forall (A B: Prop), and A B -> A.
Proof.
intros A B ab. (* Introduce the hypotheses %)
destruct ab as [a b]. (* We destruct ab to say that it is necessarily
of the form conj a b %)
apply a. (* We need to prove A, and a is a proof of A by definition x)
Qed.

We have given a very simple use of inductive types, but they are far more gen-
eral. Specifically, they can be used to define semantics of language, each constructor
corresponds to a semantic rule. An example will be presented in the next subsection.

One important feature of the Coq proof assistant is extraction, Coq can be used to
transform executable specification written in Coq to executable code in languages
such as OCaml or Haskell. This allows users to obtain relatively efficient code without
having to manually translate the Coq specifications into more standard languages which
could be a task prone to errors. This is especially advantageous in some cases such as
compilers or static analyzers.

13

Chapter 2 Context

2.1.2 CompCert

CompCert is a moderately optimizing C compiler. It compiles C source code into
assembly language for four different architectures: x86, PowerPC, ARM and more
recently RISC-V. CompCert is a formally verified compiler, in a sense that we will define
later. It is written, specified and proven in the Coq proof assistant. This mechanization
of the correctness of CompCert gives it an unprecedented level of confidence in a
compiler.

We will first give an introduction to what is a formal semantics and then, what it
means to be a formally verified compiler. Next, we present the proof method used in
CompCert to prove compiler correctness. We finish by presenting the overall architec-
ture of the CompCert compiler.

2.1.2.1 Formal Semantics

A compiler is used to translate programs written in a source language S into programs
written in a target language 7 such that compiled programs behave similarly to their
source programs. It is thus necessary to define how a program behaves. The C standard
provides an informal specification of the meaning of C programs. However, formal
verification relies on a formal and explicit specification of the meaning of programs,
this is called a formal semantics.

Formal semantics can be defined in multiple ways which are all equivalent, most
popular among them are denotational semantics [SS71], axiomatic semantics [Flo67]
and operational semantics [Plo81]. Denotational semantics describes the meaning
of programs by associating them to their denotations, i.e., a mathematical function
representing what a program does. Axiomatic semantics define the meaning of a
program by giving proof rules to reason about the program, the most known example
of axiomatic semantics is Hoare logic [Hoa69]. Operational semantics is the form of
semantics used by CompCert, it describes the meaning of programs by interpreting
them as sequences of computational steps, i.e., a transition system.

Definition 2.1 (Labeled transition system (LTS)). A labeled transition system is a tuple
(2,8,1,F, —) where X is a set of states, & is a set of events including a silent event ¢,
I C ¥ is a set of initial states, F C X is a set of final states and —-C > X & X X is a set of
transitions (o, e, 0’), also written o = o’ which describes a transition from state o to
state ¢’ emitting an event e.

Events are used to model what is observable by an external observer, for instance,
outputs and inputs. These events are language agnostic and are used to describe the
observable behavior of a program by concatenating them into a trace. We define an
observable behavior as follows.

14

2.1 Formal Verification of Programming Tools

Definition 2.2 (Observable behavior). Let S = (%, &, I, F, —) be a labeled transition
system corresponding to a program P. An observable behavior of P has one of the
following forms:

« Terminates(e . . . e,) if there exists (0;)o<i<n+1 Such that oy € Iand forall 0 < i <

€
n+1, 0; — 0.1, and 0,41 € F.

« GoesWrong(ey . . . e,) if there exists (0;)o<i<n+1 such that oy € I and for all 0 <

. € .
i < n+1, 0 = 041, opy1 € F, and there exists no 0,42 and e,4; such that

€n+1
On+1 — On+2.

« Diverges((e;)ien) if there exists (0;);en such that oy € I and for all i € N, ¢; 4,

Oi+1-

The first case corresponds to an execution that terminates normally, i.e., on a final
state. The second case corresponds to an execution of the program that went wrong, i.e.,
the execution is stuck on a non-final state, no more step can be taken. The third case
corresponds to an infinite execution of the program, for instance, an infinite loop. The
program is said to be diverging.

The behavior of a program P is then simply defined as the set of all observable
behaviors of P, it is noted Beh(P). We say that a state is safe if it can eventually silently
(i.e., all the produced events are silent) reach a final state or there exists an infinite silent
execution from this state or it can reach a state from which the next step is non-silent,
ie.,

safe(o) © (Yo', 0 e = o’ € FVv3e, 0", 0 > "

2.1.2.2 Formally Verified Compiler

A compiler is a program that translates programs written in a source language § into
programs written in a target language 7. For instance, a C compiler usually generates
assembly programs from C programs.

A formally verified compiler is a compiler than provides formal guarantees about
the code it produces. The intuitive notion that we would like a compiler to satisfy
is that the generated code should behave as its source code. This corresponds to
semantic preservation. [Ler09] provides multiple possible instantiations of the notion
and gradually refines them. The strongest notion of semantic preservation is called
bisimilarity and is defined as follows.

Definition 2.3 (Bisimilarity). Two programs S and T are bisimilar if both programs
have exactly the same set of possible behaviors, i.e., Beh(S) = Beh(T).

15

Chapter 2 Context

Bisimilarity intuitively captures the notion of equivalent programs, i.e., both programs
behave identically. This is however too strong a notion in the case of compilation. For
instance, in the case of CompCert, the target language (assembly) is deterministic while
the source C language is not. The compiler should be free to choose one particular
evaluation order. For instance, consider z = x + x++, this can either be compiled into
a=x; b=x; x=x+1;, z=a+bora=x; x=x+1;, b=x; z=Db + a
depending on whether the compiler decides to evaluate x or x++ first. This effectively
reduces the set of possible behaviors. This is not only an issue with CompCert, but for
all compilers.

To take account of this constraint, a possible refinement of the property is backward
simulation and is defined as follows.

Definition 2.4 (Backward simulation). All the behaviors of program T are included in
the behaviors of program S, i.e., Beh(T) C Beh(S).

This definition allows compilers to reduce non-determinism by choosing a particular
evaluation order, it is still however sligthly too strong. Indeed, this definition implies
that if S “goes wrong”, then necessarily T must also go wrong. This requirement is too
restrictive as it is violated by multiple desirable compiler optimizations. For instance,
consider a program that contains x = x / 0 at the beginning but never uses x afterwards.
The original program goes wrong due to a division by zero, but dead code elimination
would remove this code as it is never used afterwards and this would result in a compiled
program that does not go wrong on this division. A more flexible notion is to restrict
preservation of behaviors for safe source programs, i.e., programs that do not go wrong.

Definition 2.5 (Backward simulation for safe programs). If S is safe, then all the
behaviors of program T are included in the behaviors of program S, i.e., Safe(S) —
Beh(T) < Beh(S).

This is the compiler correctness property proven in CompCert. This is an interesting
property as a direct consequence of this is that if S is safe then so is T. Indeed, if T
could go wrong, then necessarily S cannot be safe, an intuitive interpretation of this is
that the compiler does not introduce bugs.

2.1.2.3 Simulation Relations

We explain here the proof techniques used in CompCert for proving compiler correct-
ness. The methodology relies on simulation relations that are used to relate program
states through whole executions. This is a common technique used when reasoning
with operational semantics.

Definition 2.6 (Simulation relation for a backward simulation). Let S = (21, &4, I, F1, —1
)and T = (2, Ey, I, F2, —2) be two labeled transition systems, binary relation R C
Y1 X 2, is a simulation relation for a backward simulation as defined in Definition 2.5 if:

16

2.1 Formal Verification of Programming Tools

« given an initial state oy of T, there exists an initial state oy0f S matching o,:

Yo, € I,,do; € 11, UlRUz

« every final state oy of T is only matched with a state oy in S that will eventually
silently reach a final state o7:

&
Yoi € 31,VY0, € F5,01R0, = Joj € F1,01—1 0]

« (progress) for every safe state oy of S and matching state o, of T, either o3 is a
final state, or there exists a possible step from o5:

e
Vo; € 31,VYo0; € 32,01R0, = safe(o1) = o0y € F, V Je, Jo,, 02— 0,

+ (simulation) for any safe state o; € ¥; and any matching state o, € X, such that
o, advances to some state o, € %, there exists a state o] € 3 that can be reached
by o1 such that o] and o, are matched:

e e
Yoi € 31,VY0, € 32,01R0;, = safe(o1) = Ve, Vo,,0, —32 05 = oy, 01 —1 0]

Proving that a binary relation is a simulation relation for a backward simulation
suffices to prove that there exists a backward simulation for safe programs. However,
this demands to inductively reason on steps of the target program which is quite
uncomfortable. Indeed, a step in the source execution is often compiled into multiple
instructions at the machine level. It is thus necessary to look at multiple instructions
before one can guess the corresponding source expression. Furthermore, optimizations
can make this very difficult. This is occasionally unavoidable, but when the target
language is deterministic as it is often the case, it can be possible to use a forward
simulation that implies the backward simulation.

Definition 2.7 (Forward simulation for safe programs). If S is safe, then all the be-
haviors of program S are included in the behaviors of program T, i.e., Safe(S) —
Beh(S) € Beh(T)

If T is deterministic, it can be easily seen why Definition 2.7 implies Definition 2.5.
Indeed, Beh(T) is a singleton as T is deterministic and since Beh(S) € Beh(T), it ensues
that Beh(S) = Beh(T), thus Definition 2.5 is implied.

A simulation relation for a forward simulation is defined as follows.

Definition 2.8 (Simulation relation for a forward simulation). Let S = (21, E1, I1, F1, —1)
and T = (3,, 8y, I, F,, —2) be two labeled transition systems, binary relation R C
Y1 X X, is a simulation relation for a forward simulation as defined in Definition 2.7 if:

17

Chapter 2 Context

01 02 01 02
DA |

£ (\L//“\\(” or e\L +e
//607 ~N-
o o —-~- 0,
1 1R 2

Figure 2.1: Star Forward Simulation
(Hypotheses in plain lines, conclusion in dashed lines)

« for all initial state of S, there exists a matching initial state of T:

Yo, € I;,doy € 12,0'1RO'2

« any final state of S can only be matched with a final state of T:

Yo, € F1,Vo, € 22,0’1720’2 — o0y €F

« (star diagram) for any matching states oy € ¥; and o, € X, if 0y advances, then
oy can match this step:

’ € ’ ’ € % ’ ’
Vo, € 21,Voy € 33,01R0y, = Voy,Ve, 00— 0; = Jo,,00—3 0, A oRo,

Proving that these properties are satisfied is sufficient to prove that T “simulates” S.
A more graphical representation of the third point is illustrated in Figure 2.1, when o,
does not advance (left figure), it is necessary that a “measure” decreases, i.e., a function
that maps states to natural integers such that m(o1) > m(o7), this is to ensure that there
is no infinite “stuttering”. Indeed, was it not the case, it would be possible to prove that
an infinite source execution is simulated by a finite target one.

There are other forms of diagram that do not require a measure function, for instance
a lockstep or plus diagram, they are illustrated in Figure 2.2. They both imply the
original star diagram but are easier to prove. Indeed, the lockstep diagram requires that
each step in the source execution is simulated by a single corresponding step in the
target simulation. As the target execution always advances, there is no need to define a
decreasing measure. Similarly, the plus diagram requires that each step in the source
execution is simulated by a positive number of steps in the target execution.

The general idea of using simulation relations is that it allows to inductively reason
on a local step, but concludes on the global behavior of the program by chaining the
diagrams one after another.

For instance, suppose that we have an execution starting from an initial state oy to
final state oy. If we assume that R is a simulation relation for a forward simulation, by
the first point of Definition 2.8, there exists an initial state o; that matches oy. By using

18

2.1 Formal Verification of Programming Tools

01 02 o1 02
| |
e\L le e\L +e
N N
/ ’ / ’
oy ——=- 0, oy ——=-— 0,
(a) Lockstep diagram (b) Plus diagram
Figure 2.2: Forward simulations
€o £ €2
00 > 01 > 02 > 03 > Of
R R R
L | ®
r_ 8 2 L ... S o
GO 7 O'1 7 0'2 7 O'3 > O ;

the third point of the definition, o] can match the step made from oy to oy, for instance,
o} N o;. It’s also possible that the target program makes no step, for instant when the

source program does o7 5 o, o, does not advance, which is possible since the event
¢ is silent. Conversely, there can also be multiple steps, as illustrated by that when
0y = 03, it is simulated by two steps o] AN o, 5 0. The crux is that the diagrams
can be chained consecutively in order to show that the behavior of the top program is
simulated by the bottom one as illustrated by the figure, both programs have the same
trace of events.

2.1.2.4 Architecture of the CompCert Compiler

CompCert is a moderately optimizing compiler for the C language, it targets four
different architectures: x86, PowerPC, ARM and more recently RISC-V. The compiler
goes through 10 intermediate languages composed of an architecture independent front-
end and an architecture dependent backend. CompCert considers a common memory
model for all intermediate languages. The architecture of the compiler is represented
in Figure 2.3, the top line from CompCert C to Cminor represents the front-end while
the rest forms the backend.

The compilation starts by choosing an evaluation order and effectively determinizing
the semantics of C. It should be noted that this pass is the only one directly proven
using a backward simulation instead of a forward one as it is not possible otherwise.
Indeed, the forward simulation property does not hold, there may be some behaviors of
the (non-deterministic) source program that do not appear in the transformed program.

After determinization, the next step is pulling variables which addresses are not
taken (scalar variables) and putting them into temporaries, i.e., pseudo registers at the
Clight level. This is then followed by type elimination which makes explicit which

19

Chapter 2 Context

Pull scalar
Side-effects llocal
variables out
out of
. of memory
expressions,
evaluation (Q, Type Stack
order . elimination . allocation .
CompCert C > Clight C#minor Cminor
Instruction
Tunneling selection
Linearization ; Register CFG <
. of CFG allocation construction .
Linear ¥ LTL ¥ RTL CminorSel
Layout of Optimizations:
stackframes ConstProp,
4 ASM code CSE,
generation Inlining,
Mach > ASM Tailcall,

Dead code
elimination

Figure 2.3: Architecture of the CompCert compiler

operators should be used. For instance, instead of having only one addition operator
and having to guess from the context which exact addition semantics to use, it can
be transformed into an addition for longs, floats, pointers, etc. The last step of the
front-end is stack allocation where a stackframe is built for every function, and accesses
to non-scalar variable are translated into accesses into the stackframe.

The backend starts by instruction selection in which the compiler takes advantage
of the instructions available on the target architecture. For instance, multiplication by
2 can be replaced by a logical left shift. CminorSel programs are then transformed into
RTL programs. RTL stands for register transfer language, the functions are represented
by control-flow graphs and possess infinitely many pseudo-registers. As the structure of
the language is simple, RTL is the host for most of the optimizations found in CompCert
such as constant propagation, dead code elimination, inlining, common subexpression
elimination and tailcall recognition.

After the optimizations, RTL code is transformed into LTL code through register
allocation. LTL programs are roughly the same as RTL programs but only manipulate
finitely many registers. The code is then linearized into Linear code, and further
transformed into Mach code through the Stacking pass where stackframes of functions
are made mode concrete. The machine specific layout of stackframes is specified at this
level. Finally, assembly code is generated.

As RTL is the intermediate language where most of the optimizations happen and
which we heavily relied on in Chapter 4, we will detail its definition here. Similarly
to all other intermediate languages, RTL represents programs as a list of functions
definitions and global variables. Each function is represented by a control-flow graph

20

2.1 Formal Verification of Programming Tools

Instructions:

i := nop(l) no operation (go to [)
| op(op, 7, 7,1) arithmetic operation
| if(cond, 7, lirye, lfaise) if statement
| return function end
| load(x, addr,7,r,1) memory load
| store(k, addr,7,r,I) memory store
| call(sig, id,7,r,1) function call
| returnr function return

Control-flow graphs:
f: I—i finite map

Figure 2.4: Syntax of the RTL intermediate language

Inductive instruction: Type :=

| Inop: node -> instruction

| Iop: operation -> list reg -> reg -> node -> instruction

| Icond: condition -> list reg -> node -> node -> instruction

| Ireturn: option reg -> instruction

| Iload: memory_chunk -> addressing -> list reg -> reg -> node -> instruction
| Istore: memory_chunk -> addressing -> list reg -> reg -> node -> instruction
| Icall: signature -> reg + ident -> list reg -> reg -> node -> instruction

Figure 2.5: Coq definition of the RTL syntax

with explicit program points. A control-flow graph is represented by a mapping from
program points to instructions which are detailed in Figure 2.4. To illustrate, the Coq
definition of the syntax is illustrated in Figure 2.5.

Instructions in RTL can either be a no-op nop(!/) which simply jumps to instruction at
program point [, an arithmetic operation op(op, 7, r, [) which uses the values held in reg-
isters 7 to compute operation op and stores the result in register r. if(cond, 7, liye, | false)
computes the condition cond using the values held in registers ¥ and jumps to L if
the condition holds and If4. otherwise. load(x, addr, 7,r,1) and store(x, addr,7,r, 1)
respectively represent a memory read and a memory write. The « is used to indicate
the chunk size of the memory to access, i.e., 8, 16, 32 or 64 bits. The addressing is
provided by addr and registers 7 and in the case of a memory read, the value is written
in register r, while the value in register r is written in the case of a memory write.
call(sig, id, 7, r, 1) calls the function id with signature sig and uses the values held in
registers 7 as arguments of the called function. The returned value is stored in register

21

Chapter 2 Context

r. The last instruction is the return instruction which can return no value or a value in
a register.

Formally, the smallstep semantics of RTL is presented in Figure 2.6. The execution
states of RTL are defined as follows.

Inductive stackframe : Type :=
| Stackframe:
forall (res: reg) (x where to store the result x*)
(f: function) (* calling function *)
(sp: val) (* stack pointer in calling function %)
(pc: node) (* program point in calling function x)
(rs: regset), (* register state in calling function *)
stackframe.

Inductive state : Type :=
| State:
forall (stack: list stackframe) (x call stack =)
(f: function) (* current function =*)
(sp: val) (* stack pointer %)
(pc: node) (* current program point in c %)
(rs: regset) (* register state %)
(m: mem), (x memory state *)
state
| Callstate:
forall (stack: list stackframe) (x call stack =)
(f: fundef) (* function to call *)
(args: list val) (* arguments to the call x)
(m: mem), (*x memory state %)
state
| Returnstate:
forall (stack: list stackframe) (* call stack *)
(v: val) (* return value for the call %)
(m: mem), (* memory state %)
state.

An execution state can either be a State, a Callstate or a Returnstate. All states
contain a list of stackframes which records a list of suspended functions. A Callstate
represents the moment when the execution is about to enter a function, while a
Returnstate represents the moment when the execution is returning from a func-
tion. This is illustrated by the exec_Icall and exec_return rules. The first one states

22

2.1 Formal Verification of Programming Tools

that if a function fd is called, then the current function f is added to the call stack s.
Conversely, the exec_return rule states that execution from a Returnstate is returned

to the function at the top of the call stack.

Inductive step: state -> trace -> state -> Prop :=
| exec_Inop:
forall s f sp pc rs m pc',
(fn_code f)!pc = Some(Inop pc') ->
step (State s f sp pc rs m)
E0 (State s f sp pc' rs m)
| exec_Iop:
forall s f sp pc rs m op args res pc' v,
(fn_code f)!pc = Some(Iop op args res pc') ->
eval_operation ge sp op rsi##args m = Some v ->
step (State s f sp pc rs m)
EQ (State s f sp pc' (rs#res <- v) m)
| exec_Iload:
forall s f sp pc rs m chunk addr args dst pc' a v,

(fn_code f)!pc = Some(Iload chunk addr args dst pc') ->

eval_addressing ge sp addr rsi##args = Some a ->
Mem.loadv chunk m a = Some v ->
step (State s f sp pc rs m)
E0 (State s f sp pc' (rs#dst <- v) m)
| exec_Istore:
forall s f sp pc rs m chunk addr args src pc' a m',

(fn_code f)!pc = Some(Istore chunk addr args src pc') ->

eval_addressing ge sp addr rsi##args = Some a ->
Mem.storev chunk m a rs#src = Some m' ->
step (State s f sp pc rs m)
EO (State s f sp pc' rs m")
| exec_Icond:
forall s f sp pc rs m cond args ifso ifnot b pc',
(fn_code f)!pc = Some(Icond cond args ifso ifnot) ->
eval_condition cond rs#ifargs m = Some b ->
pc' = (if b then ifso else ifnot) ->
step (State s f sp pc rs m)
EQ (State s f sp pc' rs m)
| exec_Icall:
forall s f sp pc rs m sig ros args res pc' fd,
(fn_code f)!pc = Some(Icall sig ros args res pc') ->

23

Chapter 2 Context

find_function ros rs = Some fd ->
funsig fd = sig ->
step (State s f sp pc rs m)
EQ@ (Callstate (Stackframe res f sp pc' rs :: s) fd rsi#i#targs m)
| exec_Ireturn:
forall s f stk pc rs mor m',
(fn_code f)!pc = Some(Ireturn or) ->
Mem.free m stk @ f.(fn_stacksize) = Some m' ->
step (State s f (Vptr stk Ptrofs.zero) pc rs m)
E0 (Returnstate s (regmap_optget or Vundef rs) m')
| exec_function_internal:
forall s f args m m' stk,
Mem.alloc m @ f.(fn_stacksize) = (m', stk) ->
step (Callstate s (Internal f) args m)
EQO (State s f (Vptr stk Ptrofs.zero)
f.(fn_entrypoint)
(init_regs args f.(fn_params))
m')
| exec_return:
forall res f sp pc rs s vres m,
step (Returnstate (Stackframe res f sp pc rs :: s) vres m)
EQ@ (State s f sp pc (rs#res <- vres) m).

Figure 2.6: Coq definition of the RTL semantics

The way to read the Coq definition of the semantic rules is that if all preconditions
are satisfied, then the step can happen. For instance, for the simplest rule exec_Inop,
only the (fn_code f)!pc = Some(Inop pc’) precondition needs to be satisfied for the
state (State s f sp pc rs m) to step to state (State s f sp pc’ rs m), ie., the
instruction at program point pc must be of the form Inop pc’. In the case of exec_Iop,
it is necessary that the instruction at program point pc is of the form Iop op args res
pc’ and that evaluating the operation op using the values of registers args results in
some value v which is then stored into register res.

We will come back to the RTL intermediate language in Chapter 4 as it is the host
of the program transformations that we use to make sure that some properties are
satisfied. The next subsection is devoted to a second tool upon which our work builds
upon, namely the Verasco static analyzer.

24

2.1 Formal Verification of Programming Tools

CompCert C Clight ===3 C#minor j—)) CompCert compiler
J
A\ 4
OK/Alarm Abstract interpreter) control flow
v
State abstraction) states
v
Numerical abstraction) integer and
floating-point
I I | | arithmetic

Intervals | Congruences | Symbolic Polyhedra | Linearization) ~ Octagons |
equalities

Communication

channels

Figure 2.7: Architecture of the Verasco static analyzer

2.1.3 Verasco

Verasco is a static analyzer based on abstract interpretation that is formally verified in
Coq [Jou+15] and builds upon CompCert. Its proof of correctness ensures that if the
analyzer does not raise any warning, then the analyzed program is safe, it will execute
without any runtime error such as out-of-bound array accesses, null pointer dereference,
division by zero, etc. We present here general information about the Verasco static
analyzer, it is extensively described in the two theses [Lap15; Joul6] devoted to its
development.

The global design of the Verasco static analyzer is described in Figure 2.7. At the top
of the figure, the frontend of CompCert is used up to the C#minor intermediate language
where the analyzer is plugged in. Using an intermediate language of CompCert has
multiple advantages, the first one is that there is no need to redesign a formal semantics
for the input language and this makes it possible to combine the formal guarantees
of Verasco and those of CompCert: any C#minor program that passes the analysis
without raising alarm compiles into assembly code free from runtime error. The second
advantage of analyzing C#minor programs instead of directly analyzing C programs is
that the language is more prone to analysis, expressions are side-effects free, evaluation
order is specified, operators are type-dependent instead of being overloaded, etc.

