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We analyze the N ¼ 1 supersymmetric Wess-Zumino model dimensionally reduced to the N ¼ 2

supersymmetric model in three Euclidean dimensions. As in the original model in four dimensions and the
N ¼ ð2; 2Þ model in two dimensions the superpotential is not renormalized. This property puts severe
constraints on the nontrivial fixed-point solutions, which are studied in detail. We admit a field-dependent
wave function renormalization that in a geometric language relates to a Kähler metric. The Kähler metric is
not protected by supersymmetry and we calculate its explicit form at the fixed point. In addition we
determine the exact quantum dimension of the chiral superfield and several critical exponents of interest,
including the correction-to-scaling exponent ω, within the functional renormalization group approach.
We compare the results obtained at different levels of truncation, exploring also a momentum-dependent
wave function renormalization. Finally we briefly describe a tower of multicritical models in continuous
dimensions.
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I. INTRODUCTION

In the challenge of understanding strongly interacting
quantum field theories, progress has often been associated
with the special role played by symmetries. Among them,
conformal symmetry and supersymmetry have been of
particular relevance in recent developments in quantum
field theory and particle physics. This line of progress has
been a perfect embodiment of the principle that under-
standing goes along with simplicity. Yet, complexity is
ubiquitous and the development of general tools to address
it is also an important field of research. Thus, bringing
together powerful symmetries and general mathematical
methods can be fruitful—the reliability of the latter can be
tested against the exact constraints imposed by the former.
Remarkably, this kind of analysis is still missing in

several simple arenas offered by quantum field theories.
Such is the N ¼ 1 four-dimensional Wess-Zumino (WZ)
model [1], and its dimensional reduction to the N ¼ 2
model in three dimensions, whose construction we recall
in Sec. II. In the present work, we address the study of

nonperturbative properties of such models, in particular of
the scale-invariant isolated theories which appear in their
analytic continuation to continuous dimensions between
4 and 2. Among these critical WZ models with four super-
charges, we dedicate most of our analysis to the three-
dimensional case [2], for which we construct a truncated
effective action and provide estimates of unprotected critical
exponents, as detailed in Secs. V–VII. Nonetheless, we also
support, for the first time, the existence of an infinite tower of
multicritical models between three and two dimensions, by
performing a truncated ϵ expansion around the correspond-
ing upper critical dimensions,which is described inSec.VIII.
Both in the three-dimensional as well as in the lower-

dimensional multicritical case, we especially focus on the
determination of the first correction-to-scaling exponent ω,
which is the less irrelevant critical exponent not constrained
by supersymmetry. Our results are summarized in Sec. IX
where, for the three-dimensional case, we compare them to
estimates from the conformal bootstrap and the (4 − ϵ)
expansion, finding good agreement, with discrepancies of
4%–9% among the three determinations. Thus, we believe
that this work crucially contributes to improve the state-of-
the-art picture of critical WZ models.
These results are obtained by means of the functional

renormalization group (FRG), a general method that can be
applied to any strongly interacting quantum field theory in a
continuous number of dimensions, whose adaptation to the
present WZ models is discussed in Sec. III within the three-
dimensional parametrization. Since its very birth [3,4] this
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method has been extensively applied to critical phenomena,
especially in three-dimensional Euclidean spacetime, both
for spin-zero and spin-one-half field theories. Some illus-
trative examples and a thorough discussion of themethod can
be found in several reviews [5–7].
The relevance of WZ models with four supercharges in

different branches of physics is well established. The four-
dimensional model has been a seminal example of a
supersymmetric quantum field theory and heavily influ-
enced particle phenomenology. The three-dimensional case
has received much attention recently, as a candidate for the
emergence of supersymmetry in the long-distance physics
of condensed matter systems [8]. Concerning such systems,
several specific proposals were made [9–12]. This is a
particular example of how the three-dimensional model and
its further reduction to two dimensions have found surpris-
ing applications to statistical systems, mainly thanks to
the phenomenon of universality. As a further example,
two-dimensional minimal conformal models with N ¼
ð2; 2Þ supersymmetry [13–15] have been related to two-
dimensional self-dual critical points of ZN-symmetric
statistical systems, and are benchmark examples of exactly
solvable strongly interacting quantum field theories. The
relation between these field theories and statistical models
has even been extended away from criticality [16,17].
Apart for the two-dimensional case, where one can rely

on the infinite-dimensional superconformal symmetry,
nonperturbative insights on these models are often based
on another remarkable property which is only tied to
supersymmetry and thus present also in higher dimensions:
the nonrenormalization of the superpotential. This has been
discovered by means of perturbation theory in four dimen-
sions [1,18,19], and later on it has been further analyzed
nonperturbatively by holomorphy arguments [20] and by
algebraic methods [21]. The nonrenormalization theorem
has been used, for instance, to obtain a generic classifica-
tion of N ¼ 2 superconformal models in two dimensions
[22], through the language of Landau-Ginzburg effective
Lagrangians and their renormalization group (RG) flow.
The latter has also been addressed in the framework of
conformal perturbation theory in Ref. [23].
The nonrenormalization of the superpotential plays a

crucial role also in our analysis. We observe it in Sec. III
within the FRG framework, while in Sec. IV we show how it
imposes severe constraints on theRG fixedpoints in arbitrary
dimensions, including the exact determination of the quan-
tum dimension of the chiral superfield and several critical
exponents. Such constraints have already been discussed
through holomorphy in the three-dimensional case [2], and
the only novel aspect of our discussion is their extension to
the series of multicritical models in continuous dimensions.
Despite these rigorous restrictions, the nonrenormaliza-

tion theorem cannot answer the question whether any of
these scale-invariant theories are fully self-consistent.
Supporting evidence for the existence of nontrivial

scale-invariant WZ models with four supercharges below
four dimensions comes from several sources, aside from the
present analysis. One is the comparison with the non-
supersymmetric counterpart of this field theory, the boson-
ized Nambu–Jona-Lasinio model [the Gross-Neveu model
with U(1) chiral symmetry] which can be studied pertur-
batively by means of ϵ and 1=Nf expansions [24–27]. The
existence of a continuous phase transition in this model
has also been confirmed by extensive Monte Carlo studies
[28–35]. Under the assumption that the critical point
survives in the Nf → 1=2 limit, i.e., with one Majorana
fermion in four dimensions or one Dirac fermion in three
dimensions, the resulting critical field theory is expected to
enjoy supersymmetry, thus representing a nontrivialN ¼ 2
scale-invariant WZ model in three dimensions [36].
Also field theoretic analyses of emergent supersymmetry

[8,37–42] have brought constructive evidence about the
existence of scale-invariant three-dimensional models with
N ¼ 1 andN ¼ 2 supersymmetry, but for the latter model
only through a perturbative ϵ expansion about four dimen-
sions. Since the nontrivial RG fixed point is at strong
coupling in three dimensions, nonperturbative techniques
are needed to investigate its properties. Among them, the
conformal bootstrap has put bounds on several quantities of
interest, supporting the conjecture that the fixed point exists
between four and two dimensions and enjoys supercon-
formal symmetry [43,44]. In addition, exact determinations
of the sphere free energy [45] and of the coefficient CT
entering the stress-tensor two-point function [38,46–48]
have been provided through localization.
Clearly, other studies with different tools would be

helpful to get a more comprehensive picture of scale-
invariant WZ models with four supercharges. This is the
goal of the present work, which provides constructive
evidence in favor of the field theoretic consistency of these
models, within the FRG framework for the first time.
Quantitative estimates of their properties are provided at
several levels of refinement. Section V contains the
simplest computation, that only accounts for the running
of the wave function renormalization. Sections VI and VIII
include the RG flow of a field-dependent Kähler metric,
while Sec. VII explores the effect of addressing the
momentum dependence of the Kähler metric. We conclude
in Sec. IX with a summary of our results and an outlook.
Subsidiary information is provided in the Appendices.

II. THE WESS-ZUMINO MODEL IN FOUR
AND THREE DIMENSIONS

Our starting point is the WZ model

L4¼∂μϕ∂μϕ†þ i
2
ψ̄∂ψþff†

þ
�∂WðϕÞ

∂ϕ f−
1

4
ψ̄ð1−Γ5Þ

∂2WðϕÞ
∂ϕ2

ψþH:c:

�
ð1Þ
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in four-dimensional Minkowski spacetime. W denotes an
arbitrary holomorphic superpotential of the form

WðϕÞ ¼
X∞
n¼1

Cn

n
ϕn: ð2Þ

The fields ϕ and f are complex scalars whereas ψ is a
Majorana spinor.
Dimensional reduction allows to “downscale” L4 to

three Euclidean dimensions through compactification of
the time direction. Technically, the time dependence of the
fields is abandoned and their canonical dimensions are
adjusted to ensure that a three-dimensional integration
over (1) yields a dimensionless result. The obtained
expression can be understood as a Lagrangian density in
three dimensions.
To rewrite it in a familiar form it is useful to pick a

particular representation of the four- and three-dimensional
Dirac matrices Γμ respectively γj:

Γ0 ¼ σ2 ⊗ 1; Γj ¼ σ3 ⊗ γj; Γ5 ¼ −σ1 ⊗ 1: ð3Þ

We choose the three-dimensional Dirac matrices propor-
tional to the Pauli matrices, γj ¼ iσj. The equality

½Γi;Γj� ¼ 1 ⊗ ½γi; γj� ð4Þ

ensures that

ψ ¼ ð1; 0ÞT ⊗ ψ1 þ ð0; 1ÞT ⊗ ψ2 ð5Þ

defines three-dimensional (two component) spinors ψ1

and ψ2.
Introducing the Dirac spinor

ψ̃ ¼ 1ffiffiffi
2

p ðψ1 þ ψ2Þ ð6Þ

and abandoning the tilde, we end up with the three-
dimensional, Euclidean N ¼ 2 WZ model

