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1 Introduction

Like in any perturbative string theory, closed string amplitudes in AdS5 × S5 superstring

theory are given by integrations over the moduli space of Riemann surfaces of various

genus. Like in any large-Nc gauge theory, correlation functions of local single-trace gauge-

invariant operators in N = 4 SYM theory are given by sums over double-line Feynman

(ribbon) graphs of various genus. By virtue of the AdS/CFT duality, these two quantities

ought to be the same. Clearly, to better understand the nature of holography, it is crucial

to understand how the sum over graphs connects to the integration over the string moduli.

Our proposal in [1] provides one realization. It can be motivated as a finite-coupling

extension of a very nice proposal by Razamat [2], built up on the works of Gopakumar

et al. [3–8], which in turn relied on beautiful classical mathematics by Strebel [9, 10], where

an isomorphism between the space of metric ribbon graphs and moduli spaces of Riemann

surfaces was first understood.1

Let us briefly describe some of these ideas. Figure 1 is a very inspiring example, so let

us explain a few of its features. The figure describes four strings interacting at tree level,

i.e. a four-punctured sphere (in the figure, one of the punctures is at infinity). The black

lines are sections of the incoming strings. Close to each puncture, the string world-sheet

behaves as a normal single string, so here the black lines are simple circles. They are the

lines of constant τ for each string. These lines of constant τ need to fit together into a

global picture, as shown in the figure. Note that there are four special points, the red

crosses, which can be connected along critical lines (the colorful lines), across which we

“jump from one string to another”. These critical lines define a graph. There is also a

dual graph, drawn in gray.2 This construction creates a map between the moduli space of

a four-punctured Riemann sphere and a class of graphs, as anticipated above.

These cartoons can be made mathematically rigorous. For each punctured Riemann

surface, there is a unique quadratic differential φ, called the Strebel differential, with fixed

residues at each puncture, which decomposes the surface into disk-like regions — the faces

delimited by the colorful lines [9, 10] (see the appendices in [2] for a beautiful review). The

red crosses are the zeros of the Strebel differential. The line integrals between these critical

points, i.e. the integrals along the colorful lines are real, and thus define a (positive) length

for each line of the graph. In this way the graph becomes a metric graph. (The sum over

the lengths of the critical lines that encircle a puncture equals the residue of the Strebel

differential at that puncture by contour integral arguments.) By construction, the critical

lines emanating from each zero have a definite ordering around that zero. This ordering

can equivalently be achieved by promoting each line to a “ribbon” by giving it a non-zero

width; for this reason the relevant graphs are called metric ribbon graphs. Conversely, fixing

1The present work is a continuation of the hexagonalization proposal for planar correlation functions [11,

12] (see also [13, 14]), which was an extension of the three-point function hexagon construction [15], which

in turn was strongly inspired by numerous weak-coupling [16–21] and strong-coupling [22–24] studies. It

was these weak- and strong-coupling mathematical structures — only available due to integrability — which

were the most important hints in arriving at our proposal [1].
2In this example, both the graph and its dual graph are cubic graphs, but this is not necessarily true in

general.
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Figure 1. In the left figure, four strings radiated from four worldsheet punctures interact (blue

dots, with the fourth puncture located at infinity). The punctures are encircled by contour lines

of constant worldsheet time (black). Critical lines (colorful) divide the contour lines encircling

different punctures. The critical lines intersect at the red crosses, and thus define a cubic graph.

The dual graph is shown in gray. On the right, we represent a standard tree-level field-theory

four-point graph with the topology of a sphere (gray), as well as its dual graph (colorful).

a graph topology and assigning a length to each edge uniquely fixes the Strebel differential

and thus a point in the moduli space.

Such metric ribbon graphs, like the one on the right of figure 1, also arise at zero

coupling in the dual gauge theory. There, the number associated to each line is nothing

but the number of propagators connecting two operators along that line. These numbers

are thus integers in this case, as emphasized in [2]. Note that the total number of lines

getting out of a given operator is fixed, which is the gauge-theory counterpart of the above

contour integral argument.

As such, it is very tempting to propose that we fix the residue of the Strebel differential

at each puncture to be equal to the number of fields3 inside the trace of the dual operator.4

Then there is a discrete subset of points within the string moduli space where those integer

residues are split into integer subsets, which define a valid gauge-theory ribbon graph. By

our weak-coupling analysis, it seems that the string path integral is localizing at these

3The “number of fields” is inherently a weak-coupling concept, which could be replaced by e.g. the total

R-charge of the operator.
4Note that until now the value of the residue remained arbitrary. Indeed, the map between the space of

metric ribbon graphs Γn,g and the moduli space of Riemann surfaces Mn,g conveniently contains a factor

of Rn+ as Mn,g × Rn+ ' Γn,g, so we can think of the space of metric ribbon graphs as a fibration over the

Riemann surface moduli space. Fixing the residues of the Strebel differential to the natural gauge-theory

values simply amounts to picking a section of this fibration.

– 2 –
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points. Note that the graphs defined by the Strebel differential change as we move in the

string moduli space, and that all free gauge-theory graphs nicely show up when doing so,

such that the map is truly complete. The jump from one graph to another is mathematically

very similar to the wall-crossing phenomenon within the space of 4d N = 2 theories [25, 26].

What about finite coupling? Here it is where the hexagons come in. The gray lines

in figure 1 typically define a triangulation of the Riemann surface (since the colored dual

graph is a cubic graph). The triangular faces become hexagons once we blow up all punc-

tures into small circles, such that small extra segments get inserted into all triangle vertices,

effectively converting all triangles into hexagons. In order to glue together these hexagons,

we insert a complete basis of (open mirror) string states at each of the gray lines. The

sum over these complete bases of states can be thought of as exploring the vicinity of each

discrete point in the moduli space, thus covering the full string path integral.

For correlation functions of more/fewer operators, and/or different worldsheet genus,

the picture is very similar. What changes, of course, is the number of zeros of the Strebel

differential,5 that is the number of hexagon operators we should glue together. In the

example above, we had four red crosses, that is four hexagons. This number is very easy to

understand. Topologically, a four-point function can be thought of as gluing together two

pairs of pants, and each pair of pants is the union of two hexagons. To obtain a genus g

correlation function of n closed strings, we would glue together 2n+ 4g − 4 hexagons. We

ought to glue all these hexagons together and sum over a complete basis of mirror states

on each gluing line. Each hexagon has three such mirror lines, as illustrated in figure 1,

and each line is shared by two hexagons, so there will be a (3n + 6g − 6)-fold sum over

mirror states.6 This is admissibly a hard task, but, until now, there is no alternative for

studying correlation functions at finite coupling and genus in this gauge theory. So this is

the best we have thus far.7

For higher genus — i.e. as we venture into the non-planar regime — there is a final

and very important ingredient called the stratification, which appeared already in the

context of matrix models [29–31], and which gives the name to this paper. It can be

motivated from gauge theory as well as from string theory considerations. From the gauge

theory viewpoint, it is clear that simply drawing all tree-level graphs of a given genus, and

dressing them by hexagons and mirror states cannot be the full story: as we go to higher

5The zeros of the Strebel differential may vary in degree. The number of zeros equals the number of

faces of the (dual) graph, whereas the sum of their degrees equals the number of hexagons.
6Note that we should also sum over the lengths associated to the gluing lines. These lines always

connect two physical operators, with the n constraints that the sum of lengths leaving each puncture equals

the length (charge) of the corresponding physical operator, such that one ends up with a (2n + 6g − 6)-

dimensional sum, which is the appropriate dimension of the string moduli space. For instance, for n = 4

and g = 0 we have a two-fold sum, which matches nicely with the two real parameters of the complex

position of the fourth puncture on the sphere, once the other three positions are fixed.
7Of course, there are simplifying limits. In perturbation theory, most of these sums collapse, since it

is costly to create and annihilate mirror particles. Hence, the hexagonalization procedure often becomes

quite efficient, see e.g. [27]. At strong coupling, the sums sometimes exponentiate and can be resummed,

see e.g. [28]. And for very large operators, the various lengths that have to be traversed by mirror states as

we glue together two hexagons are often very large, projecting the state sum to the lowest-energy states,

thus also simplifying the computations greatly, as in [1].
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loops in ’t Hooft coupling, there will be handles formed by purely virtual processes, which

are not present at lower orders. So including only genus-g tree-level graphs misses some

contributions. One naive idea would be to include — at a given genus — all graphs which

can be drawn on surfaces of that genus or less. But this would be no good either, as it

would vastly over-count contributions. The stratification procedure explained in this paper

prescribes precisely which contributions have to be added or subtracted, so that — we hope

— everything works out. From a string theory perspective, this stratification originates

in the boundaries of the moduli space. We can have tori, for example, degenerating into

spheres, and to properly avoid missing (or double-counting) such degenerate contributions,

we need to carefully understand what to sum over. In more conventional string perturbation

theory, we are used to continuous integrations over the moduli space, where such degenerate

contributions typically amount to measure-zero sets, which we can ignore. But here — as

emphasized above and already proposed in [2] — the sum is rather a discrete one, hence

missing or adding particular terms matters.

All in all, our final proposal can be summarized in equation (2.2) below, where the

seemingly innocuous S operation is the stratification procedure, which is further motivated

and made precise below, see e.g. (2.17) for a taste of what it ends up looking like.

In the end, all this is a plausible yet conjectural picture. Clearly, many checks are

crucial to validate this proposal, and to iron out its details. A most obvious test is to

carry out the hexagonalization and stratification procedure to study the first non-planar

quantum correction to a gauge-theory four-point correlation function, and to compare the

result with available perturbative data. That is what this paper is about.

2 Developing the proposal

In the following, we introduce our main formula and explain its ingredients in section 2.1.

In the subsequent section 2.2, we explain the summation over graphs at the example of a

four-point function on the torus. Section 2.3 and section 2.4 are devoted to the effects of

stratification.

2.1 The main formula

Recall that in a general large-Nc gauge theory with adjoint matter, each Feynman diagram

is assigned a genus by promoting all propagators to double-lines (pairs of fundamental color

lines). At each single-trace operator insertion, the color trace induces a definite ordering

of the attached (double) lines. By this ordering, the color lines of the resulting double-line

graph form well-defined closed loops. Assigning an oriented disk (face) to each of these color

loops, we obtain an oriented compact surface. The genus of the graph (Wick contraction)

is the genus of this surface. Counting powers of Nc and g2
YM for propagators (∼g2

YM),

vertices (∼1/g2
YM), and faces (∼Nc), taking into account that every operator insertion adds

a boundary component to the surface, absorbing one power of Nc into the ’t Hooft coupling

λ = g2
YMNc, and using the formula for the Euler characteristic, we arrive at the well-known

genus expansion formula [32] for connected correlators of (canonically normalized) single-

– 4 –
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trace operators Oi:

〈O1 . . .On〉 =
1

Nn−2
c

∞∑
g=0

1

N2g
c

G(g)
1,...,n(λ) , λ = g2

YMNc . (2.1)

Here, G(g)
1,...,n(λ) is the correlator restricted to genus-g contributions. Via the AdS/CFT

duality, the surface defined by Feynman diagrams at large Nc becomes the worldsheet of

the dual string with n vertex operator insertions.

The purpose of this paper is to give a concrete and explicit realization of the general

large-Nc genus expansion formula (2.1) for the case of N = 4 super Yang-Mills theory. The

proposed formula is based on the integrability of the (gauge/worldsheet/string) theory, and

should be valid at any order in the ’t Hooft coupling constant λ. The general formula reads

〈Q1 . . .Qn〉 =

∏n
i=1

√
ki

Nn−2
c

S ◦
∑
Γ∈Γ

1

N
2g(Γ )
c

 ∏
b∈b(Γ4)

d`bb

∫
Mb

dψbW(ψb)

 2n+4g(Γ )−4∏
a=1

Ha .

(2.2)

Let us explain the ingredients: the operators Qi we consider are half-BPS operators, which

are characterized by a position xi, an internal polarization αi, and a weight ki,

Qi = Q(αi, xi, ki) = tr
(

(αi · Φ(xi))
ki
)
, α2

i = 0 . (2.3)

Here, Φ = (Φ1, . . . , Φ6) are the six real scalar fields of N = 4 super Yang-Mills theory, and

α is a six-dimensional null vector. We start with the set Γ of all Wick contractions of the

n operators in the free theory. Each Wick contraction defines a graph, whose edges are the

propagators. We will use the terms “graph” and “Wick contraction” interchangeably. By

the procedure described above, we can associate a compact oriented surface to each Wick

contraction, and thereby define the genus g(Γ ) of any given graph Γ . Importantly, the

edges emanating from each operator have a definite ordering around that operator due to

the color trace in (2.3).8

Next, we promote each graph Γ to a triangulation Γ4 in two steps: first, we identify

(“glue together”) all homotopically equivalent (that is, parallel and non-crossing) lines of

the original graph Γ . The resulting graph is called a skeleton graph. We can assign a

“width” to each line of the skeleton graph, which equals the number of lines (propagators)

that have been identified. Each line of the skeleton graph is called a bridge b, and the width

of the line is conventionally called the bridge length `b. There is a propagator factor d`bb
for each bridge. By definition, each face of a skeleton graph is bounded by three or more

bridges. In a second step, we subdivide faces that are bounded by (m > 3) bridges into

triangles by inserting (m−3) further zero-length bridges (ZLBs). Using the formula for the

Euler characteristic, one finds that the fully triangulated graph Γ4 has 2n+4g(Γ )−4 faces.

For each bridge b of the triangulated skeleton graph Γ4, we integrate over a complete

set of states ψb living on that bridge, and we insert a weight factor W(ψb). The weight

8Graphs with this ordering property are called ribbon graphs.
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factor measures the charges of the state ψb under a superconformal transformation that

relates the two adjacent triangular faces; it thus depends on both the cross ratios of the

four neighboring vertices, and on the labels of the state ψb. The worldsheet theory on each

bridge is a “mirror theory” which is obtained from the physical worldsheet theory by an

analytic continuation via a double-Wick rotation. States in this theory are composed of

magnons with definite rapidities ui ∈ R and bound state indices ai ∈ Z≥1. A complete set

of states is given by all Bethe states, where each Bethe state is characterized by the number

m of magnons, their rapidities {u1, . . . , um}, their bound state indices {a1, . . . , am}, and

their su(2|2)2 flavor labels (A, Ȧ). The integration over the space Mb of mirror states hence

expands to ∫
Mb

dψb =
∞∑
m=0

m∏
i=1

∞∑
ai=1

∑
Ai,Ȧi

∫ ∞
ui=−∞

dui µai(ui) e
−Ẽai (ui) `b , (2.4)

where µai(ui) is a measure factor, Ẽ is the mirror energy, `b is the length of the bridge b,

and the exponential is a Boltzmann factor for the propagation of the mirror particles across

the bridge.

Finally, each face a of the triangulated skeleton graph Γ4 carries one hexagon form

factor Ha, which accounts for the interactions among the three physical operators Qi, Qj ,
Qk as well as the mirror states on the three edges b1, b2, b3 adjacent to the face. It is

therefore a function of all this data:

Ha = Ha(xi, αi, xj , αj , xk, αk;ψb1 , ψb2 , ψb3) . (2.5)

The hexagon form factor is a worldsheet branch-point twist operator that inserts an ex-

cess angle of π on the worldsheet. It has been introduced in [15] for the purpose of

computing planar three-point functions, and has later been applied to compute planar

four-point [11, 12] and five-point functions [14]. Our formula (2.2) is an extension and

generalization of these works to the non-planar regime. Notably, all ingredients of the

formula (2.2) (measures µa(u), mirror energies Ẽa(u), and hexagon form factors H) are

known as exact functions of the coupling λ, and hence the formula should be valid at finite

coupling.9 The hexagon form factors are given in terms of the Beisert S-matrix [35], the

dressing phase [36], as well as analytic continuations among the three physical and the

three mirror theories on the perimeter of the hexagon [15].

Unlike the general genus expansion (2.1), the formula (2.2) nicely separates the com-

binatorial sum over graphs and topologies from the coupling dependence, since the sum

over graphs only runs over Wick contractions of the free theory. At any fixed genus, the

list of contributing graphs can be constructed once and for all. The dependence on the

coupling λ sits purely in the dynamics of the integrable hexagonal patches of worldsheet

H and their gluing properties.

Finally, we have the very important stratification operation indicated by the operator S
in (2.2). The basic idea already anticipated in the introduction is that the sum over graphs

9Of course it is still a sum over infinitely many mirror states, and as such cannot be evaluated exactly

in general. What one can hope for is that it admits high-loop or even exact expansions in specific limits.

This is the focus of upcoming work [33, 34].
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mimics the integration over the string moduli space, which contains boundaries. At those

boundaries, it is crucial to avoid missing or over-counting contributions, specially in a

discrete sum as we have here.10 Despite its innocuous appearance, it is perhaps the most

non-trivial aspect of this paper and is discussed in great detail below; the curious reader

can give a quick peek at (2.17) below.

In the remainder of this paper, we will flesh out the details of the formula (2.2), test

it against known perturbative data at genus one, and use it to make a few higher-loop

predictions.

2.2 Polygonization and hexagonalization

The combinatorial part of the prescription is to sum over planar contractions of n operators

on a surface with given genus. We refer to this step as the polygonization. This task can be

split into three steps: (1) construct all inequivalent skeleton graphs with n vertices on the

given surface (excluding edges that connect a vertex to itself), (2) sum over all inequivalent

labelings of the vertices and identify each labeled vertex with one of the operators, and

(3) for each labeled skeleton graph, sum over all possible distributions of propagators on

the edges (bridges) of the graph that is compatible with the choice of operators, such that

each edge carries at least one propagator.

Maximal graphs on the torus. In the following, we will construct all inequivalent

graphs with four vertices on the torus. To begin, we classify all graphs with a maximal

number of edges. All other graphs (including those with genus zero) will be obtained from

these “maximal” graphs by deleting edges. The maximal number of edges of a graph with

four vertices on the torus is 12. Graphs with 12 edges cut the torus into 8 triangles. For

some maximal graphs, the number of edges drops to 11 or 10, such graphs include squares

involving only two of the four vertices. Once we blow up the operator insertions to finite-

size circles, all triangles will become hexagons, all squares will become octagons, and more

generally all n-gons will become 2n-gons.

We classify all possible maximal graphs by first putting only two operators on the

torus, and by listing all inequivalent ways to contract those two operators. This results

in a torus cut into some faces by the bridges among the two operators. Subsequently, we

insert two more operators in all possible ways, and add as many bridges as possible. We

end up with the 16 inequivalent graphs shown in table 1. Let us explain how we arrive at

this classification: two operators on the torus can be connected by at most four bridges.

It is useful to draw such a configuration as follows:

, (2.6)

where the box represents the torus, with opposing edges identified. The four bridges cut

the torus into two octagons. Placing one further operator into each octagon and adding

10In moduli space integrations, this issue can sometimes be glossed over, since the boundaries are imma-

terial measure-zero subsets; this is definitely not the case in our sums.

– 7 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

1.1 1.2.1 1.2.2 1.3

1.4.1 1.4.2 1.5.1 1.5.2

1.5.3 1.6 2.1.1 2.1.2

2.1.3 2.2 3.1 3.2

Table 1. Inequivalent maximal graphs on the torus.

all possible bridges gives case 1.1 in table 1. When both further operators are placed in

the same octagon, there are two inequivalent ways to distribute the bridges, these are the

cases 1.2.1 and 1.2.2 (here, the fundamental domain of the torus has been shifted to put the

initial octagon in the center). Since each edge in general represents multiple propagators, we

also need to consider cases where the two further operators are placed inside the bridges

of (2.6). Placing one operator in one of the bridges and the other operator into one of

the octagons gives case 1.3 in table 1. Placing both operators in separate bridges gives

cases 1.4.1 and 1.4.2. Placing both operators into the same bridge yields cases 1.5.1, 1.5.2,

and 1.5.3. Finally, placing the third operator inside one of the octagons and the fourth

operator into one of the bridges attached to the third operator results in case 1.6.

