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Abstract  

 
 This contribution addresses the experimental proof of the relaxation coupling of the 7Li (I=3/2) 

longitudinal magnetization orders in the solid-state electrolyte Li10GeP2S12 (LGPS). This effect was 

theoretically described by Korb and Petit in 1988 but has not yet been shown experimentally. In a 2D-

T1/spin-alignment echo (SAE) experiment, the inverse Laplace transformation of the spectral 

component over two time dimensions revealed the asymmetric course of the spin-lattice relaxation 

following from the coupling of all longitudinal orders. These observations were supported by Multi-

quantum-filter experiments and by simulations of the 2D-T1/SAE experiment with a lithium spin 

system. Since the asymmetric relaxation effects are directly dependent on the velocities and degrees of 

freedom of ion motion they could be used esspecially in fast Li-ion conductors as a seperation tool for 

environments with different mobility processes. 
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1. Introduction 

 

Compared to liquid solutions in conventional Li-ion batteries, solid-state batteries use a solid material 

as the electrolyte and promise significant improvements in terms of safety and energy density, making 

them the preferred future energy storage devices in electric vehicles. A knowledge-based optimization 

of the solid electrolyte materials is quite important and requires a more comprehensive understanding 

of Li-ion conduction that considers dimensionality of motion, mobility between crystallites and 

different phases, as well as their distributions within the material.  

In rigid solids with quadrupolar nuclei, the thermal spin relaxation is mostly dominated by the 

quadrupolar interaction, since its magnitude of 106-108 s-1 is significantly stronger than dipolar and 

chemical shift anisotropy (CSA) interactions with 104-105 s-1 [1]. Furthermore, in a rigid solid with 

several crystallographic lattice sites of the same nucleus, a differently strong coupling occurs at each 

position and thus a differently fast return to thermal equilibrium. 

In solid-state ionic conductors, on the other hand, the quadrupolar nuclei move over several or all of 

these positions at a hopping rate which may exceed the quadrupolar coupling frequency. This also 

occurs in the case of lithium nuclei with a generally weak quadrupole interaction of max 106 s-1. 

Since in a rigid solid, in contrast to a liquid, the motion of the ions usually has less degrees of 

freedom, i.e. is anisotropic, the interactions that occur are not completely averaged out, but residual 

couplings remain. For the quadrupolar-induced spin-lattice relaxation (SLR) time 𝑇𝑇1, this results in a 

stronger frequency dependence, which means that all occurring longitudinal magnetization orders 

(zeeman, quadrupolar, octupolar etc.) are coupled with each other, as described theoretically by Petit 

et al. [2–4] for spin-1 and spin-3/2 and by, e.g., Koerblein et al. [5] for spin-2 systems. For a 

significant coupling of that kind the measured samples must fulfill the following conditions: 

• Residual quadrupolar coupling due to high ionic motion 

• Low-dimensional ionic motion 

However, in an experiment with a real sample, this effect could not yet be observed, which is largely 

due to the following points: 

• The occurring coupling constants result from superpositions of differences of the spectral 

density in the frequency range of the quadrupolar interactions, which means that the coupling 

is rather weak. 

• Several different 𝑇𝑇1 processes in the crystallite and the powder are superimposed, resulting in 

total in the superposition or averaging out of the coupling effect described above. 

In a previous manuscript, a two-dimensional (2D) longitudinal relaxation (T1)–spin alignment echo 

(2D-T1/SAE) correlation experiment was performed on the superionic conductor Li10GeP2S12 (LGPS) 

to differentiate between relaxation- and mobility-induced signal decays in the SAE distribution [6]. 



LGPS is one of the fastest Li-ion conductors with microscopic one-dimensional ion conduction in 

channels and macroscopic three-dimensional inter-channel ion conduction [7–9]. Furthermore, a 

pronounced quadrupolar powder pattern appears in the 7Li spectrum of LGPS, which can be explained 

by an incomplete determination of the quadrupolar interaction within the one-dimensional channels. 

Therefore, the material is an excellent candidate for the experimental proof of the coupling of the 

longitudinal orders by relaxation. 

The SAE-experiment itself makes it possible to quantify slow ionic motion of quadrupolar nuclei. The 

correlation time of ion motion with different electric field gradients (EFG) is measured, if the 

correlation time is shorter than the relaxation time constant. When motion is much faster than the 

inverse of the quadrupolar coupling constant, the quadrupolar interaction gets averaged. Thus the 

correlation time window for ionic motion in the SAE experiment can be measured in a range of 10-5 to 

101 s [10]. For the superionic conductor LGPS we will focus on observable motional processes 

measured with 2D-T1/SAE at room temperature (298 K).  