L3 ¼ ∂jϕ∂jϕ† þ iψ̄σj∂jψ − ff†

−
�
W0f −

1

2
W00ψTσ2ψ þ H:c:

�
: ð7Þ

The Lagrangian density (7) is, up to a total derivative,
invariant under the supersymmetry transformations

δαϕ ¼
ffiffiffi
2

p
αTσ2ψ ;

δαf ¼ i
ffiffiffi
2

p
ᾱσj∂jψ ;

δαψ ¼
ffiffiffi
2

p
ðfα − iσj∂jϕσ

2α�Þ: ð8Þ

The three-dimensional model 7 can be constructed from the
chiral superfield

Φðx; θ; θ̄Þ ¼ eδθϕðxÞ
¼ e−iθ̄σ

jθ∂jðϕþ
ffiffiffi
2

p
θTσ2ψ þ θTσ2θfÞ ð9Þ

with δθ defined by (8). The Lagrangian density (7) is, up to
a surface term, identical to

L3 ¼ −
1

4

Z
d2θd2θ̄ΦΦ†

−
�
1

2i

Z
d2θWðΦÞ þ H:c:

�
: ð10Þ

The supercovariant derivatives take the form

D ¼ iσjθ∂j þ ∂ θ̄;

D̄ ¼ −iθ̄σj∂j − ∂θ: ð11Þ

These derivatives allow us to write the most generic
Lagrangian density of the N ¼ 2 three-dimensional WZ
model as [49]

L ¼ −
1

4

Z
d2θd2θ̄KðD; D̄;Φ;Φ†Þ

−
�
1

2i

Z
d2θW þ H:c:

�
; ð12Þ

where K is an arbitrary real, scalar, analytic function of Φ,
Φ†, and of the covariant derivatives, which act on the fields.
Though K is sometimes called the Kähler potential, we
reserve this designation for KðΦ;Φ†Þ, containing only the
D- and D̄-independent contributions to the generalized
Kähler potential K. Throughout this paper we stick to real
coupling constants Cn in the expansion (2) of the super-
potential, though this is not required by symmetry. Our
conventions are summarized in Appendix A.

III. THE FUNCTIONAL RENORMALIZATION
GROUP

The modern implementation of the FRG is formulated in
terms of one-particle-irreducible (1PI) correlation functions
[50–53]. The FRG has been shown to yield compelling
results in three-dimensional critical Yukawa models at zero
temperature and density [37,54–65]. A relevant subclass
of such systems—supersymmetric models—has also been
under the focus of the FRG. This can be adjusted to
manifestly preserve supersymmetry, by taking advantage of
the linearization of supersymmetry transformations in the
off-shell formulation, involving auxiliary fields f, or in
other words by formulating the Wilsonian cutoff in super-
space, as detailed in Refs. [49,66,67]. Especially in three
dimensions, the N ¼ 1 WZ model has been studied in
greater detail [41,68–70], but also O(N) models have been
addressed [71]. Concerning theories with four super-
charges, applications have been essentially limited to
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reproducing the nonrenormalization of the superpotential in
four [49,72], three [73] and two dimensions, and to an
analysis of the two-point function in the latter case [74]. In
contrast to these previous studies, this work is devoted to
the construction and characterization of nontrivial fixed
points. We apply the FRG framework to the N ¼ 2 three-
dimensional WZ model, using the fields and Lagrangians
described in the previous section.
Though Eqs. (7) and (10) have been obtained by

dimensional torus reduction to d ¼ 3 Euclidean spacetime
dimensions, from here on they will be used for generic d.
This amounts to analytically continuing the one-loop
momentum integrals in the beta functionals of the model,
while keeping fixed the parametrization of the dynamics as
encoded in the effective action. Whether this is compatible
with the change of parametrization of degrees of freedom
through dimensional reduction, that is whether the dimen-
sional reduction of the effective action and the analytic
continuation of the corresponding beta functionals com-
mute, will be discussed in Sec. VII.
Let us introduce the field component vector

ΨðqÞ ¼ ðϕðqÞ;ϕ�ð−qÞ; fðqÞ; f�ð−qÞ;ψTðqÞ;ψ†ð−qÞÞT
ð13Þ

in d-dimensional momentum space. Fourier conventions
are given in Appendix A. The 1PI formulation of the FRG
focuses on the so-called effective average action Γk, a
functional interpolating between the action S (for k → ∞)
and the effective action Γ (for k → 0). The flow of the
scale-dependent average effective action with the momen-
tum scale t ¼ lnðk=k0Þ is provided by the equation

∂tΓk ¼
1

2
STr½∂tRkðΓð2Þ

k þ RkÞ−1�; ð14Þ

where

Γð2Þ
k ðp; qÞ ¼ δ⃗

δΨ†ðpÞΓk
δ⃖

δΨðqÞ ð15Þ

and STr denotes the supertrace in both spin and momentum
labels. The regulator matrix RkðqÞ defines a term playing
the role of an infrared masslike regularization in the
derivation of Eq. (14):

ΔSk ¼
1

2

Z
ddqΨ†ðqÞRkðqÞΨðqÞ: ð16Þ

For the present WZ model the bare action, or the Wilsonian
effective action, enjoys invariance under the supersym-
metry transformations of Eq. (8). When also ΔSk respects
supersymmetry, this translates into the same symmetry of
the average effective action Γk.

A supersymmetric regulator which is quadratic in the
fields is always of the form

ΔSk ¼ −
1

4

Z
ddxd2θd2θ̄Φ†ρ2ðD; D̄ÞΦ

−
�
1

4i

Z
ddxd2θΦρ1ðD; D̄ÞΦþ H:c:

�
; ð17Þ

where the ρi are scalar, t-dependent functions of the
covariant derivatives, and ρ2 is Hermitian. It can be shown
[75,76] that any such ΔSk can be simplified to

ΔSk ¼ −
1

4

Z
ddxd2θd2θ̄Φ†r2ð−∂2

xÞΦ

−
�
1

4i

Z
ddxd2θΦr1ð−∂2

xÞΦþ H:c:

�
ð18Þ

with t-dependent regulator functions r1 and r2, both
analytic in ð−∂2

xÞ, r2 being additionally real. The proof
is similar to the one given in [67]. Choosing also r1 to be
real we obtain the block diagonal regulator matrix as
composed of the first, bosonic block

RBðqÞ ¼
�
q2r2ðq2Þ1 −r1ðq2Þσ1
−r1ðq2Þσ1 −r2ðq2Þ1

�
ð19Þ

and the second, fermionic one

RFðqÞ ¼
�
r2ðq2Þσjqj r1ðq2Þσ2
r1ðq2Þσ2 r2ðq2ÞσjTqj

�
: ð20Þ

Imposing supersymmetry allows us to write the average
effective action as

Γk ¼ −
Z0k

4

Z
ddxd2θd2θ̄KkðD; D̄;Φ;Φ†Þ

−
�
1

2i

Z
ddxd2θWk þ H:c:

�
ð21Þ

with normalization ∂Φ†∂ΦKkð0Þ ¼ 1 and real Z0k and Kk,
compare with Eq. (12). The k-subscripts of Z0, K and W
indicate a scale dependence of these quantities. From now
on they will be dropped, since we will be concerned with
running coupling constants only. Their infinite number
renders Eq. (14) equivalent to an infinite system of differ-
ential equations. To make practical use of them, the system
of equations is usually truncated: starting from a simplified,
still supersymmetric ansatz for Γ, Eq. (14) is solved up to
the order of the ansatz.
The various truncations employed to obtain the

results presented in this paper are introduced in the
following sections. However, let us anticipate that, projec-
ting onto ψ ¼ ψ̄ ¼ 0 and constant ϕ and f, and computing
the f-derivative of the truncated FRG equations at f ¼ 0,
we always find
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∂tW ¼ 0: ð22Þ

To the order of our truncations the superpotential is scale
invariant. The implications of this nonrenormalization
theorem on the landscape of critical WZ models in
various dimensions are discussed in the next section.

IV. CONSTRAINTS ON SUPERCONFORMAL
WESS-ZUMINO MODELS

As recalled in Sec. I, the nonrenormalization theorem
can be used to constrain key properties of the putative
superconformal N ¼ 2 WZ model in three dimensions,
such as the dimension of the superconformal chiral primary
Φ, that must be equal to its R-charge. The same must apply
in d ¼ 2, as well as to other superconformal theories that
could exist below the corresponding fractional upper
critical dimensions in 2 < d < 3. Such constraints straight-
forwardly descend from Eq. (22): The exact nonrenorm-
alization of the bare dimensionful superpotential translates
into a very simple and exact flow for the dimensionless
renormalized one. The fixed points of these RG equations
correspond to scale-invariant theories.
In formulas, we introduce the dimensionless, renormal-

ized fields,

X ¼ Z1=2
0 kð2−dÞ=2Φ;

χ ¼ Z1=2
0 kð2−dÞ=2ϕ: ð23Þ

We further specify the average effective action of Eq. (21)
such that KkðD; D̄;Φ;Φ†Þ ¼ Kð−∂2

x;Φ;Φ†Þ. All our
truncations are thus characterized by the generalized
Kähler metric,

ζð−∂2
x;Φ;Φ†Þ ¼ ∂Φ†∂ΦKð−∂2

x;Φ;Φ†Þ: ð24Þ

The dimensionless and renormalized, and therefore Z0-
independent, formulation of our ansatzes for Γk can thus be
expressed in terms of the dimensionless, renormalized
superpotential and generalized Kähler metric,

wðXÞ ¼ k1−dWðΦÞ;
ζ̃ð−∂2

x=k2; X; X†Þ ¼ ζð−∂2
x;Φ;Φ†Þ; ð25Þ

with ζð0; 0; 0Þ ¼ 1. This rescaling entails corresponding
redefinitions of couplings, such that Eq. (2) becomes

wðχÞ ¼
X∞
n¼0

cn
n
χn: ð26Þ

For consistency, we also introduce dimensionless, renor-
malized regulator functions

r̃1ðq2=k2Þ ¼
1

kZ0

r1ðq2Þ;

r̃2ðq2=k2Þ ¼
1

Z0

r2ðq2Þ: ð27Þ

In the following, the tildes are omitted.
In shifting our attention to dimensionless interactions,

the anomalous dimension of the fields,

η ¼ −∂t lnZ0; ð28Þ

enters in the RG equations, which is eventually determined
by the fixed-point RG equations. From Eq. (22), the flow
of the dimensionless superpotential (25) results in