Next, we need to consider cases where no two operators are connected by more than

three bridges (otherwise we would end up with one of the previous cases). Again we start

by only putting two operators on the torus. Connecting them by three bridges cuts the

torus into one big dodecagon, which we can depict in two useful ways:

= . (2.7)

– 8 –
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In the right figure, opposing bridges are identified, and we have shaded the two operators

to clarify which ones are identical. Placing the two further operators into the dodecagon

results in the three inequivalent bridge configurations 2.1.1, 2.1.2, and 2.1.3 in table 1. Plac-

ing one operator into one of the bridges in (2.7) results in graph 2.2. We do not need to

consider placing both operators into bridges, as the resulting graph would not have a max-

imal number of edges (and thus can be obtained from a maximal graph by deleting edges).

Finally, we have to consider cases where no two operators are connected by more than

two bridges. In this case, it is easy to convince oneself that all pairs of operators must be

connected by exactly two bridges. We can classify the cases by picking one operator (1)

and enumerating the possible orderings of its bridges to the other three operators (2,3,4).

It turns out that there are only two distinguishable orderings (up to permutations of the

operators): (2,3,2,4,3,4) and (2,3,4,2,3,4). In each case, there is only one way to distribute

the remaining bridges (such that no two operators are connected by more than two bridges):

1 2

3 4
→

1 2

3 4
,

1 2

3 4
→

1 2

3 4
.

These are the graphs 3.1 and 3.2 in table 1. This completes the classification of maximal

graphs. In appendix B.1, we discuss an alternative way (an algorithm that can be imple-

mented for example in Mathematica) of obtaining the complete set of maximal graphs

for any genus and any number of operator insertions.

Non-maximal polygonizations. In the above classification of maximal graphs, each

edge stands for one or more parallel propagators. In order to account for all possible

ways of contracting four operators on the torus, we also have to admit cases where some

edges carry zero propagators. We capture those cases by also summing over graphs with

fewer edges. All of these can be obtained from the set of maximal graphs by iteratively

removing edges. When we remove edges from all maximal graphs in all possible ways,

many of the resulting graphs will be identical, so those have to be identified in order to

avoid over-counting.

Hexagonalization. The next step in our prescription is to tile all graphs of the poly-

gonization with hexagon form factors, which we refer to as the hexagonalization of the

correlator. For many of the maximal graphs, the hexagonalization is straightforward, as

every face has three edges connecting three operators, giving room to exactly one hexagon.

But some maximal graphs, and in particular graphs with fewer edges, include higher poly-

gons, which have to be subdivided into several hexagons. A polygon with m edges (and m

cusps) subdivides into m − 2 hexagons, which are separated by m − 3 zero-length bridges

(ZLBs). In this way, the torus with four punctures always gets subdivided into eight

hexagons.11 Later on, each of these hexagons will be dressed with virtual particles placed

11A surface of genus g with n punctures will be subdivided into 2n+ 4g − 4 hexagons.

– 9 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

� gn1l1+n2l2+n3l3 �

�

�
�

�

g(n3�n2�n1)
2

n3 > n2 + n1

g1 n3 � n2 + n1 and n1 + n2 + n3 odd
g0 n3 � n2 + n1 and n1 + n2 + n3 even

,
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u

� n
1
)

e.g.

= O(g9+9+16) when all mirror bridges have zero length

Figure 2. To estimate at which loop order a given sprinkling pattern will start contributing, we can

focus on each hexagon. We absorb in each hexagon one half (i.e. the square root) of the measures

and mirror particle propagation factors of the three adjacent mirror edges. We can then estimate

the loop order of a given populated hexagon by noting that this object has residues where particles

decouple among themselves. For example, the middle hexagon in the bottom picture must cost no

coupling since it contains residues where all particles annihilate, leaving an empty hexagon whose

expectation value is just 1. In other words, in this example, what costs (a lot!) of loops is to create

the particles in the surrounding hexagons; once they are created, they can freely propagate through

the middle hexagon (e.g. following the interior of the dashed regions) and that costs no coupling

at all. The general loop counting is presented for completeness at the top. It follows by noticing

that after the decoupling, one is left with mirror particles only on one edge. The integrand for this

case has a simplified coupling independent part due to the unitarity of the S matrix, and it is a

product (i < j) of terms h(ui, uj)h(uj , ui) ∼ g4, where h is the hexagon dynamical factor. See the

appendices C and D for the two-particle case. See also [37].

on the mirror edges or bridges which will generate the quantum corrections to the corre-

lator under study, and which we refer to as sprinkling. The general counting of loop order

involved in a general sprinkling is illustrated in figure 2.

Let us illustrate the hexagonalization with an example. Take the maximal graph 1.1

of table 1, and remove the horizontal lines in the middle, as well as the diagonal lines

connecting the lower operator with the lower two corners. The resulting graph is depicted

in figure 3. It has eight edges that divide the torus into four octagons. Each octagon

gets subdivided into two hexagons by one zero-length bridge, as shown in figure 4. In this
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Figure 3. Skeleton graph obtained from maximal graph 1.1 by removing all horizontal lines and

some diagonal connections as explained in the main text.

Figure 4. The skeleton graph of figure 3 can be completed to a hexagonalization by inserting

a zero-length bridge (ZLB, dashed lines) into each of the four octagons. This decomposes the

four-punctured torus into eight hexagons.

case, the hexagonalization meant nothing but reinstating the deleted bridges as ZLBs. We

can now draw the hexagon decomposition in a way that makes the hexagonal tiles more

explicit. This results in the hexagon tiling shown in figure 5.

Dressing a skeleton graph such as the one in figure 3 with ZLBs is not unique: each

octagon has two diagonals that we could choose to become ZLBs. The final answer will

be independent of this choice. This property of the hexagonalization is called flip invari-

ance [11]. Hence we can choose any way to cut bigger polygons into hexagons.

Ribbon graph automorphisms and symmetry factors. When we perform the sum

over all graphs and all bridge lengths on the torus (or higher-genus surface), we need

to multiply some graphs by appropriate symmetry factors. The graphs we have been

classifying are ribbon graphs. In order to understand the symmetry factors, we will take a

closer look at the formal definition of these ribbon graphs. A ribbon graph is an ordinary

graph together with a cyclic ordering of the edges at each vertex.12 More formally, ribbon

graphs are defined through pairing schemes : let V be a collection of non-empty ordered

12See [38] for a nice review.
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Figure 5. The hexagon tiling associated to the hexagonalization in figure 4. The solid black lines

attach to the four operators, the solid gray lines carry one or more propagators, and the dashed

lines are zero-length bridges.

sets Vj ,

V = {V1, . . . , Vv} , Vj = (Vj1, . . . , Vj`j ) , (2.8)

and let Ṽ = {V11, . . . , V1`1 , . . . , Vv1, . . . , Vv`v} be the union of all Vj . A pairing scheme

P = (V, p) is defined by a bijective pairing map p : Ṽ → Ṽ with p2 = 1 and p(V ) 6= V for

all V ∈ Ṽ. Each ordered set Vj of P is called a vertex of P of degree `j . In our context,

each vertex Vj represents one of the operators, and the Vji label the (half-)bridges attached

to operator j. The degree `j is the number of bridges attached to the operator. P defines

a ribbon graph, but also specifies a marked beginning of the ordered sequence of edges

(bridges) attached to each vertex. Pairing schemes are promoted to ribbon graphs by the

natural action of the group of orientation-preserving isomorphisms

G =
m∏
k=1

Snk o (Z/kZ)nk . (2.9)

Here, nk is the number of vertices of degree k, m is the maximal degree, Snk permutes

vertices of the same degree, and (Z/kZ)nk rotates vertices of degree k. Each orbit G.P of

the group action defines a ribbon graph. In other words, a ribbon graph Γ associated with

a pairing scheme P is the equivalence class of P with respect to the action of G.

Typically an element of the group (2.9) maps a given pairing scheme P to a differ-

ent pairing scheme P ′ (by permuting vertices and/or shifting the marked beginnings of

the ordered sequences of edges/bridges at each vertex/operator). However, some group

elements may map a pairing scheme P to itself. If Γ is a ribbon graph associated with
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a pairing scheme P , then the subgroup of (2.9) preserving P is called the automorphism

group Aut(Γ ) of Γ .13

Assigning a positive real number to each edge of a ribbon graph promotes it to a

metric ribbon graph. The number assigned to a given edge is called the length of that edge.

Therefore, a graph with assigned bridge lengths is a metric ribbon graph (with integer

edge lengths). The notion of automorphism group extends to metric ribbon graphs in an

obvious way.

In the sum over graphs and bridge lengths, we need to divide each graph with as-

signed bridge lengths (metric graph) by the size of its automorphism group. These are the

symmetry factors mentioned at the beginning of this paragraph.

Let us illustrate the idea with an example. Consider the following rather symmetric

ribbon graph with eight edges, with all bridge lengths set to one:

g∈G−−−→ shift−−→ (2.10)

In the left picture, the graph is represented by an arbitrarily chosen pairing scheme, where

the beginnings/ends of the edge sequences at each vertex are indicated by the small blue

cuts. The second picture shows the pairing scheme obtained by applying an isomorphism

g ∈ G that cyclically rotates all vertices by two sites. In the second step, we shift the

cycles along which we cut the torus in order to represent it in the plane. As a result, we

see that the pairing scheme after applying g is the same as the original pairing scheme on

the left. Thus this graph has to be counted with a symmetry factor of 1/2 (there is no

other non-trivial combination of rotations that leave the graph invariant, and hence the

automorphism group has size 2). If we increase the bridge length on two of the edges to

two, we find the following:

g∈G−−−→ (2.11)

As can be seen from the pictures, applying the same group element to the original pairing

scheme results in a different pairing scheme that cannot be brought back to the original by

any trivial operation. In this case, the automorphism group is trivial, and the graph has

to be counted with trivial factor 1.

The symmetry factors can also be understood from the point of view of field contrac-

tions: when writing the sum over contractions as a sum over graphs and bridge lengths, we

pull out an overall factor of k4 that accounts for all possible rotations of the four single-

trace operators. For some graphs and choices of bridge lengths, non-trivial rotations of

the four operators can lead to identical contractions, which are thus over-counted by the

13The automorphism group is independent of the choice of pairing scheme P representing Γ .
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overall factor k4. This can be seen explicitly in the above example (2.10). Dividing by the

size of the automorphism group exactly cancels this over-counting.

2.3 Stratification

The fact that we are basing the contribution at a given genus g on the sum over graphs of

genus g is of course natural from the point of view of perturbative gauge theory: each graph

with assigned bridge lengths is equivalent to a Feynman graph of the free theory. Summing

over graphs of genus g and over bridge lengths (weighted by automorphism factors) is

therefore equivalent to summing over all free-theory Feynman graphs of genus g. All

perturbative corrections associated to a given graph are captured by the product of hexagon

form factors as well as the sums and integrations over mirror states associated to that graph.

It is clear that this prescription cannot be complete, as it does not include loop corrections

that increase the genus of the underlying free graph. It also omits contributions from

disconnected free graphs that become connected after adding interactions. In other words,

it does not include contributions from handles or connections formed purely by virtual

processes. We can include such contributions by drawing lower-genus and disconnected

graphs on a genus-g surface in all possible ways, and tessellating the genus-g surface into

hexagons including the handles not covered by the lower-genus graph. Weighting such

contributions by the same genus-counting factor N2−2g−n as the honestly genus-g graphs,

we include all virtual processes that contribute at this genus. In other words, the sum over

graphs in (2.2) has to be replaced as

∑
Γ∈Γ

=
∞∑
g=0

∑
graphs Γ
of genus g

→
∞∑
g=0

∑
Γ∈Σg

, (2.12)

where Σg is the set of all graphs, connected or disconnected, of genus g or smaller. For

graphs whose genus is smaller than g, the symbol Γ ∈ Σg has to carry not only the

information of the graph itself, but also of its embedding in the genus-g surface. The

embedding can for example be encoded by marking all pairs of faces of the graph to which

an extra handle is attached.

While this prescription solves the problem of capturing all genus-g contributions, it

also spoils the result by including genuine lower-genus contributions. Namely, the loop

expansion of the hexagon gluing (sum over mirror states) will also include processes where

one or more extra handles (those not covered by the graph) remain completely void. Such

void handles can be pinched. Pinching a handle reduces the genus, hence such contribu-

tions do not belong to the genus-g answer. However, we can get rid of these unwanted

contributions by subtracting the same lower-genus graphs, but now drawn on a surface

where a handle has been pinched. Pinching a handle reduces the genus by one, leaving two

marked points on the reduced surface. For an n-point function, we hence have to subtract

all n-point graphs drawn on a genus (g − 1) surface with 2 marked points. Such contribu-

tions naturally come with the correct genus-counting factor N2−2(g−1)−(n+2) = N2−2g−n.
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Hence we have to refine (2.12) to

r.h.s. of (2.12) →
∞∑
g=0

∑
Γ∈Σg

−
∑

Γ∈Σ2
g−1

 , (2.13)

where Σ2
g−1 is the set of all graphs of genus (g − 1) or smaller embedded in a genus

(g − 1) surface, with two marked points inserted into any two faces of the graph (or both

marked points inserted into the same face). This subtraction correctly removes all excess

contributions from the first sum that have exactly one void handle. In contrast, the excess

contributions with two void handles are contained twice in the subtraction sum, once for

each handle that can be pinched. We have to re-add these contributions once by further

refining (2.13) to

r.h.s. of (2.13) →
∞∑
g=0

∑
Γ∈Σg

−
∑

Γ∈Σ2
g−1

+
∑

Γ∈Σ4
g−2

 , (2.14)

where now Σ4
g−2 is the set of all graphs of genus (g − 2) or smaller embedded in a genus

(g − 2) surface, with two pairs of marked points inserted into any four (or fewer) faces of

the graph. This procedure iterates, leading to the refinement

r.h.s. of (2.14) →
∞∑
g=0

g∑
m=0

(−1)m
∑

Γ∈Σ2m
g−m

. (2.15)

Under the degenerations discussed thus far, the Riemann surface stays connected.

There are also degenerations that split the Riemann surface into two components by pinch-

ing an intermediate cylinder. Also these degenerations have to be subtracted in order to

cancel unwanted contributions (that originate from disconnected propagator graphs, or

from purely virtual “vacuum” loops). Such degenerations split a Riemann surface of genus

g with n punctures into two components with genus g1 and g2 that contain n1 and n2 punc-

tures, such that g1 + g2 = g and n1 + n2 = n. Each component carries one marked point

that remains from pinching. Such contributions also come with the correct genus-counting

factor

N2−2g1−(n1+1)N2−2g2−(n2+1) = N2−2g−n . (2.16)

Again, the pinching process can iterate, splitting the surface into more and more compo-

nents.14 We will comment on this type of contributions at the end of section 5 and in

appendix F.

14Starting with a surface of genus g with n punctures, the maximum number of iterated degenerations

(of both types described above) is 3g+n− 3, resulting in a surface with 2g+n− 2 components, where each

component is a pair of pants (sphere with three punctures and/or marked points). This bound is saturated

when we perform the reduction starting from a maximally disconnected planar graph that is embedded on

the surface in a disk-like region (i.e. without any windings). For even n, a maximally disconnected planar

graph has n/2 components, each consisting of two operators connected by a single bridge. In this case, the

maximal degeneration consists of spheres that contain either one component of the graph and one marked

point, or no part of the graph and three marked points. For odd n, a maximally disconnected planar graph

has (n − 1)/2 components, where one of the components is a triangular three-point graph (because every

operator has at least one bridge attached). In this case, the maximal number of degenerations is 3g+n−4,

resulting in 2g + n− 3 surface components.
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Summing all possible degenerations with their respective signs, we arrive at the fol-

lowing final formula, which is a further refinement of (2.15):

r.h.s. of (2.15) →
∞∑
g=0

2g+n−2∑
c=1

∑
τ∈τg,c,n

(−1)
∑
imi/2

∑
Γ∈Στ

≡ S ◦
∑
Γ∈Γ

. (2.17)

Here, c counts the number of components of the surface, and the sum over τ runs over the

set of all genus-g topologies with c components and n punctures:

τg,c,n =

{
{(g1, n1,m1), . . . , (gc, nc,mc)}

∣∣∑
i

ni = n ,
∑
i

(gi +mi/2)− c+ 1 = g

}
,

(2.18)

where (gi, ni,mi) labels the genus, the number of punctures, and the number of marked

points on component i. Finally, we sum over the set Στ of all graphs Γ (connected and

disconnected) that are compatible with the topology τ and that are embedded in the surface

defined by τ in all inequivalent possible ways (Γ may cover all or only some components

of the surface).

In the rightmost expression, we have defined the stratification operator S, which im-

plements the refinement of adding and subtracting graphs on surfaces of genus ≤g with

marked points as just explained. It appears intricate as it stands, but we will see below

that it turns out less complicated than it looks.

We motivated this proposal from gauge theory considerations. We could have ar-

rived at the very same expression by following string moduli space considerations as ex-

plained in the introduction, by carefully subtracting the boundary of the discretized moduli

space [29, 30].15

Example. Let us illustrate the above construction with an important example. Consider

the correlator for four equal-length single-trace operators Q1, . . . ,Q4 that are chosen such

that the fields in Q1 cannot contract with the fields in Q4, and the fields in Q2 cannot

contract with the fields in Q3. Correlators of this type are studied throughout the rest of

this paper. For such correlators, there is only one planar graph:

1 2

3 4

. (2.19)

15The map between the moduli space and metric ribbon graphs induces a cell decomposition on the

moduli space. The highest-dimensional cells are covered by graphs with a maximal number of edges.

Cell boundaries are reached by sending some bridge length to zero. (The neighboring cell is reached by

flipping the resulting ZLB and making its length positive again.) The moduli space Mg,n itself also has a

boundary, which is reached when a handle (cylinder) becomes infinitely thin. In terms of ribbon graphs,

this boundary is reached when all bridges traversing a cylinder reduce to zero size. The minimal number of

bridges traversing a cylinder is two, hence the moduli space boundaries have complex codimension one. The

highest-dimensional cells (bulk of the space) have complex dimension 3g+n−3, which explains the maximal

number of iterated degenerations. The alternating sign in (2.17) is also natural from this point of view.
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At genus one, stratification requires that we include contributions from this graph drawn

on a torus in all possible ways. An obvious way of drawing the planar graph on the torus

is (the torus is drawn as a square, opposing sides of the square have to be identified)

1 2

3 4
. (2.20)

Pinching the handle of the torus leads back to the original graph drawn on the plane, with

two marked points remaining where the handle got pinched:

1 2

3 4

pinching−−−−−−→

1 2

3 4

. (2.21)

According to the stratification prescription, the contribution from (2.20) has to be added,

whereas the contribution from (2.21) (right-hand side) has to be subtracted in the com-

putation of the genus-one correlator. Of course there are many more ways to draw the

planar graph on a torus. Finding all such ways amounts to adding an empty handle to the

planar graph in all possible ways. This in turn is equivalent to inserting two marked points

into the planar graph in all possible ways, which mark the insertion points of the added

handle. In other words, we can find all ways of drawing the planar graph on the torus by

drawing graphs of the type shown on the right-hand side of (2.21). The two marked points

can either be put into faces of the original graph, as in (2.21), but they can also be put

inside bridges — a bridge stands for a collection of parallel propagators, hence it can be

split in two by an extra handle. Going through all possibilities, we find the seven types of

contributions listed in table 2.

In the table, we have listed unlabeled graphs, which have to be summed over inequiv-

alent labelings. One may wonder why we have not included a variant of case (1) where

the two marked points are “inside” the planar graph. In fact, this other case is included

in the sum over labelings of case (1): putting the two marked points “inside” the graph

is equivalent to turning the graph (1) “inside out”, which amounts to reversing the cyclic

labeling of the four operators. Similarly for case (3), the case where the exterior marked

point sits inside the central face is included in the sum over labelings.