The obtained data has been analyzed with a 2D inverse Laplace transform (ILT) algorithm adapted for 

solid state materials [11]. The resulting 2D correlation time distributions showed multiple modes in 

the probability density that could be assigned to ions located in different environments within the 

LGPS powder sample. We found that within crystallites of LGPS, local EFG variations are averaged 

by a fast lithium hopping mechanism between different sites [6]. Only lithium hopping processes 

between crystallites or from the tetragonal to the orthorhombic phase are observable, as these lithium 

hopping processes fit into the correlation time window of the SAE experiment. For these kinds of 

motions, the SAE experiment delivers the probability of a lithium hop in particular. Further 

investigations of the spectral information available in the echo transient provided NMR spectra for 

each data point in the correlation map. 

The previously briefly presented 2D-T1/SAE experiment + inverse Laplace transformation evaluation 

could enable the observation of the coupling of the magnetization orders in the LGPS, since it 

provides the corresponding spectra for the 1T  / 1QT  / cτ  distribution and thus largely divides the 

superimposed SLR effects apart. Futhermore in the SAE part the experiment implicitly considers the 

evolution of the sole quadrupolar order, which is much larger in relation to the Zeeman order and thus 

also to the couplings to the other longitudinal magnetizations. 

Since the observation of the coupling of all longitudinal orders already implies special dynamic and 

structural properties of a material, the further investigation and quantification of this effect could 

provide good tools for material characterization, especially of battery materials. 

 

 

 



2. Theory 

2.1 2D-T1/SAE experiment description 

Figure 1 shows the NMR pulse sequence of the 2D-T1/SAE correlation experiment, which is 

conceptually an inversion recovery experiment followed by the Jeener–Broekaert [12] 

sequence used for SAE measurements. 

 

 

Figure 1: Pulse sequence of the 2D-T1/SAE correlation experiment. The delay time td and the mixing time tm are 

varied independently. The echo is recorded transiently for each iteration. Conceptually, the experiment 

represents an inversion recovery pulse sequence with the variable recovery time dt , using the Jeener–Broekaert 

three pulse sequence with variable mixing time mt  and constant evolution time pt  for detection. The figure is 

adapted from reference [6]. 

 

The detectable signal describes the decorrelation of the quadrupolar order induced by slow motions of 

the ions between different atomic sites [13–15] and evolves according to 
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S  is the detectable signal , dt is the variable inversion recovery delay time, pt is the evolution time 

to build-up quadrupolar order, mt  is the variable mixing time, Qω  is the quadrupolar precession 

frequency, 1 90β = ° , 32 45β β= = °  are pulse lengths and 1T is the spin-lattice relaxation time. 

 

 



In the case of uncorrelated translational motion, the echo decay can be expressed as 

 ( ) exp( )m

c
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where the inverse correlation time 1
cτ
−  describes the ionic jump rate between environments with 

different EFGs [6]. In addition to slow atomic motions, the SAE decay is also affected by longitudinal 

relaxation, which sets an upper time boundary for the observation of an echo decay caused by atomic 

motions. A deeper discussion of the relevant time scales for specific cases in the 2D-T1/SAE 

experiment can be found in reference [6]. 

  

2.2 Relaxation Coupling of longitudinal orders 

It was shown by Petit et al. [2,16,17] that for any time independent observable Q  a generalized 

kinetic equation of the form  
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can be derived , with a defined relaxation rate matrix element expressed as follows  
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ΛC  is the interaction coupling constant for any Interaction Λ . Λ
l mF −  and Λ

lmA  are spherical tensor 

with rank l  and coherence order m , describing the spatial and spin interactions, respectively. p
lmω  are 

the spin transition frequencies, where index p  separates transitions with equal rank and coherence 

order but different frequencies. '
'

pp
ll mΩ  are conserved low-frequency contributions coming from the 

perturbation expansion to the static Hamiltonian. The spectral densities j , k  have the following 

definitions 
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is referred to as reduced correlation function. 

The above described transformation assumes that the individual spin operators in Q  form a complete 

orthogonal basis [18–23]. Since the Cartesian spin operators xI , yI , zI  only form such a basis for 

systems with uncoupled spin-1/2 nuclei, an extended basis must be generated for systems with 1
2

I > . 

One possibility therefore is the so-called fictitious spin-1/2 operator formalism introduced by Vega 

[24]. In the latter the basis operators consist of ( )4 1I I +  spin operators cd
rI , where , ,r x y z=  and 

the integer indices { }1, , 2 1c d I< ∈ … +  stand for the Zeeman Hamiltonian eigenstates 

{ }, 1, ,m I I I∈ − … − . 