The next component is the abstract interpreter which iterates over the C#minor

25

Chapter 2 Context

code and infers abstract states at every program point to check for runtime errors.
The abstract states are computed a state abstraction that concretizes to memory states.
The abstraction includes a points-to domain to precisely handle pointers, and some
specialized domain to handle allocation and deallocation of memory. The state abstrac-
tion is parameterized by a numerical abstract domain capable of inferring numerical
invariants on the program. It is separated into multiple abstract domains with each
of them handling different properties. For instance, the properties can be relational
using the polyhedral or octagonal domain, i.e., the property can relate multiple variables,
x < y for example. All these domains finely analyze the behavior of machine integers
and floating-points (with potential overflows) while unsound analyzers would assume
ideal arithmetic. They are connected all-together via communication channels that allow
each domain to improve its own precision via specific queries to other domains. As a
consequence, Verasco is able to infer subtle numerical invariants that require complex
reasoning about linear arithmetic, congruence and symbolic equalities.

The design of Verasco is modular and inspired from Astrée [Bla+03], a milestone
analyzer that was able to successfully analyze realistic safety-critical software systems
for avionics and space flights. Modularity ensures that removing any of the domain
and replacing them with domains that satisfy the same signature does not threaten the
soundness of the analyzer, only its precision.

2.2 VERIFICATION OF SECURITY PROPERTIES

We present in this section different related works. First, as constant-time security can
be seen as a form of non-interference, we will provide some general information on
non-interference. Second, we present a technique used for verifying non-interference,
namely tainting. Finally, we introduce some works in the field of high assurance
software and more specifically high assurance cryptography which is a domain that
really started to democratize itself slightly earlier than this thesis started.

2.2.1 Non-Interference

Non-interference is a baseline security property formalizing the non-dependence of pub-
lic outputs on confidential inputs. In their seminal paper, Goguen and Meseguer [GM82]
propose a security property that ensures that “one group of users, using a certain set of
commands, [...] has no effect on what the second group of users can see”.

In [VIS96], Volpano et al. presents a type system to verify a variant of non-interference.
Under their security policy, a program is secure if for any two terminating executions,
the public outputs are the same when they differ only on confidential inputs. This
definition is known as termination-insensitive non-interference (TINI) as its ignores
information leaks due to the observation of termination or divergence of the program.

26

2.2 Verification of Security Properties

In a subsequent paper, Volpano and Smith [V597] refines the previous type system to
take termination into account, i.e., they verify termination-sensitive non-interference
(TSNI).

One of the limitations of the type system proposed in [VIS96] was that it was flow-
insensitive, i.e., the security level of a variable could not change between different
program points. This limitation prevented many non-interferent programs to be ac-
cepted by their type system. Hunt and Sands [FHS06] improves on the type system
presented by Volpano et al. by modfying it in order to be flow-sensitive and thus making
it more permissive, i.e., the number of accepted non-interferent programs is larger.

2.2.2 Tainting

Tainting, also known as taint tracking, is a popular method to track direct data depen-
dencies. The idea is that in order to track which variables depend on some other chosen
variables, it is sufficient to initially taint these chosen variables and taint each variable
which definition depends on already tainted variables; the taint is “propogating” from
tainted variables to the one they affect. How taints are precisely propagated is defined
by the taint policy.

Tainting only concerns itself with tracking explicit flows of the form 1 = h where
the value of h is explicitly leaked into variable h, but ignores implicit flows of the form
if (h) {1 = 1;} else {1 = 0;} where the value of h is leaked into 1 by using the
control-flow of the program. This makes taint tracking obviously unsound in some
cases but makes it highly practical. Indeed, tracking control-flow is challenging, but
the lightweight approach of tainting has made it popular as evidenced by its usage
in languages such as Ruby’ and Perl". It is also the most popular approach for static
analysis of Android applications [Li+17].

Tainting is used in many analyses to verify security policies. One popular use is to
ensure that user inputs do not affect critical parts of the code, this is integrity. Another
popular usage is confidentiality, i.e., to verify that applications do not leak users’ private
information, as illustrated by the many tools available for the Android mobile operating
system [Arz+14; Enc+10; Sch+16].

Taint tracking can be static or dynamic, each with its advantages and drawbacks.
Dynamic taint checking obviously slows down execution compared to a static approach,
however, the latter approach may be less precise than the former one. [SAB10] provides
a formalization of dynamic taint analysis and a survey of different tainting policies and
what security policy they entail.

*http://phrogz.net/programmingruby/taint.html
Shttp://perldoc.perl.org/perlsec.html

27

Chapter 2 Context

2.2.3 High Assurance Cryptography

Constant-time security is part of the larger field of high-assurance cryptography [Bar15]
which is a fertile area that has spawned many recent projects. There are two broad
categories of methods of ensuring high assurance: either it is formally verified using a
proof assistant such as Coq or F* [Swa+11], or it is verified using automatic tools such
as Boogie [Lei08]. Each method has its own drawbacks: the former usually needs a
highly experimented user to be accomplished while the latter is automatic but needs to
trust in unverified and non-trivial tools such as SMT solvers.

[Bar+14] presents the first formally verified automated analyzer for constant-time
security. It is formally verified in Coq and is based on the CompCert compiler. It
operates on the Mach intermediate language of CompCert which allowed it to provide
enough trust that the code that actually runs is effectively constant-time. However, it
suffered from many limitations that are detailed in Chapter 4.

ct-verif [Alm+16] is another tool for verifying constant-time security. It operates on
LLVM bytecode and its verification is based on a reduction of constant-time security
of a program to the safety of a program product that simulates two parallel execution
of the original program. The verification is made by the Boogie tool which generates
verification conditions that are passed to SMT solvers. The tool is automatic but suffers
from limitations due to the use of SMT solvers as they do not handle memory separation
well, i.e., they usually consider a whole array as a single cell instead of multiple separate
cells.

Vale [Bon+17] is a tool for producing verified cryptographic assembly code. Users
write code in the Vale language which is similar to assembly, and then add a functional
specification of the code in Dafny [Leil0], an automatic program verifier. The tool
then automatically verifies that the code complies with the specification by using SMT
solvers such as Z3 [DB08]. The authors also implemented a verified analyzer to ensure
absence of timing and cache based side channels. However, they also seem to have
limitations due to memory separation issues.

HACL* [Zin+17] is a formally verified C cryptographic library. Similarly to [Bon+17],
the library was created by first writing cryptographic code in the proof assistant
F* [Swa+11]. The code is then verified for functional correctness, memory safety and
freedom of timing side channels. However, unlike [Bon+17], proofs are not automatic
and must be manually written by an experimented user. While the produced C code is
claimed to be constant-time, there remains the issue of preserving this security policy
through compilation. It should be noted that their generated C code is now used in
Firefox” which forms a strong statement for the democratization of formal verification.

Jasmin [Alm+17] is a formally-verified compiler from the Jasmin language down
to assembly. The Jasmin language is a small low-level language similar to Bernstein’s
ghasm[Ber05b] that also supports function calls and high-level control-flow constructs

®https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/

28

2.2 Verification of Security Properties

such as loops. The authors have implemented a sound embedding of Jasmin into Dafny
and users can thus automatically prove memory safety and constant-time security
of their Jasmin programs using SMT solvers. Constant-time security is proven using
product programs similarly to the ct-verif tool [Alm+16]. However, they do not mention
if they suffer from the same memory separation issues.

Fiat-crypto [Erb+19] is a formally verified compiler specifically optimized for generat-
ing efficient elliptic-curve C code used in cryptography. However, the proven properties
are only concerned with functional correctness. The compilation results in straightline
code and they thus do not have to worry about secret dependent branching, but only
about secret dependent memory accesses. The resulting code is thus not entirely proven
constant-time. It should also be noted that their implementations of Curve25519 and
P-256 have been integrated into the BoringSSL cryptography library which supports
the Google Chrome internet browser, this forms a second strong statement in favor of
formal verification.

In a series of publications [App15; Ber+15; Ye+17], the authors leverage the Verified
Software Toolchain [App11] and CompCert to prove the functional correctness of a
C implementation of SHA-256 and an implementation of HMAC with SHA-256, as
well as functional correctness and cryptographic security of an implementation of
HMAC-DBRG. However, they do not prove anything about side-channels resistance.

FaCT [Cau+17] proposes a domain-specific language to replace C as it is very prone to
errors that can enable side channels. Their DSL can be basically seen as C enhanced with
new annotations for expressing security levels such as which inputs can be considered
secret or public. The language contains also new instructions that directly map to
useful hardware instructions such as add-with-carry that are rarely produced by general
purpose compilers. They use the Z3 SMT solver to prove memory safety of code written
in this new language. Furthermore, as secret and public annotations are built in the
language, they can adjust the compiler in order to take advantage of constant-time
aware optimizations. Finally, as the tool is built upon LLVM, they can use the ct-verif
tool [Alm+16] to verify that the generated code is secure, but must thus suffer the same
limitations.

29

CHAPTER 3

VERIFICATION AT THE C LEVEL

As reviewing code written following the constant-time programming discipline is
quite an arcane task, it is critical that programmers can be assured that they did not
make any mistake. We argue that they need tool assistance to help them, first, to
verify that the code they write is actually constant-time, and second, to assist them in
understanding why it is not if they made an error. In this chapter, we present a static
analysis at the source level so that reported errors by the tool can be better understood
by coders. The static analysis is based on abstract interpretation methodology and
advanced techniques such as context-sensitive (different invocations of a same function
are distinguished) analyses, and powerful alias analyses technique that can distinguish
between the different cells of an array.

Unfortunately, it is uncertain whether security properties that are ensured at source
level also translate to lower levels. Indeed, compiler optimizations may break the
constant-time transformations performed by the programmer. This issue will be tackled
in the following chapter by introducing a static analysis at the assembly level and by
Chapter 5 which presents a methodology to prove that a compiler preserves constant-
time security.

This chapter is divided as follows, we first present the syntax and semantics of a small
imperative While language in Section 3.1, we then formally define what it means for a
program in the While language to be constant-time in Section 3.2 and show that proving
a program secure can be reduced to proving it safe in an instrumented semantics in
Section 3.3. Finally, we present the abstract interpreter for the While language and
its correctness in Sections 3.4 and 3.5. We also have made a prototype by modifying
Verasco and present an experimental evaluation of our static analyzer in Section 3.6.

A short version of this chapter has been published at the 22°¢ European Symposium
on Research in Computer Security (ESORICS) in [BPT17], an extended version has been
accepted for publication in the Journal of Computer Security [BPT18]. The companion
development is available at http://www.irisa.fr/celtique/ext/esorics17/.

31

Chapter 3 Verification at the C level

Element
loaded into y
a a+2 a+>s
l l i/
W W
*a x x+3

Figure 3.1: Example of aliasing

Expressions: ex=n|a|x|e®e; @€ {+,—-,X%X/,=<>}
Statements: p :=skip | xe; «— ey | x «— e | x < xe | p1;p2
| if e then p; else p, | while e do p

Figure 3.2: Syntax of While programs

3.1 THE WHILE LANGUAGE

We present a small imperative While language, it is classically structured in statements
and expressions, as shown in Figure 3.2. Expressions include integer constants, array
identifiers, variable identifiers, arithmetic operations and tests. Statements include skip
statements, stores *x «— y, loads x « *y, assignments x « y, sequences, if and while
statements.

Our While language is peculiar as it supports arrays and pointers in order to model
memory aliasing. We will mainly use a for array identifiers and x for variable identifiers.
As an example, consider the program x « a + 2;y < *(x + 3). a is an array and also
corresponds to the address of its first cell which contains a value that can be accessed
by *a. The program first starts by assigning the value a + 2 (pointer to the third cell
of the array) to variable x and then loads the value at offset 5 of the array a into the
variable y. In this example, x — 2 is an alias of a since x is an alias of a + 2. This example
is illustrated in Figure 3.1.

Similarly to the semantics defined in CompCert, the semantics of While is defined in
Figure 3.3 using a small-step style for statements and a big-step style for expressions,
supporting the reasoning on non-terminating programs. Contrary to the C language,
the semantics is deterministic (and so is the semantics of C#minor, the intermediate
language Verasco operates over).

A memory location or location, usually named [, is a pair of an array identifier and an
offset represented by a positive integer. A value v can either be a location or an integer.
An environment o is a pair (ox, 04) composed of a partial map from variables in set

32

3.1 The While Language

X of variable identifiers to values and a partial map from memory locations A X N to
values where A is a set of array identifiers and values V are either locations or integers.
We will write o(x) to mean ox(x) and o(I) for oa(l).

Given an environment o, an expression e evaluates to a value v, written (o, e) — v.
A constant is interpreted as an integer. An array identifier a evaluates to its location,
it is equivalent to writing a + 0. To evaluate a variable, its value is looked up in the
environment o and more precisely in its oxx component. Finally, to evaluate e; & ey, it
is simply needed to evaluate e; and e, separately and combine the resulting values by
interpreting @ into its corresponding operator B, where B is the usual semantics of the
operator @ € {+,—, X, /,=, <, >}. For example, e; = e, returns 0 if the test is false, and
1 otherwise.

The execution of a statement s results in an updated state with a new environment ¢’
and a new statement to execute s’, written (o, s) — (o’,s’). We write o(e) to denote the
value of expression e in state o (i.e., (g,e) — o(e)). We write o(x) to denote the value
of variable x in environment ¢ and o(a, n) for the value of the cell of array a at offset n.
We also use o[l +— v] to be the environment o where the location / has been updated
to value v. We consider all arrays to be of finite size and initially declared, similarly
to global variables in C. Thus, o(a, n) and o[(a, n) — v] may fail either because a is
not a valid array name (i.e., a ¢ A) or because it is an out-of-bound access. o(l) = v
means that [is a valid location for o, whereas o(l) = L means the opposite. Similarly,
o[l — v] = ¢’ indicates the success of the update. We assume a memory model similar
to CompCert’s except that addresses of variables cannot be taken and the variables
behave more like registers.

To execute a store xe; < ey, it is first needed for e; to evaluate into a location [/ and
e; to evaluate into a value v; the environment is then updated so that location I maps
to v. Similarly, to execute a load x < xe, the expression e must first evaluate into a
location /. It is then needed to retrieve its corresponding value v in the environment
and update the environment so that x maps to v. To execute the assignment x « e, it is
only needed to evaluate e and update the environment so that x maps to the resulting
value. To execute a sequence py; ps, either p; is a skip and p, is the only statement left to
execute, or we first need to execute py, resulting in a new state (o’, p}). Then, pi; p, is
left to execute in the new environment ¢’. Classically, in order to execute a conditional
branching if e then p; else p,, it is needed to evaluate e and execute accordingly
the appropriate branch. We take false to be zero and true to be non-zero. Similarly, a
loop while e do p stops if e evaluates to false and continues otherwise.

The evaluation of an expression can only be stuck in two ways, either because it
is trying to retrieve the value of an undefined variable (i.e., o(x) fails when x is not
defined in o), or because v; B v is not defined (e.g., because of a division by 0). Finally,
the execution of statements can only be stuck when the semantic rule evaluates an
expression and gets stuck, or the corresponding result has the wrong value type (i.e.,

33

Chapter 3 Verification at the C level

leL=AXN 2eV=L+Z
oc=(ox,00) EM=X->VU{L})xL->Vu{L})

(o,n) > n

(0,a) — (a,0)
o(x)=v
(o,x) > v
(0,e1) = vy (0,€2) = vy

(0,1 ® e) — v BV

(0,e1) > 1 (o,e2) v o[l v]=0

store
0, %e] €= €y) — (0, SKI1Ip
() — (o', skip)
load (o,e) > ol)=v olx—v]=0
(o,x « xe) — (o, skip)
assign (0,e) >v olxov]=0
& (o,x «— e) — (0’,skip)
skipseq -
(o, skip;p) = (0.p)
(o,p1) = (o', p)
seq ; ;
(o, p15p2) = (0", py3p2)
" (0,e) — true
1Itrue
(o,if e then p; else py) — (o,p1)
ol (0,e) — false
1tals
© (o,if e then p; else py) — (o,p2)
et (o,e) — true
wniietrue
(o,while e do p) — (o,p;while e do p)
whilefalse o, ¢) = false

(o,while e do p) — (o, skip)

Figure 3.3: Semantics of While programs

34

3.2 Constant-Time Security

is a location when an integer was expected, or vice versa), or the result is a non-valid
location (e.g., the location is out of bound). For instance, a branching statement cannot
branch on a location value, or o(I) fails because it is an out-of-bound access or there is
no associated value yet in the environment. This will be useful to prove Theorem 3.1.
The reflexive transitive closure of this small-step semantics represents the execution
of a program. When the program terminates (resp. diverges, e.g. when an infinite loop
is executed), it is a finite (resp. infinite) execution of steps. The execution of a program is
safe iff either the program terminates (i.e., its final semantic state is (o, skip), meaning
that there is no more statement to execute) or the program diverges. The execution
of a program is stuck on (o, s) when s differs from skip and no semantic rule can be
applied. A program is safe when all of its executions are safe. We write ({o;, p;)); the
execution {0y, po) — (o1, p1) — ... of program p, with initial environment oy.

3.2 CoNSTANT-TIME SECURITY

We now formally define what it means for a program in the While language to be
constant-time. Informally, we said that a program is constant-time if none of its
branching instructions nor its memory accesses depend on secret information. In order
to model this, we use a definition similar to the one in [Alm+16] and also similar to the
standard definition of non-interference.

Given a type of observations O, we define a leakage model -Z as a map from semantic
states (o, p) to sequences of observations (or leakages) .2 ({o, p)) € O with ¢ being the
empty observation.

Definition 3.1 (Constant-time leakage model). Our leakage model is such that the
following equalities hold.

1. Z((o,if e then p; else p)) = a(e)
2. Z((o,while e do p)) = o(e)

3. Z((0,xe1 — e2)) = o(en)

4. L0, x — *e)) = o(e)

5. Z((o,p1;p2)) = L (0, p1))

6. Z((o,p)) = ¢ otherwise

The first and second lines mean that the value of branching conditions is considered
as leaked. The third and fourth lines mean that the address of store and load accesses
are also considered as leaked. The fifth line explains that a sequence leaks exactly what
is leaked by the first part of the sequence; this is due to the semantics of sequence which

35

Chapter 3 Verification at the C level

depends on the execution of the first statement. As we use a small-step semantics,
when executing py; po, we only execute p; until an execution step is done, p, is not
affected. Finally, the other statements produce a silent observation. We also define
the leakage of an execution as the concatenation of the leakage of all its states, i.e.,
Lo pi))y) = L (00, po)) - L (o1, p1)) - .

Given this leakage model, if executing a statement in two different environments
leads to the same leak, then the next statements to execute are the same as illustrated
by the following lemma.

Lemma 3.1 (Same control-flow). If ({o1, p1)) — ({02, p2)) and ((Gl’,p’l)) — ((Ué,p;))
such that p; = p] and .2 ({01, p1)) = Z({o],p})) then p, = ps.

Proof. By induction on ({01, p1)) — ({02, p2)):
+ In the assign, store and load cases, p, = p; = skip.
« In the skipseq case, there exists p such that p; = p] = skip;p and thusp, = p, = p.

« In the seq case, there exists qi, q}, ¢/ and g, such that p; = p] = ¢1;q2 and
(01,q1) — (02,q}) and (o], q1) — {(0,,q7). In order to use the induction hy-
pothesis to prove q| = g/, we first need to prove that £ ({01, q1)) = £ ({0}, q1)).
This is true by definition since .Z ({01, p1)) = Z({01,q1:q2)) = £ ({01, 1)) and
also Z((o},p})) = L (0], 413 42)) = L ({0, q1)) and L({o1,p1)) = L} p))):
Thus, since p, = q7;q2 and p, = q/’; g2, we have finally p, = p/,.

« In the iftrue, iffalse, whiletrue and whilefalse cases, we simply use .2 ({01, p1)) =
Z ({0}, p})) to justify that the same branch is taken.

We now define what it means for two executions to be indistinguishable.

Definition 3.2 (Indistinguishable executions). Two executions ({c;, p;)); and ((0'1.’ g))
are said to be indistinguishable when their observations are the same:

L (00, po)) - L(o1.p1)) - ... = L (00, pp)) - L ({01, p1)) ~ - - -

i

Finally, the following theorem generalizes the previous lemma to indistinguishable
executions.

Theorem 3.1. Two indistinguishable executions of a program necessarily have the
same control flow.

Proof. Suppose we have two indistinguishable executions ({;, p;)); and ({c7, p;))l We
know that py = pj since we consider indistinguishable executions of a same program.
We prove by induction on i that for all i, p; = p].

36

3.3 Reducing Security to Safety

« It’s true by hypothesis for i = 0.

« Suppose that p; = p/.

— If the execution is stuck for {(oj, p;), then, as explained earlier, it is because p;
tries to write or read an invalid location (i.e., the value is not a location but
a constant or it is an out-of-bound location) or it tries to branch on a non-
integer value (i.e., a location). However, by definition of indistinguishability
and the leakage model, these values must be the same in both executions,
thus the execution is also stuck for (o7, p;).

— Symmetrically, if the execution is stuck for (o}, p;), it is also stuck for {o;, p;).

— The two previous cases show that if one execution is stuck, then so is the
other. Thus if (oj, p;) — (0it1.pi+1), then there must exist o/, ,p] , such

i+1°
that (o, p]) — (o/,;,p},;)- By using the previous lemma, we prove that
Pi+1 = p1{+1‘

Both executions have thus the same control flow. O

Given a program, we assume that the attacker has access to the values of some of
its inputs, which we call the public input variables, and does not have access to the
other ones, which we call the secret input variables. Given a set X of identifiers, and
two environments o and ¢/, we say that ¢ and ¢’ are X-equivalent if o and ¢’ both
share the same public input values. Two executions ({o;, p;)); and ({07, p})), are initially
X-equivalent if 0y and o) are X-equivalent and py = p}.

Definition 3.3 (Constant-time security). A program p is constant time with regards
to set X; of public input variables, if all of its initially X;-equivalent executions are
indistinguishable.

This definition means that a constant-time program is such that, any pair of its
executions that only differ on its secrets must leak the exact same information, i.e.,
secrets do not influence leaks. This definition corresponds to the informal definition
given at the beginning of Section 3.2 that branching instructions and memory accesses
shall not depend on secret information.

3.3 REDUCING SECURITY TO SAFETY

In order to prove that a program satisfy constant-time security as defined in Defini-
tion 3.3, we reduce the problem to checking whether the program is safe in a different
semantics. The issue is thus twofold, we first need to prove that safety in this instru-
mented semantics implies constant-time security in the standard semantics and second,
we need to design an analyzer for this second semantics. This can also be obtained by

37

Chapter 3 Verification at the C level

Safe implies
. tant-time 1oy ., 1 . .0
’ Standard semantics k - 2T TTC — 1 Instrumented semantics |
17 AN
Safe ? Safe ?

oo 7777777777 !

Standard analyzer -------—-—-- Instrumented analyzer |

modified into o K

Figure 3.4: Methodology

modifying an analyzer for the standard semantics as illustrated by Figure 3.4. Plain
lines indicate what we assume to already have, while dashed lines indicates what need
to be designed or proved.

In this section, we will present an instrumented semantics (later named tainting
semantics) and show that safety in this semantics implies constant-time security in
the standard semantics. The instrumented analyzer is presented in Section 3.4 and its
correctness in Section 3.5.

A high level view of our methodology can be found in Figure 3.5 which summarizes
the relationships between the different semantics and the theorems that links them.
The general idea is that our analyzer tries to establish whether a program is safe in a so
called tainting semantics. We prove that the analyzer is indeed correct, i.e., if it decides
that a program is safe, then it is actually safe. The proof is done using standard abstract
interpretation techniques based on a collecting semantics. Furthermore, we prove that
a program safe in the tainting semantics satisfies constant-time security in the standard
semantics, effectively making our analyzer an analyzer for constant-time security.

We introduce an intermediate tainting semantics for While programs in Figure 3.6,
and use the ~» symbol to distinguish its executions from those of the original seman-
tics. The tainting semantics is an instrumentation of the While semantics that tracks
dependencies related to secret values. In the tainted semantics, a program gets stuck if
branchings or memory accesses depend on secrets. We introduce taints, either H (High
security) or £ (Low security) to respectively represent secret and public values and a
union operator on taints defined as follows: L11L = Landforallt, HUt = tUH = H.
It is used to compute the taint of a binary expression, if any of its subexpression has a
High taint, then the whole expression also has a High taint. The purpose of the taints is
to track whether the leakages may depend on secrets (High taint) or are benign (Low).
In the instrumented semantics, we take into account taints in semantic values: the
semantic state 0 becomes a tainted state o, where locations are now mapped to pairs

38

3.3 Reducing Security to Safety

Standard semantics

Safe implies
constant-time,
Theorem 3.3

Tainting semantics
AN

Sound with regard to,
Theorem 3.4 Safe 2
Collecting semantics Theorem 3.6

AN
Correct with regard to,
Theorem 3.5

Abstract semantics implemented by analyzer

Figure 3.5: Diagram relating the different semantics

made of a value and a taint.