We will see below that mirror particle contributions may cancel propagator factors of

the underlying free-theory graph. We therefore have to also sum over graphs containing

propagators that are ultimately not admitted by the external operators. From an opera-

tional point of view, this is equivalent to only restricting the operator polarizations at the

very end of the computation. For operators of equal weight but generic polarizations, the
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→

(1) (1′)

↘
×

(1′′)

→

(2) (2′)

→

(3) (3′)

→

(4) (4′)

→

(5) (5′)

→

(6) (6′)

→ , ×

(7) (7′) (7′′)

Table 2. List of stratification contributions for a genus-one four-point correlator 〈O1 . . .O4〉 of

equal-weight operators O1, . . . ,O4, where O1 cannot contract with O4, and O2 cannot contract with

O3. Each case has to be summed over all inequivalent labelings of the four operators. Unprimed

contributions (i) are planar graphs drawn on a torus and thus have to be counted with a positive

sign. Primed contributions (i′) are obtained from their unprimed counterparts by pinching a handle

and thus have to be counted with a negative sign. Doubly primed contributions (i′′) are obtained

by pinching off the entire torus, they also have to be counted with a negative sign.
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only planar four-point graph besides (2.19) is the “tetragon graph”

1 2

3 4

. (2.22)

Putting this graph on a torus in all possible ways, we find eight inequivalent cases, listed

in table 3 and labeled (8)–(15). For the graph (2.22), all faces are equivalent. Therefore,

it is clear that all ways of placing one or two marked points into the several faces are

equivalent (up to operator relabelings). Therefore, we include only one representative of

all these variants. As for the cases listed in table 2, the stratification prescription requires

that the unprimed contributions should be added, while the primed contributions should

be subtracted.

Thus far, we have accounted for pinchings where the handle of the torus becomes

infinitely thin. However, for cases (1), (7), (8) and (11) there is another way to pinch,

where one separates the whole torus from the graph, leaving an empty torus with one

marked point, and the graph on a sphere with one marked point inside the face that

previously contained the torus. These cases are labeled (1′′), (7′′), (8′′) and (11′′) in table 2

and table 3, and have to be subtracted as well.

For connected graphs, these two types of degenerations are all that can occur at genus

one, since these are the only types of degenerations a torus admits, as illustrated in figure 6

and figure 7. Disconnected graphs do not contribute to any computation in this paper,

and hence are not considered here.

To summarize, the effect of stratification at genus one, for correlators of the type

considered here, is that the sum over genus-one graphs has to be augmented by a sum over

the unprimed graphs (with positive sign) and a sum over the primed graphs (with negative

sign) of table 2 and table 3:

〈Q1 . . .Q4〉(g=1) =
(genus-one

graphs

)
+
k2

N4
c

14∑
i=1

S(i)︸ ︷︷ ︸
≡ secretly

planar

− k2

N4
c

14∑
i=1

S(i′) −
k2

N4
c

∑
i∈{1,7,8,11}

S(i′′)︸ ︷︷ ︸
≡ subtraction

, (2.23)

where S(i), S(i′), and S(i′′) stand for the full contributions (sums over bridge lengths and

mirror states) of the respective graphs. Note that, by construction, the genus-one stratifi-

cation formula (2.23) is sufficiently general to hold for half-BPS operators Qi of arbitrary

polarizations αi (but equal weights ki).

2.4 Subtractions

We now explain how to compute the contributions from graphs associated with the degen-

erate Riemann surfaces, namely (i′)’s and (i′′)’s in table 2 and table 3.
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→ , ×

(8) (8′) (8′′)

→

(9) (9′)

→

(10) (10′)

→ , ×

(11) (11′) (11′′)

→

(12) (12′)

→

(13) (13′)

→

(14) (14′)

→

(15) (15′)

Table 3. Additional stratification contributions for a genus-one four-point correlator 〈O1 . . .O4〉
of equal-weight operators O1, . . . ,O4 of generic polarizations. These have to be included even if

some operators are polarized such that they ultimately cannot contract, because mirror particle

contributions may cancel propagator factors of the underlying free graph.
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(a)

(b) (c)

Figure 6. Diagrammatic interpretation of marked points. (a) The diagram corresponding to the

degenerate Riemann surface. (b) Pinching procedure. (c) The diagram after pinching. The red

regions in (c) correspond to the marked points discussed in the previous subsection.

Marked points as holes in planar diagrams. The first step of the computation is

to better understand what the marked points (⊗’s in table 2) represent. For this purpose,

it is useful to look at the corresponding Feynman graphs in the double-line notation. An

example Feynman diagram that contributes to a stratification subtraction is depicted in

figure 6. Although drawn on a torus, it is essentially a planar diagram, and therefore

corresponds to a degenerate Riemann surface. After the degeneration of the torus (see

figure 6(b)), the pinched handle becomes two red regions as shown in figure 6(c), which

are the faces of the original planar diagram. We thus conclude that, at the diagrammatic

level, inserting two marked points on the sphere amounts to specifying two holes/faces of

all planar Feynman graphs. For a planar graph G with F faces, there are Binomial(F, 2) =

F (F − 1)/2 different ways of specifying two holes in two different faces of the graph. Thus

the contribution of a graph with two marked points in different faces (denoted by G2⊗) is

given in terms of the contribution of the original graph G as

G2⊗ =
F (F − 1)

2
× G , (2.24)

where F is the number of faces in G. This provides a clear diagrammatic interpretation

of the marked points, but it does not immediately tell us how to compute them using

integrability, since one cannot in general isolate the contributions of individual Feynman

diagrams in the integrability computation. To perform the computation, we need to relate

them to yet another object that we discuss below.
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The key observation is that the same factor F (F − 1)/2 appears when we shift the

rank of the gauge group: consider the planar Feynman diagram G in U(Nc) N = 4 SYM,

and change the rank from Nc to Nc + 1. Since each face of the planar diagram gives a

factor of Nc, the shift of Nc produces the following change in the final result

G Nc→Nc+1−−−−−−−→
(
Nc + 1

Nc

)F
G =

(
1 +

F

Nc
+
F (F − 1)/2

N2
c

+ · · ·
)
G . (2.25)

This offers a reasonably simple way to compute the contribution from the degenerate

Riemann surface: namely we just need to

1. Take the planar result and shift the rank of the gauge group from Nc to Nc + 1.

2. Expand it at large Nc and read off the 1/N2
c correction.

With this procedure, one can automatically obtain the correct combinatorial factor without

needing to break up the planar results into individual Feynman diagrams.

Before applying this to our computations, let us add some clarifications: firstly, when

we shift Nc to Nc +1, we keep the Yang-Mills coupling constant gYM fixed, not the ’t Hooft

coupling constant λ = g2
YMNc. Put differently, we must shift the value of λ when we perform

the shift of Nc. Secondly, the planar correlators to which we perform the shift must be

unnormalized : if we normalize the planar correlators so that the two-point function is

unit-normalized, the shift of Nc will no longer produce the correct combinatorial factor

dependent on F .

It is now straightforward to evaluate the contribution from degenerate Riemann sur-

faces explicitly. The planar connected correlator for BPS operators of weights (lengths) ki
admits the following expansion

G
(Nc)
{k1,...,kn} = NK+2−n

c

∞∑
`=0

c` λ
` , (2.26)

where c` is a coefficient independent of Nc and λ, and K =
∑

i ki/2. Shifting Nc to Nc + 1,

we obtain

G
(Nc+1)
{k1,...,kn} = NK+2−n

c

∞∑
`=0

c` λ
`

[
1 +
K + 2− n+ `

Nc
+

1

N2
c

(
K + 2− n+ `

2

)
+ . . .

]
(2.27)

We thus conclude that the correlator G2⊗
{k1,...,kn} with two extra marked points inserted into

two different faces in all possible ways is given by

G2⊗
{k1,...,kn}

∣∣∣
O(λ`)

=

(
K + 2− n+ `

2

)
× G

(Nc)
{k1,...,kn}

∣∣∣
O(λ`)

. (2.28)

Once we get this formula, we can then normalize both sides, since the normalization for

BPS operators does not depend on λ.

So far, we have been discussing the degeneration in which a handle degenerates into a

pair of marked points. The other type of degeneration, in which the surface is split in two
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(a)

(b) (c)

Figure 7. Degeneration to a single marked point. In addition to the degeneration shown in figure 6,

there is a yet another class of degenerations which produces a sphere with a single marked point.

They correspond to the diagrams shown in (a) which degenerates into (c) depicted above. The red

region in (c) corresponds to a marked point.

by pinching an intermediate cylinder, is exemplified in figure 7. As shown in this figure,

this type of degeneration produces a single marked point on the planar surface. Therefore,

the analogue of (2.24) in those cases reads

G⊗ = FG , (2.29)

where again F is the number of faces in the Feynman graph G. The combinatorial factor

F in this case can also be related to the shift of Nc; namely it corresponds to the O(1/Nc)

term in the expansion (2.25). We therefore conclude that the correlator with a single extra

marked point is given by

G⊗{k1,...,kn}

∣∣∣
O(λ`)

= (K + 2− n+ `)× G
(Nc)
{k1,...,kn}

∣∣∣
O(λ`)

. (2.30)

In total, the subtraction for a correlator on the torus at order O(λ`) is given by

(subtraction)|O(λ`) =

(
K + 3− n+ `

2

)
× (planar)|O(λ`) (2.31)

where (subtraction) denotes the subtraction piece while (planar) is a planar correlator.
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Decomposition into polygons at one loop. The formula above computes the full

k-loop subtraction all at once. However, it is practically more useful to decompose the

subtraction into the contributions associated with individual tree-level diagrams, so we

can observe cancellations with other contributions more straightforwardly.

This can be done rather easily by generalizing the argument we just presented: as

shown in table 2, the degeneration of a Riemann surface with a tree-level graph leads to

polygons (i.e. faces) with one or two marked points.16 To evaluate these polygons, we just

need to keep in mind that each polygon admits the expansion

(polygon) = Nc

∑
`

p` λ
` . (2.32)

The overall factor Nc comes from the fact that the edges of the polygon constitute a closed

index-loop. Although we do not normally associate such a factor with each polygon, here

it is crucial to include that factor17 to count the faces correctly.

The rest of the argument is identical to the one before: shifting Nc to Nc + 1 and

reading off the 1/Nc and 1/N2
c terms, we get

(polygon)⊗
∣∣
O(λ`)

= (1 + `)× (polygon)
∣∣
O(λ`)

,

(polygon)2⊗
∣∣
O(λ`)

=
(1 + `)`

2
× (polygon)

∣∣
O(λ`)

.
(2.33)

Here (polygon)⊗ and (polygon)2⊗ denote the contributions from a polygon with one or

two marked points respectively. Using the fact that the O(λ0) term for each polygon is

just unity,18 one can also write an explicit weak-coupling expansion as

(polygon)⊗ = 1 + 2(polygon)
∣∣
O(λ)

+ . . . ,

(polygon)2⊗ = 0 + (polygon)
∣∣
O(λ)

+ . . . .
(2.34)

These formulae will be used intensively below.

Worldsheet interpretation. Let us end our discussion on the subtraction by mention-

ing the worldsheet interpretation of the marked points. This is more or less obvious from

the way we performed the computation: shifting the rank of the gauge group from Nc to

Nc + 1 amounts to adding a probe D3-brane in AdS. It is well-known that the probe brane

sitting at some finite radial position z describes the Coulomb branch of N = 4 SYM, in

which the gauge group is broken from U(Nc + 1) to U(Nc)×U(1). In our case, we are not

breaking any conformal symmetry, and therefore the probe brane must sit at the horizon

of AdS (z =∞ in Poincaré coordinates).

This suggests that the marked points that we have been discussing correspond to

boundary states describing the probe brane at the horizon. Furthermore, our computa-

tion (2.30) implies that the n-point tree-level string amplitude with an insertion of a hole

16Polygons and their expectation value at one loop are discussed in full detail in the next section.
17This is essentially because we need to consider unnormalized correlators, as explained above.
18Here we are dropping the overall Nc factor as in the rest of this paper.
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is related to the same amplitude without insertion as19

λK−2+nAsphere+hole =
∂

∂λ

(
λK−2+nAsphere

)
. (2.35)

It would be interesting to verify this prediction by a direct worldsheet computation.

Let us finally add that, although the argument above gives a worldsheet interpretation

of the marked points, it does not explain why such boundary states are relevant for the anal-

ysis of the degenerate worldsheet. It would be desirable to find a worldsheet explanation for

this, which does not rely on the Feynman-diagrammatic argument presented in this section.

2.5 Dehn twists and modular group

The backbone of our formula (2.2) is a summation over (skeleton) graphs. When we

construct the complete set of graphs on a surface of given genus, we implicitly identify

graphs that only differ by “twists” of a handle. For example, we treat the genus-one graphs

and (2.36)

as identical. This makes perfect sense from a weak-coupling perturbative point of view:

Wick contractions only carry information about the ordering of bridges around each oper-

ator, not on the particular way in which the graph is embedded in a given surface. Hence

the two graphs (2.36) are identical as Feynman graphs. Modding out by such twists is also

natural from the string-worldsheet perspective. The summation over graphs represents

the integration over the moduli space of complex structures of the string worldsheet. The

“twists” mentioned above are called Dehn twists. More formally, a Dehn twist is defined

as an operation that cuts a cylindrical piece (the neighborhood of a cycle) out of a Rie-

mann surface (the worldsheet), performs a 2π twist on this piece, and glues it back in, see

figure 8. Such Dehn twists leave the complex structure of the Riemann surface invariant,

and hence should be modded out by when integrating over the moduli space. In fact, Dehn

twists are isomorphisms that are not connected to the identity. They form a complete set

of generators for the modular group (mapping class group) for surfaces of any genus and

with any number of operator insertions (boundary components).20 Since all Dehn twists

act as identities in the moduli space as well as on Feynman diagrams, it is natural to mod

out by Dehn twists in all stages of the computation.

While modding out by Dehn twists is natural and straightforward in the summation

over free-theory graphs (as we have been doing implicitly), it has non-trivial implications

for the summation over mirror states, especially for the stratification contributions. By

their nature, all stratification contributions contain non-trivial cycles that do not intersect

with the graph of propagators: for the terms that get added, non-trivial cycles can wind

19The formula is reminiscent of the famous soft dilaton theorem [39], although it does not seem that there

exists any obvious relation between the two.
20At genus one, the modular group is PSL(2,Z), and it is generated by Dehn twists along the two

independent cycles of the torus.
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Figure 8. Dehn twists: Left: in red, we represent a path along the worldsheet that undergoes

a complete cycle in the cylindrical piece where a Dehn twist was performed. Middle and Right:

stratification contributions that get added (graph on a torus, middle figure) and subtracted (planar

graph with marked points, right figure), with shaded regions that form non-trivial cycles, on which

one can perform Dehn twists that leave the embedding of the graph invariant.

the handles not covered by the graph, and for the terms that get subtracted, non-trivial

cycles can wind around the isolated marked points (see figure 8 for examples). Obviously,

performing a Dehn twist on a neighborhood of such cycles neither alters the graph itself,

nor its embedding in the surface. But once we fully tessellate the surface by a choice

of zero-length bridges (and dress them with mirror magnons), such Dehn twists will alter

(twist) the embedding of those bridges (ZLBs) on the surface. For example, the two graphs

1 2

3 4
and

1 2

3 4
(2.37)

are related by a Dehn twist on a vertical strip in the middle of the picture, which only

acts on the zero-length bridges (dashed lines). Since we anyhow do not sum over different

ZLB-tessellations, but rather just pick one choice of ZLBs for each propagator graph, it

looks like such twists need not concern us. However, notice that one can always transform

a Dehn-twisted configuration of ZLBs back to the untwisted configuration via a sequence

of flip moves on the ZLBs. As long as all participating mirror states are vacuous, these flip

moves are trivial identities. However, as soon as we dress the ZLBs (and other bridges)

with mirror magnons, flip moves will non-trivially map (sets of) excitation patterns, i.e.

distributions of mirror magnons, to each other. Hence we have the situation that a given

distribution of mirror magnons on a fixed choice of ZLB-tessellation might secretly be

related to another distribution (or set of distributions) of magnons on the same, but now

Dehn-twisted ZLB-tessellation. Since part of our interpretation of the sums over mirror

magnons is that they probe the neighborhood of the discrete point in the moduli space

represented by the underlying propagator graph, it seems natural to identify distributions

of mirror magnons that are related in the way just described. We are therefore led to add

the following element to our prescription:

Among all mirror-magnon contributions that are related to each other via

Dehn twists followed by sequences of bridge flips, take only one represen-

tative into account. In other words, all mirror-magnon contributions that

are related to each other via Dehn twists and sequences of bridge flips are

identified.

(2.38)
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The one-loop evaluation of all relevant stratification contributions in section 5 will lend

quantitative support to this prescription.

3 Multi-particles and minimal polygons

We think of a polygon as the inside of the face of a larger Feynman diagram, with the

outer edges being propagators in that diagram. Depending on whether we blow up the

physical operators or not, the same polygon can be either thought of as an n-gon (with

n mirror edges), or a 2n-gon (with n mirror edges and n physical edges), as illustrated

in figure 9c. When we do blow up the physical operators we speak of hexagonalizing the

polygon, otherwise we say that we triangulate it. In the hexagonalization picture, every

other edge of each hexagon is formed by a segment (in color space) of a physical operator.

In the triangulation picture, the physical operators sit at the cusps of the triangles. Of

course, both pictures describe the very same thing, as indicated in figure 9c.

There can be non-zero-length bridges in the interior of the polygon, as indicated in

figure 9b. When computing the expectation value of a polygon, we triangulate/hexagona-

lize it and insert mirror particles at all the mirror edges. When these edges are such

non-zero-length bridges, this is more costly at weak coupling, as indicated in figure 9b,

so the expectation value of such polygons breaks down into polygons where all internal

bridges have zero length. We call such polygons minimal polygons. For large bridges, this

decomposition holds up to a large number of loops. In this paper, we focus only on such

minimal polygons, such as the one in figure 9a.

A minimal polygon can be hexagonalized in different ways, as illustrated in figure 9a,

and an important consistency condition is that all these tessellations ought to give the

same result. Three further examples are illustrated in figure 10. The first was considered

in [11], the second in [14], and the third will be discussed later in this paper.

Variables. Minimal polygons are functions of the labels of the physical operators at

their perimeter, namely of the operator positions xi and internal polarizations αi (for

minimal polygons, the operator weights ki are irrelevant). Due to conformal symmetry

and R-symmetry, minimal polygons can only be functions of spacetime cross ratios and

cross ratios formed out of the internal polarizations. In this paper, we focus on four-point

functions, and will use the familiar variables

zz̄ =
x2

12 x
2
34

x2
13 x

2
24

, (1− z)(1− z̄) =
x2

14 x
2
23

x2
13 x

2
24

, xij ≡ |xi − xj | . (3.1)

For cross ratios of the internal polarizations, we similarly choose

αᾱ =
(α1 · α2)(α3 · α4)

(α1 · α3)(α2 · α4)
, (1− α)(1− ᾱ) =

(α1 · α4)(α2 · α3)

(α1 · α3)(α2 · α4)
. (3.2)

In the following, we will consider more general minimal polygons that depend on n external

operators. However, we will restrict all operators to lie in the same plane, in spacetime as

well as in the internal polarization space, as this is sufficient for our purposes. For every

choice of four operators, we can form spacetime and polarization cross ratios exactly as
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,
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+O(g2l+2)

l

Figure 9. (a) An example of a minimal polygon. A minimal polygon is by definition a polygon that

when triangulated/hexagonalized only contains zero-length bridges. This means that all internal

mirror edges contribute at one-loop order if one inserts a mirror particle on them. It can be

hexagonalized in several different ways, and all ways of doing so should give the same integrability

result when summing over mirror particles. (b) A general polygon may have zero-length and non-

zero-length bridges, and it can be divided into minimal polygons. Inserting mirror particles in

non-zero-length bridges is more costly at weak coupling. (c) Two different ways of defining a

polygon with physical operators on its edges. It is possible to shrink the operators to points or to

blow them up to finite size. In the first case the surface is triangulated (only mirror edges), and in

the second case it is hexagonalized (as many physical as mirror edges).

in (3.1) and (3.2), and an n-point polygon in these restricted kinematics depends on (n−3)

sets of such cross ratios.21

3.1 One-loop polygons and strings from tessellation invariance

To fully compute a 2n-gon vacuum expectation value, we should insert any number of

mirror particles at all hexagon junctions and integrate over their rapidities. At one-loop

order, things simplify: according to the loop-counting shown in figure 2, we only need to

21In the plane, distances factorize as x2
ab = xa,bx̄a,b, and the R-charge inner products do the same,

ya · yb = ya,bȳa,b. As such, when we will deal with functions of cross ratios made out of four physical and

R-charge positions they always come in multiples of four such as z = xa,bxc,d/xa,cxb,d, z̄ = x̄a,bx̄c,d/x̄a,cx̄b,d,

α = ya,byc,d/ya,cyb,d and ᾱ = ȳa,bȳc,d/ȳa,cȳb,d. When dealing with such quantities we often use the obvious

short-hand notation f(z) to indicate f(z, z̄, α, ᾱ), see for example (3.8) below.
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O4a)

b)

c)

Figure 10. (a) An octagon and its two possible tessellations related by flipping and studied in [11].