 

2.2.1 The quadrupolar T1-relaxation mechanism for 3
2

=I  

Without a residual time averaged interaction 

In the case of a completely time averaged quadrupolar interaction the time independent Hamiltonian 

0H  is expressed as  

 0 0 ,  0Z zH H I Hω= = =   (8) 

and the time dependent fluctuating term ( )1H t  is written as follows 
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The expressions for the spatial spherical tensors Λ
l mF −  and spin spherical tensors Λ

lmA  with rank l  and 

coherence order m , as well as their commutator relationships are well documented in the literature 

[22,23]. Since relaxation is considered in the laboratory frame ( , ,x y z ), the spatial spherical tensors 

must be correspondingly transformed into this representation by using the Wigner rotation matrices 

[25,26] as described below 
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where '
mF  is the component in the principal axis system ( , ,X Y Z ) of the electric field gradient, θ , φ  

are the spherical coordinates describing the Z-axis of the EFG in the laboratory frame and α  

describes the rotation angle around Z  bringing axis X  into the ,z Z -plane. 

The spin spherical tensors are expressed in the fictitious spin-1/2 formalism by first assigning the 

2 1I +  indices , 1, 2,3, 4c d =  to the spin states 3 1 1 3, , ,
2 2 2 2

m = − −  respectively. In the case of 

longitudinal relaxation ( r z= ) the operators ( )14 23 12 341, ,
2z z z zI I I I− , which fulfill the orthogonality 

relation, are inserted into equation 4, which then can be transformed into the following set of kinetic 

equations. 
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,
1

1
cd efT

are the individual spin lattice relaxation rates for the time evolutions of the cd
zI  operators. 

The notation ,cd ef  specifies the coupling behavior of population differences between the Zeeman 

states , , ,c d e f . 

 

With a residual time averaged interaction 

If the system is under the influence of a residual time averaged quadrupolar interaction the static 

Hamiltonian in equation 8 has to be redefined and is expanded as follows 

 0  Z QH H H= +   (12) 

with the perturbation Hamiltonian defined as follows 

 ( )12 34 ω 0Q Q z zH I I= − ≠   (13) 

These conditions lead to a new set of kinetic equations  
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where all components of the longitudinal magnetizations are coupled with each other through the 

relaxation process itself. If the dynamical frequency shift is neglected each relaxation matrix element 

in equation 14 is in principle composed of a sum of reduced spectral densities  
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T
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with corresponding pre-factors , , ,a b c d  which can be determined from the trace operation in 

equation 4. The pre-factors for the case with a residual time averaged quadrupolar interaction are listed 

in table 1 [4].  

Table 1: Relaxation matrix element pre-factors for the quadrupolar spin lattice relaxation with a residual time 

averaged interaction 

cd,ef a b c d 

14,14-23,23 1 1 1 1 
14,23-23,14 -1 -1 1 1 

14,12-34 -1 1 -1 1 
23,12-34 1 -1 -1 1 
12-34,14 -2 2 -2 2 
12-34,23 2 -2 -2 2 

12-34,12-34 2 2 2 2 
 

It can be seen from equation 15 that an effective coupling between the quadrupolar and the Zeeman 

and octupolar order, respectively, only exists if the spectral densities vary strongly at the different 

quadrupolar transition frequencies. 

The eigenvalues and corresponding eigenstates in equations 11 and 14 are obtained by first 

diagonalizing the relaxation matrices to solve for the eigenvalues and afterwards calculating the 

eigenstates [27,28].  

To illustrate the linear system of equations with irreducible spherical tensor operators, one finds the 

necessary relationships between the fictitious spin-1/2 formalism and the spherical tensor formalism in 

table ST1 in the supplementary material [29–31].   

 



2.3 Multi-quantum-filter (MQF) experiments 

Under a radiofrequency (RF)-pulse with flip angle β  and phase φ  a spherical tensor operator 

transforms as follows  
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with m′  being the new coherence order and  Δm m m= ′ −  the difference between the orders. The 

Wigner rotation matrix elements ( ) ( ),
l

m mD β′ .  describe the transfer amplitudes between ,l mT ′  and  

,l mT . 

An important feature of equation 16 is that only the coherence order m can be changed by a RF pulse 

and not the rank l  [32].  