∂tw ¼ ð1 − dÞwþ Δχw0; ð29Þ

where

Δ ¼ d − 2þ η

2
ð30Þ

denotes the quantum dimension of ϕ. At a fixed point, one
has to require ∂tw� ¼ 0. The trivial free-fields solutions
of this equation are discussed, for completeness, in
Appendix B. In the present work we focus on the nontrivial
fixed points described by

w�ðχÞ ¼ ðcn�χnÞ=n;

η� ¼
2ðd − 1Þ − nðd − 2Þ

n
;

Δ� ¼ ðd − 1Þ=n; ð31Þ

with n > 0. Requiring that all the on-shell effective vertices
be finite at zero momenta selects n ∈ N. In other words, the
set of possible anomalous dimensions at non-Gaussian
fixed points is quantized by the analyticity of the super-
potential.1 For n ¼ 1 the Lagrangian is symmetric under
constant shifts of the fields, and η� ¼ d. For n ¼ 2 the
superpotential w� contains only a mass term, and η� ¼ 1.
Let us stress that in these two cases the superpotential is
noninteracting but the corresponding K� might be non-
trivial. For n ≥ 3 the anomalous dimension η� is positive
below the respective upper critical dimensions

1Fixed point potentials that are not smooth at the origin have
been discussed in the context of three-dimensional O(N) models
at large-N, with [71,77,78] and without [79–81] supersymmetry,
where this singularity has been interpreted as the signal of
spontaneous breaking of scale invariance. They also appear in
the UV asymptotics of four-dimensional non-Abelian Higgs
models [82,83], where the singular behavior originates from a
Coleman-Weinberg mechanism.
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dn ¼ 2
n − 1

n − 2
: ð32Þ

To decide whether the fixed points are Gaussian or not, it is
necessary to compute other universal quantities such as the
critical exponents.
Linearizing the flow equation (29) about a fixed point,

i.e., setting w ¼ w� þ δw and η ¼ η� þ δη, gives

∂tδw ¼ ð1 − dÞδwþ Δ�χδw0 þ δη

2
χw0�: ð33Þ

The critical exponents λ arise as eigenvalues of this linear
RG operator,

∂tδwλ ¼ λδwλ: ð34Þ

Since the fixed-point superpotential is a monomial, an
infinite subset of λ’s can be computed exactly, even without
knowing cn�, and the corresponding eigenfunctions are
simple powers:

δwn ¼ ðδcnχnÞ=n; ∀ n ≠ n;

λn ¼ 1 − dþ nΔ� ¼ ðn − nÞΔ�: ð35Þ

The analyticity requirementn ∈ N quantizes λ. ThusEq. (35)
follows from a polynomial ansatz as in Eq. (26), and from the
diagonalization of the stability matrix B defined as

∂tδcn ¼
X
m

Bnmδcm: ð36Þ

In other words, Eq. (35) holds regardless of δη thanks to the
existence of the orthonormal basis of monomial functions.
Incidentally, fixed points with noninteger n would require a
different basis of eigenfunctions, to provide directions
orthogonal to the fixed point superpotential and a discrete
spectrum analogous to Eq. (35). The case n ¼ n has to be
excluded in Eq. (35) because it requires the knowledge of δη,
which in turn involves the flow of the generalized Kähler
potential. Indeed in the next sections we will see that in this
case δη ≠ 0.
In fact, λn is the most interesting critical exponent

associated to a variation of the scalar potential, since all
the other eigenvalues are Gaussian, in the sense that the
level splitting is equal to the dimension of the field. In the
literature it is given the name ω, since it is the first
correction-to-scaling exponent. Its relevance in the three-
dimensional model is also related to an exact superscaling
relation,

ω ¼ 2 −
1

ν
; ð37Þ

due to supersymmetry, which links it to the exponent ν
corresponding to the single nontrivial supersymmetry-
breaking relevant direction [8], roughly a change in the

scalar mass at constant fermion bilinear. Thus ω is one of
the main observables in condensed-matter realizations of
WZ models based on emergent supersymmetry.
Thus, a study of the unprotected derivative sector of the

average effective action is necessary for two complemen-
tary reasons: first, to collect evidence in favor of the
existence (i.e., mathematical consistency) of fixed points
fulfilling the constraints of Eq. (31); second, to compute
nonprotected critical exponents, e.g., ω, thus deciding
whether these fixed points correspond to genuinely non-
trivial superconformal theories, and not simple Gaussian
models to which we assigned the wrong engeneering
(classical) dimensions, as one might conjecture on the
basis of Eq. (35). This will be the goal of the following
sections.

V. THE WAVE FUNCTION RENORMALIZATION

Our first truncation of Γk reads

Γk ¼ −
Z0

4

Z
ddxd2θd2θ̄ΦΦ†

−
�
1

2i

Z
ddxd2θWðΦÞ þ H:c:

�
: ð38Þ

This approximation, including a generic superpotential and
a wave function renormalization which is independent of
fields as well as momenta, is often called LPA0, since it is a
minimal improvement of the local potential approximation
(LPA). The computation of the RG equations is detailed in
Appendix C. Let us adopt the abbreviationZ

q
¼ Ωd

ð2πÞd
Z

∞

0

dqqd−1; ð39Þ

where Ωd ¼ 2πd=2=Γðd=2Þ is the surface of a unit (d − 1)-
sphere. The flow equation for the wave function renorm-
alization which descends from projection of Eq. (14) on the
ansatz of Eq. (38), once expressed in terms of dimension-
less renormalized quantities, reads

η ¼ 4g2
Z
q

h
v3

ð2hMð∂t − q∂q − ηþ 1Þr1
−uð∂t − q∂q − ηÞr2Þ; ð40Þ

where h, M, u, v and r1;2 are functions of q2, and we have
used the notations of Ref. [74], that is,

m ¼ c2 ¼ w00ð0Þ; g ¼ c3 ¼ w000ð0Þ=2;
h ¼ 1þ r2; M ¼ mþ r1;

u ¼ M2 − q2h2; v ¼ M2 þ q2h2: ð41Þ

Inserting this result into the RG equation (29) for the
dimensionless renormalized superpotential determines the

FELDMANN, WIPF, and ZAMBELLI PHYS. REV. D 98, 096005 (2018)

096005-6



beta function of the last missing coupling, cn, of the
LPA0 truncation.
Equation (40) shows how, for η� ≠ 0, the LPA0 approxi-

mation can be appropriate only for the n ¼ 3 fixed point of
Eq. (31). In fact, since η is proportional to g2, Eq. (40)
would predict η�¼0 for all other values of n. For the n ¼ 3
case it consistently accommodates the η� ¼ ð4 − dÞ=3
solution of Eq. (31), and it further provides a description
of this model away from criticality. The simplest piece of
information contained in Eq. (38) is the first order of the
expansion in ϵ ¼ 4 − d around the Gaussian fixed point in
four dimensions, which is regulator independent and reads

∂tg ¼ −
ϵ

2
gþ 3

8π2
g3

⇒ g2� ¼
4π2

3
ϵ; ω ¼ ∂ð∂tgÞ

∂g
����
�
¼ ϵ: ð42Þ

The application of the ϵ expansion about four dimen-
sions to the three-dimensional N ¼ 2 WZ fixed point has
already been discussed in the literature, thought not as
extensively as for other models. As an example, while the
Ising case has been analyzed up to six loops [84,85], the
computations for the nonsupersymmetric generalization of
the present model have only recently been pushed up to
three loops [40] and then four loops [86]. As a benchmark
to which our results will be compared, let us recall that the
four-loop approximation gives

ω ¼ ϵ −
ϵ2

3
þ
�
1

18
þ 2ζð3Þ

3

�
ϵ3

−
1

540
ð35 − 3π4 þ 420ζð3Þ þ 1200ζð5ÞÞϵ4: ð43Þ

Other perturbative approaches have been adopted in the
supersymmetric case. For instance, the beta function of the
four-dimensional WZ model has been studied up to four
loops [87], while one-loop results for the Kähler and
auxiliary field potential have been obtained with the
background field method [88]. The latter method has also
been applied to the three-dimensional case at the two-loops
order [89]. However, we do not know of any application of
these computations to critical models.
In mass-dependent schemes, such as the ones we discuss

in the present work, ∂tg depends not only on g, but also
on m and the perturbatively nonrenormalizable couplings
of the Kähler potential. Then, a natural generalization of
formula (42) for the first correction-to-scaling exponent ω is
to proceed to an eigenvalue of the smallest diagonal block of
the stability matrix containing ∂gð∂tgÞj�. We identifyωwith
the smallest positive eigenvalue of this block.
For later purposes, it is instructive to describe how ω

in Eq. (42) stems from the FRG equations. Expansion of
Eq. (40) to first order in ϵ and g2 ∼OðϵÞ produces

η ¼ g2

4π2
; ð44Þ

which fixes δη in terms of δw000ð0Þ. Inserting this into (33)
and requiring (34) leads to the eigenperturbation

δwλðχÞ ¼ δcλχ3þλð1þϵ=3Þ þ δw000
λ ð0Þ

ϵ

6λ
χ3; ð45Þ

containing three apparently free parameters: λ, δcλ and
δw000

λ ð0Þ. The latter can be traded in for δηλ. A vanishing
δw000

λ ð0Þ corresponds to the quantized solutions of Eq. (35).
If instead δw000

λ ð0Þ ≠ 0, then necessarily δcλ ¼ 0 and λ ¼ ϵ,
to ensure that the third derivative of the left-hand side of
Eq. (45) at the origin is finite, nonvanishing and equal to the
δw000