Let us note that for the dereferencing of an expression *e to not fail, the taint
associated to e must be £. Indeed, we forbid memory read accesses that might leak secret
values. This concerns dereferencing expressions (loads) and assignment statements.
Similarly, test conditions in branching statements must also have a £ taint.

The instrumented semantics strictly forbids more behaviors than the standard se-
mantics (defined in Figure 3.3) as shown by the following lemma.

Lemma 3.2. Any execution ({o;, p;)); of program p, in the tainting semantics implies
that ({o;, pi)); is an execution of p, in the standard semantics where &(a, b) = a for all
pairs (a, b) is an erasure function and for all i, 6; = & o ;.

Proof. For all 7, o, p, p’ such that (c,p) — (c’,p’), we can prove by immediate
induction that (o, p) — (o’,p’) wherec =Eocando’ =E o7

Finally, by induction on the execution and using this lemma, the theorem is easily
proven. O

However, the converse is not necessarily true. For instance, suppose that variable x
contains a secret value. Then, #(a + x) < 2 is not safe in the instrumented semantics
because a + x has taint H, while it is safe in the standard semantics provided that a + x
corresponds to a valid location.

An immediate consequence of the lemma is that the instrumented semantics preserves
the safe behavior of programs, as stated by the following theorem.

39

Chapter 3 Verification at the C level

teT={L H}

YV=VxT
c=(x,0n) eM=X->VU{LP)xL->Vu{L)

(o,n) ~ (n, L) (0,a) » ((a,0), £)

o(x) = (v, 1) (0,e1) v (v, 11) (T, €3) w (vg, 1)

<Ea x) i (U’ t) <E7 €1 @ e2> i (Ul B vy, tl U t2)

(g,e) w (I,L) (0,€2) w (v,1) o[l (v,0)]=0

(0, xe; « e3) ~ (07, skip)

(g,e) w (I,L) o(l)w (v,t) olx (v,t)] =0

(o, x « xe) ~» (o, skip)

(o,e) > (v,t) olx— (v,t)] =0

(0,x «— e) — (o, skip)

(a,p1) ~ (7, p))
(o, skip;p) w (o, p) (G, p1;p2) ~ (0, p];p2)

(o,e) » (true, L)
(o,if e then p; else py) w» (7,p1)

(o,e) ~» (false, L)
(o,if e then p; else py) ~ (T, p2)

(c,e) » (true, L)
(o,while e do p) w (o,p;while e do p)

(o, e) »» (false, L)
(G,while e do p) ~» (G, skip)

Figure 3.6: Tainting semantics for While programs

40

3.3 Reducing Security to Safety

Theorem 3.2. Any safe execution ({o;, p;)); of program p, in the tainting semantics
implies that the execution ({oj, p;)); is also safe in the standard semantics.

As an immediate corollary, any safe program according to the tainting semantics is
also safe according to the standard semantics.

Proof. Let ({03, pi)); be a safe execution of p, in the tainting semantics. As it is a safe
execution, it can either diverge or terminate.

« If ({03, pi)); is diverging (i.e. infinite), then so is ({oj, p;)); thanks to the previous
lemma.

« If ({03, pi)); is terminating, then there exists some n such that p, = skip, therefore
({01, pi));<p is also terminating.

({01, pi)); is a safe execution in the standard semantics. O

Theorem 3.2 is useful to prove our main theorem relating our instrumented semantics
and the constant-time property we want to verify on programs. Given a set X; of public
input variables, a program is constant-time with regards to X; if any of its executions
such that the variables in X; are given an initial low taint, is safe in the tainting
semantics. The intuition is that from an execution in the standard semantics, we can
build a corresponding one in the tainting semantics that is guaranteed to be safe by
hypothesis which implies that the initial execution is also safe thanks to Theorem 3.2.
Finally, as the execution in the tainting semantics cannot leak information with a high
taint, we can conclude that the leakage in the execution in the standard semantics does
not depend on secret.

Theorem 3.3. Let X; be a set of public variables. If any execution ({c;, p;)); of program
po in the tainting semantics, such that for all x € Xj, oy(x) has a low taint is safe, then
po is constant-time with regards to X.

Proof. Let ({0, p;)); and ({o7, p]))l be two safe executions of p, that are initially X;-
equivalent.

We now need to prove that both executions are indistinguishable. Let o be such that
forallx € X;, n € N, og(x,n) = (0o(x,n), L) and also for all x ¢ X;, n € N, oy(x,n) =
(o0(x, n), H).

By safety of program p, according to the tainting semantics, there exists some states
o1, 02, . . . such that (oy, py) ~» (o7, p1) ~> ... is a safe execution. Let 0,y = & o 7,, we
prove by strong induction on n that o,y = oy,.

« It is clearly true for n = 0 by definition of o.

41

Chapter 3 Verification at the C level

« Suppose it is true for all k < n and let us prove it for n. By using theorem 3.2, we
know that there exists a safe execution {(oy, po) — (o1, p1/) = ... = (Ow, ') —
.... Furthermore, the standard semantics is deterministic and we know that
(00, po) — (01,p1) — Therefore, we have the following series of equalities:

01 = 01,p11 = P15+ -0 = Opny P’ = Pn.

Thus, for all k € N, the state oy verifies ox = & o o%. Similarly, we define 5", o7, . ..
for the second execution which also verifies the same property by construction.

Finally, we need to prove that for all n € N, L({oy, pn)) = L({o}, p},))-

First, we informally define the notation ¢, =, o}, for alln € N as 5, and 7, as
previously defined, agree on the taints of both variables and locations, and if the taint
is £, then they also agree on the value. Formally, this means that for all r where r is
either a location [or a variable x, either 7,(r) and 7,,(r) are undefined, or there exists a
taint ¢ such that 5,(r) = (o,(r), t) and 7,,(r) = (0,(r), t) and if t = L, then o,(r) = o,(r).
Second, we introduce the following lemma.

Lemma 3.3. For all n and e such thatif o, =1 o,, (7,,€) ~ (v,t) and (a},e) ~»» (v, 1),
thent =t andift =t = L, thenv = 7.

This is proven by induction on e.
« This is trivially true if e = nor e = a.
« If e = x, then it is true by definition of 0, =1 o,

« If e = e; ® e, then we apply the induction hypotheses on (o,,e1) ~ (v1, t1)
and (o, e1) ~> (v, 1) and on (Gy, e2) > (v, 1) and (G, e2) > (v}, t5). Since
t=tilUtyandt’ = tjUt;and t; = t] and t, = t;, we havethatt = t". Ift = t' = L,
thent; =t] = Landt, =t; = L, thusv =v, Bv; = v Bv, =0

This lemma is thus proven.
Finally, for all n € N, let us prove by induction on p, that if p, = p;, and 0, = o,
then pp1 = p; ., and opyy =¢ o).

:OJ

« If p, = skip;p’, it is true because p,1 = p/,,, = p’, Ons1 = 0, and also o, -

n+1

« If p, = p; p’,itis true by induction hypothesis.

« If p, = if e...orp, = while e..., we have 0,41 = 0, and o, ,, = o,,. Further-
more, we know that there exists some v such that (o, e) ~»» (v, £) and similarly,
there exists v’ such that (5,, e) ~» (v/, £) because of the safety in the tainting
semantics. Since o,(e) = v, o, (e) = v’ and 0, = o, we have v = v’ by using the
previous lemma 3.3 and thus p,; = p; ;.

42

3.4 Abstract Interpreter

« If p, = x < xe, we can prove as previously that o,(e;) = o,,(e;) = I. Furthermore,
we have p,,; = p) ., = skip. It is left to prove that 0,41 = 0, ;. If 0,(]) = (v, 1)
and o,'(l) = (v/,t'), thent = ¢’ since 0, =y o]. If t = t' = L, thenv = ¢/
and 0,11 = oy[x > v] and o), = op[x = V'], thus opy1 =1 o, . Similarly, if
t=t'=H,then o,y =1 0.

+1°

« If p, = x < e, we know that p,; = p/ ., = skip. Furthermore, there exists v,
v/, t, t’ such that (g,,e) > (v,t) and (o, €) ~ (v/,t'). By using the previous
lemma, we know that t = ¢/, and if t = ¢’ = £, then v = v’. Thus 0,.1 = o,[x —
ol =z oyl - o] = ol

« If p, = €1 < ey, we have p,y; = p/ | = skip. By using the same reasoning as
previously, we can prove that o,(e;) = o;(e;) = I. There exists v, v/, t, t’ such
that (5,,e;) ~ (v,t) and (5,’,e;) ~ (v/,t') and thus 0,41 = o,[l — v] and
0,4l = v’]. By using the previous lemma, we know that t = t" and ift = t’ = L,

thenv = v’ and 0,41 = 0,,,. If t =t' = H, then 0,41 = o), by definition.

Finally, by exploiting this second lemma, an induction proves that for all n € N,
pn = p;, and 0, =y o,. Furthermore, a direct consequence is that for all n € N,
L({on, pn)) = L({o;, p;)) and thus both executions are indistinguishable: the program is
constant time. O

The theorem is thus proven, but what about its converse, is a constant-time program
necessarily safe with regards to the tainting semantics? This is however not true,
indeed, consider if (secret - secret) { ... } else { ... 3}. This program is
constant-time since the value of the conditional guard does not depend on secrets, it
always evaluate to 0. However, it is not safe with regards to our tainting semantics, as
(secret - secret) is considered to have a high taint.

We have shown that a program safe with regards to the tainting semantics is constant-
time, we will now see how to prove that a program is safe according to this semantics.

3.4 ABSTRACT INTERPRETER

To prove that a program is safe according to the tainting semantics, we design a static
analyzer based on abstract interpretation. It computes a correct approximation of the
execution of the analyzed program, thus if the approximative execution is safe, then
the actual execution must necessarily be safe.

Similarly to how we built a tainting semantics from a standard semantics, we explain
how to modify an abstract interpreter for the standard semantics into an abstract
interpreter for the tainting semantics. First, we suppose that the regular abstract
interpreter has the same structure as the one illustrated in Figure 3.7. It provides a

43

Chapter 3 Verification at the C level

While language

~

OK/Alarm k— Abstract Interpreter

WL

v

Figure 3.7: Structure of an abstract interpreter

domain of abstract values V¥ that supports an operator concretize® : V¥ — P(V) which
takes an abstract value and returns the concrete values represented by the abstract
value. We also suppose that the abstract interpreter provides MF, an abstraction of
concrete environments built upon V* that maps locations and variables to values. We
do not need nor want to know exactly how M* is defined, as it might use relational
definitions which are quite complex. We only need to use M* to modify the abstract
analyzer.

Finally, we suppose that the abstract analyzer provides the following abstract opera-
tors:

. eval’ : Mf - expr — V¥ takes an abstract environment, an expression and
evaluates it in the abstract environment and returns the corresponding abstract
value;

. assign® : M — X — expr — MF takes an abstract environment, a variable
identifier, an expression and models an assignment to a variable;

. store? : MF — expr — expr — MF takes an abstract environment and two
expressions e; and e; and models *xe; < ey;

. load? : Mf - X — expr — M# takes an abstract environment, a variable
identifier, an expression and models a load x < xe;

« assert? : MF — expr — M" takes an abstract environment, an expression and
returns an abstract environment where the expression is true. This is useful
when analyzing a branching condition such as x < 5, if we know beforehand that
x € [0, 42], we can restrict x to [0, 4] in the “then” branch, and restrict it to [5, 42]
in the “else” branch.

44

3.4 Abstract Interpreter

Figure 3.8: Abstract taint lattice T

The abstract operators form an interface that is parameterized by V# and M* that we
will name AbMem(V#, MPF).

Now, in order for the analyzer to handle the tainting semantics, we need to introduce
an abstraction of taints T# = {£* ¥} which forms a lattice represented in Figure 3.8.
We will use £F to indicate a value that has exactly taint £ while H* indicates that a
value may have taint £ or H. In order to analyze the following snippet, it is necessary
to correctly approximate the taint of the value that will be assigned to variable x after
execution.

if /% low expr */

X «— /* high expr x/
else

X < /*x low expr */

As it can either be £ or H, we use the approximation H*. We could have used H* to
indicate that a variable or location can only have a H value, however constant-time
security is not interested in knowing that value has exactly H taint, but only in knowing
that it may have a H taint. Similarly to U, we define Uf as £8P £F = £ and for all £,
H Ut = U HE = HE

Now, we explain how to modify the analyzer so that it can track abstract taints, this
process effectively forms a functor from the previous interface AbMem(V¥, M*) to a
ﬁ, Mﬁ) that can track abstract taints where Vﬁ = V# x T# and
= MFfx (X +L) - T.

new interface AbMem(V
Mﬁ

We first start by defining taintﬁ : Mﬁ — expr — T* + L which returns the abstract
taint corresponding to the evaluation of an expression. We use 7 (a, b) = b as tainting

45

Chapter 3 Verification at the C level

function, the companion of the erasure function &.
taintﬁ(Eﬁ, n) = L
taintﬁ(Eﬁ, a) = L
taint' (7, x) = T (G (x)
taintﬁ(Eﬁ, e1Dey) = taintﬁ(Eﬁ, er) L taintﬁ(Eﬁ, €)
We now define the following abstract operators (i.e., transfer functions).
. oval' (5%, e) = (evalt(E(5Y), e), taint (5%, ¢))
. assignﬁ(Eﬁ,x, e) = (assignﬁ(S(Eﬁ),x, e),T(Eﬁ)[x — taintﬁ(Eﬁ, e)])
e PO SN b(e (=t =
assert’(c", e) = (assert?(E(a"),e), T (c"))

. storeﬁ(Eﬁ, e1,e) =

— — — fﬁ —
(storeﬁ(é}(aﬁ), e1,€s), ‘T(aﬁ)[l — T(aﬁ)(l)l_lﬂtalnt (crﬁ, ez)]IEConcretizeﬁ(evalﬁ(g(gﬁ)’el)))

. Toad (%, x, ¢) = (load4 (&G, x, e), T(7)[x > LI TG0

leconcretize? (evalu(c“J(Eti),e))

The definitions of ﬂﬂ, assignﬂ and assert’ reuse the operators of AbMem(Vﬁ,Mﬁ)

and modify slightly the tainting part. The definitions of store’ and Ioadﬁ are more
complex. In both cases, we need to use eval® to deduce all possible locations affected

by the memory accesses and suitably update the tainting parts. For ﬁﬁ(Eﬁ, e1,e2),
all possible write locations [given by the concretization of evalﬁ(S(Eﬁ), e;) are updated
with the union of the taint of the value contained in [and the taint given by e;. This is
due to the fact that the analysis does not know precisely where the write happens and
must thus be conservative. However, if the analysis managed to pinpoint an unique
location, it would be possible to use a strong update instead of a weak one. As for
@ﬁ (Eﬁ, X,), we approximate the taints from all possible read locations given by the
concretization of evalﬁ(S(Eﬁ), e). This concludes the definition of AbMem(Vﬁ, Mﬁ).
Finally, the abstract analysis [p]J(c%, *) of program p starting with tainted abstract
environment 5+ is defined in Figure 3.9. To analyze (p1; p2), first p; is analyzed and then
po is analyzed using the environment given by the first analysis. Similarly, to analyze
a statement (if e then p; else py), p; is analyzed assuming that e is true and p; is

analyzed assuming the opposite, L is then used to get an over-approximation of both
results.

46

3.5 Correctness of the Abstract Interpreter

[skip]#(@*) = &
[xe1 — ex]lF(c%) = Store’ (%, ex,)
[x — we]t(5) = load (5%, x, ¢)
[x — e]f(3*) = assign'(&%, x. ¢)
[p1: 2145 = [P0 ([P 1*()
[if e then py else p,]A@") = [p1](assert (%,) L
[p2](assert’ (6%, not ¢))
[while e do p]]ﬁ(Eg) = mﬁ(pfp(iter(e,p, Eg, -)), not e)
iter(e, p, 7%, 5) = 5% L assert ([p](5%),)

Figure 3.9: Abstract execution of statements

The loop (while e do p) is the trickiest part to analyze, as the analysis cannot just
analyze one iteration of the loop body and then recursively analyze the loop again
since this may never terminate. The analysis thus tries to find a loop invariant. The
standard method in abstract interpretation is to compute a post-fixpoint of the function

iter(e, p, Eg, -) as defined in Figure 3.9. It represents a loop invariant, the final result is
thus the invariant where the test condition does not hold anymore. In order to compute
the post-fixpoint, we use pfp(f) which computes a post-fixpoint of monotone function
f by successively computing L, f(L), f(f(L)),..., and forces convergence using a
widening-narrowing operator [CC76] on the M part. The taint part does not require
convergence help because taints form a finite lattice.

3.5 CORRECTNESS OF THE ABSTRACT INTERPRETER

In order to specify and prove the correctness of the analyzer, we follow the usual method-
ology in abstract interpretation and define a collecting semantics, aiming at facilitating
the proof. The semantics still expresses the dynamic behavior of programs but takes a
closer form to the analysis. It operates over properties of concrete environments, thus
bridging the gap between concrete environments and abstract environments, which
represent sets of concrete environments.

The collecting semantics aims at describing the resulting environments that can be
reached given a specific instruction and a set of environments. The collecting semantics
of a program p with a set of concrete environments ¥ is written [p]|(2).

47

Chapter 3 Verification at the C level

[skip](X) =%
[+e; — e:](S) = Store(S, e1, e2)
[x — #e]|(Z) = Load(Z, x, e)
[x — el(5) = Assign(%, x, ¢)
[p1: p21(Z) = [p20[p1 (X))
[if e then p; else p;](2) = [p1](Assert(Z, e)) U [[p2](Assert(Z, not e))
[while e do p](2) = Assert(I, not e)

where I is the least fixpoint of the equation I == X U [[p]l(Assert(I, e))

Figure 3.10: Definition of the collecting semantics [-

Similarly to the abstract interpreter, we define Assign, Store, Load, Assert. They will

respectively serve as counterparts to assignﬁ, storeﬁ, load b and assertﬁ. We first start
with Assign:

Assign(2,x,e) = {a[x — (v,t)]|Fv e V,t € T,o(e) = (v,t) AT € X}

Given a set of concrete environments ¥, Assign(Z, x, e) computes the set of all possible
reachable environments from environments in ¥ after executing x « e in the tainting
semantics.

Next are Store and Load:

Store(Z, e1,e2) = {o[l— (v, t)]|A e L,v e V,t € T,o(e;) = (I, L) Ao(ez) = (v,t) AT € 2}
Load(Z, x,e) = {a[x — (v,1)]|Fl e L,v e V,t € T,a(e) =(, L) Ad(l) = (v,t) AT € 3}
Given a set of concrete environments X, Store(Z, ey, e2) (resp. Load(Z, x, e)) computes

the set of all possible reachable environments from environments in ¥ after executing
ke «— e (resp. x «— xe) in the tainting semantics.

Assert removes the environments where e is not true:
Assert(2,e) = {o € X|3t,o(e) = (true, t)}

Finally, the collecting semantics is defined in Figure 3.10. Looking at the rules in
Figure 3.9 and Figure 3.10, one can notice that the collecting semantics follows closely
the shape of the abstract interpreter. The collecting semantics of assignment is defined

using Assign, the counterpart of assignﬁ. Similarly to the abstract interpreter, to evaluate

48

3.5 Correctness of the Abstract Interpreter

a conditional branching, the first branch is evaluated assuming the condition is true
using Assert and the second branch is evaluated assuming the opposite. The results are
then merged to obtain all the possible states that can be reached.

We first start by proving that the collecting semantics is sound with regards to the
tainting semantics.

Theorem 3.4. For all program p and environment @, (7, p) ~* (', skip) = 07 €

[p1({a}).

Proof. This is a fairly standard proof in abstract interpretation. As the theorem state-
ment does not directly fit well with induction, we first start by proving the following
more general lemma:

Vp,0,0,2,0 € X = (o,p) w" (d’,skip) = 7 € [p](Z)
The proof is by induction on p.
o If p = skip, it is trivially true.

o Ifp=xe; «— eyorp =x < xeorp = x « e, it is true by definition of Store,
Load, Assign and by definition of the tainting semantics.

« Ifp = p1; p2, then there exists 7 such that (7, p;) ~»* (77, skip) and (", p) ~>*
(o', skip). By induction hypothesis on the first execution, we obtain that 7 €
[p1](X). Combining this with using the induction hypothesis on the second
execution allows us to conclude that " € [p2[[([p11(2)) = [p1; p21(2) = [p1(Z).

« Ifp=1if e then p; else p,, then either 5(e) = true and (7, p;) ~* (7, skip)
or o(e) = false and (7, p;) ~* (7', skip). In the first case, T € Assert(Z, e) and
in the latter, o € Assert(Z, not e) which allows us to conclude in both cases by
using the induction hypothesis.

« If p=while e do p, then we know that 5’(e) = false. Furthermore, we remark
that for all " such that (o,while e do p) ~* (¢”,while e do p),c” € I by
definition of I, the least fixpoint of the equation I == X U [[p]l(Assert(I, e)). Thus,
o’ €1 and since o' (e) = false, o’ € Assert(I, not e).

The lemma is thus proven, and the theorem is a direct consequence of it. |
The standard semantics also has a collecting semantics with the operators Assign,

Store, Load, Assert and a corresponding soundness theorem that we will not detail. The

49

Chapter 3 Verification at the C level

operators are defined as follows:

Assign(2,x,e) = {o[x — v]|Fv e V,0(e) =v Ao € X}
Store(2,e1,e2) = {o[l—> v]|Al e L,veV,o(e;) =l ANo(es) =v AT €X}
Load(Z,x,e) = {o[x — v]|Al e L,veV,o(e)=IlAc(l)=vAoc e}
Assert(2,e) = {0 € X|o(e) = true}

Finally, we also need to introduce the concept of concretization to state and prove the
correctness of our abstract interpreter. We already introduced concretize® previously
which is actually a concretization function. We will rename it 4 as y is the usual name
for a concretization function in abstract interpretation. We use v € yy (v*) to say that
v is in the concretization of abstract value v, which means that v¥ represents a set of
concrete values of which v is a member.

The abstract memory domain M* also provides a concretization function Yadt M —
P (M) which is used to define the correctness of the assignﬁ, storeﬁ, load® and assert

operators:
Assign(yMg(aﬁ),x, e) C yMu(assignﬁ(oﬁ, e))
Store(yy(a*), e1, e2) C yys(store?(a¥, €1, e2))
Load(yyz:(c¥), x, €) € yyp(load?(a¥, x, €))
Assert(yMn(aﬁ), e) C yM,;(assertﬁ(aﬁ, e))

We now need to define y; : T# — P(T) and Yt Mﬁ — P(M).

The first one is simple, yr4(L") = {£} and yps(H*) = {L,H}. L* corresponds to
values that we know are necessarily public data, while H* corresponds to values that
we only know may depend on secrets.

Now, we define Vipt:

175 = {318 0T €y (E(GH) A Vr, T(G(r)) € ya (T(GH)(r))

This means that an environment & is in the concretization of " if there exists
o € Y (S(Eﬁ)) such that & o ¢ = ¢ and such that 7(a(r)) € yq (T(Eﬁ)(r)) for all

location or variable r.

We now need to prove the correctness of the assignﬁ, storeﬁ, Ioadﬁ and assertﬁ opera-
tors:

50

3.5 Correctness of the Abstract Interpreter

Lemma 3.4.
Assign(y_4(a%).x,¢) C y_s(assign (3%, x.)
Store(y_s (6). e1.€2) € y_s(STore (%, 1. €2))
Load(y._s(3*). x.¢) C y__s(foad (% x.¢))

Assert(ymu (Eﬁ), e) C ymu(assertﬁ(ﬁﬁ, e))

Proof. We need to prove that for all o € Assign(ymu (Eﬁ), X,e),0 € ymﬁ(assignﬁ(Eﬁ, e)).

We first define &) = {E o7|g € X} for all T € P(M). We then notice that
S(Assign(ymg (Eﬁ), x,e)) = Assign(yy (S(Eﬁ)), x, e)) by definitions.

Then, by correctness of assignﬁ, we have that Assign(y (S(Eﬁ)), x,e)) C
Yaat (assignﬁ(S(Eﬁ), x, e)). And by definition of @ﬁ, we have that 8(@%5, x,e)) =
assignﬁ(S(Eﬁ),x, e). Thus, yMﬁ(S(@ﬁ(E, x,e))) = yMg(assignﬁ(S(Eﬁ),x, e)) which
implies that S(Kign(ymg (Eﬁ), x,e)) C Y (S(Mﬁ(a x,e))) and therefore, there
exists o € yy (S(Mﬁ(g, x, e))) such that &(o) = o.