Figure 2 shows a pulse sequence for a multiple quantum filtered inversion-recovery experiment, which 

can be used to measure higher ranked longitudinal relaxation functions [33–35]. In the case of spin-3/2 

nuclei this is usually the relaxation of octupolar order ( ) ( )0
31f t . Nevertheless, it is also possible to 

determine the relaxation function ( ) ( )0
21f t  if 20T  passes through a value during dt  that is significantly 

different from zero. With a suitable choice of pulse lengths and phase cycle, the course of the desired 

relaxation function can be measured via the coherence filter. The relaxation function ( ) ( )0
31f t  can be 

determined either via the coherences 3, 2T   with the aid of a double quantum filter (DQF) or via the 

coherences 3, 3T   with the aid of a triple quantum filter (TQF). The resulting observable signals can be 

expressed as follows: 
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cτ  is the correlation time of the quadrupolar fluctuations, which are responsible for relaxation. The 

relaxation function ( ) ( )0
21f t , however, can only be measured via 2, 2T   coherence with double quantum 

filtration. Consequently, the following relationship arises for the observable component of the density 

matrix. 
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The pulse parameters for 3
DQFσ , 3

TQFσ , 2
DQFσ  required for the respective maximum filter efficiency 

are listed in Table ST2 in the supplement. 

 

 

 
Figure 2: Pulse sequence of the MQF inversion-recovery experiment with variable relaxation delay time td. For 

triple quantum filtration of the longitudinal order 30T  the pulses 1β  and 2β  have a flip angle of 1 2 90β β= = °  

and 1β  is cycled through a 6-step phase cycle of 1 30 ,  90 ,1 50 ,  210 ,  270 ,  330ϕ = ° ° ° ° ° ° . For double 

quantum filtration of 𝑇𝑇30, the pulse lengths are 1 90β = ° .   and  2 54.7β = °   and 1β  is cycled through a 4-step 

phase cycle of 1 0 ,  90 ,180 ,  270ϕ = ° ° ° ° . For double quantum filtration of 20T  the pulse lengths are 

1 2 54.7β β= = ° , where 1β  is cycled through a 4-step phase cycle of 1 0 ,  90 ,180 ,  270ϕ = ° ° ° ° . The 

receiver phase recϕ  is cycled through 0°  and 180°  at all three experiments. 

 

 

 

 

 

 

 

 

 

 

 



3. Experimental details 

 

3.1 Preparation of LGPS 

The synthesis of LGPS was performed as described in our previous publication [6]. It was found by 

Rietveld Refinement of X-Ray diffraction data, in agreement with 31P NMR, that the powder consists 

of a mixture of 79 % tetragonal and 21 % orthorhombic LGPS phases.  

 

3.2 Pulse experiments and data processing 

The MQF experiments were performed on a Bruker BioSpin superconducting Fourier-Transform 

NMR spectrometer AVANCE IIIHD 400 WB (9.397 T) optimized for solid state NMR applications. 

For the 7Li-NMR experiments a Bruker DIFF50 probe head with integrated temperature control was 

used. The pulse program of the MQF experiment (figure 2) was implemented on the Bruker software 

Topspin (version 3.2.5). The delay times dt  were logarithmically scaled from 10–5 s to 101 s with 16 

increment steps for dt  for the TQF experiment and from 10–4s to 101 s for the DQF experiments.  The 

radio frequency and receiver phases as well as the pulse flip angles for the individual experiments are 

shown in table ST2 in the supplement.  

For the 3D-inversion of the 2D-T1/SAE data the preprocessed spectra [6] were divided into 105 equal-

width frequency points and then again split into 7 similar sized parts. Subsequently, starting with the 

two edge parts of the spectra, the 3D inversion was performed, using a unity kernel in the non-inverted 

dimension [36]. The next step was to attach the last two points of the previously inverted sections to 

the following sections, which were not yet inverted, in order to achieve the effect of a moving average. 

At the final inversion, the last two points of the previously inverted spectral parts were appended to the 

ends of the center section. Afterwards the spectral subsets were reassembled and the obtained 

spectrally resolved correlation maps were summed up along the spectral dimension to receive the 

aggregate correlation map. 

 

3.3 Theoretical simulations  

The simulations of the relaxation dynamics were performed with the open-source software library 

SPINACH [37], which uses MATLAB as programming environment. The calculations are intended to 

give a better understanding of the effects of longitudinal relaxation coupling on the results of the 2D- 

T1/SAE-experiment. The simulations were implemented for a single 7Li nucleus at 1600 spherical 

distributed orientations of the quadrupolar interaction to mimic a powder. Furthermore, the relaxation 

matrix was manipulated in such a way that all longitudinal orders will couple during the relaxation 

delays in the experiment. The temporal evolutions of the individual orders are dependent on the 

elements of the relaxation matrix and therefore, in a real system, on the material properties of the 

sample. Subsequently, the expirations of the relaxation paths as well as the resulting spin alignment 



echo spectra were simulated for the varying delays dt  and mt , once for a completely coupled 

system and once for a not completely coupled system. The relaxation matrix elements used for 

simulations can be found in table ST3. 