(b) A decagon and its various tessellations studied in [14]. (c) The dodecagon has a few new features

compared to the previous two examples. Here, different tessellations can be computed by very

different integrability processes, with different numbers of mirror particles involved, see figure 11.

sum over multi-particle strings which are associated to paths that connect one hexagon to

another, never passing twice through the same hexagon. To construct the corresponding

multi-particle string, we insert exactly one mirror particle whenever the path intersects a

mirror edge. In sum, the one-loop 2n-gon is obtained by picking a tessellation at one’s

choice, and summing over all multi-particle one-loop strings on that tessellation. See

figure 11 for an example.

Each mirror edge joins two hexagons into an octagon involving four operators. Hence

two cross ratios are associated to each mirror edge in a natural way. For a mirror line i

connecting operator Oa with Oc, where the two adjacent hexagons further connect to

operators Ob and Od, we define the variable zi parametrizing the associated cross ratios as

(note the dependence on the orientation of the sequence of operators around the perimeter)

i

a
d

c

b
: ziz̄i =

x2
ab x

2
cd

x2
ad x

2
bc

, (1− zi)(1− z̄i) =
x2
ac x

2
bd

x2
ad x

2
bc

. (3.3)

The corresponding polarization cross ratios are defined accordingly. With these definitions,

we denote the contribution of a multi-particle one-loop string traversing n mirror edges as

M(n)(z1, . . . , zn) , (3.4)
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Figure 11. A tessellation of the dodecagon can contain paths where a mirror particle propagates

through four different hexagons, as illustrated in the last graph in the second line. In another tes-

sellation, a particle can propagate for at most three hexagons, as illustrated in the second example.

Equating both, we can read off the larger propagation (three-particle) contribution from the smaller

ones (two-particle and one-particle), as shown in (3.5).

where the variables zi parametrize the cross ratios associated to the n mirror edges as

in (3.3), and we are suppressing the obvious dependencies on z̄i and the polarization

cross ratios.

By exploiting the above-mentioned invariance under tessellation choice, one can deter-

mine the contribution from any multi-particle string M(n) from the knowledge of the one-

and two-particle contributions alone. As an illustration, consider the dodecagon example

in figure 11. In the second tessellation, only two-particle strings appear, while for the first

tessellation, the sum includes a contribution with three particles. Equating both sums, we

can relate the three-particle contribution to the one- and two-particle strings as

M(3)(z1, z2, z3) =

−
(
M(1)(z1) +M(1)(z2) +M(1)(z3) +M(2)(z1, z2) +M(2)(z2, z3)

)
+M(1)

(
1

z2

)
+M(1)

(
z1(1− z2)

)
+M(1)

(
z2z3

z2 − 1

)
+M(2)

(
1

z2
, z1(1− z2)

)
+M(2)

(
z1(1− z2),

z2z3

z2 − 1

)
+M(2)

(
z2z3

z2 − 1
,

1

z2

)
. (3.5)
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Here, the variables z1, z2, and z3 parametrize the cross ratios associated to the three mirror

edges of the first tessellation in figure 11 (from right to left). Hence, M(1)(z1) equals the

first contribution in figure 11, M(1)(z2) equals the second contribution, and so on.22 In

the above expression, it is implicit that the other, suppressed variables undergo the same

substitutions as the zi variables, e.g.

M(1)

(
z2z3

z2 − 1

)
≡M(1)

(
z2z3

z2 − 1
,
z̄2z̄3

z̄2 − 1
,
α2α3

α2 − 1
,
ᾱ2ᾱ3

ᾱ2 − 1

)
, (3.6)

where we have, by slight abuse of notation, used (αi, ᾱi) to parametrize the polarization

cross ratios. Using the explicit known results for one and two particles [11, 14]

M(1)(z) = m(z) +m(z−1) , (3.7)

M(2)(z1, z2) = m

(
z1 − 1

z1z2

)
+m

(
1− z1 + z1z2

z2

)
+m

(
z1(1− z2)

)
−m(z1)−m(z−1

2 ) ,

we find for the three-particle one-loop string:

M(3)(z1, z2, z3) = m

(
1− z1 + z1z2

z1z2z3

)
+m

(
z1(1− z2 + z2z3)

)
+m

(
(1− z2)(−1 + z1 − z1z2 + z1z2z3)

z2z3

)
−m

(
z1(1− z2)

)
−m

(
z2 − 1

z2z3

)
. (3.8)

The cross ratios appearing in the argument of the three-particle contribution are defined

as in (3.3). Here, the main building block function m(z) is given by

m(z) ≡ g2 (z + z̄)− (α+ ᾱ)

2
F (1)(z, z̄) , (3.9)

with the one-loop conformal box integral

F (1)(z, z̄) =
1

z − z̄

(
2 Li2(z)− 2 Li2(z̄) + log(zz̄) log

(
1− z
1− z̄

))
. (3.10)

The building block function m(z) satisfies the following important identities:

m(0) = m(1) = m(∞) = 0 , m(z) +m(1− z) = 0 . (3.11)

Note that there is another type of three-particle contribution besides the one discussed

above. It appears in an “alternating” tessellation of the same dodecagon:

�M(3) = M(3)
alternating cusp =M(3) = M(3)

common cusp = , . (3.12)

22A convenient choice of operator positions to obtain the arguments of all contributions is

O1 : 0 , O2 : z1 , O3 :∞ , O4 : 1 , O5 :
1

1− z2
, O6 :

1

1− z2 + z2z3
.

– 31 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

O1

O2

O3O4

O5

O1

O2

O3O4

O5

O1

O2

O3O4

O5

O1

O2

O3O4

O5

O1

O2

O3O4

O5

O1

O2

O3O4

O5

= +

+

+

+

z13 z14

z24 z25

z35

Figure 12. A 2n-gon decomposes into a sum of gluon exchange-like contributions between all

non-neighboring edges, with each exchange given by a function m(zij), as shown in (3.13).

The “alternating cusp” three-particle string can be derived in the same way as the “common

cusp” string by equating the alternating tessellation to one of the two tessellations shown

in figure 11.

By playing with tessellations of higher 2n-gons in a similar way, we can derive, in the

fashion described above, all multi-particle one-loop contributions, and therefore also all

higher polygon one-loop expectation values in terms of contributions involving only one-

particle and two-particle strings. Writing the latter in terms of the building block function

m(z) via (3.7), the resulting expression for a general 2n-gon, for instance, is remarkably

simple and reads

polygon(1, . . . , 2n) =
∑

[i,i+1],[j,j+1]:
non-consecutive

m

(
zi,j ≡

xi,j+1xi+1,j

xi,i+1xj+1,j

)
. (3.13)

We illustrate the formula in figure 12 for the example of a decagon. In writing (3.13), we

cyclically identified the operator labels, namely n + 1 ≡ 1 mod n. The sum runs over all

possible pairs of non-consecutive edges at the perimeter, [i, i+ 1] and [j, j + 1].23 Roughly

speaking, the sum in (3.13) corresponds to a summation of all possible gluon-exchange

diagrams that one can draw inside the n-point graph.24 This general result can actually

be proved by induction, as illustrated in figure 13.

23Written more explicitly, we perform the sum over a pair of indices (i, j) under the condition i 6= j,

i+ 1 6= j and i 6= j + 1 modulo n.
24This does not mean that each m(z) is given by the corresponding gluon-exchange diagram, since m(z)

should also know about the scalar contact interaction. What is true is that each m(z) contains the corre-

sponding gluon-exchange contribution. The correspondence between the function m(z) and perturbation

theory was made more precise in [13]: m equals a YM-line exchange in an N = 2 formulation of N = 4

SYM. We will explore this point further in appendix E.
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X
=

same polygon with

2 and all other removed

X

e.g.

same polygon with

all but 1 removed
�
⇣n
2
� 2

⌘ same polygon

with no

i.e.

+
1

2

⇣n
2
� 2

⌘⇣n
2
� 1

⌘(

since a string

would have to

bifurcate to probe

more than 2

| {z }| {z }
overcounting

Assuming lower polygons = sum of propagators

) are the only propagators
which will not cancel

) LHS = sum of propagators

polygon with

n external edges

e.g.

(

Figure 13. Proof of (3.13) by induction for an even number of external edges. For an odd number,

a proof can be found in a similar way. The combination in the first line amounts to the statement

that all strings in such symmetric tessellations can probe zero, one, or two outer triangles. In order

to probe more than two triangles, the string would have to bifurcate. All possible strings are of

course contained in the first sum, but there is an obvious over-counting, which is removed by the

last two terms.

3.2 Tests and comments

We conclude this section with some further checks and comments.

Flip invariance. We have assumed tessellation invariance to derive the 2n-gon for-

mula (3.13). Consistently, the result makes no reference to a particular tessellation, hence

it is manifestly invariant under tessellation choice.

Order invariance. We can think of each multi-particle string contribution as a mirror-

particle propagation. The direction of propagation ought to be irrelevant, provided we

properly read off the cross ratios for the associated process as in (3.3). This translates into

M(2)(z1, z2) =M(2)(z−1
2 , z−1

1 ) , M(3)(z1, z2, z3) =M(3)(z−1
3 , z−1

2 , z−1
1 ) , . . . , (3.14)

which we can indeed verify using the explicit formulas.

Reduction to known 2n-gons. For the octagon (n = 4), there are two different pairs of

non-consecutive edges; [1, 2], [3, 4] and [4, 1], [2, 3]. It is easy to see that these two contribu-

tions lead to m(z) and m(z−1) respectively. Therefore, we recover the previous result [11].

Similarly, one can check that our formula reproduces the result for the decagon (n = 5).
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z1 =
x12x43

x14x23

z2 =
x13x54

x15x34

z3 =
x14x65

x16x45

w1 = lim
x4!x3

(�z1z2) =
x12x53

x15x23

w2 = lim
x5!x4

(�z3z2) =
x13x65

x16x34

r1 = lim
x5!x4!x3

(z1z2z3) =
x12x36

x16x23

x63

z1

z2

z3

x1

x2

x3

x4

x5

x6

x64

x64

x65

Figure 14. A dodecagon and its cross ratios. Collapsing xi+1 → xi eliminates a slice — a hexagon

— in the figure. The double limit xi+2 → xi+1 → xi reduces a 2n-gon to a 2(n − 2)-gon. Mirror-

state propagations in such polygons are reduced accordingly. From a form factor point of view, the

corresponding sums collapse into the coinciding rapidity region.

In this case, there are five different pairs of non-consecutive edges, and they correspond to

the five terms in the decagon [14] represented in figure 12:

M(1)(z1) +M(1)(z2) +M(2)(z1, z2) =

m(z−1
1 ) +m(z2) +m

(
z1 − 1

z1z2

)
+m

(
1− z1 + z1z2

z2

)
+m

(
z1(1− z2)

)
. (3.15)

Ope limit. Starting from the dodecagon, one should be able to recover the result for the

decagon by taking the limit z3 → 0. This can be easily seen by using the properties (3.11).

Since the result is manifestly flip-invariant, any OPE limit is essentially equivalent and has

a good behavior.

Extremal and next-to-extremal correlators. The n-point extremal and next-to-

extremal correlators have non-renormalization properties [40–42]. Using our conjectural

form of the 2n-gon contribution, one can verify that the one-loop corrections are zero for

those kinds of correlators, see appendix E for details of the planar case.

Decoupling limit. We can reduce multi-particle strings to strings involving less steps

by collapsing hexagons in the tessellation. For example, if we take x4 → x3 in figure 14,

we reduce the dodecagon to a decagon, and correspondingly the three-particle contribution

reduces to a two-particle contribution. If we further send x5 → x4 → x3, we reduce it

further to an octagon, and we end up with a single-particle contribution. When taking

these limits, some cross ratios diverge and others vanish. For example, x4 → x3 corresponds
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lim
xi+2!xi

xi

xi+1

xi+2
xi

=

Figure 15. Pinching at one loop. As a consequence of both the form of the 2n-gon and the

properties of the function m(z), the limit when the cusps at position i and i + 2 have the same

position xi equals a smaller polygon with two fewer cusps. This limiting polygon does not depend

on the position and R-charge of the initial middle cusp i+ 1.

to z1/z2 → 0 with z1z2 = −w1 fixed. In this limit, we nicely find indeed

M(3)(z1, z2, z3)→M(2)(w1, z3) , as z1/z2 → 0 with z1z2 = −w1 fixed , (3.16)

in perfect agreement with the above expectations. From the integrability/form-factor point

of view, this limit corresponds to the so-called decoupling limit, where consecutive rapidities

are forced to become equal, and the corresponding hexagons collapse into measures and

disappear.25 Similarly, we find

M(3)(z1, z2, z3)→M(2)(z1, w2) , as z2/z3 → 0 with z2z3 = −w2 fixed ,

M(2)(z1, w2)→M(1)(r1) , as z1/w2 → 0 with z1w2 = −r1 fixed ,

and many other similar relations at higher points.

Pinching at one loop. Another nice limit of any polygon is the one where cusps i and

i+ 2 go to the same position. When doing so, they pinch the edge ending at cusp i+ 1 and

basically remove it, as illustrated in figure 15. This limit removes all traces of the operator

which got sandwiched between cusps i and i+ 2,

lim
xi+2→xi

polygon(x1, . . . , xi, xi+1, xi+2, . . . , xn) = polygon(x1, . . . , xi, . . . , xn) . (3.17)

This identity is actually quite powerful and very useful for us. For four-point functions, for

instance, all cusps are located at one of the four possible space-time insertions, so there will

naturally be many repetitions of labels, which can be reduced with this rule. For example:

polygon(1, 2, 3, 2, 4, 3, 1, 3, 2, 3)→ polygon(1, 2, 4, 3, 1, 3)→ polygon(2, 4, 3, 1) . (3.18)

25From this integrability/form-factor point of view, one can expect these decoupling relations to hold to

all loops.
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For four-point functions, we can use the following simple Mathematica code to simplify

arbitrary one-loop polygons:

polygon[L_] := Block[

{n=Length[L], x={-1,1/(2z-1),1,0}[[ L[[ Mod[#,n,1] ]] ]]&},

Sum[

m[(x[i]-x[j+1])(x[i+1]-x[j])/((x[i]-x[i+1])(x[j+1]-x[j])) // Simplify],

{i, 1, n}, {j, i+2, n-Boole[i==1]}

] /. {

m[1-z] -> -m[z], m[(-1+z)/z] -> -m[1/z],

m[z/(-1+z)] -> -m[1/(1-z)], m[0] -> 0, m[1] -> 0

}]

It implements (3.13), taking into account the functional identities (3.11) of the m(z)

building block. Running polygon[{1,2,3,2,4,3,1,3,2,3}], for instance, would simply

yield m(z)+m(1/z), which is the very same as polygon[{2,4,3,1}], as expected according

to (3.18).

One-loop octagons. Below, we will need the expressions for one-loop octagons, hence

we will quote them here. The one-loop octagon was computed in [11]. Due to the dihedral

symmetry of the one-loop polygons (3.13), permutations of the four corners generate only

three independent functions, corresponding to the orderings 1–2–4–3, 1–2–3–4, and 1–3–

2–4 of the four operators around the perimeter of the octagon. Permutations of the four

operators are generated by the following variable transformations:

3↔ 4 : z ↔ z

z − 1
, z̄ ↔ z̄

z̄ − 1
, α↔ α

α− 1
, ᾱ↔ ᾱ

ᾱ− 1
,

2↔ 4 : z ↔ (1− z) , z̄ ↔ (1− z̄) , α↔ (1− α) , ᾱ↔ (1− ᾱ) . (3.19)

Using the identities

F (1)

(
1

z
,

1

z̄

)
= zz̄ F (1)(z, z̄) , F (1) (1− z, 1− z̄) = F (1)(z, z̄) (3.20)

for the conformal box integral, as well as the identity (3.11) for the building block function

m(z), we find for the three independent functions:

polygon(1,2,4,3) =m(z)+m

(
1

z

)
=
g2

2

(
2(z+z̄)−(α+ᾱ)

(
1+

zz̄

αᾱ

))
F (1)(z, z̄) ,

polygon(1,2,3,4) =m

(
z

z−1

)
+m

(
z−1

z

)
=−m

(
1

1−z

)
−m

(
1

z

)
=
g2

2

(
−2+(α+ᾱ)

zz̄

αᾱ
−(α+ᾱ−2)

(1−z)(1−z̄)

(1−α)(1−ᾱ)

)
F (1)(z, z̄) ,

polygon(1,3,2,4) =m(1−z)+m

(
1

1−z

)
=−m(z)+m

(
1

1−z

)
=
g2

2

(
−2(z+z̄)+(α+ᾱ+2)+(α+ᾱ−2)

(1−z)(1−z̄)

(1−α)(1−ᾱ)

)
F (1)(z, z̄) .

(3.21)
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∼ g0 ∼ g2

Figure 16. “Loops” and “spirals” naively start contributing at tree and one-loop order, by the

loop counting of figure 2. They appear very difficult to evaluate from hexagons.

Integrability. At this point, we have derived the multi-particle contributions at one-

loop order, starting from the one- and two-particle contributions using flip invariance. An

obvious follow-up question is whether the result agrees with the integrability computation.

In fact, we compute the three-particle contribution using integrability in appendix D,

using the weak-coupling expansions of appendix C, and it agrees with the result of this

section. This lends additional support for the correctness of the 2n-gon formula (3.13). The

multi-particle integrands are huge and complicated, and we were not able to compute the

multi-particle contributions in general. It would be interesting to study these integrands

systematically.

Beyond polygons. While we can compute any one-loop string that is bounded by a

polygon via the formula (3.13), there are further excitation patterns that, by the loop

counting shown in figure 2, could contribute at one-loop order. Namely, all stratification

graphs (table 2 and table 3) contain non-trivial cycles that do not intersect the graph.

Hexagonalizing the surface with zero-length bridges, strings of excitations can wrap the

cycle to form “loops” or “spirals”, see figure 16. These types of contributions seem very

difficult to compute from hexagons. At the same time, it appears very plausible that they

are related to simpler configurations by Dehn twists. Since we are not able to honestly

evaluate these contributions, we will have to resort to a (well-motivated) prescription to

avoid them. We will come back to this point in section 5.

4 Data

Let us now introduce the data which we will later use to check our proposal. Computing

correlators in perturbation theory is a hard task in the planar limit, and an even harder

task beyond the planar limit, hence there is not that much data available. We will use here

results from the nice works of Arutyunov, Penati, Santambrogio and Sokatchev [43, 44],

who studied an interesting class of four-point correlation functions of single-trace half-BPS

operators (2.3). The authors of [43, 44] studied the case where all operators have equal

weight k. In this case, the contributions to the correlator can be organized by powers of

the propagator structures

X ≡ α1 · α2 α3 · α4

x2
12x

2
34

, Y ≡ α1 · α3 α2 · α4

x2
13x

2
24

, and Z ≡ α1 · α4 α2 · α3

x2
14x

2
23

. (4.1)
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They further specialized to operator polarizations αi with α1 ·α4 = α2 ·α3 = 0,26 such that

the loop correlator Gk ≡ 〈Qk1Qk2Qk3Qk4〉 − 〈Qk1Qk2Qk3Qk4〉tree takes the form

Gk =

k∑
m=0

Fk,mXmY k−m . (4.2)

The functions Fk,m constitute the quantum corrections that multiply the respective prop-

agator structures, and they only depend on the conformally invariant cross ratios (3.1).