It is then left to prove that for all r, 7(c(r)) € yps (T(@ﬁ(ﬁ, x,e))(r)). By def-

inition of assignﬁ, T(assignﬁ(Eﬁ,x, e)) = T(Eﬁ)[x - %ﬁ(gﬁ, e)]. By definition of
Assign, we know that there exists o; € Yt (Eﬁ) such that ¢ = o([x — (v,t)] with
ai(e) = (v, 1).

The correctness of mﬁ can easily be proven by induction on e:

T ey (@) = T(@(0) € ype(faint (o, ¢))

By exploiting the lemma, the correctness of assignti is thus proven. The correctness
of the other operators is similarly proven. O

The following theorem which states the correctness of the abstract analyzer with
regards to the collecting semantics can now be proven.

#

Theorem 3.5. For all abstract environment 6" and program p,

[Py (@) < va(lplF(c*)
Proof. We first remark that [p] is a monotone function, i.e. 1 € 2, = [p]l(Z1) C

[p1(Z2). The proof is by induction on p. The theorem is also proven by induction on p.
We have that:

51

Chapter 3 Verification at the C level

o if p = skip, it is trivially true;

o ifp=xe; e e 0orp=x <« eorp=x « xe, it is a direct consequence of the
correctness of the corresponding operators;

+ if p = p1;p2, we have [p1]y (6") < y-(Ip11%(*)) by induction hypothesis on
prand [p2](yoe (Ip1 1¥(5%))) € v (IpI¥(Ip1 1#(5%))) on po. And by monotony of
[p2]. we have [ps; p2l(y+ (@) = [p2l(Ip: D@ € [p2l(rze (Ipa1F(@) <
ymu([pz]]ﬁ([pl]]ﬁ(aﬁ))) = v (lps; p2]#(7%) which is what we needed to prove;

#

« if p=if e then p; else p, it is a consequence of the correctness of assert’;

« if p =while e do p, it is a consequence of the correctness of pfp with regards

to the invariant, and the correctness of assertﬁ.

The theorem is thus proven. O

This theorem intuitively means that the abstract analyzer is correct with regards to
the collecting semantics since if ymg([[p]]ﬁ(ﬁﬁ)) is empty, [[p]](yMﬁ (Eﬁ)) must necessarily
be empty too, and thus the execution is stuck with regards to the collecting semantics.

Finally, combining Theorems 3.4 and 3.5, the following correctness theorem is a
direct consequence:

Theorem 3.6. For all program p, environment ¢ and abstract environment 5 such
that o € Yyt (Eﬁ), if we have the execution (7, p) ~* (o, skip), then we also have

& €y (Ipl*@")).

This is the main theorem of correctness of the abstract interpreter. It ensures that we
compute correct over-approximations of reachable states in the tainting semantics. We
can then safely perform abstract tests on the program to check that no tainting state
may reach a stuck configuration. By that, we mean that the analyzer may fail or raise
alarms during the analysis. For instance, when analyzing if (x), it may raise an alarm
to say that x may potentially depend on a secret if at this program point, it knows that
its taint is H*. Hence, we can conclude that if no alarm is raised, then the program is
safe with regard to the tainting semantics and is thus constant-time.

3.6 IMPLEMENTATION AND EXPERIMENTS

Following the methodology presented previously, we have implemented a prototype
leveraging the Verasco static analyzer. It necessitated to add a taint layer to Verasco

52

3.6 Implementation and Experiments

to track the taint associated with variables and memory locations. This layer reused
information already computed by Verasco to obtain the necessary points-to information
to properly taint memory locations. The analyzer has then been modified to query the
taint layer when an if instruction or a memory access is encountered in order to verify
that they are harmless.

We have been able to evaluate our prototype by verifying multiple actual C code
constant-time algorithms taken from a set of representative cryptographic libraries such
as NaCl [BLS12], mbedTLS [mbel4],curve25519-donna [Lan08] and Open Quantum
Safe [Bos+15].

Many analyzers for verifying constant-time security exist, such as [RBV17; TIS16;
Alm+16; Bar+14], and we will compare more specifically with [Alm+16], a state of the
art analyzer operating on LLVM bytecode. This comparison was chosen as their tool
ct-verif provides a similar level of guarantee as ours, but instead relying on the semantic
framework of relational verification and product programs. The other tools were not
chosen for comparison for different reasons. For instance, [RBV17] has a statistical
approach in which the analyzed program is run multiple times with different inputs
to test its constant-timeness. It thus lacks any guarantee on the answer it provides
compared to an approach like ours. As for [Bar+14], while also based on CompCert, it
operates at the assembly level and is thus crippled by lack of precision due to the simple
difficulty of operating at this level. A comparison would be unfair with a tool operating
at source level as ours. [TIS16] is the tool most similar to ours but is a commercial tool
and cannot thus be freely tested.

In order to use our tool, the user simply has to indicate which variables are to be
considered as secrets and the prototype will either raise alarms indicating where secrets
may leak, or indicate that the input program is constant time. The user can either
indicate a whole global variable to be considered as secret at the start of the program, or
use the verasco_any_int_secret built-in function to produce a random signed integer
to be considered as secret.

The While language we presented has a few differences with the C#minor language
of CompCert that we analyze using Verasco. First, C#minor allows more constructs such
as switch and does not use while loops, but infinite loops that must be exited using a
break statement. Secondly, C#minor expressions can contain memory reads whereas
our While language models a memory load as a statement. However, this is only a
slight difference as C#minor programs such as x = #y + *z are already transformed
into x1 = *y;x2 = *z;x = x1 + x2 by Verasco in order to improve the precision of the
analysis.

3.6.1 Context Sensitivity

An inherent advantage of our methodology is that context sensitivity is preserved.
Indeed, by combining Verasco’s points-to analysis with a taint analysis, we inherit

53

Chapter 3 Verification at the C level

Verasco’s ability of interprocedural analysis. We thus obtain an analysis that is more
precise than if the taint analysis was solely a client of a points-to analysis.

For instance, consider the following program where secret values are copied into an
array and are then replaced with public ones.

int table[64];
int pub[64] = { ... }; // public values
int secret[64] = { ... }; // secret values

int* memcpy(int* dst, int* src, signed len) {
for (signed i = 0; i < len; ++i) {
dst[i] = src[il];
}

return src;

}

int main(void) {
memcpy (table, secret, 64);
memcpy (table, pub, 64);
return table[0];

}

If the points-to analysis is run first, dst[i] would be annotated with table[0..63]
while src[i] would be annotated with both pub[@..63] and secret[0..63]. A taint
analysis leveraging the points-to analysis would then need to conclude that the returned
value table[@] is tainted. However, our methodology combines both analyses and thus
manages to conclude that the return value is untainted as secret values are replaced by
public ones.

3.6.2 Memory Separation

By leveraging Verasco, the prototype has no problem handling difficult problems such
as memory separation, i.e., the taint of each cell in an array is tracked instead of tainting
the whole array with the same taint as most standard analyzers do. For example, the
small example of Figure 3.11 is easily proven as constant time. In this program, an array
t is initialized with random values, such that the values in odd offsets are considered as
secrets, contrary to values in even offsets. So, the analyzer needs to be precise enough
to distinguish between the array cells and to take into account pointer arithmetic. The
potential leak happens on line 6. However, the condition on line 5 constrains i%2 ==

to be true, and thus i must be even on line 6, so t[i] does not contain a secret. A naive

54

o

7

3.6 Implementation and Experiments

int main(void) {
int t[4] = { verasco_any_int(), verasco_any_int_secret(),
verasco_any_int(), verasco_any_int_secret() };
for (int i = 0; i < 4; i++)
if (i%2 == @) { // First if condition
if (tl[il) t[i] = 0; } // Second if condition
return 0; }

Figure 3.11: An example program that is analyzed as constant time

analyzer would taint the whole array as secret and would thus not be able to prove the
program constant-time, however our prototype has no problem to prove it.

Interestingly, an illustration of the problem can be found in real-world programs.
For example, the NaCl implementation of SHA-256 is not handled by [Alm+16] due to
this. Indeed, in this program, the hashing function uses the following C struct as an
internal state that contains both secret and public values during execution.

The struct and the hashing function are defined in Figure 3.12

The function first starts by initializing the internal state with some constant value
and then updates it using the input value in which is considered secret as it can be
a password that an user is trying to hash. Both fields state and buf may contain
secret dependent values as a result of the update. Last, crypto_hash_sha256_final
contains a conditional branching that depends on the count field of the internal state: if
((state->count[1] += bitlen[1]) < bitlen[1]). However, the whole internal state
struct is allocated as a single memory block at low level (i.e., LLVM) and [Alm+16]
does not manage to prove the memory separation and cannot thus ensure that the
hashing function is secure.

3.6.3 Cryptographic Algorithms

We report in Table 3.1 our results on a set of representative cryptographic algorithms. All
executions times reported were obtained on a 3.1GHz Intel i7 with 16GB of RAM. Sizes
are reported in terms of numbers of C#minor statements (i.e., close to C statements),
lines of code are measured with cloc and execution times are reported in seconds.
The first block of lines gathers test cases for the implementations of a representative
set of cryptographic primitives including TEA [WN95], an implementation of sampling
in a discrete Gaussian distribution by Bos et al. [Bos+15] (rlwe_sample) taken from
the Open Quantum Safe library [Saf16], an implementation of elliptic curve arithmetic
operations over Curve25519 [Ber06] by Langley [Lan08](curve25519-donna), and vari-
ous primitives such as AES, DES, etc. The second block reports on implementations

55

Chapter 3 Verification at the C level

typedef struct crypto_hash_sha256_state {

int

uint32_t state[8];

uint32_t count[2];

unsigned char buf[64]; } crypto_hash_sha256_state;

crypto_hash(unsigned char *out, const unsigned char *in,
unsigned long long inlen)

crypto_hash_sha256_state state;

crypto_hash_sha256_init(&state);
crypto_hash_sha256_update(&state, in, inlen);
crypto_hash_sha256_final (&state, out);

return 0;

56

Figure 3.12: SHA256 Example

’Exanqﬂe H Sue‘ Loc‘ Time
aes 1171 1399 41.39
curve25519-donna 1210 608 586.20
des 229 436 2.28
rlwe_sample 145 1142 30.76
salsa20 341 652 5.34
sha3 531 251 57.62
snow 871 460 4.37
tea 121 109 3.47
bear_aes_ct 803 766 1.97
bear_des_ct 454 560 2.54
bear_shal 243 197 2.45
bear_sha256 259 329 2.83
nacl_chacha20 384 307 0.34
nacl_sha256 368 287 1.85
mbedtls_shal 544 354 0.33
mbedtls_sha256 346 346 0.62
mbedtls_sha512 310 399 0.58
mee-chc 1959 939 933.37

Table 3.1: Verification of cryptographic primitives

3.7 Conclusion

from the BearSSL library [Por16]. The third block reports on different implementations
from the NaCl library [BLS12]. The fourth block reports on implementations from the
mbedTLS [mbe14] library. Finally, the last result corresponds to an implementation of
MAC-then-Encode-then-CBC-Encrypt (MEE-CBC).

All these examples are proven constant time, except for AES and DES which both
make use of look-up tables. Our prototype rightfully reports memory accesses depend-
ing on secrets, so these two programs are not constant time. Similarly to [Alm+16],
rlwe_sample is only proven constant time assuming that the core random generator it
uses is also constant time, thus showing that it is the only possible source of leakage.

The last example mee-cbc is a full implementation of the MEE-CBC construction
using low-level primitives taken from the NaCl library. Our prototype is able to verify
the constant-time property of this example, showing that it scales to large code bases
(1399 loc).

Our prototype is able to verify a similar amount of programs than [Alm+16], except for
a constant-time fixed point operations library named 1ibfixedtimefixedpoint [And+15]
which unfortunately does not use standard C and is not handled by CompCert. The
library uses extensively a GNU extension known as statement-expressions and would
require heavy rewriting to be accepted by our tool.

On the other hand, our tool shows its agility with memory separation on the program
SHA-256 that was out of reach for [Alm+16] and its restricted alias management. In
terms of analysis time, our tool behaves similarly to [Alm+16]. On a similar experiment
platform, we observe a speedup between 0.1 and 10. This is very encouraging for our
tool whose efficiency is still in an upgradeable stage, compared to the tool of [Alm+16]
that relies on decades of implementation efforts for the LLVM optimizer and the Boogie
verifier.

3.7 CONCLUSION

In this chapter, we presented a methodology to ensure that cryptography software
implementations respect the constant-time security paradigm. The approach is first
presented on a small While language and is then adapted to C by leveraging the Verasco
static analyzer. It is based on the observation that verifying constant-time security of a
program can be reduced into verifying the safety of the program in a specific semantics,
namely a “tainting” semantics. This observation is then used with the support of
abstract interpretation to build a static analysis that can verify safety in the tainting
semantics. The analysis is proven correct on the While language following the usual
framework of abstract interpretation.

The static analysis has been implemented by leveraging the Verasco abstract inter-
preter. This has two advantages, first, Verasco analyzes code close to source level which
allows us to give useful feedback indicating the location of the culprit instruction to

57

Chapter 3 Verification at the C level

the programmer that seeks to understand what error were made. Second, we benefit
from the CompCert and Verasco framework which gives strong semantic guarantees.
However, the modifications to Verasco are not yet proven in Coq. To finish this, we
would need to adapt the current proofs in Verasco to take taints into account. This is
quite a daunting task and a challenging proof engineering exercise, as the modifications
cannot be done modularly and require to modify directly the memory abstraction of
Verasco, which represents around 6,000 lines of Coq [Jou+15].

Finally, the prototype has been experimentally evaluated on a number of represen-
tative cryptography libraries and shown to be able to scale. Furthermore, difficult
problems that were previously out of reach of state-of-the-art tools were solved by our
prototype thanks to the usage of advanced abstract interpretation techniques. Unfortu-
nately, our tool suffers from the same blight that affects all tools that operate on source
code: “Is the security property preserved by compilation ?” The two following chapters
present different methods to solve this issue.

58

CHAPTER 4

VERIFICATION AT THE ASM LEVEL

We previously presented an analysis at source level to verify whether a program
respects the constant-time security property. A question remained, whether we can trust
a compiler to preserve security properties. One simple solution is to not trust it at all and
to verify at assembly level that the security policy is still respected. Such an analyzer at
assembly level for CompCert had already been presented in [Bar+14]. However, this
analyzer suffered many drawbacks due to the sheer complexity of analyzing assembly
code. For instance, the authors had to manually rewrite the code they analyzed in order
for the code to fit the constraints required by their tool. This included lifting local
arrays of functions to global arrays in order to obtain artificial memory separation as
the arrays aren’t merged into the function’ stack anymore. Other modifications involve
inlining all functions in order to avoid inter-procedural analysis. Inlining all functions
may render some programs impossible to analyze as they would become too large to
analyze. This happens for instance for Adam Langley’s implementation of curve25519.

In order to not completely redesign a constant-time analyzer from scratch, one
solution is to reuse their tool and improve it. As their rewriting is due to the difficulty
of obtaining useful alias information from assembly code, one way to improve their
tool is to provide it more useful analyses. Considering the powerful analyses provided
by Verasco, the matter is then to manage to transfer the alias information obtained by
Verasco down to assembly.

We present in this chapter a method that follows this solution, it combines two ideas,
namely defensive programming and relational verification. Defensive programming is
a coding methodology to ensure that instructions can be safely executed, this is done by
inserting defensive checks (assertions) in the code that make the programs abort if they
fail. For instance, z = x / yismodifiedinto if (y !'= 0) z = x / y else abort() in
order to ensure that a division by zero cannot happen. Relational verification’s goal is
to check whether a program verifies a property relatively to another program. Relative
safety is a particular instance of relational verification which considers the problem of
verifying whether a program Q is safe knowing that program P is safe and P and Q are

59

Chapter 4 Verification at the ASM level

related by some relation R, where R describes the similarity between both programs,
they can for instance be syntatically equal or differ only on variable names, etc.

How these two ideas are combined to transport information from source to target
level will be explained in more details in the first section. The second section describes
our particular instantiation of defensive programming while the third section details
the implementation of a relative-safety checker. Section 4.4 details the analysis we
implemented to take advantage of the information provided by Verasco and presents
the experimental evaluation of our methodology, followed by conclusion in Section 4.5.

The work presented in this chapter has been presented at the 30" Computer Secu-
rity Foundations Symposium (CSF) in [Bar+17]. Sections 4.3 and 4.4 are mainly the
contributions of Vincent Laporte and are presented for the sake of completeness. The
companion development is available at http://www.irisa.fr/celtique/ext/csf17/.

4.1 METHODOLOGY

Our approach relies on the combination of defensive programming and relational
verification as well as clever usage of the properties of a correct compiler and correct
static analyzer such as CompCert and Verasco. It is illustrated in Fig. 4.1.

Consider a compiler [-] : Progg — Progs, a property ¢ over source programs Progg
and its counterpart property over target programs Progs-. The aim of the methodology
is to provide a process to check, given a source program p that satisfies ¢, whether the
compiled program [p] satisfies 1. This works as follows.

Suppose that the compiler [-] preserves safety (which is a consequence of compiler
correctness as demonstrated in Section 2.1.2.2), i.e., for every source program p, if
safes(p) then safes([p]). Further assume that there is a method to transform any
source program p into a defensive program py such that safety of program py implies
that p satisfies property ¢. Similarly, we assume that there is an analogue method at
the target level such that gy is the defensive version of target program g with regards
to . Moreover, assume that we also have a static analyzer an : Progg — B such that
for every source program p, an(p) = true implies that p is safe, i.e., safes(p). Finally,
assume that we have a relative-safety checker relsafeC : Progs X Progs- — B such
that for every target programs p and g, if relsafeC(p, q) = true and p is safe, then so is
g. The idea of the relative-safety checker is to verify that both programs are related by
some relation R as described in the introduction. It is then left to prove that satisfying
this relation R suffices to conclude relative safety.

Given these tools, we can verify that a source program p satisfies ¢: if an(py) = true,
then p; is safe, and therefore p satisfies ¢ by definition of p;. As we assume that
the compiler preserves safety, we can also deduce that [py] is safe. However, what
we want to know is whether [p] satisfies i/, i.e., whether [p]y is safe. [ps] and [p]y
are not necessarily equal, but may be similar as i is the target-level counterpart of

60

4.1 Methodology

Static analyzer an

TS~ - safe?

p---m---- ¢ mmmmmmmm oo - Py

|

I

|

Compiler [-] ! Compiler [-]

|
4 : Jsafe if py is safe
[p] ------- e by _ [pg]

" | =
2 _-
\ \Vsafe ? _-

N -
Y correct wrt [p]\ S~ relSafeC
if answers true
Figure 4.1: Overview of the methodology

¢. The crux of the matter is to prove that [p]y is safe knowing that [py] is. This is
exactly an instance of relational verification and can be solved by using relsafeC, i.e.,

if relSafeC([py], [ply) = true, then safes([p]y), and thus [p] satisfies ¢.

We develop a verified instantiation of the methodology on top of the CompCert
compiler and the Verasco static analyzer. The source language we consider is the
C-like language C#minor which is the intermediate representation that is analyzed by
Verasco. The target language is RTL which is the intermediate representation used
for most optimizations in CompCert. This is a natural trade-off between engineering
and proof effort. Indeed, stopping at RTL means that we have to manually prove the
preservation of the property we consider down to assembly, which increases the proof
effort. However, this is a relatively simple proof in our case and it has been done.
Conversely, using RTL as the target language allows us to build the defensive form of
target programs more easily than directly in assembly. This is in part due to having
an infinite number of pseudo-registers at the RTL level, while at the assembly level,
there are only a finite number of machine registers. The ¢ property we consider is
satisfiability of points-to annotations, i.e., source programs are annotated with points-
to information and the property is satisfied if the actual memory accesses occuring
during the execution of the programs are within the range denotated by the points-
to annotations. The relative-safety checker is detailed in Section 4.3. The defensive
encoding of annotations is presented in the following section, as well as the proof that
the encoding is “correct”, i.e., for any program p annotated by ¢, if its defensive form
Py is safe, then p satisfies the annotations ¢. We will also use Verasco to provide the
points-to annotations but any other source of annotations could have been used.

61

Chapter 4 Verification at the ASM level

char G[3], H; void init(char *p, int *q) {

int main(void) { p += any_int() % 3;
int x; *xp = 0; // G: [0; 2]
init(G, &x); *q =1; // 1.x: [0; 0]
return x; // 0.x: [0; @] }

3

Figure 4.2: A simple program

4.2 DEFENSIVE ENCODING OF ANNOTATIONS

We present in this section how to generate defensive programs from programs annotated
with points-to information with the aim that the encoding is correct; the defensive
programs must fail when a defensive check (i.e, an assertion) is violated. We first
describe its implementation and then its formal verification.

4.2.1 Annotation syntax

We focus on points-to annotations: each instruction that accesses the memory (ie.,
every load and store) is annotated with an optional set of symbolic pointers. Moreover,
during compilation, local variables of functions are forgotten and allocated in a single
stack frame at different offsets during the compilation from C#minor to Cminor (i.e.,
before generating RTL code, on which our defensive transformation operates). Thus,
we define a symbolic pointer as a symbolic block (either a global variable name or a
depth in the call stack) together with a concrete range that denotes the pointer offset.
Syntactically speaking, we use the annotation (d.x: [I; h]) to represent pointers to the
variable x in the stack frame at relative depth d in the call stack and whose offsets are
between | and h; and the annotation (G: [I; h]) to represent the pointers to the global
variable G whose offsets are between | and h.

As an example, consider the program of Figure 4.2; it is shown using C syntax for
easier reading but the annotation inference is done at the C#minor level. The three
annotations that are automatically inferred by the Verasco static analyzer are shown as
comments in the figure. There are three memory accesses in this program: the store
through pointer p, the store through pointer g, and the load of x at the end of the main
function. The first one writes global variable G at some offset between 0 and 2 (because
of the % 3 modulo computation); it can thus be annotated with (G: [0; 2]) in the init
function. The second one writes the local variable x of the main function; when this
store is run, the main function is at relative depth 1 in the call stack; therefore this store
is annotated with (1.x: [0; 0]). The third memory access loads the local variable x of the
main function (i.e., at relative depth 0 in the call stack); it is thus annotated with (0.x:

62

4.2 Defensive encoding of annotations
[0; 0]).

4.2.2 Lowering of annotations

It is now necessary to lower the annotations through the compilation chain. However,
we do not have to prove that the annotations stay valid after each compilation pass
as these passes are mostly optimization passes that are prone to changes and tweaks,
this would also require to modify the proofs that the annotations stay valid every
time. Instead, we verify once and for all at the end of the compilation chain that the
annotations stay valid.

During stack allocation, local variables of functions are forgotten and simply allocated
in a single stack frame at different offsets during the compilation from C#minor to
Cminor. For instance, if a function has two local integer variables x and y, after stack
allocation, its memory layout becomes a single stack represented by an array where
offset 0 represents x whereas y is found at offset 4 (since x occupies 32 bits, or 4 bytes).
The annotations thus need to be transformed in order to stay correct.

However, this transformation pass demands more caution. For instance, consider
the example in Figure 4.2. The (1.x: [0; 0]) annotation in the init function only tells us
that *q points to the local variable x of the function that is at relative depth 1 which
may be main or some other function foo. This information is crucial in order to know
how to transform the annotations as x is at offset 0 for the main function, but may be
allocated at offset 16 for foo.

One possible solution is to amend the annotations so that they also track the names
of the function in which the local variable is found. For instance, (1.x: [0; 0]) could
be modified into (1.main.x: [0; 0]) to indicate the variable x local to function main.
Unfortunately, this solution would have necessitated to modify Verasco to also track
the function names which would have been an extensive endeavour.

Our workaround is to artificially do the stack allocation directly at the C#minor level
by adding a verified pass to merge all local variables into a single one prior to running
the annotation inference. Lowering the annotations during the actual stack allocation
becomes simply the identity.

A second slightly problematic compilation pass is register allocation. During this
transformation pass, loads and stores of 64-bits chunks of memory are each split into
two operations, as CompCert only handled 32-bits architectures at the time'. It is thus
necessary to shift the offsets in the annotations by 4 bytes. For instance, consider a
64-bits memory load annotated with the (0.x: [8; 8]), it thus loads a memory chunk
between byte 8 and 16 as 64 bits corresponds to 8 bytes. After register allocation, this
64-bits load operation is split into two 32-bits memory loads, the first one annotated

10ur work was based on CompCert 2.6, while support for 64-bits architectures was added starting
CompCert 3.0.