 

 

4. Results and discussion 

 

4.1 3D-ILT  

The c 1Tτ −  probability density as well as the spectra in figure 3a-d were obtained from the piecewise 

3D inversion of the experimental spectra described in section 3.2. Such a 3D analysis improves the 

resolution along the inverted dimensions because the regularization used implies discrete smoothing 

norms, which improve the reconstruction of the signal [38]. It has the advantage compared to a 

smoothing after multiple individual 2D inversions that the sensitivity gain obtained from the 

smoothing benefits the resolution of the inverted data. The distribution is separated broadly into four 

regions labeled A, B, C and D in figure 3. The distribution maximum, labeled B, results from spins 

contributing to a signal with c 1QTτ =  where no direct information about Li ion movement can be 

obtained, since lithium jumps of most spins in LGPS should take place during a time scale 

insignificant compared to the time scale given by the inverse of the quadrupolar coupling experienced 

by the Li-ions. Areas A and C which are significantly below the c 1QTτ =  line mark spins whose echo 

decay significantly faster than the quadrupolar relaxation time constant. In other words, the decay is 

mobility induced and the correlation times should represent a direct measure of the hopping between 

regions with different, potentially averaged, EFG values. Region A represents spins that jump across 

crystallite boundaries within the tetragonal phase and Region C represents the spins of the 

orthorhombic phase. The origin of the two negative regions D` and D`` is not fully understood. 

Possibly the negative features are caused by Li-ion exchange between the two LGPS phases or they 

are a further consequence of the relaxation coupled longitudinal magnetizations for which there are 

indications from the simulations shown later. A more detailed description of the selection of regions 

and their assignment to specific processes can be found in reference [6]. 

Some of the spectra observable in figure 3 have interesting properties such as a systematic asymmetry 

of the quadrupolar satellites (figure 3b,c) or a central dispersive component (figure 3a). It appears that 

there is a significantly different longitudinal relaxation at the quadrupolar transitions, which is very 

unusual for small quadrupolar splittings as measured in LGPS.  



 

Figure 3: a-c: 2D-T1/SAE relaxation spectra, showing systematic asymmetries (b, c) and dispersive components 

(a). The positions of the spectra in the correlation map are indicated by the three colored bars, with the red bar 

representing the spectra in a, the black bar the spectra in b and the blue bar the spectra in c. d: 2D-T1/SAE 

correlation map of LGPS, recorded at room temperature. Regions of different longitudinal relaxation (T1) and Li-

migration (τc) behavior of LGPS are labeled A – D. The parts in the distribution encircled by dashed ellipsoids 

have negativ signs. The yellow solid line marks data points with c 1Tτ = , and the green solid line marks 

1Q 1 2T T= .  

Nonetheless, other processes would also be conceivable as the cause of the observations. In particular, 

quadrupolar/dipolar and quadrupolar/paramagnetic cross-correlations are mentioned here, which are 

discussed in the following sections.  

Homonuclear dipole-dipole interactions may, in principle, cause the observable spectral asymmetries 

in the LGPS. It has been shown [13,39] that quadrupolar/dipolar cross-correlations in the SAE 

experiment give rise to central components, which usually appear as a single broadened central line 

due to the small frequency splitting between them. Furthermore, it has been shown that with 

sufficiently long evolution time the central component can be dispersive, but at short pt it is in-phase 

with the quadrupolar satellites. Since the dipole-dipole interactions are in most cases much weaker 



than the quadrupolar interaction, short pt  result in very low dipolar order [15,40]. Nevertheless, 

especially in a powder sample a clearly visible central component can occur, which is related to the 

fact that the dipole-dipole components of all orientations sum up in the center of the spectrum. This 

can also be observed in the LGPS spectra. However, the central component is absorptive due to the 

very short evolution time. Therefore, quadrupolar/dipolar cross-correlations are largely excluded in 

causing the asymmetric relaxation spectra. 

Another possible cause of the observed effects could be quadrupolar/paramagnetic cross-correlations. 

Jershow et al. have shown [41] that the interference between the quadrupolar and paramagnetic 

relaxation mechanisms can produce forbidden magnetization modes of quadrupolar nuclei, leading to 

differential line broadening effects that would be reflected as visible asymmetries in the spectra. 