λ ð0Þ on the right-hand side, which then plays the role of
an arbitrary normalization factor. Thus, we recover the
expected result that ω corresponds to δw ∝ χ3.
The approximation of Eq. (38) includes not only the

first-order quantum corrections in the ϵ expansion, but also
a resummation of some higher order perturbative contri-
butions, and is applicable in any dimension, though the
quality of its predictions will of course strongly depend
on d. In the present section we apply this ansatz and the
corresponding RG equation (40) to the d ¼ 3 fixed point
that is expected to be continuously connected to the
d ¼ 4 − ϵ solution of Eq. (42). Our RG equations are
scheme dependent, which means that they depend on the
choice of the regulator functions r1;2. Though universal
quantities such as the critical exponents must be scheme
independent, truncation of the exact flow equation (14)
introduces spurious effects which are well known and long
studied in the literature. The most effective way to deal with
these issues is to vary the regulator and to optimize it for
each different model and approximation [90–94]. For this
reason, we are now turning to the computation of critical
exponents in LPA0 with two different regulators. More
general approximations and regularizations will be dis-
cussed in Secs. VI and VII.
The dimensionless, renormalized Callan-Symanzik

regulator [95] consists of

r1 ¼ 1; r2 ¼ 0: ð46Þ

For m > −1 and 0 < d < 4 equation (40) evaluates to

η ¼
�
1 −

4ð2πÞd−1 sinðdπ=2Þðmþ 1Þ5−d
g2Ωdð4 − dÞðd − 2Þ

	−1
: ð47Þ

Together with the flow equation (29) of the superpotential,
this provides a fixed point at η� ¼ ð4 − dÞ=3 and

g2� ¼ −
4ð2πÞd−1 sinðdπ

2
Þ

Ωdðd − 1Þðd − 2Þ ; ð48Þ
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with only one non-Gaussian critical exponent,

ω ¼ ð4 − dÞðd − 1Þ
3

¼ ϵ −
ϵ2

3
; ð49Þ

in agreement with the second order of the ϵ expansion. This
agreement, though remarkable, appears to be accidental. In
three dimensions this amounts to ω ¼ 2=3.
A widely used regulator class, which we call of Litim

type, was shown to fulfill an optimization criterion for
several fermionic systems [93]. We choose such regulators
mainly for computational convenience. Since Litim-type
regulator functions have a nonanalytic momentum depend-
ence, they violate the assumptions under which we argued
that Eq. (17) provides the most generic supersymmetric
regularization, see Sec. III. Yet, using this scheme, in the
frame of the employed truncations we encounter no
ensuing anomalies.
The dimensionless, renormalized Litim-type regulator I

has the form

r1 ¼ 0; r2 ¼
�
1

q
− 1

�
Θð1 − q2Þ: ð50Þ

Evaluating (40) in 0 < d < 4 gives

η¼ ðd− 1Þ
�
1−

ð2πÞdðd− 1Þðd− 2Þðm2þ 1Þ3
4g2Ωdðm2− 1Þ

	−1
; ð51Þ

which entails

g2� ¼
ð2πÞdðd − 1Þðd − 2Þð4 − dÞ

4Ωdð4d − 7Þ ; ð52Þ

providing the non-Gaussian exponent

ω ¼ ϵ −
ϵ2

3ð3 − ϵÞ : ð53Þ

Thus, in three dimensions ω ¼ 5=6.

VI. THE RUNNING KÄHLER POTENTIAL

In a next step we incorporate the Kähler potential into
our truncation:

Γk ¼ −
Z0

4

Z
ddxd2θd2θ̄KðΦ;Φ†Þ

−
�
1

2i

Z
ddxd2θWðΦÞ þ H:c:

�
: ð54Þ

The details on how to extract the flow of the Kähler metric
ζðΦ;Φ†Þ ¼ ∂Φ∂Φ†KðΦ;Φ†Þ from the FRG equation (14),
as well as the most general result, are presented in
Appendix D. Choosing r1 ¼ 0 we retain

ð∂t − Δðχ∂χ þ χ†∂χ†Þ − ηÞζ ¼
Z
q

ð∂t − q∂q − ηÞr2
v3

fhujw000j2 − ðu − 2q2h2Þðw00†w000∂χ†ζ þ H:c:Þ

− 2q2hð2jw00j2 þ uÞj∂χζj2 þ uv∂χ∂χ†ζg ð55Þ

with χ-dependent generalizations of the objects in (41):

h ¼ ζ þ r2; u ¼ jw00j2 − q2h2; v ¼ jw00j2 þ q2h2: ð56Þ

Remarkably, for wðχÞ being a monomial Eq. (55) admits the ansatz ζðρ ¼ χχ†Þ. A cubic superpotential in d ¼ 3 yields

ð∂t − ð1þ ηÞρ∂ρ − ηÞζ ¼
Z

∞

0

dqq2
ð∂t − q∂q − ηÞr2

2π2v3

�
4hug2 − 8ðu − 2q2h2Þg2ρ∂ρζ

− 2q2hð8g2ρþ uÞρð∂ρζÞ2 þ uvð∂ρ þ ρ∂2
ρÞζ
�
; ð57Þ

where, correspondingly,

u ¼ 4g2ρ − q2h2; v ¼ 4g2ρþ q2h2: ð58Þ

The occurrence of η on the right-hand side of Eq. (57) is a
consequence of the RG improvement of regulators in
Eq. (27), which is tantamount to requiring a deformation

of the renormalized (instead of bare) two-point function.
Though this accounts for the resummations of perturbative
contributions, it also complicates considerably the structure
of the flow equation. Therefore, in the present study we
confine ourselves to the approximation where such con-
tributions are neglected, thus effectively setting η ¼ 0 on
the right-hand side of Eq. (57).
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Throughout this section we adopt the Litim-type regu-
lator I, augmented by a positive prefactor,

r2 ¼ a

�
1

q
− 1

�
Θð1 − q2Þ; a ∈ Rþ: ð59Þ

The parameter a allows for a minimal sensitivity optimi-
zation: Results provided by truncated flow equations can be
improved by minimizing their regulator dependence [90].
We implement this idea by targeting a stationary point
of ωðaÞ, since it is the less irrelevant critical exponent
that acquires a spurious regulator dependence within our
truncations.

A. Fixed-point Kähler potential

We consider the n ¼ 3 fixed point in three dimensions.
Setting ∂tζ ¼ 0 in (57) and η� ¼ 1=3 on the left-hand side
provides the fixed-point equation,

1

3
ζ þ 4

3
ρζ0 þ a

2π2

Z
1

0

dq
q
v3

�
4hug2 − 8ðu − 2q2h2Þg2ρζ0

− 2q2hð8g2ρþ uÞρζ02 þ uvðζ0 þ ρζ00Þ
�

¼ 0: ð60Þ

The integral over q can be computed analytically.
There are several methods at hand to analyze (60). We

start with a polynomial truncation of the Kähler metric:

ζðρÞ ¼ 1þ
XN
n¼1

ζnρ
n: ð61Þ

The fixed-point equation (60) is fulfilled to order N if all
its projections onto ρn, n ≤ N hold. The resulting system
of N þ 1 equations provides numerous roots. Yet, in all
considered cases requiring the couplings to be real has left
us with a unique solution for ðg2�; ζn�Þ. In Appendix D we
provide the fixed point couplings obtained for 0≤N ≤ 5 at
several values of a.
To go beyond polynomial truncations we first employ

numerical integration by shooting from the origin. For each
g2 and a, the fixed-point equation (60) is a second-order
nonlinear ordinary differential equation for ζðρÞ; hence we
need to provide two initial conditions. Since we look for a
solution that is smooth at the origin, the product ρζ00 must
vanish at ρ ¼ 0, which gives a closed relation between g
and ζ0ð0Þ. Therefore, while one condition is determined by
ζð0Þ ¼ 1, the second one, say ζ0ð0Þ, can be parametrized
by g2. Yet, the normal form of Eq. (60) presents a 1=ρ-pole
at the origin, which we avoid by imposing our regular
initial conditions at ρ ¼ ε ≪ 1.
Integrating Eq. (60) from ρ ¼ ε outwards, we constantly

hit a movable singularity. As illustrated by Fig. 1, the
position ρsðg2Þ of this singularity exhibits a sharp maxi-
mum. Its location g2mðaÞ is expected to correspond to the

regular and polynomially bounded solution of the truncated
fixed-point equation [70,96,97]. The left panel of Fig. 2
shows the dependence of g2m on a. We interpolate it using
the fit

g2mðaÞ ¼
4.7951a2 þ 31.796a − 5.2531

a2 þ 9.0848a − 10.624
: ð62Þ

The right panel of Fig. 2 illustrates how the fixed-point
values g2�ða;NÞ obtained from the polynomial truncation
(61) converge to g2mðaÞ.
Although shooting from the origin successfully predicts

the unique critical g2�, it fails in producing a fixed-point
Kähler metric which is globally defined in field space. The
same applies to the polynomial truncation ofEq. (61), since it
likewise represents an expansion about the origin. To obtain
the global critical Kähler metric we employ pseudospectral
methods, which are based on the expansion of ζðρÞ in a basis
of Chebyshev polynomials (see Refs. [98,99] for applica-
tions to FRG equations). Though this is again a polynomial
expansion, we derive the system of corresponding fixed-
point equations not by a projection on the basis functions,
but rather through a collocation method. To this end, it is
convenient to map the ρ-domain into the compact interval
[0,1]. Using a Gauss grid in this interval, it is then possible to
adopt a numerical relaxation method, such as for instance
Newton-Raphson, to deduce the coefficients of ζ� in the
Chebyshev basis. Relaxation needs an initial seed, which is
based on the information obtained with the polynomial and
shooting methods.
The result of this analysis is presented in Fig. 3. It

provides a smooth and featureless interpolation between
the small-ρ regime, which is satisfactorily described by the
polynomial truncations and the shooting from the origin,
and the large-ρ region, where the Kähler metric is asymp-
totic to ρ−η�=ð2Δ�Þ ¼ ρ−1=4.