63

Chapter 4 Verification at the ASM level

with (0.x: [8; 8]) as it loads the memory chunk between byte 8 and 12, while the second
one is annotated with (0.x: [12; 12]) as it loads the chunk between byte 12 and 16.

All other passes during the compilation do not modify the memory accesses (but
may remove them) and thus have no impact on the annotations.

4.2.3 Annotation encoding

We now need to define how to produce a defensive program which dynamically checks
the validity of the annotations, i.e., for every memory access to pointer p annotated
with a set a of symbolic pointers, the program checks that p is actually one of the
pointers in the set of concrete pointers represented by «.

There are two cases, depending on whether the block of the pointer is definitely
known. For instance, suppose that a memory access through pointer p is annotated
with (G: [0; 4]). In this case, the annotation can be encoded asG <= p & p <= G + 4
as the annotation indicates that p is definitely within the block corresponding to global
variable G.

On the other hand, if the annotation is { (G: [2; 3]), (H: [1; 2]) }, then pointer p can
either be within the block corresponding to global variable G or H. As inequality com-
parisons between pointers within two different blocks is undefined in the C semantics,
it is not possible to simply encode the annotionas (G + 2 <= p & p <= G + 3) ||
(H+ 1 <=p & p <= H + 2). Fortunately, equality comparison is defined. The issue
can thus be circumvented by enumerating all possible pointers. The annotation would
thenbeencodedasp == G+ 2 || p==G+3 || p=H+1 || p=H+2

This second encoding might seem very inefficient, but since the defensive program
is not meant to ever be executed, it is not really important. The defensive program is
only used as a proof artefact to witness the validity of the annotations.

In order to encode the annotations, it is necessary to compute the concrete pointers
corresponding to the symbolic pointers denoted by the annotations. However, there is
an issue when the annotation refers to a local variable of a suspended function. For
instance, in Figure 4.2, there is no direct way to forge a pointer to main’s local variable
x from within the init function as needed to encode the (1.x: [0; 0]) annotation.

To forge such a pointer is generally not possible without runtime support, therefore,
we make each function leak a pointer to its own stack frame into a global variable (the
so-called shadow stack).

The shadow stack STACK is a global array that stores a pointer to the stack frames
of each currently running function. Its general structure is illustrated on Figure 4.3.
The top of the shadow stack is represented by a second global variable SIZE such that
the top STACK[SIZE] always holds a pointer to the stack frame of the current function.
The shadow stack must thus need to maintain the invariant that there are as many
pointers in the shadow stack as there are functions in the call stack and each pointer
corresponds to the stack pointer of one of these functions as described in Figure 4.3.

64

4.2 Defensive encoding of annotations

S - SIZE + 1
current function’s stack pointer SI7E
first ancestor’s stack pointer
> . SIZE - 1
second ancestor’s stack pointer
SIZE - 2
main stack pointer 0

Figure 4.3: General structure of the shadow stack

In order to maintain the invariant and the structure of the shadow stack, each function
is given a prologue SIZE = SIZE + 1; STACK[SIZE] = sp that pushes its stack pointer
atop the shadow stack and an epilogue SIZE = SIZE - 1 that pops a value from the
shadow stack. A function only has one entry point and thus only one prologue is
needed, but it may have multiple exit points, therefore, an epilogue must be inserted
before each return instruction.

4.2.4 Annotation semantics

The meaning of an annotation has already been informally described. However, in
order to state and prove a correctness theorem, it is necessary to formally define the
semantics of annotations. The global environment of a program allows us to statically
compute the concrete addresses of its global variables, but the addresses of the stack
frames depend on the actual execution state of the program.

At the RTL level, an execution state is defined as follows.

Inductive stackframe : Type :=
| Stackframe:

forall (res: reg) (* where to store the result *)
(f: function) (* calling function %)
(sp: val) (* stack pointer in calling function %)
(pc: node) (* program point in calling function %)
(rs: regset), (* register state in calling function x)

stackframe.

Inductive state : Type :=
| State:
forall (stack: list stackframe) (* call stack *)
(f: function) (* current function %)

65

Chapter 4 Verification at the ASM level

(sp: val) (* stack pointer %)
(pc: node) (* current program point in c x)
(rs: regset) (* register state %)
(m: mem), (* memory state %)
state

The state State s f sp pc rs mrecords the stack pointer sp of the current function
and a list of the stack pointers of the suspended function within the list of stackframe s.
Therefore, to dynamically interpret an annotation, we extract the list of stack pointers
sps such that its first element is the current stack pointer, the second is the stack pointer
of the caller function, and so on. Given a list of stack pointers sps, the pointer p is in
the denotation of the annotation (d.x: [I; h]) if there exists sp such that sp is the d-th
element of sps and there exists an integer of's such that p is equal to sp + ofs and
| < ofs < h. x in the annotation is not used as it is a legacy of the analysis at C#minor
and corresponds to a variable name that no longer exist at the RTL level as it has been
merged into a function’s stack.

4.2.5 Correctness theorem

An execution state is said to be correctly annotated when either the next instruction
to be executed is not an annotated memory access, or it is a memory access through
a pointer p and it is annotated with a symbolic set of pointers «, such that pointer p
belongs to the denotation of «.

The correctness theorem of the defensive encoding of a program ensures that the
validity of the annotations is completely assessed by the safety of the defensive program.

Theorem 4.1 (Precision of the defensive form). Given a safe annotated RTL program p,
if the defensive version of p is also safe, then every reachable state in the execution of
p is correctly annotated.

This theorem is only proven in Coq at the RTL level and not at the C#minor level as
we do not need it for our methodology. Indeed, we only require the defensive program
to be safe. In order to prove this theorem, we equip the original program p with a
blocking semantics which refines the original RTL semantics to dynamically check,
before every execution step that the current state is correctly annotated. This is simply
defined in Coq as follows.

Definition step_block (s1: state) (t: trace) (s2: state) :=
step s1 t s2 /\ annotations_correct s1.

A step in the blocking semantics is defined as the step being allowed in the regular
semantics and the starting state being correctly annotated. Thus, proving that p is safe

66

4.2 Defensive encoding of annotations

with regards to the blocking semantics entails that every reachable state of the program
is correctly annotated.

The standard technique used throughout CompCert to prove that safety is preserved
is to show a simulation between both programs. However, the corresponding compiler
transformations need only to prove a forward simulation (i.e., that a safe original pro-
gram results into a safe transformed program), while we need to prove the opposite
direction (i.e., safety of the defensive program implies safety of the annotated original
program in the blocking semantics). We thus have to directly show a backward simu-
lation between the transformed program p’ and the original program p. This cannot
be obtained from a forward simulation as usually done in CompCert, as we would
need to be able to match one step in the defensive program with steps in the original
program, which is not possible for steps involved in the defensive checks. As always
with such simulation proofs, the gist of our proof is to define the matching relation
between execution states of both programs.

The relation must describe which sort of invariant holds that can explain why
both programs exhibit the same behavior. The first invariant describes the shape
of the transformed program with regards to the original program. In our case, the
transformation adds two global variables to implement the shadow stack, it also adds a
prologue and epilogue to each function in order to instrument the shadow stack, and
finally each load and store operation is preceded by defensive checks to verify the
correctness of the annotations.

The second and last invariant should concern the shadow stack in order to prove
its correctness: there are as many pointers in the shadow stack as there are functions
in the call stack, and each pointer corresponds to the stack pointer of one of these
functions as described previously.

This invariant is obviously true during the initial state of the programs, as the shadow
stack is empty and the main function is not yet called. As the shadow stack is never
modified outside of the prologue and epilogue of each function, the invariant naturally
holds. However, in both cases it is slightly tricky to prove that the invariant holds,
especially in the case of the prologue. Indeed, we need to make sure that we do not go
out of bounds of the shadow stack, as it is implemented by an array of finite size. This
is ensured by the assumption that the defensive program is safe with regards to the
regular semantics, which provides us the proof that there was no out-of-bounds access.

Finally, to prove a backward simulation between p’ and p as defined in CompCert,
we need to prove two additional lemmas, namely the progress lemma and the simulation
lemma. The first one states that if 5] is a safe state of program p’ (i.e., it is either a final
state, or any state that can be reached from it is final or non-blocking) that matches
with state s; of program p, then either s, is also a final state or it is non-blocking.

The main difficulty in proving this progress lemma resides in the case where s; is
a state in which a load or a store is about to be executed. Then, according to the

67

Chapter 4 Verification at the ASM level

matching invariant, s} is about to execute the assertions (i.e., defensive checks). The
crux of the issue is to first prove that the assertions are valid because s] is a safe state
(the program is instrumented such that if an assertion fails then the program crashes),
and that this entails that the annotations are correct.

Conversely, the simulation lemma states that if s; is a state of p that steps to s, and
s; matches with safe state s] of p’, then there must exist state s} such that s} can reach
s, and s, and s, are matched. This is similar to a forward simulation with the exception
that we assume s} is safe, which is not assumed in the standard forward simulation.

The main difficulty is also related to load and store instructions: we need to prove
that the defensive checks are always successful. However, it is fairly easy since we
assume that the defensive program is safe, and thus the defensive checks do not fail by
assumption.

Finally, combining these two lemmas with the fact that initial states of both programs
as well as their final states are matched enables us to prove that if p’ is a safe program
then p has the same behavior which entails that it must also be a safe program with
regards to the blocking semantics, i.e., every reachable state in the execution of p is
correctly annotated.

4.3 RELATIVE-SAFETY CHECKING

The purpose of the relative-safety checker is to verify that a program R is safe provided
that another program L is known to be safe. In our setting, these are two defensive
programs at the RTL level as illustrated in Figure 4.1. They are, by construction, very
similar. It is thus possible to directly prove another stronger property, namely behavior
equivalence. This section describes the design of an equivalence checker and its formal
verification. The contribution detailed in this section is mainly the work of Vincent
Laporte and is presented for the sake of completeness.

4.3.1 Overview

In order to prove that program R has the same behavior as a program L, the equivalence
checker will employ the same usual technique of simulations. This is separated into
two tasks, first, we verify that the two programs are similar enough by constructing a
product program. Second, we verify that the product is valid.

As both programs that we try to prove equivalent are very similar, i.e., both programs
have the same control-flow, each time R branches, L also branches on the same condition,
each time there is a function call in R, the same function call with the same exact
arguments appears in L. This allows us to have a modular reasoning as we now only
need to prove that functions on both sides are pairwise equivalent. As such, a product
program is built from product functions which are themselves built by combining the

68

4.3 Relative-safety checking

functions of both programs. This is done by featuring non-critical instructions of both
functions and assertions (not the same as the defensive checks as before) claiming that
the critical instructions on both sides are the same. Critical instructions are instructions
that may fail during execution such as memory accesses, as detailed in Section 2.1.2,
and instructions that influence the control-flow such as function calls.

If the product function is valid, i.e., its assertions are valid, then the two functions
are equivalent. If all product functions are valid, then the program product is valid and
both programs are equivalent.

4.3.2 Program product

A program product is built by constructing the function products of functions that have
the same names on both sides. When a register r appears in a function of program L, it
is mirrored in the function product by a register r;. Similarly, a register that appears in
program R is mirrored by a register r, in the function product.

In order to build the function product of functions f; and f;, we first start by assuming
they have the same number of arguments and their arguments are pairwise equal, i.e.,
argl1 = arg), argl2 = arg?, etc. We then mirror the instructions of fj until a critical
instruction is reached. For instance, if the functionis x = y + 1; return x, the
first critical instruction is return x. Thus, it is mirrored in the function product as
x; = y; + 1. Similarly, we then mirror the instructions of f, until a critical instruction
is reached. Finally, we need to assert that the critical instructions on both sides are
the same and use the same arguments. The process is continued until both functions
are entirely visited. Obviously, the construction of the function product can fail if the
critical instructions are not the same for instance. An example of the construction of a
function product is given in Figure 4.4 where f] is given on the left side, f, on the right
side and the function product is in the middle. f; computes the absolute value of x + x
while f, computes the absolute value of 2 X x.

The crux of the methodology lies in how the critical instructions serve as “synchro-
nization” points between the two functions that we try to prove equivalent. Figure 4.5
details how the products of critical instructions are constructed. One particular element
is the havoc operator which provides a non deterministic assignment that is useful
to make our verification modular. Indeed, we do not need to track the memory state
of the function product. As we can statically verify that the initial memory states of
both programs L and R are the same by making sure that they have the same global
variables and are initialized with the same values, we only need to make sure that both
programs keep the same memory state after each memory write. This is ensured by the
assertions as given by Figure 4.5. In the store case, the first assertion p; = g, verifies
that the memory accesses write at the same location and the second assertion u; = v,
verifies that the same value is written. This allows us to define the product of memory
reads as only verifying that they access the same location by asserting that p; = g;.

69

Chapter 4 Verification at the ASM level

assume xj = X,

~

— Yy =X+ X _
y=x+x U= 2% %, Yy=2Xx
— assert (y; < 0) = (y, <0 PR
if (y < 0) (lif Wi)> 0)(yr) if (y < 0)

true fals true true fals

false
~

~

b\
return y

b\
return y

assert y; = y,
return y;

Figure 4.4: An example of function product

Whatever the value that is read, we do not care as illustrated by the usage of the havoc
operator, but we are sure that both programs will read the same value and can thus
safely write y, = xj.

Similarly, as we ensure that both programs call the same functions with the same
arguments as illustrated in Figure 4.5 and functions are assumed equivalent, we do not
care what results they return as they are equal, thus the use of havoc in the product of
function calls.

4.3.3 Valid product

The validity of the assertions within the product program justifies the equivalence
between the two programs L and R. It is thus crucial to verify that they are indeed valid.

To this end, a verification condition generator has been implemented. However, as
the programs we analyze may contain loops, it is necessary to infer loop invariants. In
our case, the loop invariants correspond to equality of the variables that are live at the
loop headers of the initial programs. For instance, consider the following function that
computes the factorial of parameter n.

int fact(int n) {

70

4.3 Relative-safety checking

Left Right Product
assert p; = q,
x = loady p y = loady g x; = havoc
Yr = Xi
store,(p, u) store,(q, v) Z:Zﬁ Z i ; Z:
. . assert cnz(xj) = cnz
if (x) if (y) () (x1) (yr)
assert p; = q,
assert u} = v}
x=pl,...,u") y=q@,...,0"
assert u = vy
x; = havoc
Yr =X
return return return
return x return y assert xi = yr

return x;

Figure 4.5: Product of critical instructions

int res = 1;

while (n > 0) {
res = res * n;
n=n-1;

}

return res;

The live variables at the loop header are n and res, the loop invariant that we thus
need is n; = n, A res; = res,. The liveness analysis provided by CompCert is used to
automatically infer these invariants.

The verification condition generator also produces a verification condition for each
assertion that appears in the function product. For instance, the verification condition
corresponding to the first assertion (y; < 0) = (y, < 0) in Figure 44 isx; = x, — y; =
xi+x1 — Y = 2Xx — (y; < 0) = (y, < 0) which can be discharged by a simplification
procedure we implemented in Coq” as this reduces by rewriting to a tautology.

%This is not entirely true as we did not implement arithmetic procedures to prove that x; + x; = 2 X x;,
but this is not an issue in practice for our use case.

71

Chapter 4 Verification at the ASM level

The resolution of the verification condition entails the validity of its corresponding
assertion. Thus, if all verification conditions can be discharged, then the program is
valid.

4.3.4 Simulation

The construction of the program product between programs L and R as well as its
validity entails the existence of a simulation between L and R, more precisely, a “star”
simulation as described in Section 2.1.2. This simulation furthermore implies the relative
safety of the two programs (i.e., if L is safe, then so is R).

The proof sketch of the simulation is as follows. Two states are related if they have
the same memory states and same stack pointers, their program counters pc; and pc,
must be related by a program point pc in the product such that pc is the program point
of the product of the first critical instructions that are reached after pc; and pc,.

Thus, if L is at a non-critical instruction and advances, R is either already a the next
critical instruction and waits or also executes a non-critical instruction. On the other
hand, if L is at a critical instruction, R can directly advance at its next critical instruction
that can be safely executed since the validity of the program product asserts that it is
possible and furthermore preserves the relation between the states. For instance, if the
next instruction of L is store,(p, u), the program product asserts that the next critical
instruction of R is some store, (g, v) and the validity of the two assertions p; = g, and
u; = v, ensures that the same value is written at the same location in both programs,
thus both programs still have the same memory states.

4.4 EXPERIMENTAL RESULTS

The analysis presented in [Bar+14] operates on the Mach intermediate language of
CompCert. However, as explained at the beginning of this chapter, the analysis relies on
a weak points-to analysis that doesn’t handle memory separation well and thus requires
implementations from standard cryptography libraries undergo manual rewriting in
order to manage to analyze them. The rewriting is extensive, including lifting local
variables to global variables and full inlining of the programs, and consequently making
some of them impossible to analyze.

We developed a cryptographic constant-time analysis similar to the one presented
in [Bar+14]. Each program point is given a “state” that associates each register and
each memory location to a flow-sensitive security level High or Low. The points-to
information derived from the Verasco analyzer is used in order to track the security
level of values in memory. A type system then ensures that no conditional jump nor
memory access depend on high values. We also consider another variant of constant-
time security, namely stealth constant-time security, inspired by stealth memory [EA07;

72

4.4 Experimental results

Program Size Infer(s) Check(s) Equiv(s) Result’

blowfish 177 29.2 32.4 0.01 (V)
des 230 2.8 4.9 0.84 (V)
donna 1214 515 0o 310
RC4 94 4.6 5.1 0.02 o
salsa20 342 6.0 10.4 0.56
snow 871 2.7 8.2 0.12 v]
tea 121 3.43 3.9 0.01
core (1) 166 0.05 0.29 0.03
core (2) 142 0.04 0.28 0.03
core (4) 198 0.06 0.35 0.04
aes 1147 38.3 119 137 V]
sha3 457 62.5 207 3.1

T @ = S-Constant-Time, @ = Constant-Time

Table 4.1: Timings

KPM12]. This variant assumes that some chosen variables may be stored into stealth
memory where memory accesses are constant-time and thus cannot leak information
through their usage.

Table 4.1 describes the execution time of some test C programs. The first block gathers
results for various implementations of cryptographic primitives found in mBedTLS
(previously PolarSSL) [mbe14]. The second block reports on test programs from the NaCl
cryptography library [BLS12]. The third block lists the results for two cryptographic
algorithms found in CompCert’s benchmark suite. For each test program, we report its
size in terms of number of C#minor instructions, the duration of inferring the points-to
annotations by Verasco (first run), the duration of checking the high-level defensive
program (second run of Verasco), and the duration for proving the equivalence of the
two defensive programs. The last column reports whether the program has been proven
constant-time or stealth constant-time. One cell in the “Check” column reports co: this
means that the validation of the high-level defensive program was not possible due
to limitations of Verasco. The issue is that the defensive transformation produces test
conditions that are too complex due to aliasing as explained in Subsection 4.2.3. The
constant-time analysis at the end only take a few milliseconds for all programs, except
program donna whose analysis requires a few seconds.

The running time of the whole verification process (inferring, checking, equivalence
checking and constant-time analysis) is rather affordable for most program taking at
most a few seconds, but can become quite frustrating for some programs such as donna

73

Chapter 4 Verification at the ASM level

which comes close to 15 minutes. This happens when there is a lot of aliasing, i.e.,
when a memory access can point to different blocks, and all pointers symbolized by
the annotation must be enumerated as explained in Subsection 4.2.3. This can happen
when there is a “wrapper” function for memory accesses and is used from different
functions. A way to improve this situation would be to duplicate the wrapper function
so that each call site calls different functions.

4.5 CONCLUSION

In this chapter, we have proposed a method that cleverly combines defensive programs
and relational verification to validate the translation of results from source level analyses
to low-level programs. This method was instantiated with the CompCert compiler
and the Verasco static analyzer. Thanks to the translation of points-to information, we
managed to analyze more programs than and also programs that were previously out of
reach by [Bar+14], hence providing a largely automatic way to check for constant-time
security directly at low-level, in opposition with [Bar+14] where programs would need
to undergo extensive manual rewriting,.

The methodology presented provides a solution to verify that the code that is actually
executed is cryptographically constant-time. However, what happens if it is rejected?
Using the analysis presented in the previous chapter can tell whether your source code
is secure. If the source code is secure, while the compiled code isn’t, the problem then
lies with the compiler. The programmer has thus not much more recourse than trying
to tweak the compiler’s options or trying to rewrite its code in a way that the compiler
doesn’t break its security. The solution presented in the following chapter provides an
answer to this issue by showing how to prove that a compiler preserves constant-time
security.

74

CHAPTER 5

PRESERVATION OF
CRYPTOGRAPHIC
CONSTANT-TIME SECURITY

A natural follow-up to verifying constant-time security at source level is to ask
whether this security property is preserved by compilation. Indeed, optimizations can
often hinder security. For example, we present three ways to write the same “selection”
function that either returns the first or second parameter depending on the value of a
boolean:

unsigned not_constant_time(unsigned x, unsigned y, bool b)

{
if (b) { return y; }
else { return x; }

unsigned constant_time_1(unsigned x, unsigned y, bool b)
{ return x + (y - x) * b; }

unsigned constant_time_2(unsigned x, unsigned y, bool b)
{ return x * ((y * x) & (-(unsigned) b)); }

The first version is self-explanatory, it returns y if b is true and x otherwise. The
second version uses the fact that parameter b has type bool, which in C, is represented
by unsigned integers 0 (false) or 1 (true)’. If its value is 1 (true), then the returned value
isx + (y - x) which is equal to y. Otherwise, it returns simply x since (y - x) * 0

IMore precisely, it is only true since C99 when <stdbool.h> is included.

75

19

20

21

22

23

Chapter 5 Preservation of Cryptographic Constant-Time Security

= 0. The third version is more elaborate, it uses bitwise operator XOR * and bitwise
operator AND &. It also exploits the wrap around behavior of unsigned integers and
since b is either 0 or 1, -(unsigned) b becomes either -0 = 0 or the integer which has
only 1 as bits (232 — 1 for 32 bits architectures). The result of the bitwise AND operation
((y *x) & (-(unsigned) b)) isthusy * xif b is true and 0 otherwise. Finally, since
x * (y *» x) = yandx * @ = x, the function returns the expected result of y if b is
true, and x otherwise.

If we consider the boolean parameter a secret, the first version is not constant-time
as it branches on it, whereas the second and third version are constant-time. However,
when compiled for older architectures that do not support conditional moves such as
i386 or i486, the compiler Clang version 7.0.0° produces code that is not constant-time.
The assembly code generated by the compiler is reproduced below in AT&T syntax.

not_constant_time: # not constant time
movb 12(%esp), %al
testb %al, %al
jne .LBBO_1
leal 4(%esp), %eax
movl (%eax), %eax
retl
.LBBO_1:
leal 8(%esp), %eax
movl (%eax), %eax
retl
constant_time_1: # not constant time
movb 12(%esp), %al
testb %al, %al
jne .LBB1_1
leal 4(%esp), %eax
movl (%eax), %eax
retl
.LBB1_1:
leal 8(%esp), %eax
movl (%eax), %eax
retl
constant_time_2: # not constant time
movb 12(%esp), %al
movl 4(%esp), %ecx
testb %al, %al

2Tested on March 1st, 2018 using the Godbolt compiler explorer https://godbolt.org/g/dx4nzC.

76

27

28

29

30

31

32

33

34

35

jne .LBB2_1
xorl %eax, %eax
xorl %ecx, %eax
retl

movl 8(%esp), %eax
xorl %ecx, %eax
xorl %ecx, %eax
retl

We first notice that not_constant_time and constant_time_1 both compile to the
exact same code except for the label names as the compiler manages to understand
that the multiplication by the boolean b is equivalent to testing it. The code works as
follows, the value at esp + 12 represents the third parameter of the function which is
the boolean b in the source code according to calling conventions and is moved into
register al. The testb instruction then sets the ZF (Zero Flag) flag if b is false (i.e. 0)
and clears the flag otherwise. If the flag is set, then the jne jump at line 4 is taken and
the effective address esp + 8 which represents y in the source code is computed and
loaded into register eax before returning. Otherwise, the flag is cleared, and the jump
is not taken, esp + 4 which represents x is similarly computed and loaded into eax
before returning.