Because of this, the sample was examined for the presence of possible paramagnetic centers. In fact, 

paramagnetic centers were found, but in a vanishingly low concentration, which is in the order of 10-5 

mol, thus to low to cause the observed effects in the relaxation spectra of LGPS. 

By the way the few paramagnetic centers are likely to occur in the Germanium-Sulfur network of the 

LGPS structure. EPR spectra from studies on GexS100-x salts [42–44] show great similarities with the 

LGPS-EPR spectrum (figure SF2). 

Since the asymmetry of the signals correlates with the anisotropy of the ionic mobility [2], we will 

consider the degree of asymmetries in the respective regions A to D. The degree of asymmetry (DoA) 

is defined as the intensity difference of the red-shifted inner Satellite ( redI ) minus the blue-shifted 

inner satellite ( blueI ), normed by the sum of their absolute intensities:  

 /{ ( ) ( )}red blue red blueDoA I I abs I abs I= − +  (20) 

 

 

 



 

Figure 4: Intensity differences map of the inner quadrupolar satellites of the spectra from figure 3. The regions 

and the c 1Tτ = ,  1Q 1 2T T=  lines from figure 3d serve as a guide to the eye. 

Figure 4 shows a map of the absolute intensity differences of the inner quadrupolar satellites of the 

spectra from figure 3, as well as the labeled regions A – D. The intensity differences are a first simple 

measure to estimate the relaxation asymmetries of the different regions. It can be observed that the 

asymmetries are found primarily within regions B and D. Furthermore, an oscillation can be observed 

along 1T , but not along cτ  (exceptions are regions at long 1T , where cτ  is 1T  limited). These 

oscillations result from the staggered onset of the SLR at the different frequencies of the satellites. The 

extreme case here would be that the red-shifted satellite is already completely relaxed before the blue-

shifted satellite even begins to relax. The result would be a single sign change from + to -, with an 

intermediate zero-intensity range depending on the relaxation rate difference. The oscillations also 

confirm that the spectral asymmetries result from a 1T  effect. 

Region A in figure 4 has nearly zero intensity, i.e. almost symmetrical relaxation spectra. Since this 

region is attributed to the exchange of Li-ions between adjacent crystallites of different orientations 

and to the hopping in the less crystalline grain boundaries, it can be assumed that the relaxation-related 

asymmetries could be mostly averaged out here. In region C, significant areas of asymmetry are 

located mainly in the border regions between areas B and D``, with the positive regions having 



significantly higher intensity and significantly shorter correlation times than the negative regions. 

Furthermore, both positive and negative regions are parts of larger regions of the same sign extending 

beyond the boundaries of B and C. Thus, the asymmetric regions are in the transitional phase between 

tetragonal and orthorhombic LGPS and are additionally in the mobility-sensitive region of the SAE 

experiment, which suggests that they describe the exchange of lithium spins between the two LGPS 

phases. This has the consequence that the predominantly positive asymmetries found in region C at the 

B boundary have been transported from B into C and probably are not due to an intrinsic relaxation 

coupling in the orthorhombic LGPS phase. Another indication of this assumption is the lack of a sign 

change within C, which would be expected in the case of an independently occurring strong relaxation 

coupling effect in the orthorhombic phase. In general, the sign provides the information which satellite 

relaxes faster. If the sign has a positive value, the red-shifted satellite relaxes faster, if the sign has a 

negative value, the blue-shifted satellite relaxes more effectively. Since quadrupolar spin-lattice 

relaxation is particularly effective at the single quantum transitions 1 0( )QJ ω ω±  as well as at the 

double quantum transitions 2 0(2 2 )QJ ω ω± , the sign of asymmetry may change several times with 

varying temperature or varying external magnetic field. In addition to the C - B boundary, in region C 

there is another weak positive region at long 1T . These areas are likely due to the purely intrinsic Li-

ion mobility in the orthorhombic phase. Detailed studies on the determination of anisotropic lithium 

movements are not found in the literature for orthorhombic LGPS, but for the structurally identical β-

Li3PS4. NMR relaxometry studies indicate an at least locally low-dimensional lithium ion conduction 

mechanism in β-Li3PS4 [45,46]. More specifically, this means that there is 1D diffusion along short-

range winding channels and longer-range 3D inter-channel diffusion. As for tetragonal LGPS a similar 

mechanism is predicted, one can assume that the coupling of the longitudinal orders should also occur 

in the orthorombic LGPS. Since orthorhombic LGPS is a slightly slower ionic conductor than the 

tetragonal LGPS, it can be assumed that within the orthorhombic structure the longitudinal relaxation 

coupling only becomes effective at higher temperatures. 