Expanding in the coupling,

Fk,m =

∞∑
`=1

g2`F (`)
k,m(z, z̄) , g2 =

λ

16π2
, (4.3)

we finally isolate the functions F (`)
k,m against which we will check our integrability computa-

tions in later sections. The one-loop and two-loop contributions F (1)
k,m(z, z̄) and F (2)

k,m(z, z̄)

have been computed in [43, 44] at the full non-planar level. Two key ingredients appear in

their result. The first one are the conformal box and double-box functions

F (1)(z, z̄) =
x2

13x
2
24

π2

∫
d4x5

x2
15x

2
25x

2
35x

2
45

= , (4.4)

F (2)(z, z̄) =
x2

13x
2
24x

2
14

(π2)2

∫
d4x5 d4x6

x2
15x

2
25x

2
45x

2
56x

2
16x

2
36x

2
46

=

1

3
4

2 , (4.5)

whose expressions in terms of polylogarithms are quoted in (3.10) and (D.22).

The second main ingredient are the so-called color factors, which consist of color con-

tractions of four symmetrized traces from the four operators, dressed with insertions of

gauge group structure constants fab
c. For instance, we have27

Cc
k,m =

fabefcd
efpqtfrs

t

2m!2(k −m− 2)!2
tr((d1 . . . dk−m−2a1 . . . ambd)) tr((a1 . . . amb1 . . . bk−m−2ar))

× tr((d1 . . . dk−m−2c1 . . . cmcp)) tr((c1 . . . cmb1 . . . bk−m−2qs)) , (4.6)

which we can represent pictorially as

Cc
k,m = . (4.7)

At two loops, Cc as well as three other color factors Ca, Cb, and Cd appear. The one-

loop correlator is expressed in terms of a single color factor C1. The various color factors

26A more invariant statement is that the R-charge cross-ratio (α1 · α4)(α2 · α3)/(α1 · α3)(α2 · α4) = 0.
27Here, tr((a1 . . . ak)) ≡ tr(T (a1 . . . T ak)) denotes a totally symmetrized trace of adjoint gauge group

generators T a.
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differ from (4.6) only in the distribution of structure constants fab
c on the four single-trace

operators. Due to supersymmetry, the loop correction functions can be written as28

F (`)
k,m = F̃ (`)

k,m + (t− s− 1)F̃ (`)
k,m−1 + sF̃ (`)

k,m−2 . (4.8)

In terms of color factors and box integrals, the functions F̃k,m read [43, 44]

F̃ (1)
k,m(z, z̄) =

C1
k,m

k2N2k+1
c

F (1)(z, z̄) , (4.9)

F̃ (2)
k,m(z, z̄) =

4

k2N2k+2
c

[
1

4

(
2Cb′−Cd+(2Cb−Cd)s+Cdt

)(
F (1)(z, z̄)

)2
+(Cc−Cd)F (2)(z, z̄)+(Cd−Ca′)F

(2)
1−z(z, z̄)+(Cd−Ca)F

(2)
z/(z−1)(z, z̄)

]
, (4.10)

where all color factors Ci depend on k and m. We have used the shorthand notation

Ci
′
k,m = Cik,k−m−2, and

F
(2)
1−z(z, z̄) ≡ F (2) (1− z, 1− z̄) , F

(2)
z/(z−1)(z, z̄) ≡ 1

|1− z|2
F (2)

(
z

z − 1
,

z̄

z̄ − 1

)
. (4.11)

In order to compare with our integrability predictions, we need to explicitly evaluate the

color factors. This turns out to be a fun yet involved calculation, which we did in two steps.

First, we have explicitly performed the contractions with Mathematica for different values

of k and m; for some coefficients up to k = 8, for others up to k = 9. Expanding the color

factors to subleading order in 1/Nc,

C1
k,m = N2k−1

c k4
(•C1

k,m + ◦C1
k,mN

−2
c +O(N−4

c )
)
,

Cik,m = N2k
c k4

(•Cik,m + ◦Cik,mN
−2
c +O(N−4

c )
)
, i ∈ {a, b, c, d} , (4.12)

the results for the subleading color coefficients are displayed in table 4. Depending on the

algorithm, the computation can take very long (up to ∼1 day on 16 cores for a single coef-

ficient at fixed k and m) and becomes memory intensive (up to ∼100 GB) at intermediate

stages.29 The leading coefficients

•C1
k,m = −2k4 , •Ca,d

k,m = 1
2
•Cc

k,m = k4 , 2•Cb
k,m = (1 + δm,0)k4 , (4.13)

are straightforwardly computed [43, 44].

Secondly, we used the fact that by their combinatorial nature, it is clear that the

various color factors should be polynomials in k and m (up to boundary cases at extremal

values of k or m). By looking at all ways in which the propagators among the four operators

can be distributed on the torus, one finds that the polynomial can be at most quartic.30

Any closed formula for these color factors therefore has to be a quartic polynomial in k

28This structure is due to the fact that Gk contains a universal prefactor R, see [45] and appendix A.
29Very likely, the performance can be greatly improved by using more specialized and better-scaling tools

such as Form.
30This fact is best understood by looking at table 8 and (6.10) below.
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k m 1
2
◦C1,U

k,m
1
2
◦C1,SU

k,m
◦Ca,U

k,m 2◦Cb,U
k,m

1
2
◦Cc,U

k,m
◦Cd,U

k,m
◦Ca,SU

k,m 2◦Cb,SU
k,m

1
2
◦Cc,SU

k,m
◦Cd,SU

k,m

2 0 1 1 0 −2 −1 −1 0 −2 −1 −1

3 0 1 9 −5 −2 −1 −1 −9 −18 −9 −9

3 1 1 9 0 3 −1 −1 0 −5 −9 −9

4 0 −5 13 −7 10 5 5 −25 −26 −13 −13

4 1 −12 24 4 15 13 14 −23 −21 −23 −22

4 2 −5 13 0 21 5 5 0 3 −13 −13

5 0 −23 9 −1 46 23 23 −33 −18 −9 −9

5 1 −51 13 31 47 55 59 −33 −17 −9 −5

5 2 −51 13 39 76 55 59 −9 12 −9 −5

5 3 −23 9 0 63 23 23 0 31 −9 −9

6 0 −61 −11 20 122 61 61 −30 22 11 11

6 1 −126 −26 92 107 135 144 −8 7 35 44

6 2 −159 −59 139 187 175 191 39 87 75 91

6 3 −126 −26 110 201 135 144 35 101 35 44

6 4 −61 −11 0 139 61 61 0 89 11 11

7 0 −129 −57 65 258 129 129 −7 114 57 57

7 1 −249 −105 198 205 265 281 54 61 121 137

7 2 −343 −199 323 366 379 415 179 222 235 271

7 3 −343 −199 331 455 379 415 187 311 235 271

7 4 −249 −105 229 404 265 281 121 260 121 137

7 5 −129 −57 0 261 129 129 0 189 57 57

8 0 −239 −141 145 478 239 239 47 282 141 141

8 1 −434 −238 362 353 459 484 166 157 263 288

8 2 −619 −423 606 627 683 747 410 431 487 551

8 3 −692 −496 710 841 773 854 514 645 577 658

8 4 −619 −423 623 869 683 747 427 673 487 551

8 5 −434 −238 410 701 459 484 263 505 263 288

8 6 −239 −141 0 443 239 239 0 345 141 141

9 0 −405 −277 273 810 405 405 145 554 277 277

9 1 −697 −441 599 565 733 769 343 309 477 513

9 2 −1005 −749 1005 986 1105 1205 749 730 849 949

9 3 −1193 −937 1266 1377 1337 1481 1010 1121 1081 1225

9 4 −1193 −937 1273 1554 1337 1481 1017 1298 1081 1225

9 5 −1005 −749 1033 1449 1105 1205 777 1193 849 949

9 6 −697 −441 669 1110 733 769 477 854 477 513

9 7 −405 −277 0 701 405 405 0 573 277 277

Table 4. Subleading coefficients of color factors from explicit (laborious) contractions are

presented in black. By fitting appropriate polynomials in k and m, we can obtain the general

expressions for the various color factors, which then allow us to complete the table with the new

values in red. The result depends on the choice of gauge group indicated as a superscript U for

U(Nc) and SU for SU(Nc).
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and m. A general polynomial of this type has 15 coefficients. Matching those against the

(overcomplete) data points in table 4 yields the desired formulas for the color factors. The

color factor (4.6), for instance, takes the relatively involved form

Cck,m = N2k
c k4

(
2k4 +

1

6N2
c

[
k4 + 2k3(−1 + 2m) + k2(−1 + 6m+ 42m2)

− 2k(11 + 49m+ 99m2 + 46m3) + 2(18 + 70m+ 127m2 + 92m3 + 23m4)

+ 4(k − 1)2(−2 + δm,0 + δm,k−2)
]

+O(N−4
c )

)
, (4.14)

for an SU(Nc) gauge group, while the last line would be absent for the U(Nc) theory.

Further details and explicit expressions for all relevant color factors are presented in

appendix A. Putting all these ingredients together, we finally obtain the desired one-loop

and two-loop expressions shown in table 5. We show the result for gauge group U(Nc),

since this is what we will compare to with our integrability computation. Corresponding

expressions for gauge group SU(Nc) as well as further details are given in appendix A.

The expressions in table 5 are written in terms of the variables z, z̄, and k, as well as the

combinations

r =
m

k
− 1/2 , s = |z|2 , s± = s± 1 , t = |1− z|2 . (4.15)

Besides the box integrals (4.4), (4.5), and (4.11), the following combinations of double-box

integrals occur:

F
(2)
A,±= |z|2F (2)

z/(z−1)±F
(2)
1−z , F

(2)
B,±= |z|2F (2)

1−z±F
(2)
z/(z−1) , F

(2)
C,±= |1−z|2

(
F

(2)
z/(z−1)±F

(2)
1−z
)
.

(4.16)

We have suppressed the arguments (z, z̄) of all box functions for brevity.

The formulas are written such that crossing invariance is manifest: the crossing trans-

formation x1 ↔ x4 implies

X ↔ Y , z → 1/z , z̄ → 1/z̄ , (4.17)

and hence crossing invariance of Gk (4.2) is equivalent to

F (`)
k,m(z, z̄) = F (`)

k,k−m(1/z, 1/z̄) . (4.18)

Because of the transformations

s→ 1/s , t→ t/s , s± → ±s±/s , r → −r , (4.19)

and

F (1) → sF (1) , F (2) → sF (2) , F
(2)
1−z → sF

(2)
z/(z−1) , F

(2)
z/(z−1) → sF

(2)
1−z , (4.20)

as well as the fact that all functions (4.16) with +/− subscript are even/odd under crossing

x1 ↔ x4, it is clear that the expressions in table 5 are indeed crossing invariant.
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F (1),U
k,m (z, z̄) =

− 2k2

N2
c

{
t+

1

N2
c

[([
17r2 − 7

4

]
k2 + 9

2k + 3
)
s+ − r

([
34r2

3 −
7
2

]
k3 + 9k2 + 35

3 k
)
s−

+
([

17r4

6 −
7r2

4 + 11
32

]
k4 +

[
9r2

2 −
13
8

]
k3 +

[
r2

6 + 15
8

]
k2 − 1

2k
)
t

]
−
(

1 +
k(k3 − 6k2 + 23k − 6)

12N2
c

)(
(t− 1)δ0

m + sδ1
m + δk−1

m + (t− s)δkm
)

+
(k + 1)(k2 − 22k − 9)

3N2
c

(
sδ0
m + δkm

)}
F (1) +O(N−6

c ) ,

F (2),U
k,m (z, z̄) =

4k2

N2
c

[{
t+

1

N2
c

[([
17r2 − 7

4

]
k2 + 9

2k + 3
)
s+ − r

([
34r2

3 −
7
2

]
k3 + 9k2 + 35

3 k
)
s−

+
([

17r4

6 −
7r2

4 + 11
32

]
k4 +

[
9r2

2 −
13
8

]
k3 +

[
r2

6 + 15
8

]
k2 − 1

2k
)
t

]}
F (2)

+

{
t2

4
+

1

N2
c

[([
17r2

2 −
7
8

]
k2 + 3k + 7

4

)
s2
− − 31

2 rks+s− + 7
2s

2
+

+ 1
4

([
29r4

6 −
11r2

4 + 15
32

]
k4 +

[
17r2

2 −
21
8

]
k3 −

[
23r2

6 −
39
8

]
k2 − 9

2k + 2
)
t2

− r
([

23r2

3 −
9r
4

]
k3 + 29

4 k
2 + 11

6 k
)
ts− +

([
43r2

4 −
13
16

]
k2 + 11

4 k
)
ts+

]}(
F (1)

)2
+

1

N2
c

[
r
2(5k2 − 1k)F

(2)
A,− +

([
7r2

2 −
1
8

]
k2 + 1

4k + 3
)
F

(2)
A,+

+ r
2(5k2 + 13k)F

(2)
B,− −

([
7r2

2 −
1
8

]
k2 + 11

4 k + 6
)
F

(2)
B,+

− r
([

7r2

6 −
1
8

]
k3 + 3

2k
2 + 10

3 k
)
F

(2)
C,− −

([
5r2

4 −
19
48

]
k3 +

[
3r2

2 + 7
8

]
k2 + 1

3k
)
F

(2)
C,+

]]
+ F (2),U,bdry

k,m (z, z̄) +O(N−6
c ) .

Table 5. Perturbative one-loop and two-loop data taken from [43, 44], explicitly expanded to

include the first non-planar correction, which can be directly matched against our integrability

computation. Leading terms of order N−2c form the planar contribution, whereas terms of order

N−4c constitute the first non-planar correction. All dependence on k and m is explicitly shown,

via r = m/k − 1/2. The variables s, t, and s±, as well as the various combinations of double-box

functions F (2) are defined in (4.15), (4.11), and (4.16). We show the result for gauge group U(Nc),

since this is what we will match with our integrability computation. We have highlighted the box

integrals (red), the planar terms (purple) as well as terms that only contribute at extremal values

of m (blue). The expression for such boundary terms for F (2) is deferred to table 6.
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F (2),U,bdry
k,m (z, z̄) =

4k2

N2
c

[{
−
(

1 +
k(k3 − 6k2 + 23k − 6)

12N2
c

)(
t−δ

0
m + sδ1

m

)
+

(k + 1)(k2 − 22k − 9)

3N2
c

sδ0
m

}
F (2)

+

{(
1 +

(k − 1)(k3 + 3k2 − 46k + 36)

12N2
c

)(
(s+ t− t2)δ0

m − s(s+ 1)δ1
m + s2δ2

m

)
+

1

N2
c

[{(
5k2 + 15k − 7

)
−
(
5k2 + 43k + 21

)
s+ 1

3(k + 1)
(
k2 − 40k − 3

)
t
}
sδ0
m

− 1

3

{(
k3 − 9k2 + 14k − 3

)
−
(
k3 − 27k2 − k + 3

)
s

−
(
2k3 − 24k2 + 34k − 15

)
t
}(

(t− 1)δ0
m + sδ1

m

)]}1

4

(
F (1)

)2
+

{(
1 +

(k − 2)4

12N2
c

)(
δ0
m + (t− − s)δ1

m + sδ2
m

)
+

1

N2
c

[
2
(
k2 + 3k + 3

)
sδ0
m + 2k(k + 1)

(
t−δ

0
m + sδ1

m

)
+ 1

2(k − 3)(k + 2)δkm

− 1
6k
(
k2 − 3k + 8

)(
δk−1
m + (t− s)δkm

)]}
F

(2)
1−z

]
+ (crossing)

Table 6. Terms that contribute to F (2)
k,m at extremal values of m, see table 5. Here, t− = (t− 1).

The term “(crossing)” stands for a repetition of the complete preceding expression, with the re-

placements (4.19) and (4.20) as well as m→ (k −m). Again, planar terms are marked purple.

Remark. One immediate observation is that (up to an overall numerical prefactor) the

coefficient of the double-box integral F (2)(z, z̄) in the two-loop function F (2)
k,m equals the

coefficient of the single-box integral F (1)(z, z̄) in the one-loop function F (1)
k,m. As we shall see

below, this fact has a straightforward explanation from the perspective of the integrability

computation. In short, the one-loop function is a sum of terms where only a single polygon

(surrounded by non-zero-length bridges) is excited. At two loops, the term proportional

to F (2)(z, z̄) stems from the same sum of terms, where now the single polygon is excited

to two loops. This pattern likely extends to higher loops.

5 Contribution from stratification

Here, we want to evaluate the stratification contributions at genus one listed in table 2

and table 3 at one-loop order. That is, we want to evaluate the contributions S(i), S(i′),

and S(i′′) in (2.23). As we have seen in section 3.1, the one-loop expression for any hexag-

onalization is given by the sum over all “one-loop strings”, where every one-loop string is

a path that starts inside any hexagon, ends in any other (or possibly the same) hexagon,

and that crosses any number of zero-length bridges, but no non-zero-length bridge. Every

crossing of any bridge by the path creates one excitation on that bridge. For every closed,
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simply connected polygon, the number of such one-loop strings is finite. For the graphs

in table 2, it is clear that a one-loop string can wind a cycle of the torus (or a marked

point) any number of times, and hence there is an infinite number of one-loop strings. For

example, the following magnon-patterns all start contributing at one-loop order (for the

loop-counting, see figure 2):

1 2

3 4
,

1 2

3 4
,

1 2

3 4
,

1 2

3 4
, . . . (5.1)

Here, each of the red dots stands for a mirror magnon, and we have also indicated (in gray)

a path that connects them.

At present, we do not have the technology to compute one-loop strings that form closed

cycles, or that cross any edge more than once (we call such strings “spirals”). However, it is

reasonable to assume that almost all one-loop string contributions will either be projected

out by our Dehn-twist prescription (2.38), or cancel between the torus contributions (i)

and their pinched degenerations (i′) and (i′′) shown in table 2 and table 3. Our working

assumption is that all one-loop strings that either form closed loops, or cross any bridge

more than once, will either be projected out by Dehn twists, or cancel with the stratification

subtractions (or sum to zero). We will therefore not take such contributions into account.

Another limitation that we are facing is the mapping among magnon configurations

under flipping zero-length bridges. Even after dropping one-loop strings that cross bridges

more than once, there remain configurations that look related through Dehn twists and

bridge flips (for example all contributions in (5.1)). Flipping any number of zero-length

bridges should leave the total contribution of the graph invariant, but it will non-trivially

map magnon configurations to each other. This map is technically quite involved, and we

have not evaluated it except in the simplest cases (a single magnon on a single bridge) [11].

What we will assume is the following identification: consider a one-loop string of excitations

traversing an otherwise empty handle across a number of zero-length bridges. Imagining

the string of excitations as a continuous path, performing a Dehn twist on such a handle

adds a cycle to the path (string of excitations), as well as to all zero-length bridges that

also traverse the handle. Subsequently performing flip moves of these zero-length bridges,

we can restore the graph of zero-length bridges to what it was before the Dehn twist. Effec-

tively, this operation adds a cycle to the path (string of excitations), and otherwise leaves

the graph invariant. Among all one-loop excitation strings related by such operations, we

only take one representative into account. For example, all one-loop strings shown in (5.1)

are related by this operation, and hence we would take only one of them into account.

Even though we cannot prove that all one-loop strings related under this operation indeed

map to each other one-to-one under Dehn twists and flip moves, we will see in all examples

below that one-loop strings related in this way indeed contribute identical terms.
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To summarize, we will evaluate the stratification contributions at one loop using the

following prescription:

• Add up all one-loop strings that do not form closed loops and that do not

cross any bridge more than once (in the same direction).31

• Among all remaining excitation patterns, identify those that are related to

each other via Dehn twists that act on the path that constitutes the

one-loop string, but leaves the configuration of zero-length bridges

invariant.

(5.2)

We cannot rigorously show that our prescription is correct, but we will see below that it

produces the right answer. Given the limitations in our present computational ability, it

is the best we can do.

In the following, we will consider the unprimed contributions (1)–(14) of table 2 and

table 3. The primed contributions (i′) and (i′′) that have to be subtracted were evalu-

ated in section 2.4. In order to evaluate the cancellations among primed and unprimed

contributions, we will use the identities given in (2.34) that we reproduce here:

(polygon)⊗ = 1 + 2(polygon)
∣∣
O(λ)

+ · · · ,

(polygon)2⊗ = 0 + (polygon)
∣∣
O(λ)

+ · · · .
(5.3)

They immediately imply that at tree level the contributions (i) and (i′) (and (i′′) for i =

1, 7, 8, 11) of table 2 and table 3 perfectly cancel each other separately for each i = 1, . . . , 14.