The code is thus not constant-time, as the jne jumps at line 4 and 15 depend on
whether the previous testb instructions set the ZF flag. This is however decided by the
value of the secret b. Similarly, for constant_time_2, the jne jump at line 27 depends
on the boolean b and the code is thus not constant-time. The code for constant_time_2
is interesting as the compiler manages to optimize away the & operator and only uses
XOR operations. In the case when b is false, the instruction at line 28 sets eax to zero as
the compiler managed to conclude that the ((y *“x) & (-(unsigned) b)) operation
would result in zero. eax is then XORed with ecx which contains variable x. In the
other branch, the operation at line 32 moves y into eax, then stores the result of y *x
into eax at line 33. The AND operation was removed as it is redundant. However, a
peephole optimization could have noticed that the operations at line 33 and 34 are
redundant, as the result in eax is the same before and after the two operations.

One could argue that it is not really harmful as both branches contain the exact same
number of operations for the compiled constant_time_1 function. However, this does
not protect the program from an attack. For instance, an attacker could manage to
modify the cache so that the leal load instruction is faster in one of the branches. This
would make an attacker be able to distinguish which branch was taken and thus leak
the secret.

What’s most worrying is that constant_time_2 uses the style of code recommended

77

Chapter 5 Preservation of Cryptographic Constant-Time Security

by cryptographers’ that abuses bitwise operators in the hope that compilers do not
manage to optimize it and therefore not break constant-time security.

Another example can be found in [Kau+16] where the authors present a timing
attack on a constant-time implementation of an elliptic curve by exploiting the MSVC
compiler which transforms a constant-time 64-bit multiplication into a variable-time
routine on architectures that do not natively support 64-bit integers.

This chapter is split into four parts, the first section presents a theoretical framework
that can be used to prove that a correct compiler preserves constant-time security
by taking advantage of the compiler’s proof of correctness. The second part shows
examples of how this framework could be applied to some selected compilation passes.
The third part studies how this could be applied to CompCert. The last part concludes
and details the main differences with [BGL18] which presents a work concurrent to
ours with a similar approach.

5.1 FRAMEWORK

Suppose that we have a compiler that compiles programs in a source language S to a
target language 7 modeled by a partial function compile : S — 7. We further assume
that both languages are deterministic as it will make further reasoning easier and that
the compiler is correct, i.e., it satisfies the following theorem:

Theorem 5.1 (Correctness of compilation). For all source program p, if p is safe and
compiles into program compile(p) = p’, then p” has the same observable behavior as p.

As before, “safe” means no undefined behavior, the semantics of the program does not
get stuck. Observable behavior corresponds to the trace of events that can be observed
when executing the program, such as asking an input to an user on the command line
or writing an integer to it. Whether the program terminates can also be observed.

The theorem only states that observable behavior is preserved, it has no relation
with constant-time security. Therefore, a correct compiler does not give guarantee that
security is preserved.

We assume that a program has a unique initial state that is determined by the initial
values contained in the program. In C and in CompCert, this is determined by the main
function and all global declarations, i.e., the global variables and the function definitions.
A program may have no initial state if it is not well-formed, for instance if it does not
contain a main function. Having a unique initial state allows to state constant-time
security informally as if two programs are “similar” then they have “same leakage”. We

3For example, it is recommended in page 9 of RFC7748 Elliptic Curves for Security https://tools.
ietf.org/html/rfc7748#page-10.

78

5.1 Framework

will use a predicate ¢(p, p’) to say that both programs have the same values for some
initial public variables that are defined by ¢ and that both the programs are syntactically
equal otherwise. It reads as p and p’ are ¢-similar. Given a smallstep semantics with

transition - — -, we use s 4 s’ to say that the semantic step from state s to state s’
produces the leak [.

As we previously assumed the languages to be deterministic, constant-time security
can thus be defined as follows:

Definition 5.1 (Constant-time security). A program p is ¢-constant-time if for any
program p’ such that ¢(p, p’) then p and p” have same leakage, i.e., if sy and s are the
initial states of respectively p and p’, then for all n € N, s; and s] such that s) —" s; and

’

. . I
o —" s, then either there exists a (possibly empty) leak [, s; and s; such that s; — s;

S

) .
and s} — s, or both executions are stuck at s; and s].

Constant-time security can be stated as a non-interference property as previously,
but it can also be defined with a simulation-based view. This will be more useful as
all compiler correctness proof are usually stated as a simulation, and thus constant-
time security preservation amounts to proving that simulations can be composed in a
certain way that we will detail later. Without determinacy, this property wouldn’t be
“strong” enough as it uses an existential quantifier which does not constrain the actual
executions of the programs to follow the execution given by the quantifier.

In order to prove that a program p is ¢-constant-time, it suffices to prove that p is
safe and that for all program p’ such that ¢(p, p’), there exists a leak-preserving lockstep
simulation illustrated in Figure 5.1 similar to the simulations presented in Chapter 2
and defined as follows:

Definition 5.2 (Leak-preserving lockstep simulation). A leak-preserving lockstep
simulation between a program p and a program p’ is defined by a relation - ~ - between
states of p and states of p’ such that:

« If's; is the initial state of p and s; is the initial state of p’, then s; ~ s7;
l . . .
» For every step s; — s, leaking information [of program p and state s; of p” such
1
that s; ~ s7, there exists a state s) such that s] — s} and s; ~ s7;
« For every state s and s” such that s ~ s, if s is a final state, then so is s’.

Given a leak-preserving lockstep simulation, we prove that it implies same leakage
in the following lemma.

Lemma 5.1. If p is safe and there is a leak-preserving lockstep simulation - ~ - between
p and p’, then they have same leakage.

79

Chapter 5 Preservation of Cryptographic Constant-Time Security

5 ——
|
1 Il
\V
4
Sy ——=— S,

Figure 5.1: Leak-preserving lockstep diagram
(Hypotheses in plain lines, conclusion in dashed lines)

Proof. Both p and p” have an initial state, respectively sy and s;,.

We first prove by induction on n € N that if sy =" s, and s; —" s}, then s, ~ s,

« For n = 0, we only need to prove that sy ~ s; which is true by definition of a
leak-preserving lockstep simulation;

+ Let’s now prove for n + 1 assuming that it is true for n. We have sy =" s, — s,11
and s; =" s; — s ;. By induction hypothesis, we know that s, ~ 5. Thus, by
using the leak-preserving lockstep simulation, we have that there exists s/, ; such

that s, — s, and s,1 ~ s/, (we omit the leak given by the simulation as we

don’t need it). However, since we assume the languages deterministic, we have

thats) , =s” ,andthus, s,41 ~ s,

n+1’ +1°

The property is thus proven by induction.
Now, we prove that both programs have same leakage, i.e., for alln € N, if sy =" s,
and s; —" s, then either both executions are stuck at s, and s;, or there exists a leak I,

In In
and states s,4q and s/ | such thats, — s,;y and s, — s ;.

This is true since for any such s, and s, we just proved that s, ~ s;. And since we
assume that p is safe, either s, is a final state of p and therefore s/, is also a final state of

In
p’ thanks to the simulation, or there exists a leak , and a state s, such that s, — s,41,
and again, by the leak-preserving lockstep simulation and by determinacy, there exists

!
: / N
aunique s; ., such that s, — s/ .

Finally, we proved that both programs have same leakage.]

However, the converse is not generally true, if two programs have the same leakage,
it does not mean that either of them is safe. It is not a problem as we assume a compiler
correctness setting, i.e., we assume that the source program is safe. The following
lemma can thus be considered the converse of the previous one.

Lemma 5.2. If p and p” have same leakage, then there exists a leak-preserving lockstep
simulation between p and p’.

Proof. Let sy and s; be the initial states of respectively p and p’. We define s ~ s as
there exists n € N such that sy —" s and s; —" s’.

80

5.1 Framework

+ We have trivially sy ~ s by taking n = 0.

l .)
« If sy — s and s; ~], we need to prove that there exists s} such that s} — s} and
sy ~ s5. Such a s;, exists, since by definition of s; ~ 5], there exists a n such that

. l) I
sp —" sy and s; —" s]. Since s; — sy, there exists s} such that s} — s/, or p and p’
wouldn’t have same leakage. Furthermore, s, ~ s, by definition.

o If s is the final state of p and s ~ s/, then s’ is the final state of p’, or there would be
l
I and s” such that s’ — s” which is impossible since p and p’ have same leakage.

The leak-preserving lockstep simulation is thus defined. O

Constant-time security is a symmetrical property in the sense that if p and p’ have
same leakage, then p’ and p have same leakage. Thus, an equivalent definition would
be that there exists a leak-preserving lockstep simulation between p and p’ and another
one between p’ and p. However, we chose to trade the second simulation with the
assumption that p is safe. This trade has a few advantages, in that we only need to prove
one simulation instead of two to prove that a program is constant-time. Furthermore,
assuming that the program given to the compiler is safe is a reasonable assumption
that is also made when proving the correctness of the compiler.

We have shown that constant-time security implies existence of leak-preserving
lockstep simulations, while safety and lockstep simulations are needed to prove constant-
time security. Therefore, one possible way to prove the preservation of constant-time
security through compilation is to 1. prove that safety is preserved through compilation,
2. the leak-preserving lockstep simulations are preserved through compilation and 3.
assume that the initial program is safe. Preservation of safety is already a consequence
of the correctness of the compiler.

We now have to solve the issue of how to preserve leak-preserving lockstep simula-
tions. Compiler correctness can be stated as trace preservation and is proven through
the usage of events preserving simulations. There are several kinds of such simulations,
from the most constrained to the most general, they are the lockstep, plus and star
simulations illustrated in Figure 5.2 and previously defined in Chapter 2. We remind
the definition of the star simulation as it is the most general one.

An event preserving star simulation between a program p and a program p’ is defined
by a relation - ~ - between states of p and states of p” such that:

« If's; is the initial state of p and s is the initial state of p’, then s; ~ s7;

+ There exists a measure function m : S — N where S is the type of states of p;

« For every step s; 5 s1 producing event e of program p and state s, of p’ such that

:) e) .

1 ~ Sz, either there exists a state s, such that s, -7 s, and s] ~ s}, or e is a silent
. ’ .

event (i.e., the step produces no event) and m(s}) < m(sy);

81

Chapter 5 Preservation of Cryptographic Constant-Time Security

S1 S2 S1 S2
| |
el/ le el/ +e
v N
’ ’ ’ I3
$17757 % $17757 %
(a) Lockstep diagram (b) Plus diagram
S| —— S S| —— S
70N |
\L Y or e\L +e
e V
s ((\\ s ———— ¢
1 1777 2

(c) Star diagram

Figure 5.2: Trace preserving simulations
(Hypotheses in plain lines, conclusion in dashed lines)

« For every state s and s” such that s ~ ¢, if s is a final state, then so is s’

The measure function used in the star simulation is to prevent p’ from stuttering.
Otherwise, a non-terminating program can be compiled into a terminating program
and thus violates observable behavior preservation. For instance, suppose the source
program is an infinite loop that does nothing, and it is compiled into a single instruction
skip. Without the measure, the star simulation could be proven, even though behavior
has not been preserved, since the source program is non-terminating while the compiled
program is terminating.

Intuitively, we can see that the lockstep simulation used for constant-time security
and the simulations used for compiler correctness can be composed. Suppose that we
have two source programs p and p’ such that p is ¢-constant-time and ¢(p,p’). The
leak-preserving lockstep simulation ~s (S as in Source) tells us that if s; is a state of p
and s} is a state of p” such that s; ~5 s] and s; advances to some state s, while leaking /,

l I
i.e., s; — sy, then there exists a state s} such that s; — s} and s} ~g s;. As we assume
the compiler is correct, we know that there is some simulation ~¢ (C as in Compile)
to prove that p is correctly compiled, and similarly a simulation ~{, for p’. The first

. . .) .
simulation tells us that since s; — s9, for all o7 such that s; ~¢ o, there exists a leak

A
A and a state oy such that oy —" 0, where n is some unknown integer. Similarly for

. . . .)
the second simulation, it tells us that since s} — s, for all o] such that s] ~’C o;, there

exists a leak A" and a state o7 such that o] X o, where n’ is some unknown integer.

This feels like the beginning of a simulation diagram, but still requires proving
that A = A" and n = n’. We do not need to prove that A = [as leaks are generally
not preserved by compilation. For instance, some optimization may remove memory

82

5.1 Framework

accesses if it deems them unnecessary, the leak due to the memory accesses at the
source level is thus removed when compiled. What’s important is that the compiled
leaks stay the same, ie., A = A".

We define this as a 2-simulation diagram that is characterized by three relations
(~s, ~§re, ~c) and detailed below. The last relation ~¢ corresponds to the relation used
in proving that the source program is correctly compiled into the target program. There
should be two such relations since there are two programs p and p’, however, these two
relations are morally the same as both programs have been compiled with the same
transformation. We thus use only one relation ~¢ for the sake of readability.
Definition 5.3 (2-simulation diagram). (~g, ~§re, ~c) is a 2-simulation diagram for
programs p, p’, p, p’ if

« ~g is a leak-preserving lockstep simulation at source level between p and p’,

+ ~c is an event preserving star simulation between p and p that proves the cor-
rectness of compiling p into p,

« ~c is an event preserving star simulation between p” and p’ that proves the
correctness of compiling p’ into p’,

and ~§re is a target level relation between states of p and p’ such that

. . o el re
« if 0y and o are respectively the initial states of p and p’, then oy ~1% 045
» for all states sy, 57, sy, 8}, 01, 0] and leak [such that s; ~s s/, s; ~¢ 01, s] ~c 0],

1 1
re . i
o1 ~{; 0], S1 = Sz, 8] — S5, then there exists an integer n, a leak A and states

A A re ..
03, 0, such that oy =" 0y, 0] =" 0, 52 ~c 02, s, ~c 0, and 0, ~1% o,, this is
illustrated in Figure 5.3

pr

« for all states o and ¢/, if ¢ ~7 ¢ ¢’ and o is a final state, then so is ¢”.

Informally, the relation ~ITW defined in the 2-simulation diagram represents the fact
that the two programs are at the exact same program point. How to define this is
however dependent on the language, which is why we cannot abstract it away in the
definition. Furthermore, the relation may not be a leak-preserving lockstep simulation
relation as the diagram only tells us that there is some number of steps n between states
that are related by ~§re, we are missing the lockstep part of the definition. We can
however use it to build such a relation as proven by the following theorem, hence the
pre in the symbol, as it can be seen as a pre-lockstep simulation.

We only consider program transformations that do not depend on the secrets. For
instance, a transformation that would add n skip instructions at the beginning of the
program is not allowed if n is secret. This is necessary in order to have transformations

83

Chapter 5 Preservation of Cryptographic Constant-Time Security

~s ~s
T T~
S| —> Sy S 7 S,
I I
~c |~c ~c I~c
I
| A
/ n __y
Oy —==7 03 o, —==7 0,
\\\ //
pre T T e
~r T

Figure 5.3: 2-simulation diagram
(Hypotheses in plain lines, conclusion in dashed lines)

that verify the property that if p is compiled into p and p and p’ are ¢-similar, then
there exists p’ such that p and p’ are ¢-similar.

Theorem 5.2 (Preservation of constant-time security). If program p is ¢-constant-time,
safe and there is a (~gs, ~1;re, ~c) 2-simulation diagram for all p” such that ¢(p, p’), then
compile(p) is ¢-constant-time.

Proof. Let p’ be a program such that ¢(compile(p), p’), there exists a p’ such that

p’ = compile(p’) by hypothesis. We first define the relation - ~7. - between states
of compile(p) and compile(p”) as follows:

o ~7 ¢’ £3A, 301, oy, 3sy, 3sy,

A A
o->"op Ao’ S o] Aoy ~1%re o] Asy ~c 01 NS} ~c 0] A sy ~s §]

We now define the lockstep simulation relation - ~1 - between states of compile(p)

. / /7 A on
and compile(p’) as 0 ~r ¢’ = 3n,0 ~7 o’

Informally, this means that o ~r ¢’ if there exists some states o; and o] such that o
and ¢’ can both respectively reach o7 and o] in the same number of steps while leaking
the same information. Furthermore, there must exist some states s; and s{ in the source
programs such that s; ~c 0 and s] ~c o] and s; ~s s7.

We first show a lemma that for all n, 0; and o7, if n > 0 and o, ~2 o}, there exists A,

A A _
oy and o such that o1 — 03, 0] — 0, and o3 ~7 1 .
.. . A A
By definition of ~1, there exists A, 03, 03, s3, s, such that oy — " 03, 0] — " 073,

re 1
03 ~§ 03, 83 ~¢ 03, 53 ~c 04 and s3 ~g s;. Thus, there exists o3, 07, A; and A, such that

/11 A.z _ /11 /12 —
o1 — 03 =" as, o — o, —" 103f and A = A; - 1,. Hence, we can conclude that
o ~17! 03 by definition.

We now show that - ~7 - is indeed a lockstep simulation:

84

5.1 Framework

« If 0; is an initial state of compile(p) and o] is the initial state of compile(p’), by
safety of p and p’, there exists s; and s/ respectively initial states of p and p’. By
definition of ~c, we have s; ~c 0; and s} ~¢ o7, thus o; ~7 o] with n = 0.

« If o7 is a final state and o ~7 o7, by definition of ~7, there exists some states s
and s” such that s ~c o7, s’ ~c 0} and s ~g s’
By definition of a star simulation and since oy is a final state, there exists a state
s! such that s — s, s! ~¢ or and m(s') < m(s). By iterating this process, we
build a finite maximal sequence s, . .. , sk of states such that s — s’
and s* ~¢ of. The sequence is finite because we have m(s') > ... > m(s¥) and
this cannot infinitely decrease as N is well-founded. sy = sk is a final state, since
otherwise there would be a state s**! such that s* — s**! and the sequence
wouldn’t be maximal.

—)...—)Sk

And by exploiting the lockstep simulation ~g, we can build a sequence of states

s, ., s suchthats’ — ... — /%, st ~g 'L, ..., sF ~g &% Since sf = skisa

final state, then so is s} = s’f thanks to the lockstep simulation ~g.

By definition of the 2-simulation diagram, s} ~c 0%, thus G} is also a final state.

« If 0y ~r 0] and oy i) 03, by definition of ~7, there exists n, 03, 03, A’ such that
oy L” o3 and o] L” o, and there exists s, s’ such that s ~c 03, s’ ~c 0} and

s ~s s’. We need to prove there exists o, such that o] i> o, and 0y ~7 0.
- Ifn > 0, we use the lemma, and therefore there exists Ap;s, oop;s, 0, such that
o1 ﬂ Oabis> O, ﬂ 0, and ogp;s ~1 0,. By determinism of the semantics,

A
we have that o, = 05 and A = Ap;5. Thus we have o] — o, and 03 ~7 03.

- However, if n = 0, we have 03 = 01 and o5 = o{. Thus, we obtain s ~¢ o}
and s” ~¢ o7. s cannot be a final state, because o7 would be a final state due
to ~¢ which is impossible since oy i> oy. Hence, by safety of p, there exists
a state s, such that s —l> S9.

By the definition of lockstep simulation with ~g, there exists some s, such
that s’ —l> s, and s ~s s;.

By using the 2-simulation diagram, there exists k € N, g4, 0 and A!' such
that oy il—>k o4 and o] jl—>k o, with s, ~c 04, s, ~c o0, and o4 ~§re oy

Therefore, by definition, oy ~]; .

If kK > 0, we use again the previous lemma to conclude.

85

Chapter 5 Preservation of Cryptographic Constant-Time Security

Otherwise k = 0, and we know that m(s;) < m(s) by definition of ~¢. Thus,
we can reiterate the previous process until we obtain a new “k” that is
strictly positive. This iteration process is finite because the measure strictly
decrease until we obtain such a new k and it cannot decrease infinitely. The
conclusion is hence the same as before.

We proved that ~7 is a lockstep simulation, thus compile(p) is ¢-constant-time thanks
to Lemma 5.1 and the theorem is proven. O

We proved that if the 2-simulation diagram is satisfied, then constant-time security is
preserved. However, it is still left to prove that the simulation diagram can be satisfied
by a compiler. Intuitively, we only know that given a star simulation ~¢, when the
states of the two high level programs advance, the lower level states will advance some
number of steps n and n” which are not necessarily equal. However, the high level
programs are in a lockstep simulation and thus follow a fortiori the same control flow,
it makes sense that the lower level states advance similarly.

5.2 EXAMPLES

We present in this section two examples of transformation passes, one on which we
can apply our framework, and a second example of transformation pass that doesn’t
generally preserve constant-time security, we will show how trying to unsuccessfully
apply our framework can help understand why the pass does not preserve security.

5.2.1 Stack allocation

In the early passes of CompCert, each local variable of a function that has its address
taken (i.e., non scalar variable) are allocated separately in the memory. One of the
compilation passes allocates all these variables in a single stack for each function. Thus,
instead of accessing for instance &x or &y, it becomes stack + ofsx or stack + ofsy
where stack is a pointer to the stack and ofsx and of'sy are some integer offsets that
are computed at compile-time.

The crux of the correctness proof of the stack allocation pass lies in the fact that each
local variable of a function is associated a constant offset of the stack of the function
during compilation. Hence, the offset does not depend on secret information; the
resulting program does not leak more than the source program.

Theorem 5.3. Stack allocation preserves constant-time security.

Proof. Let p be a ¢-constant-time program. We have to prove that p = stack-allocate(p)
is constant-time. Let p” be a program such that ¢(p, p’), there is a program p’ such that
p’ = stack-allocate(p”) and ¢(p, p’) as such a program can be obtained by modifying p.

86

5.2 Examples

As pis ¢-constant-time, there exists a ~s leak-preserving lockstep simulation between
p and p’. Moreover, since stack-allocate is correct, there exists simulation relations ~¢
between p and p and between p’ and p’. We also further assume that this simulation

is lockstep, i.e., if s ~¢c o and s —l> s’, then there exists ¢’ and A such that o i> o’
and s’ ~. o’. This is a reasonable assumption as stack allocation does not modify
instructions, only the addresses that are used in memory accesses.

We define ~’}re as o ~1;re o’ if 0 and ¢’ are exactly the same except for the contents
of their memories and their registers which are allowed to differ.

We prove that (~g, ~1;re, ~c) is a 2-simulation.

« If 0y and o are respectively the initial states of p and p’, since ¢(p, p’), 0p and o

are the same except for the initial values of the “secret” variables, thus oy ~‘;re 0y

I 1
’r ’ pre ’ ’ .
o If sy ~c 01,81 ~5 57, 8] ~c 0], 01 ~r 07,817 8p and s} — s;, then there exists A,
A A
X', o5 and o, such that 0y — 0, and 0; — o, because of the correctness of the

transformation.

We first notice that since we have non-empty leaks only if we execute a branching
instruction or a memory access and since stack allocation does not modify the
instructions of the program, if [is an empty leak, then so are A and A’.

Otherwise, I may be a leak due to a conditional, it is thus a boolean value and is
preserved through compilation, hence A = = A". Or [is a leak due to a memory
access, it is a pointer value. Either the location accessed is a global variable, then
the same pointer is kept in the target executions since stack allocation does not
touch global variables, hence A = [= A". Or the [has the form & + of's where
x is a variable local to a function f. Consequently, A has the form stack_f +
ofsx + ofs where stack_f is the address of the stack of function f and ofsx is
the offset for x. Similarly, A" has the form stack_f’ + ofsx’ + ofs. ofsx and
of'sx’ only depend on the definition of the function f, and since both programs p
and p” have syntactically equal functions f, we have ofsx = of' sx’. Finally, since
stack_f and stack_f’ only depend on the control-flow and as by definition of
~§re, both o7 and o] are at the same program point, we have stack_f = stack_f’,

hence A =1= 1.

« Ifo ~§re o’ and o is the final state of p, then, by definition of A 5 and ¢’ are
at the same program point, therefore ¢’ is the final state of p’.

This is thus a 2-simulation and p is constant-time. The theorem is hence proven. O

87

Chapter 5 Preservation of Cryptographic Constant-Time Security

5.2.2 Memoization

Memoization is a technique to store the results of expensive computations so that when
the same computations occur again, the results can be retrieved quickly instead of
recomputing the results. This technique does not preserve constant-time security in
general. Indeed, it transforms computations into memory accesses.