FIG. 1. Shooting from the origin. Field coordinate ρs of the
singularity in ζðρÞ closest to the origin as a function of g2. Here
a ¼ 1.7; the position of the spike provides g2mða ¼ 1.7Þ ¼ 2.53.
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B. Critical exponent ω

By tracking the RG flow of the Kähler metric, that is of
infinitely many couplings which we expect to be irrelevant
at the n ¼ 3 fixed point, we can extract estimates of many
more universal quantities, i.e., eigenvalues of the linearized
RG equations, which are related to correction-to-scaling
exponents. As a case study, we focus on ω to test the quality
of different approximations.
We again start with a polynomial truncation. For generic

perturbations of the fixed-point superpotential, which result
in a w� þ δw that is no longer a simple monomial, the
Kähler metric is no longer a function of the single invariant
ρ. Thus, in the polynomial truncation we refrain from
combining χ and χ† into ρ:

ζðχ; χ†Þ ¼ 1þ
XN
n¼1

ζnðχχ†Þn

þ
XN
n¼0

X2N−n

m¼1þn

ðζnmχnχ†m þ ζmnχ
mχ†nÞ ð63Þ

with ζ†n ¼ ζn and ζ†mn ¼ ζnm. The corresponding stability
matrix conveys the linearized flow equations of both the
superpotential and the Kähler metric. Hence it accounts for
the couplings cn, appearing in the superpotential, as well as
ζn and ζnm. For r1 ¼ 0, the stability matrix becomes block
diagonal such that g is coupled solely to fζng. Restricting
ourselves to this submatrix we can resort to the simplified
flow equation (57) for ζðρÞ, still for η ¼ 0 on its right-hand
side and the Litim-type regulator I from Eq. (59).
Identifying the smallest positive eigenvalue of the stability

submatrix with ω we obtain the results presented in Table I.
We have verified that all corresponding eigendirections
indeed provide a nonvanishing δg. The computation of ω
has turned out to be very memory consuming. This has
limited us in both the achievable truncation order N and the
step size of a. Yet we observe that, for all N, ωðaÞ exhibits
a stationary point, whose position as depends on N. At
fourth order the best approximation we have obtained is

FIG. 2. Left panel: Fixed point values g2m as provided by shooting from the origin for different a. The solid line is a fit; for the
interpolating function; see Eq. (62). Right panel: Comparison of shooting from the origin and polynomial truncation. The solid line is
located at g2mðaÞ as obtained from the interpolating function. The g2�ða; NÞ due to polynomial truncation of order N converge to g2mðaÞ.
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FIG. 3. The critical Kähler metric for a ¼ 1.75. The solid black
line is produced by pseudospectral methods, while the solid gray
line shows a ρ−1=4 decay. Inset: The pseudospectral solution
(dotted line) is compared to the one obtained by shooting from the
origin (dashed line) with g2� ¼ 2.576 corresponding to a maxi-
mum of ρs as in Fig. 1.

TABLE I. Critical exponent ω due to polynomial truncation of
ζðρÞ to order N.

N a¼1.1 a¼1.3 a¼1.5 a¼1.7 a¼1.9 a¼2.1 a¼2.3

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.8270 0.8370 0.8422 0.8446 0.8454 0.8452 0.8444
2 0.8292 0.8310 0.8317 0.8317 0.8309 0.8298 0.8284
3 0.8258 0.8307 0.8330 0.8338 0.8338 0.8331 0.8321
4 0.8279 0.8319 0.8338 0.8345 0.8343 0.8336 0.8326
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ω ¼ 0.8345 at as ¼ 1.7. Convergence is achieved only for
the first two significant figures.
Since polynomial truncations are computationally

demanding, also for the determination of ω we again make
use of shooting from the origin. Just as we linearized
the flow equation of the superpotential in the fluctuations
δw ¼ w − w� and δη ¼ η − η�, obtaining Eq. (33), we can
also linearize the flow of the Kähler metric with respect to
δw, δη and δζðρÞ ¼ ζðρÞ − ζ�ðρÞ to obtain a second-order
linear partial differential equation. The eigendirections with
δwλ ≠ 0, δζλ ¼ 0 are the ones already described in Eq. (35),
for which no knowledge of δη is required. The remaining
perturbations with δζλ ≠ 0 instead depend on δη, and
according to our definitions must have δζð0Þ ¼ 0. To
extract ω we look for eigensolutions with λ ¼ ω and

δwωðχÞ ¼
δg
3
χ3: ð64Þ

Thus Eqs. (33) and (34) can be analytically solved for δg
as a function of two unknowns: ω and δη. Then, the
eigenvalue problem reduces to the solution of the single
second-order ordinary differential equation for δζω, involv-
ing the two free parameters ω and δη. In addition, two
initial conditions have to be supplied to specify a unique
solution. We choose to provide them at the origin. As in the
fixed point case, requiring the solution to be smooth at
ρ ¼ 0 together with consistency between the initial con-
ditions and the differential equation itself determines one
of these conditions, say δζ0ωð0Þ. Since the other one is
provided by δζωð0Þ ¼ 0, the space of eigenfunctions is
completely spanned by ω and δη.
While the former becomes quantized, by a mechanism

that will be explained in the following, the latter remains a
free parameter, as in the first order of the ϵ expansion, see
Sec. V. Indeed, the considered differential equation is
linear, such that the overall normalization of δζω is
arbitrary, and does not play a role in the determination
of ω. So, if the choice of δη affects only the overall
normalization of δζω, different values of ω correspond to
genuinely different solutions. In particular, by inspecting
the behavior of such solutions, one finds that they rapidly
grow, with a rate that appears to be exponential. Indeed,
these exponential parts are almost invariably present in
solutions of linearized FRG equations. It is the additional
requirement that the eigenfunctions δζλ have to follow a
power law for large ρ that quantizes the set of possible
eigenvalues. This requirement in turn is related to self-
similarity [100] and to the existence of a well-defined norm
in theory space [101,102].
Thus, we expect a unique value of ω corresponding to a

δζω which is asymptotic to some power of ρ for large ρ. In
practice, a simple way to determine such a value consists in
plotting δζωðρLÞ as a function of ω for large enough ρL.
Then, the solution with power-law asymptotic behavior
should correspond to a special ω such that δζωðρLÞ is

exponentially smaller than for all other values outside a
small neighborhood of it. We apply this criterion to the
solutions constructed by shooting from the origin. In this
case, each fixed-point solution extends over a finite range
½0; ρs�. Therefore we parametrize ρL ¼ ð1 − δÞρs, and scan
over δ ≪ 1. We observe that δζωðρLÞ as a function of ω
shows only one zero, where it changes sign. This change of
sign can be made arbitrarily quick by choosing smaller and
smaller values of δ. Its location converges to an unam-
biguous value in the limit δ → 0. This zero can be identified
with the physical value of ω. In the interval a ∈ ½1.6; 1.9�
we find ω ¼ 0.834, with variations only in the fourth
decimal place, showing a maximum at approximately
a ¼ 1.8, where ω ¼ 0.8344.

VII. MOMENTUM-DEPENDENT KÄHLER
POTENTIAL

Another branch of possible truncations is offered by the
generalized Kähler potential with minimal field content:

Γk ¼ −
Z0

4

Z
ddxd2θd2θ̄Φ†zðD; D̄ÞΦ

−
�
1

2i

Z
ddxd2θWðΦÞ þ H:c:

�
ð65Þ

with analytic and Hermitian zðD; D̄Þ fulfilling zð0; 0Þ ¼ 1.
Just as for the regulator functions ρ2 and r2 in (17) and (18),
z can be replaced by an analytic Hermitian generalized
Kähler metric ζð−∂2

xÞ with ζð0Þ ¼ 1. Similar FRG trunca-
tions, accounting for arbitrary momentum dependence of
the two point functions and for a generic local potential,
have been discussed in WZ models [74] as well as for
nonsupersymmetric theories [103,104].
The flow of ζ can be obtained from the functional ϕ- and

ϕ†- derivative of the FRG equation (14) at vanishing fields.

Γð2Þ
k ðp; qÞ at constant f and zero ψ , ψ̄ is provided in

Appendix E. Since it is no longer proportional to δðp − qÞ,
ðΓð2Þ

k þ RkÞ−1 cannot be computed just by matrix inver-
sion. Hence, to evaluate the projection we proceed as
described for instance in Ref. [105]: We rewrite the flow
equation (14) as

∂tΓk ¼
1

2
STrð∂̃t lnðΓð2Þ

k þ RkÞÞ; ð66Þ

where ∂̃t is assumed to act on Rk only, and expand the
logarithm about the field independent part Γ0 ∝ δðp − qÞ
of Γð2Þ

k þ Rk ≕Γ0 þ ΔΓ,

lnðΓð2Þ
k þ RkÞ ¼ lnðΓ0Þ þ Γ−1

0 ΔΓ −
1

2
ðΓ−1

0 ΔΓÞ2 þ � � � :
ð67Þ
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Because every nonvanishing entry in ΔΓ is at least linear
in ϕ or ϕ†, we have to consider only addends containing
ΔΓ once or twice.
The dimensionless, renormalized flow equation for ζ

amounts to

ð∂t − p∂p − ηÞζðp2Þ

¼ −
Z

ddq
ð2πÞd

4g2hðq − pÞ
v2ðqÞvðq − pÞ

× ½2hMð∂t − q∂q − ηþ 1Þr1 − uð∂t − q∂q − ηÞr2�ðqÞ;
ð68Þ

where all functions in the second line are evaluated at q.M,
u and v are defined in Eq. (41) and h ¼ ζ þ r2. Discarding
the momentum dependence of ζ in Eq. (68) restores the
LPA0 result of Eq. (40). At d ¼ 2 we recover the flow
equation for the two-dimensional N ¼ ð2; 2Þ WZ model
derived in Ref. [74]. The apparent discrepancy by a factor
of 2 originates from a difference in the definitions of
coupling constants and regulator functions. The flow
equation (68) implies η ∝ g2, as becomes obvious when
setting p ¼ 0. Hence, just as the LPA0 truncation, it
accounts only for the Gaussian and n ¼ 3 fixed points.
In the present paper we confine ourselves to the first-

order polynomial truncation of the Kähler metric,

ζðp2Þ ¼ 1þ p2ζ1: ð69Þ

Thus, we have to consider the projections of Eq. (68) onto
its zeroth and first orders in p2. We report on the results
obtained for the three-dimensional n ¼ 3 fixed point by
adopting three different regulators. All arising integrals
have been solved analytically. A further exploration of the
ansatz in Eq. (65) is yet to be addressed.
We start with the Callan-Symanzik regulator defined in