The first non-trivial effect of stratification therefore occurs at one loop, and we will evaluate

the various contributions in the following, starting with the simplest case.

Contribution (5). For case (5), the only non-vanishing contributions can come from

excitations of the two octagon faces that involve all four operators. But these faces are

exactly replicated in case (5′), and hence the contributions S(5) and S(5′) perfectly cancel

each other. This cancellation relies on the fact that polygons with one marked point at

tree level equal the same polygons without insertions as shown in (5.3).

Contribution (6). This contribution works the same as contribution (5): the only non-

vanishing one-loop contributions come from excitations in one of the two faces that involve

all four operators, which are exactly replicated in contribution (6′), and therefore per-

fectly cancel.

Contribution (7). Due to the identity (5.3) for a polygon with two marked points, and

the fact that a polygon with only two different operators receives no loop corrections, contri-

bution (7′) vanishes. By the same arguments as for cases (5) and (6), the contributions S(7)

and S(7′′) perfectly cancel each other at one-loop order.

31The restriction “in the same direction” is relevant only for the stratification contribution (1), and will

be explained below.
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Contributions (8)–(12). For the cases (8) to (12), all faces involve at most three out

of four operators. Therefore, we do not expect corrections at one-loop and the result is

simply the tree level one. This in turn will be canceled by the subtractions.

Contribution (4). Next, we will consider case (4) of table 2. Picking an operator

labeling, and shifting the fundamental domain of the torus on which the graph is drawn,

we can depict this contribution as

1 2

3 4
(5.4)

Here, we have also indicated a choice of zero-length bridges across the handle not covered

by the graph. Similar to case (5), we do not have to consider one-loop excitations of the

other faces, as these are replicated in the pinched graph (4′), and thus manifestly cancel.

Inside the face that wraps the torus, any non-vanishing one-loop excitation string will

have to involve hexagons that touch all four operators. We have picked a tessellation that

isolates operators O3 and O4 as much as possible, such that any potentially non-zero string

will have to connect the hexagon that involves operator O3 with the hexagon that involves

operator O4. The only potentially non-zero excitation strings that do not cross any bridge

more than once are exactly the two leftmost contributions of (5.1):

1 2

3 4

1 2

3 4
, (5.5)

Here, each of the red dots stands for mirror particles, and we have also indicated (in gray)

the path that connects them. The left excitation pattern is equal to the one-loop (clockwise)

polygon(1, 2, 4, 2, 1, 3), which vanishes by pinching (all other one-loop excitation patterns

in this polygon vanish, since they involve at most three out of the four operators):

2

4

21

3

1

=

2

4

21

3

1

(1 loop) =

1 2

42

(1 loop) = 0 . (5.6)

The excitation pattern shown on the right of (5.5) is related to the one on the left by a

Dehn twist according to our working prescription (5.2), hence we should not take it into

account. We can still evaluate this contribution in order to check the consistency of our

prescription. And indeed, the right one-loop string again equals the (Dehn-twisted) one-

loop polygon(1, 2, 4, 2, 1, 3) and thus vanishes by pinching. Stratification requires that we

subtract the contribution of graph (4′) in table 2, which is obtained from (4) by pinching

the handle not covered by the genus-zero graph. In fact, because two-operator polygons

receive no loop corrections, the two-operator polygons with insertions of a single marked

point also receive no loop corrections, and hence we trivially find that S(4) − S(4′) = 0.
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Contribution (13). The case (13) will produce a vanishing contribution exactly by the

same argument as in the previous case (4).

Contribution (14). Let us consider the case (14) of table 3. We again pick a tessellation

of the empty handle that isolates two operators as much as possible (in this case O2 andO3):

1 2

3 4
,

1 2

3 4
.

(a) (b)

(5.7)

Since a one-loop string can only be non-vanishing when it involves hexagons that together

touch all four operators, the two string configurations above are the only potentially non-

zero contributions. The other faces involve three operators and hence contribute at tree

level only. They in turn will be canceled by the subtraction S(14′). In addition to the

excitation patterns shown above, we could have also considered other string configurations

that could potentially contribute at one loop. But it is easy to see that these would

unavoidably involve placing two excitations in the same bridge, forming a path that crosses

that bridge twice in the same direction. By our prescription, we do not take these cases

into account.

The contributions (a) and (b) above are related by Dehn twists according to our

prescription (5.2). Consistently, it is simple to see that they produce identical results.

Namely, both cases evaluate to

1 4

1

3

41

4

2
=

1 4

1

3

41

4

2
(1 loop) =

2 1

34

(1 loop) = polygon(1, 2, 4, 3) . (5.8)

The subtraction S(14′) does not produce any contribution at one-loop, as all of its polygons

involve only three operators. As a final step, we need to perform a sum over all non-

equivalent labels of the vertices. As the graph is drawn on a torus, there are twelve

inequivalent labelings (the same graph on a sphere has only two inequivalent labelings):

Labeling: 1243 2134 1342 2431 1234 2143 1432 2341 1324 3142 1423 3241

Propag.: XpY qZr Y pXqZr XpZqY r ZpXqY r Y pZqXr ZpY qXr

One loop: polygon(1, 2, 4, 3) polygon(1, 2, 3, 4) polygon(1, 3, 2, 4)

(5.9)

The first line shows the labelings, reading clockwise starting with the upper left operator

in (5.7). The various labelings come with different propagator structures, shown in the

second line, where p, q, and r are the bridge lengths of the graph. The last line shows

the one-loop polygon the respective labeling evaluates to (the polygon function obeys a
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dihedral symmetry). In the sum over bridge lengths p, q, and r, all terms cancel due to

the identity (3.11)

polygon(1, 2, 4, 3) + polygon(1, 2, 3, 4) + polygon(1, 3, 2, 4)

= m (z) +m

(
1

z

)
+m (1− z) +m

(
1

1− z

)
+m

(
z

z − 1

)
+m

(
z − 1

z

)
= m (z) +m

(
1

z

)
−m (z) +m

(
1

1− z

)
−m

(
1

1− z

)
−m

(
1

z

)
= 0 . (5.10)

We therefore find that S(14) = 0, and hence trivially S(14) − S(14′) = 0 − 0 = 0. This case

is different from all previous (and subsequent) cases in that the cancellation occurs among

graphs with different labelings and bridge lengths.

Contribution (15). Picking a tessellation for graph (15) of table 3, we find, similar to

the previous cases, only two potentially non-zero one-loop contributions compatible with

the first rule of (5.2):

1 2

3 4
,

1 2

3 4
.

(a) (b)

(5.11)

By isolating it in a one-loop polygon, we find that the one-loop string (a) evaluates to

1

33

2

4 3

= 1

33

2

4 3

(1 loop) =

2

4

3(1) = 0 . (5.12)

Case (b) is related to (a) by a Dehn twist according to the prescription in (5.2), hence for

consistency it should also evaluate to zero. And indeed one finds:

1

33

2

4

3 3

= 1

33

2

4

3 3

(1 loop) =

2

4

3(1) = 0 . (5.13)

The subtraction (15′) trivially evaluates to zero at one loop by (5.3), since the marked

points are inserted into polygons that involve only two and three out of the four operators.

We thus again find S(15) − S(15′) = 0− 0 = 0.
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Contribution (3). Now consider case (3). Again, we only need to consider excitations

of the face that wraps the torus, as all other excitations manifestly cancel against the

corresponding excitations in the pinched graph (3′). Picking a labeling and a tessellation

that isolates operators O2 and O3 as much as possible, We find the following potentially

non-zero one-loop excitation patterns (we have slightly distorted the graph, and have shifted

the fundamental domain of the torus):

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(a) (b) (c) (d)

. (5.14)

Again we are dropping the string configurations involving two excitations placed on the

same bridge according to our prescription (5.2). For contribution (a) we find:

4

14

2

1 3

= 4

14

2

1 3

(1 loop) =

1 3

42

(1 loop) = polygon(1, 3, 4, 2) . (5.15)

Similarly, contribution (d) gives:

1

11

3

4

2 1

= 1

11

3

4

2 1

(1 loop) =

1

34

2

(1 loop) = polygon(1, 3, 4, 2) . (5.16)

Contributions (b) and (c) are related by a Dehn twist according to our prescription (5.2).

For consistency, both should give identical answers. Indeed we find for contribution (b):

1

31

4

2

1 4

= 1

31

4

2

1 4

(1 loop) = 1

3
1

4
2

(1 loop) = 1

4

2

(1) = 0 , (5.17)

and for contribution (c):

1

3

14

2

1

=

1

3

14

2

1

(1 loop) =

1

3

14

2
(1 loop) = 1

4

2

(1) = 0 . (5.18)
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The contributions (5.15) and (5.16) each equal the one-loop octagon polygon(1, 3, 4, 2).

Since the one-loop octagon with one marked point in contribution (3′) (see table 2) equals

twice the same one-loop octagon with no insertion by (5.3), it is clear that (3) and (3′)

perfectly cancel each other: S(3) − S(3′) = 0.

Contribution (2). Let us now list the possible one-loop excitation patterns for the

stratification graph (2). Picking an operator labeling as well as a tessellation, we find:

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(a) (b) (c) (d) (e) (f)

. (5.19)

These are all potentially non-zero one-loop excitation patterns according to the prescrip-

tion (5.2): we have picked a tessellation that isolates operators O2 and O3 as much as

possible. Every non-zero excitation pattern has to have an excitation next to operator

2 (two choices), and an excitation next to operator 3 (two choices). Otherwise no cross-

ratio can be formed. The six excitation patterns shown are all possible completions of the

2 × 2 cases that involve at most one particle on any edge, up to Dehn twists. Contribu-

tion (5.19)(a) equals the one-loop polygon

(a) :

1

1

2
3

4

4

=

1

3

4
1

2

4

(1 loop)
= − polygon(1, 2, 4, 3) . (5.20)

Here, we have used the code below (3.18) which implements the 2n-gon formula (3.13).

Similarly, for contribution (5.19)(b), we find

(b) :

4

4

3
2

1

1

=

4

4

3
2

1

1

(1 loop)
= − polygon(1, 2, 4, 3) . (5.21)
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Also the contributions (5.19)(c)–(f) can be isolated as individual one-loop polygons, which

in turn can be evaluated using pinching and decoupling identities. Explicitly, the result is:

(c) : 1

34

1

4

4 2

= 1

34

1

4

4 2

(1 loop) = polygon(1, 3, 4, 2) = polygon(1, 2, 4, 3) , (5.22)

(d) : 1

2 4

1

4

43

= 1

2 4

1

4

43

(1 loop) = polygon(1, 2, 4, 3) , (5.23)

(e) : 4

21

4

1

1 3

= 4

21

4

1

1 3

(1 loop) = polygon(1, 3, 4, 2) = polygon(1, 2, 4, 3) . (5.24)

(f) : 4

3 1

4

1

12

= 4

3 1

4

1

12

(1 loop) = polygon(1, 2, 4, 3) . (5.25)

Each of the contributions (c)–(f) gives the same answer polygon(1, 2, 4, 3). Since each of

the two octagons with one marked point in contribution (2′) of table 2 at one loop evaluates

to two times the same octagon without insertions, they cancel the terms (c)–(f), leaving

only the sum of contributions (5.19)(a)–(b).

In order to further test the consistency of our prescription (5.2), we can compute

Dehn-twisted versions of the one-loop strings (a) and (b):

1

2

3

4

1

2

3

4

(at) (bt)

, (5.26)

and check that their contributions equal those of their untwisted counterparts. Again,

both one-loop strings can be isolated as individual one-loop polygons. For contribution

(at), we find

(at) : 1

4
4

3

1

4
4

2

= 1

4
4

3

1

4
4

2

(1 loop) = 1

43

1

4 2

(1 loop) = − polygon(1, 2, 4, 3) , (5.27)
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where, in the last equation, we have again used the general one-loop polygon formula (3.13).

Similarly, we find for contribution (bt):

(bt) : 1

4
4

3

1

4
4

2

= 4

1
1

2

4

1
1

3

(1 loop) = 4

12

4

1 3

(1 loop) = − polygon(1, 2, 4, 3) . (5.28)

Indeed, these Dehn-twisted contributions equal their untwisted versions (5.20) and (5.21).

Contribution (1). Let us finally turn to case (1). Picking a particular tessellation, we

find the following potentially non-zero excitation patterns:

1

23

4

1

23

4

1

23

4

(a) (b) (c)

. (5.29)

Pattern (a) readily evaluates to polygon(1, 1, 3, 4, 4, 2), which equals the one-loop octagon

polygon(1, 3, 4, 2), which in turn equals half the contribution of the planar graph (2.19).

The contributions (b) and (c) require some comments: these contributions include two

excitations on a single zero-length bridge. Even though we have thus far discarded exci-

tation patterns with more than one excitation on any bridge, we want to argue that we

should still include these contributions. All patterns with multiple excitations on a single

bridge that we have excluded thus far had the form of a string of excitations that crossed a

single bridge twice in the same direction. For the cases (b) and (c) in (5.29), the string of

excitations crosses a bridge twice, but in opposite directions. As indicated at the beginning

of this section, we postulate that such excitation patterns should be included. Next comes

the question of computing these contributions. Because the excitation pattern spans such

a large part of the graph, it cannot be localized inside a compact polygon. For case (b),

the best we can do is to cut out the inside of the square formed by the propagator bridges,

and to cut along the horizontal zero-length bridge that connects O4 to itself:

1

23

4

→

1 234 4

4

(5.30)

We have no rigorous way of computing this contribution. It would be easily computable

if the horizontal, doubly excited zero-length bridge that connects O1 to itself was flipped:

the flipped bridge would connect O4 with itself, and would no longer be crossed by the
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string of excitations. After flipping, the three strings of excitations become:

1

23

4

1

23

4

1

23

4

(af) (bf) (cf)

. (5.31)

The full one-loop answer for contribution (1) should be invariant under flipping any bridge.

But a priori, it is not clear that the individual excitation patterns map to each other one-to-

one. However, one immediately finds that the pattern (af) equals polygon(1, 3, 4, 4, 2, 1, 4),

which after pinching equals polygon(1, 3, 4, 2), and thus indeed equals the pattern (a) one-

to-one. Since flipping the bridge does not alter the string of excitations (a), we will assume

that (b) and (c) are also individually invariant under this flip. The contribution (b) then

becomes polygon(1, 3, 4, 4, 4, 4, 4, 2), which equals polygon(1, 3, 4, 2), which equals half the

contribution of the planar graph, just as (a)=(af) did. Applying the same analysis to

excitation pattern (c), but now flipping the horizontal bridge that connects O4 to itself, we

find that also the contribution (c) equals half the contribution of the planar graph. In total,

under the above flip-invariance assumption, we thus find that the non-trivial part (without

considering the internal polygon) of the stratification contribution (1) equals 3/2 times

the contribution of the planar graph, or, equivalently, 3 times the contribution of the one-

loop octagon. By the identities (5.3), we find that the non-trivial part of contribution (1′)

evaluates to the one-loop octagon, and the non-trivial part of contribution (1′′) gives two

times the planar octagon. Hence in the sum, we find that S(1) − S(1′) − S(1′′) = 0.

Summary and result. We have demonstrated in the preceding paragraphs that almost

all stratification contributions S(i), S(i′), and S(i′′) are either zero, or directly cancel each

other. We should stress that all cancellations among primed and unprimed contributions

hold at the level of individual graphs with assigned bridge lengths and operator labelings :

there is a one-to-one map between the bridges of graphs S(i), S(i′), and S(i′′) for fixed i.

Therefore, for all graphs (i) and for any labeling of its operators as well as any distribution

of propagators on the bridges of that graph (i.e. any choice of bridge lengths), there is

a corresponding operator labeling and distribution of propagators on the bridges of the

associated pinched graph (i′) (and (i′′)). Hence the cancellations trivially extend to the

full sum over all operator labelings and bridge lengths, for any value of the weight k.

The only remaining non-zero contributions from stratification at one-loop order are the

terms (5.20) and (5.21), which both evaluate to (− polygon(1, 2, 4, 3)). We immediately

note that their sum equals minus the one-loop contribution of the simple planar graph (2.19)

1 2

3 4

(5.32)
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on the sphere, which evaluates to 2 × polygon(1, 2, 4, 3). Also, because the stratification

contribution stems from graph (2) in table 2, it is clear that the sum over operator labelings

and bridge lengths produces the same answer for the stratification as for the planar graph.

We therefore conclude that the genus-one stratification contribution (2.23) at one-loop

order equals minus the planar correlator,

Gstratification
1,1 =

 14∑
i=1

S(i) −
14∑
i=1

S(i′) −
∑

i∈{1,7,8,11}

S(i′′)

 = −G0,1 (5.33)

where we have decomposed the correlator as

〈Q1 . . .Q4〉 =
k2

N2
c

∑
g,`

λ`

N2g
c

Gg,` , (5.34)

and the prefactor k2 comes from the overall normalization of (2.2). We note that the

result (5.33) even holds for generic internal polarizations αi (but equal weights ki), since the

graph (2.19) is the only graph contributing to the general-polarization one-loop correlator

at genus zero: the only other planar equal-weight graph (2.22)

1 2

3 4

gives no contribution at one loop, because all of its faces are hexagons framed by non-zero-

length bridges.

In order to evaluate the stratification result or, equivalently, the planar one-loop cor-

relator (5.33), we have to sum over inequivalent operator labelings and bridge lengths. In

this case, there are only three distinct labelings. Using the operator lineup in (5.32) and

going clockwise (or equivalently going upwards in (5.19)), we have the possible orderings

1–2–4–3 (used above in the derivation of (5.20) and (5.21)), 1–4–2–3, and 1–2–3–4. Making

use of the dihedral symmetry of the polygon function (3.13), summing over bridge lengths,

and inserting the respective propagator factors, we thus find

Gstratification
1,1 = −2

k−1∑
p=1

XpY k−p polygon(1, 2, 4, 3) +

k−1∑
p=1

ZpY k−p polygon(1, 3, 2, 4)

+

k−1∑
p=1

XpZk−p polygon(1, 2, 3, 4)

 , (5.35)

where the sums run over p = 1, . . . , k−1, because all bridges in the graph must be occupied

by at least one propagator. Writing the internal polarization cross ratios α, ᾱ (3.2) in terms

of the propagator structures X, Y , and Z (4.1) via

αᾱ =
X

Y
zz̄ , (1− α)(1− ᾱ) =

Z

Y
(1− z)(1− z̄) , (5.36)
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the octagon functions (3.21) become

polygon(1, 2, 4, 3) =
g2

2

[
1− Y

X
+ zz̄

(
1− X

Y

)
+ (1− z)(1− z̄)

(
Z

X
+
Z

Y
− 2

)]
F (1)(z) ,

polygon(1, 2, 3, 4) =
g2

2

[
Y

X
+
Y

Z
− 2 + zz̄

(
1− X

Z

)
+ (1− z)(1− z̄)

(
1− Z

X

)]
F (1)(z) ,

polygon(1, 3, 2, 4) =
g2

2

[
1− Y

Z
+ zz̄

(
X

Y
+
X

Z
− 2

)
+ (1− z)(1− z̄)

(
1− Z

Y

)]
F (1)(z) .

(5.37)

Plugging these expressions into (5.35), we recover the result for the planar one-loop

correlator

Gstratification
1,1 = −G0,1 = 2R

∑
p,q,r≥0

p+q+r=k−2

XpY qZrF (1)(z) (5.38)

with the universal polynomial factor R due to supersymmetry [45]

R ≡
(
Y − Z + z(Z −X)

)(
Y − Z + z̄(Z −X)

)
. (5.39)

We have computed the stratification contribution for arbitrary polarizations αi. In order

to compare to the data presented in section 4, we might take the Z = 0 limit of the result.