When trying to apply our framework, the proof would be stuck at function calls
in our diagram. Indeed, suppose that in the source execution, a function call happen,
either the function is not memoized, and the target execution keeps the function call. Or,
the function is memoized, then the corresponding instructions in the target execution
are a test to verify whether the inputs have been used before and if it is the case, an
additional memory access. If the input does not depend on secret information, all is
fine, however, if it is not the case, the proof is stuck since we have to prove that the
results of the tests in the two target executions are equal, which is not possible.

5.3 APPLICATION TO COMPCERT

We study in this section how the method presented previously can be adapted to
CompCert. We first need to define our models by first defining what it means for
programs to be similar, then what are the leaks we consider and finally how to augment
each semantics with leaks.

In CompCert, a program is represented by the identifier of its main and a list of
declarations which are global variables and function definitions. Thus, we can define
similarity of programs p1 and p2 with regard to a set of identifiers that represent
secret variables as p1 and p2 have the same main identifiers and the same function
definitions, global variables are only allowed to differ if their identifiers are in the set of
secret variables and are otherwise equal. This can be defined as follows in Coq where
match_except secret is a predicate that says that the program definitions are similar
except for variables in secret and list_forall2 p 11 12 means that for every element
ai,ds,...of 11 and by, bs, ... of 12, p a; b; holds.

Definition similar_programs (secret: list ident) (p1 p2: program): Prop :=
pl.(prog_main) = p2.(prog_main) /\
list_forall2 (match_except secret) pl1.(prog_defs) p2.(prog_defs)

We then need to instantiate our model of leaks. For constant-time security, the leaks
are either Guard b where b is a boolean due to the evaluation of the guard clause in a
conditional, a memory access MemAccess block ptrofs or the leak is Silent.

Finally, in order for leaks to appear in semantics, we can rewrite each semantics to
incorporate them but this would require extensive changes at all levels of the compiler.

88

5.3 Application to CompCert

A more modular way is to define an observation predicate observe for each semantics
and define a “leaky” step as

Definition lstep (sem: semantics) (observe: state sem -> leak -> Prop)
(s1: state sem) (1: leak) (s2: state sem) :=
exists e, step sem sl e s2 /\
observe s1 1.

observe s1 1 means that when advancing from state s1, 1 will be leaked. s2 is not
needed as the leak is entirely determined by what’s executed which is contained in s1.
We can now state constant-time security.

Definition secure (secret: list ident) (p: program): Prop :=
forall (p': program),
similar_programs secret p p' ->
forall s0 so',
initial_state (semantics p) s0 ->
initial_state (semantics p') s0' ->
forall n s1 s1' t t',
StarN (semantics p) n s@ t s1 ->
StarN (semantics p') n s@' t' s1' ->
(exists 1 s2 s2',
lstep (semantics p) observe s1 1 s2 /\
lstep (semantics p') observe s1' 1 s2') \/
(~ exists e s2, step (semantics p) sl e s2 /\
~ exists e' s2', step (semantics p') s1' e' s2').

This is exactly Definition 5.1 written in Coq, a program p is secure if for all programs
p’ that are similar with p with regards to secret, then if s0 and s@’ are respectively
their initial states, then for all states s1 and s1’ such that s@ —" s1 and s@’ —" s1’,
either both states s1 and s1’ can take a leaky step with same leak 1, or both executions
are stuck.

A leak-preserving lockstep simulation is defined as a record in Cogq.

Record lp_sim_properties (match_states: state -> state -> Prop): Prop :=
Build_lp_sim_properties {
lp_match_initial_states:
forall si1,

89

Chapter 5 Preservation of Cryptographic Constant-Time Security

initial_state seml s1 ->
exists s2, initial_state sem2 s2 /\ match_states sl s2;
lp_match_final_states:
forall s1 s2 r,
match_states s1 s2 >
final_state seml s1 r ->
final_state sem2 s2 r;
lp_simulation: forall s1 1 s1',
lstep seml s1 1 s1' —>
forall s2,
match_states s1 s2 ->
exists s2',
lstep sem2 s2 1 s2' /\
match_states s1' s2' }.

The definition in Coq follows exactly Definition 5.2 but renames the ~ relation into
match_states.

The next step is to define the framework for 2-simulations. However, its definition
relies on stating that the two executions at the target level (bottom part of Figure 5.3)
advance the same number of steps. This number of steps is not random but is the
number of steps prescribed by the event preserving simulation used for proving the
correctness of the compiler. Yet, this number of steps does not appear explicitly in the
theorem statement in CompCert as shown below.

fsim_simulation:
forall s1 t s1', Step L1 s1 t s1' ->
forall i s2, match_states i s1 s2 ->
exists i', exists s2',
(Plus L2 s2 t s2' \/ (Star L2 s2 t s2' /\ order i' i))
/\ match_states i' s1' s2'.

This proposition states that if a state s1 of L1 advances to s1’ while producing event
t and it is related with state s2 such that match_states i s1 s2, then there exists an
index i’ and a state s2’ such that s2 advances to s2’ while producing event t and s1’
and s2’ are related, if the number of steps is not strictly positive (Star case), then i’
must be less than i (i.e., order i’ 1i); the indexes i and i’ represent the decreasing
measure that we used in the previous section.

The number of steps does not appear at all, but it is a crucial part of our framework.
Furthermore, we cannot only just state that there exists some number of steps as it

90

5.3 Application to CompCert

would then be impossible to relate it to the number of steps taken by the “second”
execution and make it impossible to reason with. One observation that can be made
is that this number of steps already appears in the proof of the statement as the steps
taken by s2 are described inside of the proof. Moreover, as this number of steps only
depends on how are s1 and s2 related, i.e., match_states i s1 s2, the simulation
statement can be amended this way into a “counting” simulation.

counting_fsim_simulation:
forall s1 t s1', Step L1 s1 t s1' ->
forall n i s2, match_states n i s1 s2 ->
exists s2', exists i', exists n',
(StarN L2 ns2t s2'" /\ (n =0 ->order i i'))

/\ match_states n' i' s1' s2'.

The match_states relation is modified in order to take an additional parameter n
which is a natural number that represents the number of steps taken by s2 to reach
s2’,if n is zero then the index must decrease. From our experiments on a few passes in
CompCert, the necessary modifications to the proofs seem fairly minor.

Finally, it is time to study whether it is possible to prove that CompCert’s compilation
passes verify our framework. We started our experiments by studying the constant
propagation Constprop pass. This pass is interesting as it is one of the passes that
modify the leaks. For instance, this pass can remove a memory load if the analysis
manages to prove that it is redundant, x = *p; y = *p can be rewritten into x = *p;
y = X

In order to prove that this pass preserves constant-time security, we need to define
the - ~§re - relation presented in the previous section. As explained earlier, o ~§re o’
intuitively tells that both states o and ¢’ are at the exact same program point. We define
this in Coq as an “indistinguishability” relation. We first recall the RTL intermediate
language that is used for most optimizations in CompCert such as Constprop.

An execution state in RTL is either a Callstate, a Returnstate or a regular State.
They all record a list of stackframes Stackframe res f sp pc rs which contains a
caller function f, its corresponding stack pointer sp and the program point where it
was left at pc, its register state rs and the register res where the return value must be
stored.

A Callstate stk f args mrepresents a state with the list of stackframes stk and
memory m about to call the function f with arguments args. A Returnstate stk v m
represents a state with list of stackframes stk and memory m that returns the value v. A
State stk f sp pc rs mrepresents a state with list of stackframes stk, register state
rs, memory m, current function f, stack pointer sp and program counter pc.

91

Chapter 5 Preservation of Cryptographic Constant-Time Security

Stackframe res f sp pc rs =~ Stackframe res f sp pc rs’

stk ~ stk’
State stk f sp pc rs m=~ State stk’ f sp pc rs’ m’

stk ~ stk’
Callstate stk f args m =~ Callstate stk’ f args’ m’

stk =~ stk’
Returnstate stk v m =~ Returnstate stk’ v

’)

m

Figure 5.4: Indistinguishability definition

We define the indistinguishability ~ for stackframes and states in Figure 5.4. Two
stackframes are indistinguishable if they are equal except for their register states
that are allowed to differ. Two states are indistinguishable if their stackframes are
indistinguishable and they are at the same program point.

The first property to prove for our 2-simulation is the following one: given programs
p, p's p and p’ such that p and p’ are respectively transformed into p and p’ after
Constprop, the initial states of p and p’ must be indistinguishable. The initial state of
a program is Callstate nil f nil m where f is the function corresponding to the
main function of the program, the memory m is just initialized with the global variables.
Thus, proving that two initial states are indistinguishable comes down to proving that
the two main functions are equal as we do not need to prove anything on the memory
part. This is trivial as by definition of program similarity, the functions of both p and
p’ are pairwise equal, hence their main are equal.

The next step is to fulfill the diagram, part of what needs to be proven is that if two
indistinguishable states in the target programs advance the same number of steps, then
they both arrive at indistinguishable states. Let’s have a closer look to function calls.
The semantics for calls at RTL level is defined as follows in CompCert.

exec_Icall:
forall s f sp pc rs m sig ros args res pc' fd,
(fn_code f)!pc = Some(Icall sig ros args res pc') ->
find_function ros rs = Some fd ->
funsig fd = sig ->
step (State s f sp pc rs m)
E0 (Callstate (Stackframe res f sp pc' rs :: s) fd rsi#itargs m)

The rule says that if the instruction to be executed at program point pc is a call
instruction Icall sig ros args res pc’ and that given the register state rs and the

92

5.3 Application to CompCert

register or symbol ros, the function called is fd, then the next state is a Callstate
about to enter fd.

Now, suppose that both indistinguishable states of our target programs are at Icall
instructions. They thus both arrive at Callstates. In order to prove them indistin-
guishable, we need to prove that the functions that are called are equal. There are two
cases, either they are both called by name, i.e. ros is a symbol, or by pointer, i.e. ros is
a register that contains the pointer value. In the first case, it is easy as both programs
are similar, thus the symbol is associated to the same function in both programs. In the
second case, it is not that simple. Indeed, we do not know the contents of the register
states nor the memory, and cannot thus conclude that both function calls use the same
pointer value, and even then we do not know whether the memory layout is different
between the two programs.

The first idea one would have is to make use of the fact that in the diagram, there are
source states s and s’ such that s ~¢c o and s’ ~¢ ¢’ in order to exploit the correctness
proof of compilation. The proof tells us that the function call in the transformed
program corresponds to a call to the transformed form of the function called in the
source program. By hypothesis, we know that the two function calls in the source
program are equal. We need to be able to deduce from it that the functions called at the
target level are equal. This reasoning would work for most passes, but unfortunately
not for Constprop as it is one of the few program transformations that relies on an
external analysis, i.e., the transformation depends on the results of the analysis.

This might not seem a difficult issue, as we could just think that since both programs
are similar, then their analyses must be the same. This is true, but it is not that easy
in presence of separate compilation which is supported by CompCert. Indeed, a user
could compile multiple compilation units separately using CompCert and then link
them together afterwards. Thus, the transformation of a function does not depend on
the analysis of the whole program, but only on the compilation unit that it is in. This is
where the issue lies as illustrated below.

Lemma functions_translated:
forall (v: val) (f: fundef),
Genv.find_funct ge v = Some f ->
exists cunit,
Genv.find_funct tge v = Some (transf_fundef (romem_for cunit) f)
/\ linkorder cunit prog.

The lemma states that for each function f in the initial program (represented by
its global environment ge), the corresponding function in the transformed program is
transf_fundef (romem_for cunit) f where cunit is a compilation unit contained in
the whole program prog. This is problematic as the lemma states only that there exists

93

Chapter 5 Preservation of Cryptographic Constant-Time Security

a compilation unit but does not give enough constraint on it in order to relate the two
compilation units we obtain from our two target states.

A possible solution is to not use the high-level lemmas provided by CompCert, but
use a lower-level reasoning. The solution relies on the way global definitions are
allocated during the initialization process. In CompCert, each global variable and
function definition is associated a pointer, and this process is determined entirely by
the order of the definitions. As we consider our two target programs to be similar, the
order of definitions is the same. The global environment (the association table between
definitions and pointers in CompCert parlance) is thus the same. Next, the correctness
proof tells us that the target program uses the same pointer as in the source program.
We thus only have to prove that the two pointers at the source level are the same to
prove that they are also the same at the target level. The same pointers are used at the
source level because we know that both programs called the same function and thus
necessarily used the same pointer.

This shows some of the difficulties besides those inherent to our framework, but are
due to the characteristics of adapting to a realistic compiler such as CompCert. Only the
definitions given in this section have been formalized in Coq, the proofs presented in 5.1
have not been mechanized yet and are left as future work. Furthermore, we presented
the troubles we encountered while trying to prove that the constant propagation pass
preserves security, the proof has not been finished yet however.

5.4 RELATED WORK AND CONCLUSION

Concurrenly to our work, Barthe et al. [BGL18] have also studied the issue of preserving
constant-time security through compilation and have developed an approach very
similar to ours. Their paper presents their approach on a While language with a
compiler built from scratch. This allows them to avoid pitfalls due to design choices of
a preexisting compiler such as CompCert.

One notable difference in our methodology is that their methodology requires that
when match_states s1 s2 and s1 advances one step, the number of steps advanced by s2
must be computable by a function num_steps such that the number is num_steps(s1,
s2). For their example on the constant propagation pass, this necessitated to enrich the
syntax of programs with annotations and thus modify the compilation pass to properly
produce these annotations. For instance, in order to define their num_steps function,
they need to statically know whether a branch is removed, they have to produce an
annotated version of the source program with boolean flags telling whether the branch
is removed to accomplish this. Thus, applying their method on CompCert would require
to modify the syntax of the language and its semantics, which impacts all compilation
passes that uses this language. It is preferable to avoid modifications if possible. Our
method involves modifying the match_states relation so that it contains the expected

94

5.4 Related Work and Conclusion

S > S
7
=g //
.7 Ss
l N ’
S1 7 S2 ~
roF n’
/7 ’
~ o > 0,
7
7
=c 7 =c
A R ‘
01 7 02

Figure 5.5: 2-simulation diagram from [BGL18]
(Hypotheses in plain lines, conclusion in dashed lines)

number of steps, thus we only have to modify the proofs and not the compilation passes.

A second difference is that their diagram (illustrated in Figure 5.5 using their nota-
tions) is slightly different from ours (in Figure 5.3). They directly assume for instance

that there exists A, n and o, such that o, i>” 0y and s, ~ 0y, where =~ is the relation used
in the simulation for proving correctness of the compiler pass, while we ask to prove
that such objects exist. They only ask to prove that A = X', n = n” and the dashed lines
in the diagram. They are thus asking less things to prove than us. However, it seems
intuitive that in order to prove that A = A’ in the diagram, it is necessary to be able to
relate A and A" with I. We conjecture that they use the fact that s; ~ oy and determinacy
of the semantics in order to relate / and A for instance. This is similar to unfolding the
correctness proof of the transformation in order to relate the source and target leaks
which is what our methodology imposes. Thus, in our opinion, the amount of work
needed by both methodologies is similar.

As we have not finished mechanizing our development and the authors of [BGL18]
only applied their approach on a toy compiler, we are planning to combine our efforts
to apply our methodology to CompCert.

In this thesis, we started by presenting a method to verify constant-time security
on source code. However, nothing guarantees that a secure code at source level stays
secure when compiled as shown by the example in the beginning of this chapter. We
thus provided two solutions, a first one in the previous chapter by presenting a method
to verify whether assembly code respects constant-time security. This has the advantage
that we now can be sure that the code that is actually executed is secure, but the tool
can only report errors about the mangled code produced by a compiler which are of
little use to a programmer. The second method presented in this chapter is the natural
follow-up to Chapter 3 in which we presented a way to verify source code, “how do
we prove that this security property is preserved by the compiler ?” As CompCert

95

Chapter 5 Preservation of Cryptographic Constant-Time Security

makes extensive use of simulations to prove its correctness, it was a logical step to
exploit them in order to prove the property we wanted. Constant-time security is a
property that can be stated as non-interference property or a simulation based property
as shown in this chapter. This second way of stating constant-time security makes it
easier to reason with the simulations used in CompCert. We presented in this chapter a
framework to prove the preservation of constant-time security through compilation,
this framework stems out from the definitions of the multiple simulations that are used
and trying to assemble them together. This framework seems the most natural method,
we will show in the next chapter other potential methods.

96

CHAPTER 6

CONCLUSION

6.1 SUMMARY

Electronic communications have become more and more prevalent in our world through
the democratization of the Internet, smartphones, contactless payments, etc. In order to
ensure that communications are secure and private, cryptography has become especially
crucial. The use of formal methods is thus natural in order to attain the highest degree
of assurance possible as illustrated by the emergence of high-assurance cryptography
and the plethora of recent publications in this area.

However, functional correctness is not sufficient. Exploitation of side-channels has
recently become quite popular and in particular timing attacks due to the ease with
which they can be remotely executed to recover secrets. Cryptographers have adopted
the use of constant-time programming in order to avoid timing attacks. This thesis
takes place in this context and applies formal verification to constant-time security.

In our work, we have given answers to different challenges pertaining to the ver-
ification of constant-time security. In Chapter 3, we provide a sound methodology
to improve an abstract interpreter in order to verify that imperative programs are
correctly written in the constant-time programming style. This can be used to help the
programmer understand where the errors are if there are any.

However, there remains the question of whether the code that is actually executed
satisfies the constant-time security policy. Indeed, compilers are known to often not
respect the intent of the programmer. It is even more so the case when it is not even
considered in the C standard as it is the case for side-channels. All bets are off and
the compiler is free to remove all security countermeasures. We have proposed two
possible answers to this challenge. The first one is to verify again that the compiled
code is secure. However, due to the complexity of analyzing low-level code such as
assembly code, it is extremely difficult to design a precise enough analysis at this level.
In Chapter 4, we propose a way to avoid this issue by designing a methodology to
transfer useful information that can be inferred at source level down to assembly in

97

Chapter 6 Conclusion

order to improve the analysis as this level. The second possibility is to directly prove that
the compiler preserves constant-time security. Chapter 5 proposes a proof methodology
based on the standard simulation framework used for verifying compiler correctness to
prove that constant-time security is preserved.

6.2 PERSPECTIVE

We report in this section various possible places of improvement for the different works
we presented, as well as few ideas for extending our work.

6.2.1 Constant-Time Security Preservation Again

We presented one solution to the issue of preserving constant-time security through
compilation in Chapter 5, but it is not yet completely mechanized. One obvious future
work would thus be to finish it. There are currently discussions with the authors
of [BGL18] in order to combine our efforts.

The solution presented in Chapter 5 involves modifying the standard simulations
used for semantic preservation by reasoning on 2 different executions. Directly using
the proposed simulation for each program transformation in CompCert could prove rel-
atively cumbersome. We surmise it is possible to simplify it for a large proportion of the
transformations. Indeed, only the CSE and constant propagation optimizations remove
branchings, while the other compilation passes do not remove nor add branchings.
Preservation of constant-time security can thus be split into two parts: preservation of
branchings and another property concerning memory accesses.

This splitting has a significant advantage, namely that preservation of branchings
only needs to reason about one execution and not two, which is much simpler. We still
need to prove another property concerning memory accesses, preferably a property
that also only reasons about one execution. We surmise that it is possible by proving
that every location (pointer) accessed by a memory operation at the source execution is
related to its corresponding location accessed in the target execution by a function that
only depends on the program, or the function indicates that the corresponding memory
access has been removed. In CompCert parlance, this corresponds to proving that the
memory injection used in the semantic preservation proof can be entirely statically
determined.

Thus, preservation of constant-time security can be reduced to proving the two
simulations in Figure 6.1. Indeed, this suffices to prove the 2-simulation presented in
Figure 5.3. If we reuse the notations of Figure 5.3, if [is a boolean leak (conditional
guard) b, then A and A are also b by Figure 6.1a. If [is a location loc, then A and A’ are
both equal to some location f(loc) by Figure 6.1b. The only issue left is with compilation

98

6.2 Perspective

$1 # $2 S1 i> $2
o -3 o o1 —f—(IEC)% o

(a) Preservation of branching values (b) Memory accesses are related by a
function f

Figure 6.1: Simplification of constant-time security preservation

passes that add memory accesses such as register allocation which may spill some
registers. It may be necessary to use the general 2-simulation in these cases.

One possible different way to tackle the issue is to verify a posteriori that the compila-
tion did preserve constant-time security. This can be achieved by using the methodology
described in Chapter 4. Indeed, we only need a program transformation such that the
transformed program is safe if the original program is constant-time. We can take
inspiration from program transformations for non-interference monitoring such as
[Ass+13; Alm+16] for instance. Dynamic checks are added before each branching and
memory access to verify that they do not depend on secrets. One way to do that is to
add variables or registers to shadow the existing ones. These shadow variables and
registers will be used to track the taint of the variables and registers they shadow, 1 is
used if the taint is high and 0 otherwise.

For instance, x = 4 * z + y can be transformed into shadow_x = shadow_z ||
shadow_y; x = 4 x z + vy, the taint of x is high if either of the taints of z and y is
high. Similarly, x = 42 is transformed into shadow_x = @; x = 42 as x is assigned a
constant that does not depend on secrets. For conditional branching, it is only needed
to check that the conditional guard does not depend on secrets. However, it becomes
tricky when memory accesses are involved as the usual problem of aliasing comes into
play. The solution would be to reuse the points-to annotations presented in Chapter 4.
For instance, if we have *p = 3 * x + y where the memory access *p is annotated
by Verasco with (T: [0; 2]), then we first need to check that the memory access might
not leak secret, assert (!shadow_p) checks that p has a low taint. Next, the taints are
updated as follows, each of the possible locations accessed is updated.

shadow_T[0] = shadow_x || shadow_y || shadow_T[0];
shadow_T[1] = shadow_x || shadow_y || shadow_T[1];
shadow_T[2] = shadow_x || shadow_y || shadow_T[2];

A weak update is used here as the annotation does not indicate exactly which
location is accessed, therefore it is necessary to overapproximate the taint by keeping

99

Chapter 6 Conclusion

the previous one. This transformation could be used to verify that a program is constant-
time, it is uncertain however whether the relative safety checker presented in Chapter 4
would cope with it.

6.2.2 Timing Attack Mitigations

Another possible axis of further work is to design program transformations to make
programs constant-time as presented in [Mol+06] and [Cop+09]. Indeed, using the
verifier presented in Chapter 3 to pinpoint the particular places in code that may leak
secrets, it would be possible to automatically transform the code in these locations in
order to remove leaks.

There are two sources of leaks, branchings and memory accesses that depend on
secrets. In order to remove the branchings, one possible solution is to execute both
branches in sequence and only keep the relevant computations. For instance, code such
asif (b) { x = A; } else { x = B; 3}, where A and B are arbitrary computations,
can be transformedintox = b * A + (1 - b) * B.If bis 1, then only the computation
A is kept, otherwise b is 0, and only B is kept.

The second issue is memory accesses. One possible solution is to replace a single
memory access to the index of an array to accessing the whole array. For instance,
x = t[pos] can be replaced with x = 0; for (i=0;i<N;i++) {x|=(i==pos)*t[il;}
where N is the length of the array t.

However, this solution is very slow as the whole array must be accessed instead of
only one index. Another possibility is bitslicing. The essence of bitslicing is to consider
a n-bit piece of data as n 1-bit pieces of data. For instance, instead of storing 32 bits of
data into one register, it can be stored as 1 bit of data over 32 registers as the first bit of
all these registers. A second 32-bit piece of data can then be stored as the second bit of
the 32 registers, etc. Then, by using bitwise operators such as AND or XOR, it allows to
parallelize 32 operations instead.

Bitslicing was historically first used by Biham [Bih97] in 1997 to replace the S-boxes
of DES. These S-boxes are functions that take 6 bits of inputs and produce 4 bits of
inputs, this can be implemented by using a lookup table with 64 (2°) entries which is
not secure as the inputs can depend on secrets. The bitsliced version of the first S-box
of DES can be rewritten using 56 bitwise operations. This seems a lot more than one
single table lookup, but if you consider 64-bit registers, the bitsliced version actually
executes 64 different instances of the first S-box at the same time, which means that
one instance of the first S-box costs less than one operation (56/64)".

The issue with bitslicing is that it seems that finding a bitsliced version of an algorithm
is manually done by experts and seems difficult to automatize. However, as bitslicing
is similar to software implementation of hardware circuits, it might be interesting to

IMore information can be found on https://www.bearssl.org/constanttime.html#bitslicing

100

6.2 Perspective

look in that direction to find optimization solutions, in particular circuit minimization.
Another possible axis of research is dataflow languages as done by [Mer+18] which
provides a domain specific language for implementing bitsliced algorithm and compiling
them into C. According to their paper, the compiler validates a posteriori that the
generated C code is correct with regards to the source code, but does not give more
details. It would be interesting to know if it can be connected with CompCert.