The above described results could lead to the development of a potential new NMR investigation 

method that uses the coupling behavior of the longitudinal orders to provide detailed information 

about ion motion in solids. For this purpose, further investigations, such as spectrally resolved field 

cycling experiments on single crystals has to be carried out for a better understanding. 

 

 

4.2 Multiquantum-filter experiments 

Before the experiments were performed on a spectrometer, the phase cycles were tested, by simulating 

the experiments in Spinach. The simulations show that the experiments work very well, and the 

respectively expected time courses of the relaxation orders are obtained. The parameters used for these 



simulations as well as the time evolutions of the relaxation orders can be found in the supplementary 

material. 

 

 

Figure 5: Evolution of the triple quantum filtered longitudinal order 30T  (violet) and the double quantum filtered 

longitudinal orders 30T   (green) and 20T  (blue) during td in the MQF-inversion recovery experiment. 

In figure 5 the evolution of the longitudinal relaxation orders during an inversion recovery experiment 

is displayed. The most important observation and at the same time the proof of the coupling of the 

three longitudinal orders by relaxation is the significant occurrence of quadrupolar order 20T , which is 

weaker and of opposite intensity compared to the octupolar order 30T . Furthermore, the assembly and 

disassembly of 20T  does not occur temporally equivalent to the course of 30T  but is slightly shifted in 

time to longer relaxation delays, whereas the evolutions of the 30T  orders are showing equivalent 

courses for double quantum filtration and triple quantum filtration. From these observations it can be 

concluded that the coupling between 30T  and 20T  is stronger than that between 20T  and 10T . In addition, 

it can be observed that the left flank of the quadrupolar order is not adequately symmetrical with the 

right flank, but it seems to have been somewhat depressed compared to the courses of 30T . An 



explanation for this could be the weak formation of 3 2T   coherences during the time required by the 

spectrometer equipment to switch the phase between pulses 1β  and 2β .  

 

 

4.3 Simulations 

Figure 6 shows the time evolutions of the longitudinal orders for simulation S1 with components '
10T , 

'
20T , '

30T  (solid lines) and simulation S2 with ''
10T , ''

20T , ''
30T  (dashed lines) once during the spin lattice 

relaxation time delay dt  (figure 6a) and once during the spin alignment echo mixing time delay dt  

for the shortest dt  time (figure 6d). S1 characterizes the system with relaxation coupling between '
10T  

and '
30T . S2 characterizes the system with relaxation coupling between all longitudinal orders ''

10T , ''
20T , 

''
30T . For the various components, the following picture appears during dt . For S1, after inversion, '

10T  

returns to thermal equilibrium. '
30T  follows a positive bell-shaped curve with a maximum around the 

inflection point of '
10T . The building up flank of the '

30T  evolution is slightly longer than its falling 

flank. For S2 the components behave differently. When comparing '
10T  and ''

10T  it is noticeable that, the 

deviation from each other is rather small.  The curves differ only in the area of their inflection points, 

where ''
10T  is minimally shifted to longer times. Comparing '

30T  to ''
30T  reveals that the curves are similar 

with a lower maximum intensity for ''
30T  than for '

30T . Both components ''
20T  and ''

30T  build up almost 

uniformly in opposite directions, ''
20T  to negative values and ''

30T  to positive values. Both components 

have bell-shaped time courses, which, however, differ a little from each other. The ''
30T  evolution 

reaches its maximum later than ''
20T  and has in general a more intense course. Furthermore, it turns out 

that after reaching its maximum ''
20T  first decays steeply to zero, overshoots the equilibrium, changes 

sign and returns to equilibrium again. ''
30T  remains positive all the time.  

During mt  (figure 6d), the same picture appears at the beginning for both simulations; '
20T , ''

20T  are the 

only non-zero orders, following the theory for the Jeener-Broekaert-experiment. At S1 this also 

remains the case and '
20T  decays to zero with its auto-relaxation rate. In simulation S2 ''

20T  follows a 

more stretched course, compared to '
20T . For the two other longitudinal orders ''

10T  and ''
30T  the 

following picture emerges during tm. An initial build-up of ''
10T  and ''

30T  quickly occurs, having both a 



positive sign. The courses of ''
10T  and ''

30T  are bell-shaped. ''
30T  shows a much higher intensity than ''

10T  

and stays positive till it reaches its equilibrium value at zero intensity. At long tm, another observation 

for ''
10T  similar to the course of ''

20T  in figure 6a can be made. Before ''
10T  reaches its final equilibrium 

value of zero, it undershoots the equilibrium state, changes sign, and then returns to zero with opposite 

slope.  