This computation shows the importance of summing over all tree level graphs, even

those containing Z propagator structures, and only at the end take the particular limit

Z → 0 for comparison with the available data. The reason is that, as we dress such

graphs with mirror particles, the overall dependence on the propagator structures can be

different from what it was at tree level. This comes about due to the fact that the one-

loop correction to the polygon carries itself a dependence on the R-charge cross ratios, see

the expression (3.9) of the building block for the one-loop polygons. As a consequence,

the dependence on Z of the tree-level configurations might get canceled at one-loop order,

resulting in a contribution which is relevant to match the Z = 0 data. Let us consider one

further example for illustration. Take the following graph:

G =

1 4

3 2
, (5.40)

where we have explicitly drawn the propagators, assigned labels to the vertices, and indi-

cated the two faces in two different shades of gray. This graph amounts to the following

one-loop contribution

G(1) =
Y 3Z

N4
c

(
polygon(4, 1, 3, 2) + polygon(4, 2, 3, 1, 3, 1, 3, 1)

)
. (5.41)

After replacing the explicit expression for the corresponding polygon (3.13), we arrive at

the result

G(1) = − g2

N4
c

Y 2
[
Y
(
Z(zz̄ + z + z̄ − 2)−Xzz̄

)
+ Z

(
(z − 1)Z(z̄ − 1)−Xzz̄

)
+ Y 2

]
F (1) ,

(5.42)

which, after setting Z = 0, results in a non-zero contribution.
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Comparison with perturbation theory. We have seen above that the only non-trivial

stratification contribution to the correlator stems from graph (2). More specifically, its ori-

gin are the contributions (a) and (b) in (5.19).32 We will see that this matches beautifully

with the expectation from gauge theory. Stratification is supposed to reproduce pertur-

bative contributions to the genus-one correlator that stem from planar graphs in the free

theory. At fixed k and m, that is at fixed propagator structure XmY k−m, there is only one

planar graph:

1 2

3 4

m

(k−m) (5.43)

We are looking for one-loop decorations of this graph that contribute to subleading order

in 1/N2
c (i.e. at genus one). All one-loop processes are N = 2 YM (super-gluon) lines33

between either two vertical or two horizontal propagators:

1 2

3 4

(1 loop) =

1 2

3 4
+

1 2

3 4
+

1 2

3 4
+

1 2

3 4
+ (vertical) .

(5.44)

Here, (vertical) stands for similar contributions of a vertical YM line connecting two hor-

izontal propagators. Kinematically, all ways of attaching the horizontal YM line to two

vertical propagators are identical. The only differences are powers of 1/N2
c (depending on

the genus of the one-loop graph) as well as relative signs: each end of the YM line can

attach to a given propagator from either side, at the cost of a relative sign, due to the

antisymmetry of the gauge structure constants fabc:

2

1

3

4
= −

1

2

3

4
. (5.45)

Of course there are many more ways to connect the YM lines to two vertical propagators,

but one can easily see that all contributions except the ones shown cancel each other, due

to these relative signs. The third and fourth figure in (5.44) have genus one, hence they

are suppressed by one factor of 1/N2
c compared to the first two figures (which are planar).

Also, the third and fourth figure carry a relative sign, since one structure constant is flipped

32Even though we have no precise way of telling which of the contributions in (5.19) are canceled by the

pinched graph (2′), it is reasonable to assume that the pinched graph cancels the contributions (c)–(f).
33We are considering the N = 2 description of N = 4 SYM with only external hypermultiplet fields,

see [13] and appendix E.
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compared to the first two figures. Hence we find

1 2

3 4

(1 loop) =

(
1− 1

N2
c

)
1 2

3 4
+

1 2

3 4
+ (vertical)



=

(
1− 1

N2
c

) 1 2

3 4

(1 loop)
(planar) , (5.46)

which exactly matches the result (5.33). Moreover, the non-planar (third and fourth) terms

in (5.44) can be drawn on the torus as

1 2

3 4
=

1

2

3

4
,

1 2

3 4
=

1

2

3

4
, (5.47)

and hence can be associated to graphs of the type (2) in table 2.

Disconnected graphs. Before ending this section, let us finally comment on a small

subtlety: in addition to the graphs considered so far, one can in principle consider discon-

nected graphs drawn on a torus. Here, either both components can be planar, or one of

them may have genus one. Clearly, by 1/Nc power counting, without interactions, neither

case contributes to the same order as non-planar connected four-point graphs. However,

much like the secretly planar graphs, we cannot simply discard them, since they can become

of the same order in 1/Nc at high enough loop order, once they are dressed by a sufficient

number of gluon propagators. Therefore, when performing the stratification procedure, we

do need to include them in principle.

Unfortunately, at the time of writing this article, we have not succeeded in evaluating

the contributions from these graphs if both components are planar,34 owing to the exis-

tence of so many zero-length bridges. We thus assumed that their contributions at one

loop vanish, once the subtraction and the Dehn twist are taken into account. We should

nevertheless stress that this is a reasonable assumption: firstly, in perturbation theory, it

is clear that such graphs cannot give rise to non-planar contributions at one loop. This

implies that the contribution from such disconnected graphs will be canceled by the sub-

tractions, as was the case for (some of) the secretly planar graphs that we discussed in this

section. (From a perturbation-theory point of view, one can actually argue that even the

planar contribution from such graphs is zero. See the discussion in figure 17.) Secondly,

34The contribution of graphs where one (two-point) component is non-planar can be shown to vanish by

similar arguments as for the stratification contributions computed above.
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(a) (b) (c) (d)

Figure 17. One-loop contributions from a generic disconnected graph at the planar level. A gluon

line may connect to any bridge on either side, hence it can connect to two bridges in four different

ways. Kinematically, all four cases are equivalent, the only difference lies in the color structure. The

figures show that all four cases contribute to the same order in 1/Nc. Since the four different cases

come with different signs ((b) and (c) come with a relative minus sign compared to (a) and (d)),

they cancel each other. We have highlighted the double-line structure of the propagators involved

in the exchange interaction.

although we could not compute the contribution from disconnected graphs on a torus, we

could show, using the stratification and the Dehn twist, that the contributions from discon-

nected graphs on a sphere vanish at one loop. This will be demonstrated in appendix F.

Let us also emphasize that, although the computation is sometimes hard, the proposal

we made is quite concrete and can be tested if one has infinite computational ability. It

would be an important future task to complete the computation and prove or disprove the

cancellation that we assumed.

Stratification summary and discussion. We carefully analyzed fourteen contribu-

tions listed in table 2 and table 3, adding all the secretly planar graphs and subtracting all

pinched surfaces. At the end of a laborious analysis, the punch line is amazingly simple:

these terms almost cancel each other completely. (Only contribution (2) in table 2 ends up

not canceling!) In the end, the result is simply minus one times the planar result.

In the light of such a simple result, one might wonder if all this stratification business,

with all these involved considerations on boundaries of moduli space subtleties are a huge

overkill. Could it be that, even at higher loops, the stratification ends up boiling down to

some simple terms proportional to lower-genus contributions?

Definitely not !

On the contrary, at sufficiently high loops, the stratification is in fact the most impor-

tant contribution, since, for any given size of the external operators, the tree-level skeleton

graphs only exist up to some fixed genus order. So higher-genus contributions are actually

given uniquely by the stratification procedure. Therefore, if we consider the full 1/Nc ex-

pansion, the stratification contributes to all corrections and is the sole contributor starting

at some genus order. As an example, for k = 2, we can only draw planar skeleton graphs,

hence all higher-genus corrections to this correlator — starting already with the torus —

will come uniquely from the stratification procedure!
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k : 2 3 4 5

g = 0 : 3 8 15 24

g = 1 : 0 32 441 2760

Table 7. Number of connected labeled graphs with specified bridge lengths at genus g = 0 and

g = 1 for various values of k.

Given the simplicity of the final one-loop result (5.38), and the importance of the

stratification at higher loops and higher genus, it is absolutely critical to streamline its

analysis. For that, we will likely need to better understand the nature of the various exotic

contributions, such as the spirals and loops discussed above.

6 Checks and predictions

6.1 Finite k checks

We now proceed to test the integrability predictions against the data described in section 4,

starting with a few examples for finite k. At finite k, the relevant graphs are typically

far from the maximal ones. As described earlier, they can be obtained by successively

removing edges from the maximal graphs until each operator is connected by at most k

bridges, discarding the duplicate ones on the way. On top of this, we should sum over all

inequivalent labelings of the vertices and sum over all bridge length assignments such that

each operator is connected by exactly k propagators. The statistics of the polygonization

procedure for the five lowest k cases is summarized in table 7. It is apparent that the

number of graphs grows very quickly both with k and with the genus, and therefore we

have resorted to a Mathematica code to generate them.

6.1.1 k = 2, 3

In the simplest k = 2 example, it turns out that one cannot draw any graph with the

topology of a torus, since each operator will be connected by at most two bridges. The

single connected graph with this constraint is depicted in (2.19). Therefore, the whole con-

tribution should come from the stratification result (5.38), which in this case simply reads

〈Q2
1Q2

2Q2
3Q2

4〉
1-loop
(g=1) =

8g2

N4
c

RF (1)(z) . (6.1)

For the case of k = 3, we already encounter non-planar graphs, as depicted in figure 18. Af-

ter assigning labels to the vertices and lengths to the bridges compatible with the operators’

R-charges, one generates 32 distinct configurations as indicated in the corresponding entry

of table 7. Regardless of the assignments, the graphs (a), (b) and (d) of figure 18 produce

a vanishing contribution. The vanishing of the cases (a) and (b) can be anticipated only by

successive use of the pinching limit of the polygon as illustrated in the expression (3.17).

For example, consider the case (a) and label the vertices from 1 to 4 in a clockwise order

starting from the top left operator. There is a single face corresponding to an icosagon

(20-gon) bounded by the bridges. Taking into account the order of the vertices along this

– 59 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

(a) (b) (c) (d)

Figure 18. Non-planar graphs for k = 3.

boundary, we have the one-loop contribution given by polygon(1, 2, 1, 3, 4, 2, 1, 2, 4, 3). We

now apply several pinching limits to reduce that sequence down to polygon(1, 3) which

would correspond to a two-point function, and that is zero by supersymmetry.

The graph (d) is decomposed into a hexagon and an octadecagon, and both vanish

once we use the corresponding one-loop expression as given in (3.13).

The only non-trivial graph is (c), which produces a non-zero result. However, after

summing over all labelings, those contributions simply cancel out. Therefore, the non-

planar graphs do not contribute, and once again we expect to obtain the final result simply

from the stratification contribution (5.38), which reads in this case

〈Q3
1Q3

2Q3
3Q3

4〉
1-loop
(g=1) =

18g2

N4
c

(X + Y + Z)RF (1)(z) . (6.2)

For comparison with perturbative data, we now consider the case Z = 0. We find that for

the two cases considered here:

〈Qk1Qk2Qk3Qk4〉
1-loop
(g=1)

Z=0−−−→ − 1

N2
c

G1-loop
k,(g=0) for k = 2, 3 . (6.3)

and this perfectly matches with the data shown in table 5.

6.1.2 k = 4

The case k = 4 is significantly more involved than the previous ones. The number of

non-planar graphs is 57, and they give 441 distinct physical configurations when operator

labelings and bridge lengths are chosen.

Let us consider one example in detail. Among the 441 graphs with assigned labels and

bridge lengths, we have the following example

1 2

3 4
, (6.4)

where each solid line now corresponds to a propagator. This graph is decomposed into

two polygons: an octagon (dark gray) and a hexadecagon (light gray). Accounting for the

corresponding propagators, we have that this contribution is given by

X2Y 2

N4
c

(
polygon(1, 2, 4, 3) + polygon(1, 2, 4, 3, 1, 3, 4, 3)

)
. (6.5)
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We can now simply use the expression for the corresponding polygon using (3.13) to get

the final result. Alternatively, we observe that using the pinching limit, the hexadecagon

degenerates into an octagon as follows,

polygon(1, 2, 4, 3, 1, 3, 4, 3)→ polygon(1, 2, 4, 3, 4, 3)→ polygon(1, 2, 4, 3) . (6.6)

Now plugging in the corresponding expression for the one-loop octagon from (5.37), we get

that this graph produces

− g2

N4
c

XY
(
X2zz̄ + Y 2 +XY (zz̄ − 2z − 2z̄ + 1) + Z(X + Y )(z + z̄ − zz̄ − 1)

)
F (1)(z) .

(6.7)

All other graphs are equally straightforward to compute as this example. Upon summing

over the 441 graphs and adding the stratification contribution (5.38), we recover the pref-

actor R and the final result is given by

〈Q4
1Q4

2Q4
3Q4

4〉
1-loop
(g=1) = −32g2

N4
c

(
5 (X2 + Y 2 + Z2) + 12 (XY +XZ + Y Z)

)
RF (1) . (6.8)

After setting Z = 0 and comparing with the data of table 5 for k = 4, we find again a

perfect agreement.

6.1.3 k = 5

We have extended our analysis to the case k = 5, which involves 2760 distinct graphs.

The procedure is no different from the previous cases, and we simply display here the

result from the summation over all those genus-one graphs, together with the stratification

contribution. Once again, we recover the universal prefactor R (5.39) and the outcome reads

〈Q5
1Q5

2Q5
3Q5

4〉
1-loop
(g=1) = −50g2

N4
c

(
108XY Z + 23

(
X3 + Y 3 + Z3

)
+ 51

(
X2Y +X2Z +XY 2 +XZ2 + Y 2Z + Y Z2

))
RF (1) .

(6.9)

When Z = 0 we again recover the perturbative result of table 5.

To summarize the findings of this section: by summing over genus-one graphs and

adding the stratification contribution determined in section 5, we computed the four-point

correlator for a generic polarization of the external BPS operators. We compared these

results with data for the particular polarization studied in literature, namely when Z = 0,

and found a perfect match in all cases, which strongly corroborates our proposal. The

Z 6= 0 results are simple predictions of the hexagonalization procedure, which would be

nice to check against a direct perturbative computation.

6.2 Checks at large k

6.2.1 k � 1: leading order

Another interesting case that we will focus on in the following are contributions Fk,m where

both m and (k −m) are large, that is we look at the limit k � 1 with 0 < m/k < 1. In
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this regime, the four operators are connected by a parametrically large number O(k) of

propagators. This implies that graphs where the propagators connecting any two operators

are distributed on as many bridges as possible outweigh all other graphs by combinatorial

factors. In other words, graphs where any bridge is only filled with a few (or zero) propaga-

tors are suppressed by powers of 1/k. Namely, the sum over distributions of n propagators

on j bridges at large n expands to∑
n0≤n1,...,nj≤n∑

i ni=n

1 =
nj−1

(j − 1)!
+
j(1− 2n0)nj−2

2(j − 2)!
+O(nj−3) , j ∈ Z>0 . (6.10)

This combinatorial dominance greatly reduces the number of contributing graphs: for a

correlator with generic polarizations αi, only the maximal graphs 1.1, 2.1.1–2.1.3, 3.1, and

3.2 of table 1 contribute to the leading order in 1/k, since all other graphs have fewer

bridges. For these graphs, every face has room for exactly one hexagon, and thus all

mirror magnons live on bridges with a large number O(k) of propagators, which means

that all quantum corrections are delayed. However, in this work, we consider operator

polarizations with (α1 · α4) = (α2 · α3) = 0, which do not admit propagator structures of

the type Z ≡ (α1 ·α4)(α2 ·α3)/x2
14x

2
23, see (4.2). In other words, there are no contractions

between operators 1 and 4, and no contractions between operators 2 and 3. Hence, even

at large k, the dominant graphs will leave room for zero-length bridges and thus admit

quantum corrections already at one-loop order.

Before diving into the computation, let us quote the leading and first subleading terms

in 1/k of our data from table 5 for reference (subleading terms are shown in gray):

F (1),U
k,m (z, z̄)

∣∣
torus

=

− 2k2

N4
c

{([
17r4

6 −
7r2

4 + 11
32

]
k4 +

[
9r2

2 −
13
8

]
k3
)
t− r

[
34r2

3 −
7
2

]
k3s− +O(k2)

}
F (1) ,

(6.11)

F (2),U
k,m (z, z̄)

∣∣
torus

=

4k2

N4
c

[{([
17r4

6 −
7r2

4 + 11
32

]
k4 +

[
9r2

2 −
13
8

]
k3
)
t− r

[
34r2

3 −
7
2

]
k3s−

}
F (2)

+

{([
29r4

24 −
11r2

16 + 15
128

]
k4 +

[
17r2

8 −
21
32

]
k3
)
t2 − r

[
23r2

3 −
9r
4

]
k3ts−

}(
F (1)

)2
−
[

5r2

4 −
19
48

]
k3F

(2)
C,+ +O(k2)

]
. (6.12)

Polygonization: maximal cyclic graphs. Since there are no contractions between

operators 1 and 4 and between operators 2 and 3, we need to consider graphs where the

four operators are cyclically connected, as in 1—2—4—3—1 (later we will see that non-

cyclic graphs are also important). We can obtain all possible graphs of this type by deleting

bridges from the maximal graphs listed in table 1. Among all cyclically connected graphs,

we only consider graphs where as many bridges as possible are filled. We will call those
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A B C D

E F G H

I J K L

M N P Q

Table 8. Inequivalent maximal cyclic graphs on the torus.

“maximal cyclic graphs”. These will be the only graphs that contribute at leading order in

1/k. All further graphs only contribute to subleading orders in 1/k, and can be obtained

by setting further bridge lengths to zero.

Starting from any of the 16 cases listed in table 1, we can obtain cyclic graphs by

grouping the four operators into two pairs and deleting all bridges that connect the members

of either pair. Doing this in all possible ways for all the 16 graphs, and discarding non-

maximal35 as well as duplicate graphs, we end up with the complete set of maximal cyclic

graphs A through Q displayed in table 8. For example, consider the maximal graph 1.1. We

can delete either all vertical or all horizontal lines; these two cases are equivalent and give

→ , (6.13)

which is easily recognized as case A. Alternatively, we could delete all diagonal lines, which

gives case P. In fact, for all cases 1.1–1.5.3 we do not need to consider deleting the diag-

35Here, by non-maximal graphs we mean graphs with fewer than 8 bridges. All such graphs can be

obtained from the maximal cyclic graphs listed in table 8 by deleting further edges.
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onal lines, as the resulting configurations will (by construction) always be covered by the

cases 2.1.1–3.2. Moving on to cases 1.2.1 and 1.2.2, up to operator relabelings, all ways of

deleting bridges (keeping the diagonal ones) lead to equivalent configurations:

, → , (6.14)

which we recognize as case B. The derivation of the further cases C through Q from the

maximal graphs in table 1 is listed in appendix B.2.

The large-weight limit brings about another simplification: in section 6.1 above, we

saw that magnons carrying non-trivial R-charges may cancel Z propagator structures (4.1)

such that the final result is free of Z’s. Such cancellations cannot occur here, since all

graphs of table 8 dissect the torus into four octagons separated by large bridges. Such

octagons do not leave enough room for Z propagator cancellations.36 Hence we do not

have to include graphs containing Z propagators.

Looking at the cases A through Q, we find that the bridge configurations of the cases A,

C, D, E, F, H, I, J, N, and K imply a constraint on m: either m = 0, or m = k. Hence, even

though no further bridges can be added to these graphs (under the cyclicity constraint),

these cases are suppressed at large m and (k − m), and only the cases B, G, L, M, P,

and Q remain (these were called B, A, C, D, E, and F in our previous publication [1]). For

these graphs, we now have to consider all possible operator labelings, taking care that some

seemingly different labelings in fact produce identical bridge configurations. In addition,

each labeled graph comes with a combinatorial factor from the distribution of propagators

on the various bridges according to (6.10). We list all inequivalent labelings for the relevant

graphs as well as their combinatorial factors in table 9. For case P, all operator labelings are

equivalent. Beyond that, it has an extra symmetry: every pair of operators is connected by

a pair of bridges. Exchanging the members of all pairs simultaneously amounts to a cyclic

rotation of the four operators and thus leaves the configuration invariant. This operation is

an example of a graph automorphism, see the last part of section 2.2, in particular (2.10).

The naive sum over bridge lengths gives a combinatorial factor m2(k − m)2, which thus

has to be corrected by a factor of 1/2.

Sprinkling: one and two loop check. The previous maximal cyclic graphs polygonal-

ize the torus into four octagons each, generating some toroidal polyhedra. We represent

their corresponding nets in table 10 for easier visualization. The one-loop and two-loop

computations can then be performed straightforwardly from a single particle sitting in the

single ZLB of each octagon. Such contributions can be easily computed to any desired

loop order using the ingredients of appendix D (at one loop we can simply use the polygon

function of section 3.1). At one loop this is the only particle configuration contributing.