Eq. (46). Examining the vicinity of ζ1 ¼ 0 at η� ¼ 1=3 we
numerically find the fixed point solution,

ðζ1�; g2�Þ ¼ ð−0.0816; 2.9425Þ: ð70Þ

The corresponding stability matrix couples g to c2 and ζ1.
Its spectrum consists of Eq. (35) supplemented by the two
eigenvalues,

ω ¼ 0.6687; λζ ¼ −75.75: ð71Þ

We expect the additional relevant exponent λζ to be an error
induced by the combined effect of truncation and regu-
larization scheme. This is supported by the results obtained
with the other two regulators.
Despite its discontinuity in momentum space, the Litim-

type regulator I, see Eq. (50), provides a finite flow of ζ1.
The arising integrals converge for ζ1 > −1. Note, however,
that applying steplike regulators to higher orders of a p2

expansion is problematic [106,107]. Setting η� ¼ 1=3 we
numerically obtain the fixed point values

ðζ1�; g2�Þ ¼ ð−0.0138; 1.9509Þ: ð72Þ

The stability matrix couples g to ζ1. The corresponding
eigenvalues evaluate to

ω ¼ 0.8317; λζ ¼ 2.530: ð73Þ

To further simplify the flow equation we turn to
another stepwise regulator, which we call the Litim-type
regulator II. We set

r1 ¼ 0; r2 ¼ ζðq2Þ
�
1

q
ζð1Þ
ζðq2Þ − 1

�
Θð1 − q2Þ: ð74Þ

For ζ ¼ 1 this coincides with our definition of Litim-type
regulator I. With Eq. (74) again only low-energy modes,
q < 1, contribute to the flow, going along with hðqÞ ¼
ζð1Þ=q such that u and v become momentum independent.
Let us stress that, contrary to the other regulators adopted
in this work, for the present choice the ∂t-derivative on the
right-hand side of Eq. (68) gives a nonvanishing contri-
bution. The fixed point equation becomes

35ζ1�ð2þ 3ζ1�Þð1þ ζ1�Þ þ ð1þ 3ζ1�Þ2 ¼ 0;

g2� ¼
2π2

5

ð1þ ζ1�Þ3
2þ 3ζ1�

; ð75Þ

yielding three solutions. It is a common feature of poly-
nomial truncations to suggest spurious fixed points. A
comparison with our previous findings allows to identify
the physical result as

g2� ¼ 1.9339; ζ1� ¼ −0.0136;

ω ¼ 0.8443; λζ ¼ 2.411: ð76Þ

The good agreement between Eqs. (73) and (76) sug-
gests that we could qualitatively trust also the estimate
of λζ. Finally, let us remark that the negative sign of ζ1�
does not necessarily signal the presence of negative norm
states. In fact, within a polynomial truncation of ζðp2Þ
couplings with alternating signs are allowed and might be
needed for convergence of the power series.

VIII. MULTICRITICAL MODELS

The critical models with n > 2 can be constructed by
using perturbation theory in the vicinity of the upper critical
dimensions dn defined in Eq. (32), where they are weakly
coupled. In fact, if d ¼ dn − ϵ the constraint from Eq. (31)
entails
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η� ¼ ϵ
n − 2

n
: ð77Þ

This allows for a standard ϵ expansion in the spirit of
Ref. [3]. This approach has already been applied to non-
supersymmetric multicritical models in fractional dimen-
sions [108]. Some of these studies have been performed
directly in a FRG setup [102,109,110].
For infinitesimal ϵ the deviations of the fixed-point

values w� and ζ� from the Gaussian ones w� ¼ 0 and
ζ� ¼ 1, as well as those of the eigenperturbations δw and δζ
from the corresponding Gaussian eigenperturbations,
behave as positive powers of ϵ. Since the term ηζ on the
left-hand side of Eq. (55) is of order ϵ, we assume that the
same holds for the right-hand side of this equation, i.e., we
do not consider possible solutions with (ζ − 1) of order ϵP

with P < 1. Instead, we assume that the power counting in
ϵ which we discussed for the n ¼ 3model in Sec. Vapplies
to any value of n. From here on we will assume n > 3,
as the ϵ expansion for the n ¼ 3 case has already been
discussed in Sec. V.
In this case, the lowest order in Eq. (55) is of order ϵ.

This requires that jcn�j2 ∝ ϵ and, for n > 3, also ζ0 ∝ ϵ. It
follows that at leading order the flow equation (55)
becomes

ð∂t−Δnðχ∂χ þ χ†∂χ†Þþ l0n∂χ∂χ†Þζ¼ η− l1njw000j2; ð78Þ

where Δn ¼ ðdn − 2Þ=2 ¼ 1=ðn − 2Þ and we have defined
the positive integrals,

l0d ¼
Z
q

ð∂t − q∂qÞr2
ð1þ r2Þ2q2

;

l1d ¼
Z
q

ð∂t − q∂qÞr2
ð1þ r2Þ3q4

; ð79Þ

which are denoted as l0n and l1n when evaluated at d ¼ dn.
Let us stress that these numbers are, in general, regulator
dependent. Only l1n¼3 is universal, since it corresponds to
the one-loop anomalous dimension of the n ¼ 3model. For
n > 3 the leading order of the ϵ expansion accounts for
multiloop diagrams. The ansatz of Eq. (54) is one-loop
exact but it fails in reproducing all perturbative contribu-
tions beyond one loop. Thus, the ϵ expansion of Eq. (55)
does not include all the contributions to leading order in ϵ,
which explains the appearance of nonuniversal coefficients.
One can nevertheless extract approximate results from
truncated and perturbatively expanded FRG equations, as
is shown in Refs. [102,109].
At the fixed point jw000� j2 on the right-hand side of

Eq. (78) depends on ρ only, such that Eq. (78) allows
for radial solutions ζ�ðρÞ fulfilling the equation

l0nðζ0 þ 2ρζ00Þ − 2Δnρζ
0

¼ η − l1nðn − 1Þ2ðn − 2Þ2jcnj2ρn−3: ð80Þ

These are defined by a linear first-order ordinary differ-
ential equation for ζ0�ðρÞ. The physical solutions read

ζ0�ðρÞ¼ ϵ
n−2

nl0n

Xn−4
i¼0

1

ðiþ1Þ!
�

2ρ

ðn−2Þl0n

�
i
; n> 3; ð81Þ

being ζ0�ðρÞ ¼ 0 in the n ¼ 3 case. The condition that ζ0�ð0Þ
be finite requires the cancellation of 1=ρ poles and fixes
the coupling cn to the value

c2n� ¼
ϵðl0n=2Þ3−n

nðn − 1Þ2ðn − 2Þn−2ðn − 3Þ!l1n
: ð82Þ

This is universal only for n ¼ 3. Since the radial fixed-
point equation is a first-order ordinary differential equation,
its space of solutions is parametrized by one integration
constant, which we did not discuss so far. Indeed one could
add to Eq. (81) a term of the form

K
ρ
e

2ρ
ðn−2Þl0n : ð83Þ

The constant K has to be set to zero, to ensure that the
space of perturbations of the fixed point possesses a
well-defined norm, a countable basis and a discrete
spectrum [101,102].
Once the particular solution in Eq. (81) is known, it is

possible to construct the general fixed-point solution
through addition of the solutions of the homogeneous part
of Eq. (78). The latter can be constructed by factoring the
radial and the angular dependence, as will be detailed for
the linear eigenperturbations in the following. The angular
solutions are simple periodic functions eimϑ labeled by the
integer m. For any nonvanishing m, the radial component
of the homogeneous solutions contains either a singularity
at the origin or an exponentially growing part. We discard
such solutions and set m ¼ 0.
Since at the upper critical dimension the fixed points are

Gaussian, the eigenvalue problem for the linearized flow in
the ϵ expansion can be interpreted as a perturbation of the
Gaussian case. Therefore we first address the latter.