The green box (figure 6b) shows the courses of the simulated detectable echo maxima along tm for two 

selected td, each for S1 (solid lines) and S2 (dashed lines). At (1)dt  and (17)dt , similar curves for the 

S1 and S2 echo traces are observable for short tm. As the signals start to decay S1 shows a faster signal 

decay than S2. These longer echoe decays of S2 may originate on the one hand from the lower 

autorelaxation rates of ''
10T  and ''

30T  compared to ''
20T  and on the other hand from the superposition 

feedback of ''
10T  and ''

30T  to ''
20T  during tm. This superposition is made possible in the first place by the 

couplings of the longitudinal orders. In addition to that the Jeener-Broekaert experiment is aligned by 

pulse phases and lengths to maximize the quadrupolar order 20T  with simultaneous minimization of 10T  

and 30T . This means that the measurable signal resulting from ''
10T  and ''

30T  arising from ''
20T  during tm is 

weakened by the pulse sequence, whereas conversely measurable signal from ''
20T  arising from ''

10T  and 

''
30T  is amplified. This fact may lead to a sudden additional significant extension of the measurable 

echo decays in S2 compared to S1. This additional extension cannot happen in S1 as '
10T  and '

30T  are 

always zero during mixing time in figure 6d. Performing a Laplace inversion along tm with the results 

of S2 may result in negative probability densities at progressed mixing times. Therefore, the coupling 

of all longitudinal magnetizations could possibly cause the negative regions D' and D'' in the 

correlation map of figure 3d obtained for the LGPS powder sample. 



 

Figure 6: a,d: Time evolution of the longitudinal orders for simulation S1 ( '
10T , '

20T , '
30T , solid lines) and 

simulation S2 ( ''
10T , ''

20T , ''
30T , dashed lines) once during the spin lattice relaxation time delay td (a) and once 

during the spin alignment echo mixing time delay tm (d) for the shortest td time. b: Course of the simulated 

detectable echo maxima along tm for two selected td, each for S1 ( '
1, 1T − , (1)dt  and '

1, 1T − , (17)dt , dashed lines) 

and S2 ( ''
1, 1T − , (1)dt  and ''

1, 1T − , (17)dt , solid lines). c: Pulse sequence of the 2D-T1/SAE correlation experiment.  



 
Figure 7: Observable spectra resulting from the T1/SAE -simulations with Spinach; S1 a, S1 b: Without 

relaxation coupling of the even and odd longitudinal orders; S2 c, S2 d: With relaxation coupling of the even 

and odd longitudinal orders. The green and pinked colored spectra in S1 a and S1 c are displayed in frontview in 

the subplots S1 b and S2 d.   

A comparison of the spectra from simulations S1 and S2 along mt  in figure 7 shows that the satellites 

in S2 become asymmetric and that, in addition, a weak dispersive central component occurs. This 

pattern is similar to the observations made in the real experiment with LGPS and is therefore another 

indication of the coupling of all longitudinal components. The occurrence and phase shift of the 

central component can be explained by the mixture of ''
11T , ''

21T , ''
31T , which all evolve back into a 

measurable signal during the echo time after the fourth pulse. ''
11T  and ''

31T  evolve in this case with a 

90° phase shift compared to ''
21T . Furthermore, an additional small phase error by ''

31T  should occur, 

since it does not return to observable magnetization at the same time as ''
21T  does, and thus leads to a 

slight shift of the echo maximum. 

 

 

 

 

 

 

 

 

 

 



5. Conclusion 

 

In this article the experimental proof of the relaxation coupling of all longitudinal magnetization 

orders in a spin-3/2 system was presented for the first time. The material investigated here was the Li-

ion conductor LGPS, which meets the criteria previously defined by Petit and Korb in particular. 

Simulations of the relaxation dynamics in a fully coupled and not fully coupled system showed 

spectral features such as a central dispersive component and / or relaxation asymmetries of the 

quadrupolar satellites, which were also observed in the measured data of the LGPS powder sample. 

Subsequently, a DQF inversion-recovery experiment proved that the quadrupole order is coupled by 

spin-lattice relaxation with the octupolar order and the zeeman order. Since this coupling is directly 

dependent on the velocities and degrees of freedom of ion motion, their further investigation, 

particularly in the case of future battery materials could provide important information and that 

compared to other methods of investigation such as neutron scattering with significantly less technical 

effort. 
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