6.2.3 A different security model

Constant-time security only considers branchings and memory accesses, but there
are also other instructions that may be variable-time. For instance, on some older
architecture, a multiplication may take different times to execute depending on the
value of its operands. For instance, a multiplication might be faster when one of the
operands is 0. This leaks information on the operands which may depend on secret
values. Another source of leakage is floating point operations as illustrated by [And+15]
which presents an attack that exploits variable-time floating point operations.

Unfortunately, no current chip vendor provides precise information on the timings
of the processor’s operations”, only experimental studies exist’. One notable exception
is the AVR microcontroller, for which the maker provides cycle precise information
for instruction timings. This allowed [DMW17] to build a timing sensitive analysis for
the 8-bit AVR microprocessor. This approach can work for simple architectures such
as the AVR, but for more complex architectures, it would be interesting to modify the
analyzer presented in Chapter 3 to be able to indicate whether some operations that
may be variable time depend on secrets.

Another possible focus point is energy consumption side-channels as they become
increasingly dangerous. Indeed, it was for a long time required to have physical ac-
cess to the targeted machine in order to mount an attack. However, recently, remote
power attacks have appeared. For instance, [Z518] presents a remote attack on Field
Programmable Gate Arrays (FPGAs) which are integrated circuits that can be pro-
grammed. They have recently been widely adopted in large scale datacenters. For
instance, Amazon offers FPGA instances with its cloud services. As a user might not
use all the available ressources (logical gates) of an FPGA, multiple users might use
the same physical FPGA. [Z518] presents a method to build a power monitor that can
observe the power consumption of other modules on the FPGA, this allowed them to

2ARM had announced in November 2017 that their ARMv8.4-A chips would provide a
new flag to indicate the use of constant-time operations, but this has since been re-
moved from the announcement. A copy of the original announcement can be found
at http://web.archive.org/web/20171108050216/https://community.arm.com/processors/b/
blog/posts/introducing-2017s-extensions-to-the-arm-architecture.

3For instance, https://www.bearssl.org/ctmul.html provides a detailed study of which architecture
supports constant-time multiplications.

101

Chapter 6 Conclusion

mount a successful power analysis attack against an RSA cryptomodule.

Another example of remote power attack is [Man+18]. With the advent of green
IT, CPU vendors have started to introduce software based ways to monitor power
consumption. For instance, Intel has introduced the RAPL (Running Average Power
Limit) feature which exposes the power consumption of the processor in a specific
register. [Man+18] shows that it is actually quite simple to mount an attack against
the RSA implementation of the Bouncy Castle cryptography library using the RAPL
feature.

A popular security model to prove security against power analyses attacks is the
probing security model [ISW03]. The idea of this security model is that the hardware
can be thought of as a circuit with wires. The attacker is considered to only be able to
observe a bounded number of those wires which also represent variables in programs.
As the attack can only observe a bounded number of wires, a popular method of
protection is masking, which consists in splitting secret variables into multiple shares.
The higher the number of shares, the less information the attacker can obtain, but the
less efficient the program is. This method is reminiscent of variable splitting in software
obfuscation.

Final remarks In this thesis, we tackled practical challenges of securing crypto-
graphic implementations against the timing side-channel. Obviously, there still exist
other vulnerabilities, but the methods we presented show that formal verification can
be used to ensure that complex cryptographic implementations satisfy certain security
properties. There is no doubt that formal methods and security will become increasingly
intertwined.

102

AUTHOR’S CONTRIBUTIONS

[Bar+17]

[BPT17]

[BPT18]

[BT16]

Gilles Barthe, Sandrine Blazy, Vincent Laporte, David Pichardie, and Alix
Trieu. “Verified Translation Validation of Static Analyses”. In: 2017 IEEE
30th Computer Security Foundations Symposium (CSF). 30th IEEE Computer
Security Foundations Symposium. Santa-Barbara, United States, Aug. 2017,
pp- 405-419. po1: 10.1109/CSF.2017.16. URL: http://www.irisa.fr/
celtique/ext/csf17/.

Sandrine Blazy, David Pichardie, and Alix Trieu. “Verifying Constant-Time
Implementations by Abstract Interpretation”. In: European Symposium on
Research in Computer Security. 22nd European Symposium on Research
in Computer Security. Oslo, Norway, Sept. 2017. URL: http://www.irisa.
fr/celtique/ext/esorics17/.

Sandrine Blazy, David Pichardie, and Alix Trieu. “Verifying Constant-
Time Implementations by Abstract Interpretation (Extended version)”. In:
Journal of Computer Security (2018). (Accepted for publication, to appear).

Sandrine Blazy and Alix Trieu. “Formal Verification of Control-flow Graph
Flattening”. In: Proceedings of the 5th ACM SIGPLAN Conference on Certified
Programs and Proofs. CPP 2016. St. Petersburg, FL, USA: ACM, 2016, pp. 176—
187. 1SBN: 978-1-4503-4127-1. po1: 10.1145/2854065.2854082. URL: http:
//www.irisa.fr/celtique/ext/cfg-flatten/.

103

[Alm+16]

[Alm+17]

[And+15]

[AP16]

[App11]

[App15]

[Arz+14]

BIBLIOGRAPHY

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Francois Dupressoir,
and Michael Emmi. “Verifying Constant-Time Implementations”. In: 25th
USENIX Security Symposium, USENIX Security 16, August 10-12, 2016. 2016,
pp- 53-70 (cit. on pp. 28, 29, 35, 53, 55, 57, 99).

José Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Gré-
goire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. “Jasmin: High-Assurance and High-Speed Cryptog-
raphy”. In: CCS 2017-Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 2017 (cit. on p. 28).

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. “On Subnormal Floating Point and Abnormal
Timing”. In: Proceedings of the 2015 IEEE Symposium on Security and Privacy.
SP ’15. IEEE Computer Society, 2015, pp. 623-639 (cit. on pp. 57, 101).

Martin R. Albrecht and Kenneth G. Paterson. “Lucky Microseconds: A
Timing Attack on Amazon’s s2n Implementation of TLS”. In: Advances in
Cryptology — EUROCRYPT 2016. Ed. by Marc Fischlin and Jean-Sébastien
Coron. Springer Berlin Heidelberg, 2016, pp. 622-643 (cit. on pp. xii, 5).

Andrew W. Appel. “Verified Software Toolchain - (Invited Talk)”. In: ESOP.
Vol. 6602. Lecture Notes in Computer Science. Springer, 2011, pp. 1-17
(cit. on p. 29).

Andrew W Appel. “Verification of a cryptographic primitive: SHA-256".
In: ACM Transactions on Programming Languages and Systems (TOPLAS)
37.2 (2015), p. 7 (cit. on p. 29).

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
“FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-
aware Taint Analysis for Android Apps”. In: Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’14. ACM, 2014, pp. 259-269 (cit. on p. 27).

105

Bibliography

[Ass+13]

[Bar+14]

[Bar+17]

[Bar15]

[Ber+15]

[Ber05a]

[Ber05b]
[Ber06]

[BGL18]

[Bih97]

[Bla+03]

106

Mounir Assaf, Julien Signoles, Frédéric Tronel, and Eric Totel. “Program
Transformation for Non-interference Verification on Programs with Point-
ers”. In: 28th Security and Privacy Protection in Information Processing Sys-
tems (SEC). Ed. by Lech J. Janczewski, Henry B. Wolfe, and Sujeet Shenoi.
Vol. AICT-405. Security and Privacy Protection in Information Processing
Systems. Springer Berlin Heidelberg, July 2013, pp. 231-244 (cit. on p. 99).

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and
David Pichardie. “System-level Non-interference for Constant-time Cryp-
tography”. In: ACM SIGSAC Conference on Computer and Communications
Security. 2014, pp. 1267-1279 (cit. on pp. 28, 53, 59, 72, 74).

Gilles Barthe, Sandrine Blazy, Vincent Laporte, David Pichardie, and Alix
Trieu. “Verified Translation Validation of Static Analyses”. In: Computer Se-
curity Foundations Symposium. 30th IEEE Computer Security Foundations
Symposium. Aug. 2017 (cit. on pp. xiv, 9, 60).

Gilles Barthe. “High-assurance cryptography: Cryptographic software we
can trust”. In: IEEE Security & Privacy 13.5 (2015), pp. 86—89 (cit. on p. 28).

Lennart Beringer, Adam Petcher, Q Ye Katherine, and Andrew W Appel.
“Verified Correctness and Security of OpenSSL HMAC.” In: USENIX Security
Symposium. 2015, pp. 207-221 (cit. on p. 29).

Daniel J. Bernstein. Cache-timing attacks on AES. Tech. rep. 2005 (cit. on
pp- ix, 3).
Daniel]J. Bernstein. ghasm. https://cr.yp.to/ghasm.html. 2005 (cit. on p. 28).

Daniel]J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In:
Public Key Cryptography - PKC 2006: 9th International Conference on Theory
and Practice in Public-Key Cryptography, New York, NY, USA, April 24-26,
2006. Proceedings. Ed. by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin. Springer Berlin Heidelberg, 2006, pp. 207-228 (cit. on p. 55).

Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. “Secure Com-
pilation of Side-Channel Countermeasures: The Case of Cryptographic
"Constant-Time"”. In: CSF. IEEE Computer Society, 2018, pp. 328—343 (cit.
on pp. 78, 94, 95, 98).

Eli Biham. “A Fast New DES Implementation in Software”. In: Proceedings
of the 4th International Workshop on Fast Software Encryption. FSE *97.
Springer-Verlag, 1997, pp. 260-272 (cit. on p. 100).

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. “A static
analyzer for large safety-critical software”. In: PLDI. ACM, 2003, pp. 196—
207 (cit. on p. 26).

[BLS12]

[Bon+17]

[Bos+15]

[BPT17]

[BPT18]

[Cau+17]

[CC76]

[Cop+09]

[DB0S]

Daniel] Bernstein, Tanja Lange, and Peter Schwabe. “The security impact
of a new cryptographic library”. In: International Conference on Cryptology
and Information Security in Latin America. Springer. 2012, pp. 159-176
(cit. on pp. 53, 57, 73).

Barry Bond, Chris Hawblitzel, Manos Kapritsos, K Rustan M Leino, Jacob R
Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. “Vale:
Verifying high-performance cryptographic assembly code”. In: Proceedings
of the USENIX Security Symposium. 2017 (cit. on p. 28).

Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. “Post-
Quantum Key Exchange for the TLS Protocol from the Ring Learning with
Errors Problem”. In: 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. 2015, pp. 553-570 (cit. on pp. 53, 55).

Sandrine Blazy, David Pichardie, and Alix Trieu. “Verifying constant-time
implementations by abstract interpretation”. In: European Symposium on
Research in Computer Security. Springer. 2017, pp. 260-277 (cit. on pp. xiv,
8, 31).

Sandrine Blazy, David Pichardie, and Alix Trieu. “Verifying Constant-
Time Implementations by Abstract Interpretation (Extended version)”. In:
Journal of Computer Security (2018). (Accepted for publication, to appear)
(cit. on pp. xiv, &, 31).

Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer, Yunlu
Huang, Ranjit Jhala, and Deian Stefan. “FaCT: A Flexible, Constant-Time
Programming Language”. In: Cybersecurity Development (SecDev), 2017
IEEE. IEEE. 2017, pp. 69-76 (cit. on p. 29).

P. Cousot and R. Cousot. “Static determination of dynamic properties
of programs”. In: Proceedings of the Second International Symposium on
Programming. Dunod, Paris, France, 1976, pp. 106—130 (cit. on p. 47).

Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De
Sutter. “Practical Mitigations for Timing-Based Side-Channel Attacks on
Modern x86 Processors”. In: 30th IEEE Symposium on Security and Privacy
(S&P 2009), 17-20 May 2009, Oakland, California, USA. 2009, pp. 45-60 (cit.
on p. 100).

Leonardo De Moura and Nikolaj Bjerner. “Z3: An efficient SMT solver”. In:
International conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer. 2008, pp. 337-340 (cit. on p. 28).

107

Bibliography

[DMW17]

[EA07]

[Enc+10]

[Erb+19]

[Flo67]

[Geu09]

[GM82]

[Gon+13]

[Hoa69]

108

Florian Dewald, Heiko Mantel, and Alexandra Weber. “AVR Processors as
a Platform for Language-Based Security”. In: Computer Security - ESORICS
2017 - 22nd European Symposium on Research in Computer Security, Oslo,
Norway, September 11-15, 2017, Proceedings, Part 1. 2017, pp. 427-445 (cit. on
p. 101).

U. Erlingsson and M. Abadi. Operating system protection against side-
channel attacks that exploit memory latency. Tech. rep. MSR-TR-2007-117.
Microsoft Research, 2007 (cit. on p. 72).

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. “TaintDroid: An Information-
flow Tracking System for Realtime Privacy Monitoring on Smartphones”.
In: Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation. OSDI'10. USENIX Association, 2010, pp. 393-407 (cit.
on p. 27).

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. “Simple High-Level Code For Cryptographic Arithmetic — With
Proofs, Without Compromises”. In: Proceedings of the 40th IEEE Symposium
on Security and Privacy (S&P’19). May 2019 (cit. on p. 29).

Robert W. Floyd. “Assigning Meanings to Programs”. In: 19 (Jan. 1967)
(cit. on p. 14).

H. Geuvers. “Proof assistants: History, ideas and future”. In: Sadhana 34.1
(Feb. 2009), pp. 3-25 (cit. on p. 12).

J. A. Goguen and J. Meseguer. “Security Policies and Security Models”. In:
1982 IEEE Symposium on Security and Privacy. Apr. 1982, pp. 11-11 (cit. on
p. 26).

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, Francois Garillot, Stéphane Le Roux, Assia Mahboubi, Russell
O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev,
Enrico Tassi, and Laurent Théry. “A Machine-Checked Proof of the Odd
Order Theorem”. In: Interactive Theorem Proving - 4th International Confer-
ence, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings. 2013, pp. 163—
179 (cit. on p. 6).

Charles Antony Richard Hoare. “An axiomatic basis for computer program-
ming”. In: Communications of the ACM 12.10 (1969), pp. 576-580 (cit. on

p. 14).

[HS06]

[ISW03]

[Jou+15]

[Jou16]

[Kau+16]

[Koc+11]

[Koc96]

[KPM12]

[Lan08]

[Lap15]

[Lei08]

[Lei10]

Sebastian Hunt and David Sands. “On Flow-sensitive Security Types”.
In: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL °06. ACM, 2006, pp. 79-90
(cit. on p. 27).

Yuval Ishai, Amit Sahai, and David Wagner. “Private circuits: Securing
hardware against probing attacks”. In: Annual International Cryptology
Conference. Springer. 2003, pp. 463-481 (cit. on p. 102).

Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy,
and David Pichardie. “A Formally-Verified C Static Analyzer”. In: Proc. of
the 42" ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015. ACM, 2015, pp. 247-259 (cit. on pp. 7, 25, 58).

Jacques-Henri Jourdan. “Verasco: a Formally Verified C Static Analyzer”.
Ph.D Thesis. Université Paris Diderot-Paris VII, May 2016 (cit. on p. 25).

Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Villegas.
“When Constant-Time Source Yields Variable-Time Binary: Exploiting
Curve25519-donna Built with MSVC 2015”. In: Cryptology and Network
Security. Ed. by Sara Foresti and Giuseppe Persiano. Springer International
Publishing, 2016, pp. 573-582 (cit. on p. 78).

Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. “Introduction
to differential power analysis”. In: Journal of Cryptographic Engineering
1.1 (Apr. 2011), pp. 5-27 (cit. on pp. viii, ix, 2, 3).

Paul Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. In: Advances in Cryptology — CRYPTO °96. Ed. by
Springer. Vol. 1109. LNCS. 1996, pp. 104-113 (cit. on pp. ix, 3).

Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. “STEALTHMEM:
system-level protection against cache-based side channel attacks in the
cloud”. In: USENIX Security 2012. USENIX Association, 2012, pp. 11-11
(cit. on p. 73).

Adam Langley. donna. https://code.google.com/archive/p/curve25519-donna.
2008 (cit. on pp. 53, 55).

Vincent Laporte. “Verified static analyzes for low-level languages”. Ph.D
Thesis. Université Rennes 1, Nov. 2015 (cit. on p. 25).

Rustan Leino. “This is Boogie 2”. In: Microsoft Research, June 2008 (cit. on
p. 28).
K Rustan M Leino. “Dafny: An automatic program verifier for functional

correctness”. In: International Conference on Logic for Programming Artifi-
cial Intelligence and Reasoning. Springer. 2010, pp. 348—370 (cit. on p. 28).

109

Bibliography

[Ler06]

[Ler09]

[Li+17]

[Man+18]

[mbe14]

[Mer+138]

[Mol+06]

[Plo81]

[Por16]
[RBV17]

[Ric53]

110

Xavier Leroy. “Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant”. In: 33rd symposium Principles of
Programming Languages. ACM Press, 2006, pp. 42-54 (cit. on pp. xiii, 6).

Xavier Leroy. “A formally verified compiler back-end”. In: Journal of Auto-
mated Reasoning 43.4 (2009), pp. 363—-446 (cit. on p. 15).

LiLi, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexan-
dre Bartel, Damien Octeau, Jacques Klein, and Le Traon. “Static analysis of
android apps: A systematic literature review”. In: Information and Software
Technology 88 (2017), pp. 67-95 (cit. on p. 27).

Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich Weber.
“How Secure Is Green IT? The Case of Software-Based Energy Side Chan-
nels”. In: Computer Security - 23rd European Symposium on Research in
Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018,
Proceedings, Part I. 2018, pp. 218-239 (cit. on p. 102).

mbedTLS. mbedTLS (formerly known as PolarSSL). https://tls.mbed.org/.
2014 (cit. on pp. 53, 57, 73).

Darius Mercadier, Pierre-Evariste Dagand, Lionel Lacassagne, and Gilles
Muller. “Usuba, Optimizing & Trustworthy Bitslicing Compiler”. In: Work-
shop on Programming Models for SIMD/Vector Processing. Feb. 2018 (cit. on
p. 101).

David Molnar, Matt Piotrowski, David Schultz, and David Wagner. “The
Program Counter Security Model: Automatic Detection and Removal of
Control-flow Side Channel Attacks”. In: Proceedings of the 8th International
Conference on Information Security and Cryptology. ICISC’05. Springer-
Verlag, 2006, pp. 156—168 (cit. on p. 100).

Gordon D Plotkin. “A structural approach to operational semantics”. In:
(1981) (cit. on p. 14).

Thomas Pornin. BearSSL. https://www.bearssl.org/. 2016 (cit. on p. 57).

Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. “Dude, is my code
constant time”. In: Proc. of DATE 2017. 2017 (cit. on p. 53).

H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision
Problems”. In: Transactions of the American Mathematical Society 74.2
(1953), pp. 358-366 (cit. on p. 7).

[SAB10]

[Saf16]

[Sch+16]

[SS71]

[Swa+11]

[TIS16]
[VIS96]

[VS97]

[WNO5]

[Yan+11]

Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. “All You
Ever Wanted to Know About Dynamic Taint Analysis and Forward Sym-
bolic Execution (but Might Have Been Afraid to Ask)”. In: Proceedings of
the 2010 IEEE Symposium on Security and Privacy. SP °10. IEEE Computer
Society, 2010, pp. 317-331 (cit. on p. 27).

Open Quantum Safe. Open Quantum Safe. https://openquantumsafe.org/.
2016 (cit. on p. 55).

Daniel Schoepe, Musard Balliu, Frank Piessens, and Andrei Sabelfeld. “Let’s
Face It: Faceted Values for Taint Tracking”. In: Computer Security — ESORICS
2016. Ed. by Ioannis Askoxylakis, Sotiris Ioannidis, Sokratis Katsikas, and
Catherine Meadows. Springer International Publishing, 2016, pp. 561-580
(cit. on p. 27).

Dana Scott and Christopher Strachey. Towards a Mathematical Semantics
for Computer Languages. 1971 (cit. on p. 14).

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan
Bhargavan, and Jean Yang. “Secure distributed programming with value-
dependent types”. In: Proceeding of the 16th ACM SIGPLAN international
conference on Functional Programming. Ed. by Manuel M. T. Chakravarty,
Zhenjiang Hu, and Olivier Danvy. ACM, 2011, pp. 266—278 (cit. on p. 28).

TIS-CT. TIS-CT. http://trust-in-soft.com/tis-ct/. 2016 (cit. on p. 53).

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. “A Sound Type
System for Secure Flow Analysis”. In: 7. Comput. Secur. 4.2-3 (Jan. 1996),
pp- 167-187 (cit. on pp. 26, 27).

Dennis Volpano and Geoffrey Smith. “Eliminating Covert Flows with Min-
imum Typings”. In: Proceedings of the 10th IEEE Workshop on Computer
Security Foundations. CSFW ’97. IEEE Computer Society, 1997, pp. 156—
(cit. on p. 27).

David J. Wheeler and Roger M. Needham. “TEA, a tiny encryption algo-
rithm”. In: Fast Software Encryption: Second International Workshop Leuven,
Belgium, December 14—16, 1994 Proceedings. Ed. by Bart Preneel. Springer
Berlin Heidelberg, 1995, pp. 363-366 (cit. on p. 55).

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and Under-
standing Bugs in C Compilers”. In: Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
"11. ACM, 2011, pp. 283-294 (cit. on pp. xiii, 6).

111

Bibliography

[Ye+17]

[YGH17]

[Zin+17]

[Z518]

112

Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and Andrew W. Appel. “Verified Correctness and Security
of mbedTLS HMAC-DRBG”. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS *17. ACM, 2017,
pp- 2007-2020 (cit. on p. 29).

Yuval Yarom, Daniel Genkin, and Nadia Heninger. “CacheBleed: a tim-
ing attack on OpenSSL constant-time RSA”. In: Journal of Cryptographic
Engineering 7.2 (June 2017), pp. 99-112 (cit. on pp. ix, 3).

Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. “HACL*: A Verified Modern Cryptographic
Library”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS *17. ACM, 2017, pp. 17891806 (cit. on

p- 28).
M. Zhao and G. E. Suh. “FPGA-Based Remote Power Side-Channel Attacks”.

In: 2018 IEEE Symposium on Security and Privacy (SP). Vol. 00. 2018, pp. 839—
854. DOIL: 10.1109/SP.2018.00049 (cit. on pp. %, 5, 101).

UNIVERSITE

'MATHSTIC

UNIVERSITE DE €Y

RENNES 1

TrTrE: VERIFICATION D'IMPLEMENTATIONS
CONSTANT-TIME DANS UNE CHAINE DE COMPILATION

VERIFIEE

Mot clés :
constant-time, analyse statique

Resumé : Les attaques par canaux cachés
sont une forme d’attaque particulierement
dangereuse. Dans cette thése, nous nous in-
téressons au canal caché temporel. Un pro-
gramme est dit “constant-time” lorsqu’il
n’est pas vulnérable aux attaques par canal
caché temporel. Nous présentons dans
ce manuscrit deux méthodes reposant sur
I’analyse statique afin de s’assurer qu’un
programme est constant-time. Ces méth-

Vérification formelle, compilation, canaux cachés, Coq, CompCert, Verasco,

odes se placent dans le cadre de vérification
formelle afin d’obtenir le plus haut niveau
d’assurance possible en s’appuyant sur une
chaine de compilation vérifiée composée
du compilateur CompCert et de ’analyseur
statique Verasco. Nous proposons aussi
une méthode de preuve afin de s’assurer
qu’un compilateur préserve la propriété de
constant-time lors de la compilation d'un
programme.

TiTLE: VERIFYING CONSTANT-TIME
IMPLEMENTATIONS IN A VERIFIED COMPILATION

TOOLCHAIN

Keywords :
constant-time, static analysis

Abstract : Side-channel attacks are an es-
pecially dangerous form of attack. In this
thesis, we focus on the timing side-channel.
A program is said to be constant-time if it
is not vulnerable to timing attacks. We
present in this thesis two methods relying
on static analysis in order to ensure that a
program is constant-time. These methods

Formal verification, compilation, side-channels, Coq, CompCert, Verasco,

use formal verification in order to gain the
highest possible level of assurance by re-
lying on a verified compilation toolchain
made up of the CompCert compiler and the
Verasco static analyzer. We also propose a
proof methodology in order to ensure that
a compiler preserves constant-time secu-
rity during compilation.