A. Linearized flow at the Gaussian fixed point

For the free theory, with w� ¼ 0, η� ¼ 0, and ζ� ¼ 1, the
linearized flows of δw and δζ are decoupled, since Eq. (33)
becomes independent of δη, while for the Kähler metric
one finds

∂tδζ ¼ δηþ
�
d − 2

2
ðχ∂χ þ χ†∂χ†Þ − l0d∂χ∂χ†

�
δζ: ð84Þ
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Thus, there are separate families of eigendirections. Mem-
bers of the first family have a perturbed superpotential only:

δwn ¼ ðδcnχnÞ=n;

λn ¼ 1 − dþ n
d − 2

2
; ð85Þ

and δζn ¼ δηn ¼ 0.Members of the second family have only
a perturbed Kähler metric, which is conveniently expressed
in spherical coordinates

r ¼
ffiffiffiffi
ρ

l0

r
; ϑ ¼ arctan

�
i
χ† − χ

χ† þ χ

�
: ð86Þ

The eigenvalue problem in these coordinates reads�
λ−

d−2

2
r∂rþ

1

4

�
∂2
rþ

1

r
∂r

�
þ 1

4r2
∂2
ϑ

	
δζ¼ δη: ð87Þ

Separable solutions can be obtained from the ansatz

δζ ¼ δη

λ
þ eimϑQðrÞ ð88Þ

giving rise to the following radial eigenvalue equation:

�
λ −

m2

4r2
−
d − 2

2
r∂r þ

1

4

�
∂2
r þ

1

r
∂r

�	
Q ¼ 0: ð89Þ

Again, we constrain the space of solutions by prohibiting
singularities at the origin and exponential growth for large
radii. This eliminates half of the solutions and quantizes λ to
the following discrete spectrum:

λkm ¼ ðd − 2Þ
�
kþ jmj

2

�
; k ∈ N0; m ∈ Z even

Qkm ¼ bkm

�
kþ jmj

k

�−1
ððd− 2Þr2Þjmj

2 Ljmj
k ððd − 2Þr2Þ;

ð90Þ

where L denotes the generalized Laguerre polynomials
and bkm is an arbitrary normalization factor. The condition
δζð0Þ ¼ 0 determines δη:

δζð0Þ ¼ δη

λkm
þ bkmδm0 ¼ 0; ð91Þ

such that the perturbations with m ¼ 0 can have a non-
vanishing δη, which then scales with bkm. For all other
eigendirections with m ≠ 0 we have δη ¼ 0.
For special values of d, which are precisely of the form

of dn in Eq. (32), provided

n ¼ nþ 2kþ jmj; ð92Þ

the two distinct subspaces of eigensolutions contain degen-
erate solutions going along with the same eigenvalue.

B. Critical exponent ω for general n

Let us now turn to the problem of determining the critical
exponents of the multicritical models away from their
upper critical dimensions. As the analysis in Sec. IV shows,
the nonrenormalization of the superpotential imposes
quantization rules for the critical η and for the part of
the spectrum described by Eq. (35). These can be straight-
forwardly rewritten using d ¼ dn − ϵ and provide eigen-
values that are linear in ϵ, since Δ� ¼ Δn − ϵ=n. In
particular, they support the expectation that the number
of physically relevant directions at the nth fixed point be
equal to n − 2, though they do not describe the classically
marginal case n ¼ n. The latter has been already observed
to become irrelevant for n ¼ 3 in the past sections. We
now adopt the ϵ expansion to address this computation
for generic n.
Integration of Eq. (33) for generic n leads to

δwðχÞ ¼ cn�δη
2λ

χn þ δcλχnþ
nλ
d−1: ð93Þ

We focus on perturbations with δcλ ¼ 0, which correspond
to λ ¼ ω. As for the case n ¼ 3 discussed in Sec. V, to
determine λ additional knowledge from the running of ζ
is needed. Before moving to the latter, let us stress that
Eqs. (35) and (93) can also be obtained by the ϵ expansion
of the eigenvalue problem with the ansatz,

λ ¼ ϵλð1Þ;

δη ¼ ffiffiffi
ϵ

p
δηð1Þ;

δw ¼ δwð0Þ þ ϵδwð1Þ: ð94Þ

At zeroth order in ϵ the Gaussian solution goes along with
the eigenvalue λð0Þ ¼ 0, such that Eq. (93) relates the
zeroth-order superpotential to the first-order eigenvalue by

δwð0Þ
n

χn
¼ δcð0Þn

n
¼ cn�δη

2λ
; ð95Þ

where the right-hand side has to be expanded at lowest
order in ϵ.
Let us then turn to the perturbation of the Kähler metric.

We complement Eq. (94) with

δζ ¼ ffiffiffi
ϵ

p
δζð1Þ: ð96Þ

Thus the leading nontrivial contribution in the ϵ expansion
of the eigenvalue equation for δζ is of order

ffiffiffi
ϵ

p
and reads
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δηþ ðΔnðχ∂χ þ χ†∂χ†Þ − l0n∂χ∂χ†Þδζ
¼ −2cn�ðn − 1Þ2ðn − 1Þ2l1nδcð0Þn ρn−3: ð97Þ

We first look for a special solution of this linear inhomo-
geneous partial differential equation, which in the spherical
coordinates (86) is ϑ-independent. The radial ansatz leads
to a first order ordinary differential equation for δζ0ðrÞ. It
possesses a one-parameter family of solutions, spanned by
the same additive term of Eq. (83). As for the fixed point
solution, we set this term to zero. This leads to the
following radial solution:

δζ0ðrÞ ¼ 2δη
Xn−3
i¼1

r
i!

�
2r2

n − 2

�
i−1

: ð98Þ

Here we have already imposed that δζ0ðrÞ be smooth at the
origin, which puts a constraint on δη, namely,

δη ¼ cn�l1nln−30n
ðn − 1Þ2ðn − 2Þn−2ðn − 2Þ!

2n−4
δcð0Þn : ð99Þ

Compatibility between this relation and Eq. (95) deter-
mines λ ¼ ω to be

ω ¼ ðn − 2Þϵ; ð100Þ

where we have used Eq. (82). The fact that this result turns
out to be universal suggests that it might agree with full
perturbative computations.
Let us stress that the eigensolution (98) is a polynomial

in r, while it shows a branch cut at the origin if expressed in
terms of ρ. Since Eq. (98) represents a particular solution,
one can construct the general eigensolution by adding the
general solution of the associated homogeneous equation.
The latter has, after separation of variables, the same form
as Eq. (89), but with λ ¼ 0 and d ¼ dn. Since the only
polynomial solutions are the ones in Eq. (90), for which
λkm > 0, we conclude that Eq. (98) describes the only
acceptable eigenperturbation corresponding to the eigen-
value of Eq. (100).
One might be tempted to compare the plain extrapolation

of Eq. (100) at ϵ ¼ dn − 2 ¼ 2=ðn − 2Þ to the exact results
known in two dimensions, in the hope of good agreement for
large n. The agreement is not good at all, since we obtain
ω ¼ 2, while for the minimal models in two dimensions

ω ¼ ΔΦΦ† þ 2 − d ¼ 4

n
ð101Þ

under the assumption that the lowest irrelevant scalar
operator is related to ΦΦ† by the action of the four super-
charges [44]. This is because a resummation of the ϵ
expansion is needed regardless of the numerical value of ϵ
used in the plain extrapolation. Indeed such a disagreement
had alreadybeen observed for the purely scalarmodels [108],

and can be heuristically understood by considering that the
actual expansion parameter is the classical dimension of the
coupling cn, i.e., ðn − 2Þϵ=2. The latter should be equal to
one in two dimensions, and thus not small.

IX. CONCLUSIONS

Three-dimensional scale-invariant models play a funda-
mental role as cornerstones in advancing and testing our
understanding of strongly interacting quantum field theo-
ries. For instance, the Ising and the Gross-Neveu univer-
sality classes have been extensively analyzed for decades.
Instead, comparatively few studies have addressed the
scale-invariant WZ models with four supercharges, which
in three dimensions define what is sometimes called the
supersymmetric Ising universality class. The analysis of
these models in three dimensions, as well as in fractional
dimensions between two and three, has been the subject of
the present work. Besides providing a construction of such
models as RG fixed points beyond perturbation theory, we
have also computed some of their critical exponents. In
particular, the first correction-to-scaling exponent ω has
been the observable on which we have focused most of our
efforts, as a case study for the quality of our approxima-
tions. Before summarizing our results on the value of the
latter, let us first review what is known from the literature.
The supersymmetric critical exponent ω has been com-

puted at three loops in the ϵ expansion in Ref. [40], and at
four loops in Ref. [86] which gives the result of Eq. (43).
The numerical values that can be extracted from this
expansion at different levels of approximation are presented
in the first three columns of Table II. For the two-loops
approximation we give the plain extrapolation at ϵ ¼ 1. For
the three-loops computation we report the Padé [1, 2] or
[2, 1] resummation of Ref. [39]. Finally the four-loops
result has been used with the Padé approximants [2, 2] or
[3, 1] in Ref. [86], obtaining 0.872 or 0.870 respectively,
which we summarize as in the third column of Table II.
The fourth column shows the prediction of the conformal
bootstrap [43]. The last entry presents our best estimate,
obtained in Sec. VI B. From the data presented in Table II,
it appears that a precise and generally accepted determi-
nation of ω is still to come.
Concerning our result, we are not able to estimate the

systematic errors related to the truncation of the theory
space, since we have not collected enough data on it. Future
works addressing less restrictive approximations, for in-
stance higher orders of the derivative expansion, are needed

TABLE II. The supersymmetric correction-to-scaling exponent
at theN ¼ 2 critical WZ model in three dimensions. See Sec. IX
for explanations.

Oðϵ2Þ Oðϵ3Þ Oðϵ4Þ Bootstrap This work

ω 0.667 0.909 0.871(1) 0.9098(20) 0.8344
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to estimate such errors. Indeed, although our approximation
methods are nonperturbative and as such not controlled by
a small expansion parameter, they allow for systematic
improvement. Error bars can be estimated by analyzing
data descending from larger and larger truncations, thus
testing the expectation that the variance of results should
get smaller as one enlarges the set of operators included in
the computation. This has been done e.g., for the three-
dimensional Ising universality class [111]. In Table II, we
present the result which we expect to be the most accurate,
namely the one we derived descending from a generic field-
dependent Kähler metric. Furthermore, we have performed
a minimal-sensitivity analysis of the regulator dependence
of our estimates, observing that its minimization is in fact a
maximization of ω. In Sec. VII we have also explored the
alternative direction of including themomentumdependence
of the generalized Kähler metric. Though in this case we
were able to consider only two couplings, by changing the
regulator we have obtained a maximal value ω ¼ 0.8317,
which appears close to the result in Table II.
The present FRG analysis of the critical three-

dimensional WZ model thus leaves room for improvement
in the determination of ω, and furthermore does not address
the computation of other properties of this scale-invariant
theory that can be found in the literature, e.g., the central
charge or the sphere free energy [39,44]. Some of these can
certainly be extracted with the RGmethod. It is furthermore
possible to compute data on the operator product expan-
sion, both within [110,112] or beyond perturbation theory
[113–115]. We leave such endeavors for future studies.
Still, this work provides constructive evidence in favor of
the existence of scale-invariant WZ models with four
supercharges, in the form of explicit Landau-Ginzburg
descriptions that go beyond the exact constraints imposed
by the nonrenormalization of the superpotential. In fact, we
have provided an approximation of the critical Kähler metric
for a tower of suchmodels in continuous dimensions, as well
as results showing that the scaling properties of these fixed
points are genuinely non-Gaussian. This has been done in
greater detail in Sec. VI A for the three-dimensional N ¼ 2
case, wherewe have determined the critical Kähler metric by
means of local and global numerical methods.
In Sec. VIII we have also presented a partial perturbative

analysis of multicritical models between two and three
dimensions, with superpotential W ∝ Φn, employing an ϵ
expansion of truncated FRG equations around the corre-
sponding upper critical dimensions. Apart from construct-
ing fixed-point solutions, we have computed the exponent
ω at first order in ϵ, see Eq. (100). Collecting information
supporting the existence of such non-Gaussian fixed points
in continuous dimensions could seem a purely academic
exercise. Yet, there might be hope to experimentally test
such phenomena through intriguing relations between short
range statistical models in fractional dimensions and long
range ones in integer dimensions [116]. As an outlook

regarding the multicritical models, we are not aware of any
studies performing a full ϵ expansion, or of nonperturbative
FRG analyses in two or continuous dimensions.
Of course, the RG equations we have computed can be

employed to study off-critical features of these models,
such as supersymmetry breaking, or the finite temperature
and density phase diagram. Also, they can be used to search
for unknown critical models that are not revealed by a
simple analysis of the superpotential, such as for instance
theories with shift symmetry or with a quadratic super-
potential [e.g., the n ¼ 1 and n ¼ 2 cases in Eq. (31)]. It
would also be interesting to perform an FRG analysis of
models with several superfields, for instance with OðNÞ
symmetry [117–119]. Finally, similar FRG studies might
shed some light on the nature of the putative minimal four-
dimensional N ¼ 1 superconformal theory observed in
conformal-bootstrap studies, see Refs. [44,120–123].
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APPENDIX A: DIRAC CONVENTIONS

In four-dimensional flat spacetime we adopt the signa-
ture ð1;−1;−1;−1Þ such that Γ0 is Hermitian and Γi is
anti-Hermitian. As usual, ψ̄ denotes the Dirac conjugate
ψ̄ ¼ ψ†Γ0. We set

Γ5 ≔ −iΓ0Γ1Γ2Γ3: ðA1Þ

After dimensional reduction to the three-dimensional
Euclidean space the metric has signature (1,1,1), and the
Dirac conjugate becomes

ψ̄ ≡ ψ†: ðA2Þ

The integrals over anticommuting variables, occurring in
the superfield formulations of Lagrangian densities, see
e.g., Eq. (10), denote a Berezin integration with

d2θ≡ dθ1dθ2; d2θ̄≡ dθ̄2dθ̄1: ðA3Þ

Note that each dθi, dθ̄i has mass dimension 1=2.
For Dirac spinors and their conjugates we use the same

Fourier transform conventions as for bosons:

fðqÞ ¼ 1ffiffiffiffiffiffi
2π

p
d

Z
ddxfðxÞeiqx: ðA4Þ
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More details on conventions and computations can be
found in Ref. [75].

APPENDIX B: TRIVIAL FIXED POINTS

Free field theories are expected to be included in the set
of fixed points of the RG. Also within the FRG approach
this is indeed the case, as it can be easily observed both
exactly and in specific approximations. At the level of the
exact FRG, namely Eq. (14), the right-hand side becomes
field independent as soon as the effective action Γk is
quadratic in the fields. In all these cases then, the RG flow
itself is trivial, as it affects only a zero-point-energy term.
Even the latter contribution can be argued to vanishing if a
proper regularization of the functional measure is adopted,
which then corresponds to the Weyl ordering prescriptions
in the operatorial representation [124,125]. This means, for
instance, that the effective action of free massive fields does
not change along the RG, and it is therefore a fixed-point
solution.
In the more specific context of the approximations

discussed in the present paper, such a behavior is visible
also in the flow equation of the superpotential and of the
Kähler metric. We define the free WZ model as corre-
sponding to the superpotential

wðχÞ ¼ c2
2
χ2; ðB1Þ

together with a field-independent Kähler metric, or wave
function renormalization. Inserting this ansatz in the flow
equation of the wave function renormalization, e.g.,
Eq. (40) or Eq. (68), results in η ¼ 0 as g ¼ c3 ¼ 0 for
a free theory. Then the fixed-point condition for the
superpotential, according to Eq. (29), possesses only the
following two solutions:

c2 ¼ 0; c2 → ∞; ðB2Þ

as can be seen, for instance, by inspecting the flow equation
for c−12 . As c2 ¼ m̄=k is a dimensionless mass parameter,
these two conditions correspond to either the massless
theory with vanishing dimensionful mass m̄ ¼ 0, or to an
infinitely decoupled massive theory with m̄ ≠ 0 in the
infrared limit k → 0.

APPENDIX C: LPA0

Within the ansatz of Eq. (38) the bosonic block of Γð2Þ
k at

constant bosonic fields and vanishing fermionic field is
sufficient to obtain ∂tZ0 and ∂tW. It reads

Γð2Þ
B ¼

0
BBB@

q2Z0 −W†000f† 0 −W†00

−W000f q2Z0 −W00 0

0 −W†00 −Z0 0

−W00 0 0 −Z0

1
CCCAδðp−qÞ: ðC1Þ

The computation of ∂tZ0 proceeds by projecting Eq. (14)
onto zero fields ϕ;ψ and auxiliary fields fðxÞ ¼ fδðxÞ and
subsequently evaluating ð∂f†∂fÞ at f ¼ 0. The off-diagonal

blocks of Γð2Þ
k which mix bosons and fermions vanish at

ψ ¼ 0, while the fermionic block is not needed since it
carries no dependence on f or f†.

APPENDIX D: KÄHLER POTENTIAL

To extract the flow of the Kähler metric from Eq. (14)
within the ansatz of Eq. (54) we, once more, start out from
constant fields and vanishing ψ . Denoted in component
fields, Eq. (54) reads

Γk ¼
Z

ddx

�
Z0

�
ζ

�
j∇ϕj2 þ i

2
ψ̄=σψ −

i
2
ð∂jψ̄Þσjψ − ff†

�

þ 1

2
ð∂ϕζðψTσ2ψf† þ iψ̄σjψ∂jϕÞ þH:c:Þ

−
1

2
∂ϕ∂ϕ†ζψTσ2ψψ̄σ2ψ�

	

−
�
W0ðϕÞf −

1

2
W00ðϕÞψTσ2ψ þH:c:

��
: ðD1Þ

Its second variation at constant bosonic fields and ψ ¼ 0
consists of two diagonal blocks,

Γð2Þ
B ¼ δðp − qÞFBðZ0; q2; ζ; f; f†Þ;

Γð2Þ
F ¼ δðp − qÞFfðZ0; qj; ζ; f; f†Þ; ðD2Þ

with field-dependent ζ. For more details on these matrices
see Ref. [75]. The flow of the Kähler metric is obtained
from ð∂f†∂fÞ at f ¼ 0 and reads

�
∂t þ

Δ
2
ðχ†∂χ† − χ∂χÞ þ η

�
ζðχ; χ†Þ ¼ −

Z
q

1

v3

�
ð∂t − q∂q − ηþ 1Þr1½h2ðMþM†Þjw000j2 − hðð2M†2 þ uÞw000∂χ†ζþH:c:Þ

þ ðMþM†Þððu− 2q2h2Þj∂χζj2 þ hv∂χ∂χ†ζÞ� þ ð∂t − q∂q − ηÞr2
× ½−hujw000j2 þ ðu− 2q2h2ÞðM†w000∂χ†ζþH:c:Þ
þ 2q2hð2jMj2 þ uÞj∂χζj2 − uv∂χ∂χ†ζ�g ðD3Þ
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with the abbreviations

h ¼ ζ þ r2; M ¼ w00 þ r1;

u ¼ jMj2 − q2h2; v ¼ jMj2 þ q2h2; ðD4Þ

and the notation of Eq. (39). Setting ζðϕ;ϕ†Þ ¼ 1 recovers
the LPA0 result. We have confirmed the flow of the Kähler
metric by deriving it also from the projection onto the
fermionic kinetic term.

1. Fixed point couplings

Tables III–V contain, for an exemplary set of values of
the prefactor a in the regulator (59), the fixed point results

obtained by polynomially truncating ζðρÞ up to order N,
as in Eq. (61).

APPENDIX E: MOMENTUM DEPENDENCE

The second variation Γð2Þ
k ðp; qÞ of ansatz (65) at constant

f and vanishing Fermi field is block diagonal with

Γð2Þ
B ¼

0
BBBBB@

q2Z0ζδðp − qÞ −κW000†ðp − qÞf†
−κW000ðp − qÞf q2Z0ζδðp − qÞ

0 −κW00†ðp − qÞ
−κW00ðp − qÞ 0

� � �

0 −κW00†ðp − qÞ
−κW00ðp − qÞ 0

−Z0ζδðp − qÞ 0

0 −Z0ζδðp − qÞ

1
CCCCCA ðE1Þ

and

Γð2Þ
F ¼

 
Z0ζσ

jqjδðp − qÞ κW00†ðp − qÞσ2
κW00ðp − qÞσ2 Z0ζσ

jTqjδðp − qÞ

!
; ðE2Þ

where κ ¼ ð2πÞ−3=2.
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