At two loops, we have to consider in addition two virtual particles in different octagons,

36Such cancellations would require a 1/Z type excitation on a non-zero-length bridge of type Z, but

excitations on non-zero-length bridges are delayed.
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Case Inequivalent Labelings Combinatorial Factor

B (1, 2, 4, 3), (2, 1, 3, 4), (3, 4, 2, 1), (4, 3, 1, 2) m3(k −m)/6

B (1, 3, 4, 2), (3, 1, 2, 4), (2, 4, 3, 1), (4, 2, 1, 3) m(k −m)3/6

G (1, 2, 4, 3), (3, 4, 2, 1) m4/24

G (1, 3, 4, 2), (2, 4, 3, 1) (k −m)4/24

L (1, 2, 4, 3), (3, 4, 2, 1), (2, 1, 3, 4), (4, 3, 1, 2) m2/2 · (k −m)2/2

M (1, 2, 4, 3), (2, 1, 3, 4), (1, 3, 4, 2), (3, 1, 2, 4) m2(k −m)2/2

P (1, 2, 4, 3) m2(k −m)2/2

Q (1, 2, 4, 3) m2(k −m)2

Table 9. All inequivalent operator labelings for the graphs that contribute to leading order in

1/k, together with their combinatorial factors according to (6.10). The order of the labels runs

clockwise, starting at the top left operator in the graphs of table 8.

which essentially amounts to the one-loop octagon squared. The contribution of two virtual

particles inserted in the same octagon turns out to be delayed to four loops as shown in

appendix D. The final step is then to sum over the labelings of the vertices, weighted by the

combinatorial factors arising from the different ways of distributing the propagators among

the bridges. Table 9 contains the details of these combinatorics. We have performed this

calculation in [1] and found a perfect agreement with the large k data (6.11) and (6.12).

Sprinkling: three loop prediction. As far as we know, there is no available non-planar

perturbative data at three loops. The planar case, however, was computed in [46]. Here,

we are going to make a prediction for the three-loop result at leading order in large k using

integrability. In principle, one can keep going and make predictions for arbitrary order

in g2, and it would be very interesting to try to re-sum the series. At three loops, one has

the following possible contributions:

1. Three-loop correction of the one-particle octagon.

2. Two mirror particles inserted at different octagons.

3. Three mirror particles inserted at three different octagons.

4. Multiple mirror particles inserted in the same octagon.

One can show that contribution 3 is only present for case P, because all other cases only

have two octagons involving four operators, and an octagon involving only three (or two)

operators vanishes as the relevant cross-ratio for gluing is either 0, 1, or ∞. The contri-

bution 4 kicks in only at four loops — the case of two mirror particle in the same edge is

computed in the appendix D — and thus is not relevant here.

The new ingredient for the three-loop computation, when compared to the two-loop

calculation performed in [1], is the one-particle mirror contribution in a ZLB expanded to
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three loops, given by (see appendix D for details):

M(1)(z) =

(
z + z̄ − α+ ᾱ

2

(
1 +

zz̄

αᾱ

))
×

×
(
g2F (1)(z, z̄)− 2g4F (2)(z, z̄) + 6g6F (3)(z, z̄) +O(g8)

)
, (6.15)

where F (3) is the three-loop ladder integral defined as

F (3)(z, z̄) =
x2

13x
2
24x

4
14

π6

∫
d4x5d

4x6d
4x7

x2
15x

2
45x

2
35x

2
56x

2
16x

2
46x

2
67x

2
17x

2
47x

2
27

=

1

3
4

2 . (6.16)

The one-loop and two-loop ladder integrals F (1) and F (2) are defined in (4.4) and (4.5)

(see also the expression (D.22) in terms of polylogarithms), and the cross ratios z, z̄ are

defined in (3.3).

Using the hexagonalized graphs of table 10, the combinatorial factors of table 9, and

adding all mirror particle corrections, one arrives at the three-loop prediction

F (3),U
k,m (z, z̄)

∣∣
torus

= −12k2

N4
c

[{([
17r4

6 −
7r2

4 + 11
32

]
k4
)
t+O(k3)

}
F (3)

+

{([
29r4

18 −
11r2

12 + 5
32

]
k4
)
t2 +O(k3)

}
F (2)F (1)

+

{([ (1−4r2)2

96

]
k4
)
t3 +O(k3)

}(
F (1)

)3]
. (6.17)

6.2.2 k � 1: subleading order

Next, we are going to compute the subleading contribution in the large-k expansion, i.e.

the terms of order O(k3), at one-loop order using integrability. We find an agreement with

the perturbative data (gray) given in (6.11). As described in detail below, the subleading

computation receives contributions from three different sources: the graphs used in the

leading-order computation, the graphs obtained from the leading-order graphs by deleting

one bridge, and the “deformed” graphs which are graphs having one pair of propagators

of type Z.

Leading cyclic graphs. The graphs B, G, L, M, P, and Q used in the leading-order

computation also contribute at subleading order in large k. The integrability contribution

is computed exactly as in the leading-order case, in particular one uses the same set of

hexagons of table 10, however one considers the subleading contribution to the combi-

natorial factors given in (6.10), with n0 = 1. Recall that to obtain a final term with the

propagator structure XmY k−m at one-loop order, it is necessary to consider also the neigh-

boring tree-level graphs with propagators Xm−1Y k−m+1 and Xm+1Y k−m−1. This follows

because the mirror particles carry R-charge and they can change the propagator structure

of a tree-level graph [1], which is seen explicitly by the ratios of X, Y , and Z propagator
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Case Hexagonalization Case Hexagonalization

B G

L M

P Q

Table 10. After completing the relevant skeleton graphs B, G, L, M, P, and Q with the missing

ZLBs, we obtain complete hexagonalizations of the four-punctured torus. The outcome is that each

configuration is decomposable into 8 hexagons, or 4 minimal octagons, using the terminology of

section 3.1. The distinct octagons are colored in white and gray. The colored edges correspond to

the physical ones, with the operators being labeled as A, B, C, and D. The subscript in each edge

label indicates to which of the eight hexagons the respective edge belongs. Later on, we will specify

the labels A, B, C, and D of the operators. For each hexagonalization, the dashed lines correspond

to the ZLBs, while the solid gray bridges have non-zero lengths.
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Tree-Level

Propagators
Labelings:

(1,2,4,3), (2,1,3,4),

(3,4,2,1), (4,3,1,2).
Labelings:

(1,3,4,2), (3,1,2,4),

(2,4,3,1), (4,2,1,3).

XmY k−m −(k −m)m2 − m3

6 −1
6(k −m)3 − (k −m)2m

Xm−1Y k−m+1 −3
2(k −m)m2 −3

2(k −m)2m

Xm+1Y k−m−1 −1
2(k −m)m2 − m3

3 −1
3(k −m)3 − 1

2(k −m)2m

Table 11. The combinatorial factors used for the subleading computation of the graph B. The

case B has eight inequivalent labelings, see table 9.

factors in the prefactor of (6.15) rewritten via (5.36):(
z + z̄ − α+ ᾱ

2

(
1 +

zz̄

αᾱ

))
=

1

2

[
1− Y

X
+ zz̄

(
1− X

Y

)
+ (1− z)(1− z̄)

(
Z

X
+
Z

Y
− 2

)]
. (6.18)

One important remark is that, differently from the leading case, where the combinatorial

factor of each graph is universal, in the subleading case the combinatorial factor changes

when considering the neighboring graphs. As an example, table 11 shows the combinatorial

factors relevant for case B.

Subleading cyclic graphs. In addition to the leading-order graphs, there will be con-

tributions from cyclic graphs that are obtained from the cases B, G, L, M, P, and Q

by removing one of their bridges. Deleting a bridge in all possible ways, and identifying

identical graphs, we find seven inequivalent subleading cyclic graphs, see table 12. The

number of inequivalent labelings is indicated in the parentheses below each graph. The

hexagonalization of the subleading cyclic graphs can be obtained from the hexagonaliza-

tion of the leading cyclic graphs given previously by replacing the corresponding line that

was deleted in the process by a zero-length bridge. The final step is to add the mirror

particles. In this case, we have one-, two- and three-particle contributions, because there

are four hexagons sharing bridges of zero length in a sequence. Thus at one-loop order

for the integrability computation, one uses the expressions for both the octagon and the

dodecagon of (3.13). In addition, the relevant combinatorial factors can be read from the

leading term of formula (6.10).

Deformed graphs. At subleading order in large k, there is room for so-called deformed

graphs. The mirror particles carry R-charge, in other words they depend on the R-charge

cross ratios α and ᾱ, as seen for example in (6.18). Hence the final R-charge structure of a

graph depends not only on the tree-level propagators, but also on the mirror particles. For

example, graphs that include a propagator of the type Z ≡ (α1 ·α4)(α2 ·α3)/x2
14x

2
23 can give

a final term free of Z’s after the inclusion of the mirror corrections, which is thus compatible

with our chosen polarizations (4.2), and gives a non-zero contribution in the limit Z → 0.

We have already encountered the same phenomenon when we performed checks for finite

k. In the sum over graphs, we hence must include graphs with Z propagators.
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B.1 (8) G.1 (4) L.1 (8) L.2 (8)

L.3 (8) P.1 (4) Q.1 (4)

Table 12. The seven inequivalent graphs that are obtained by deleting one bridge from graphs B,

G, L, M, P, or Q of table 8. These graphs contribute at subleading order in k. The parentheses

show the number of inequivalent labelings that each graph has.

Graphs containing one or more propagators of type Z (and otherwise only large bridges

filled with many propagators) will be called deformed graphs. At one loop, the relevant

deformed graphs include only one pair of Z propagators connecting two disjoint pairs of

operators. We can classify all such graphs by starting with the set of maximal graphs

listed in table 1, declaring two of the bridges to become Z propagators, and deleting other

bridges such that the graph becomes subleading in k. In the limit of large k that we

consider, extremal graphs with m = 0 or (k − m) = 0 will not contribute. Taking into

account that one of the bridges attaching to each operator in table 1 will become a Z

propagator, this means that we only need to consider the graphs 1.2.1, 1.2.2, 1.5.3, 2.1.1,

2.1.2, 2.1.3, 3.1, and 3.2. Starting with these, and deleting bridges / replacing bridges by

Z propagators, we arrive at the set of inequivalent deformed graphs shown in table 13.

Alternatively, the graphs in table 13 can be obtained by starting with the graphs B, G, L,

M, P, and Q of table 8, and inserting Z propagators as well as deleting one bridge in all

possible ways.

After having determined all deformed graphs, the next step is the hexagonalization.

This is done by adding bridges of zero length to the graphs, and dividing them into eight

hexagons. Due to the flip invariance of the mirror particle corrections, any different set

of zero-length bridges will give the same final result. In the case of the deformed graphs,

the multi-particle contribution will show up, and we use the expression for the octagon,

decagon, and dodecagon of (3.13). In order to perform the integrability computation for the

deformed graphs, one uses that α and ᾱ are determined by the equations (5.36). The limit

Z → 0 is only taken after adding the mirror-particle corrections to a graph. Similar to the

case of the leading cyclic graphs, to get a final term proportional to XmY k−m at one-loop,

one has to consider the set of graphs corresponding to the tree-level terms Xm−1Y k−mZ

and XmY k−m−1Z. Most of the graphs of table 13 give a vanishing contribution. One
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1.2.1A (8) 1.2.1B (8) 1.2.1C (8) 1.2.2A (8) 1.2.2B (8)

1.5.3A (4) 1.5.3B (4) 2.1.1A (6 · 8) 2.1.1B (6 · 8) 2.1.1C (6 · 8)

2.1.2A (8) 2.1.2C (8) 2.1.3A (8) 2.1.3B (8)

3.1A (2·4, 8) 3.1B (2·8) 3.1C (2·4, 8) 3.1D (3·4, 2·8)

Table 13. All inequivalent deformed graphs that contribute to the first subleading order in 1/k.

Wiggly lines stand for Z propagators. Graphs with crossed bridges stand for classes of graphs

where any one of the crossed bridges is deleted. The parentheses show the number of inequivalent

labelings. Recall that for the hexagonal graphs, opposite edges of the outer hexagon are identified.

example of a non-vanishing graph is

Case 1.2.1C =
1∑
s=0

4

6

(
m3M(1)(1− z) + (k −m)3M(1)

(
z

z − 1

))
Xm−s Y k−m−1+s Z

Z→0−−−−→ 1

3

(
k3 − 3k2m+ 3km2 − 2m3

)
(zz̄ − 1)F (1)(z, z̄)XmY k−m . (6.19)

Summary. The subleading integrability result is obtained by summing three different

kinds of contributions which were described above. The final result agrees with the per-

turbative data. It is possible to use the same steps to compute the predictions for the

remaining orders in k.

7 Conclusions

We performed detailed tests of our proposal on the application of the hexagon formalism

to non-planar correlators at weak coupling. The basic strategy is the same as in the planar

case; we first draw all possible tree-level diagrams on a given Riemann surface, dissect them

into hexagonal patches, and glue those patches back together by summing over complete
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sets of intermediate (mirror) states. The key new idea that is essential in the non-planar

case is the procedure called stratification: we first computed all contributions coming from

tree-level graphs drawn on a torus, including the graphs that are actually planar. After

doing so, we subtracted the contributions from degenerate Riemann surfaces, which in turn

can be computed by taking the planar results and shifting the rank of the gauge group. The

procedure was tested against available perturbative data, and the results agree perfectly.

What we developed in this paper may be viewed as a bottom-up approach to construct

a new way of performing string perturbation theory, based on the triangulation of the

worldsheet. The central object in our formalism is the hexagon, which is a branch-point

twist operator on the worldsheet. The idea of using the twist operator for constructing

higher-genus surfaces is not new; it was one of the motivations for Knizhnik to conduct

detailed studies of twist operators [47]. It also showed up in other important contexts

such as the low-energy description of matrix string theory [48, 49]. In this sense, the

hexagon formalism is yet another instance of “old wine in new bottles”, which we have

been encountering multiple times in recent years.37

There are several obvious next steps. It would be important to extend the computation

to higher loops, both in λ and in 1/Nc. Also desirable would be to tie up several loose

ends in our arguments: for instance, in the discussion in section 5, we estimated the

contribution from certain magnon configurations (5.30) by claiming that they are related

to simpler configurations via Dehn twists and flip transformations. It would be nice to

perform a direct computation of such configurations and show the flip invariance explicitly.

One practical obstacle for doing such computations is the complexity of the multi-

particle integrands. Even for the two- and three-magnon contributions at one loop which

were studied in this paper, the integrands are horrendously complicated. Given the sim-

plicity of the final answer, it would be worth trying to find a better way to organize the

integrand. This will eventually be crucial if we were to perform more complicated and phys-

ically interesting computations, such as taking the strong-coupling limit and reproducing

the supergravity answers. Another strategy is to avoid dealing with the complicated in-

tegrand for now, and look for simplifying limits. In flat space, it was shown by Gross

and Mende that the high-energy string scattering takes a remarkably simple and univer-

sal form [50, 51]. The results were later used by Mende and Ooguri, who succeeded in

Borel-resumming the higher-genus contributions in the same limit [52]. In our context, the

analogue of the high-energy limit would be played by large operator lengths (charges). As

already observed in this paper, taking the large-charge limit simplifies the computation

drastically. It is therefore interesting to analyze the limit in more detail, and possibly try

to re-sum the 1/Nc corrections [33, 34]. It would be even more exciting if we could make

a quantitative prediction for the non-perturbative corrections by analyzing the large-order

behavior of the 1/Nc expansion [53], which one could test against the direct instanton

computation [54–57].38

37Other instances are the conformal bootstrap and the S-matrix bootstrap.
38The conclusion of the large-Nc results to appear in [33] is bitter-sweet in this respect: while one does

observe the famous g!2 behavior typical for instanton-like large-genus behavior, this is further multiplied

by 1/g!4 arising from the kinematics of large operators, hence this effect is not yet seen as sharply as one

would like.
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The relation between the summation over graphs and the integration over the moduli

space of Riemann surfaces deserves further study. As mentioned in the introduction, one

big puzzle in this regard is the fact that the summation over graphs is discrete, while the

moduli space is continuous. In the study of simple matrix models, such a discretization of

the moduli space was attributed to the topological nature of the dual worldsheet theory.

We should however note that the discretization could take place even in non-topological

worldsheet theories, namely in the light-cone quantization of the DLCQ background [48,

49, 58]. This is in fact closer to our context since, in the generalized light-cone gauge, the

lengths of the string becomes proportional to the angular momentum in S5, which takes

discrete values. To make more progress on these points, it would perhaps be helpful to study

the recently proposed worldsheet action for the DLCQ background [59], which is suited for

quantization in the conformal gauge, and clarify how the conformal-gauge computation

reproduces the light-cone gauge expectation that the moduli space gets discretized.

As a final remark, let us emphasize that the results in this paper are just the first

steps in the application of integrability to non-planar observables: firstly, it would also

be interesting to understand other non-planar quantities, such as non-planar anomalous

dimensions of single-trace operators, and anomalous dimensions of double-trace operators.

See [13] for an important initial attempt.39 Secondly, although it is remarkable that inte-

grability can reproduce non-planar quantities, the computation performed in this paper is

almost as complicated as the direct perturbative computation, and as we include more and

more mirror particles, we face the integrand challenges alluded to above. Is there something

better we can do? Can we reformulate this formalism, for instance, by combining it with

the quantum spectral curve [61]? In fact, there are already two data points which indicate

that the quantum spectral curve could be useful for analyzing correlation functions [62, 63].

Whatever the upgraded formalism will be, we expect that the results in this paper will be

useful in finding it.
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the Laboratoire de Physique Théorique de l’Ecole Normale Supérieure and Nordita, where

part of this work was done. TF would like to thank also CAPES/INCTMAT process

88887.143256/2017-00 for financial support. The work of JC and TF was supported by

the People Programme (Marie Curie Actions) of the European Union’s Seventh Frame-

work Programme FP7/2007-2013/ under REA Grant Agreement No 317089 (GATIS), by

39See also [60] for an extension of the amplitude / Wilson loop duality to the first non-planar order.

– 72 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

the European Research Council (Programme “Ideas” ERC-2012-AdG 320769 AdS-CFT-

solvable), from the ANR grant StrongInt (BLANC-SIMI-4-2011). The work of SK was

supported by DOE grant number DE-SC0009988. This research was supported in part by

the National Science Foundation under Grant No. NSF PHY17-48958. This research was

supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter

Institute is supported by the Government of Canada through the Department of Inno-

vation, Science and Economic Development and by the Province of Ontario through the

Ministry of Research and Innovation.

A Details on non-planar data

In (4.8)–(4.10), we represented the quantum corrections Fk,m (4.3) to the four-point corre-

lator Gk (4.2) in terms of the conformal box (4.4) and double-box functions (4.5), as well

as color factors C1
k,m and Cik,m, i ∈ {a, b, c, d}. In the following, we will explain the color

factors and their evaluation in more detail. We will also give further expressions for Fk,m
as well as F̃k,m. The expressions depend on the choice of gauge group, and we will present

results for both U(Nc) and SU(Nc).

Color factors. The color factors Cik,m consist of color contractions of four symmetrized

traces from the four operators, dressed with insertions of gauge group structure constants

fab
c. The one-loop color factor reads [43]:

C1
k,m =

fpqefrs
e

(m+ 1)!2(k −m− 2)!2
tr((a1 . . . ak−1p)) tr((a1 . . . am+1cm+2 . . . ck−1s))

× tr((am+2 . . . ak−1c1 . . . cm+1q)) tr((c1 . . . ck−1r)) , (A.1)

and the two-loop color factors are [44]:

Ca
k,m =

fabefcd
efpqtfrs

t

2m!2(k −m− 1)!(k −m− 3)!

× tr((d1 . . . dk−m−1a1 . . . ama)) tr((a1 . . . amb1 . . . bk−m−3bdp))

× tr((d1 . . . dk−m−1c1 . . . cmr)) tr((c1 . . . cmb1 . . . bk−m−3cqs)) ,

Cb
k,m =

fabefcd
efpqtfrs

t

4m!2(k −m− 2)!2

× tr((d1 . . . dk−m−2a1 . . . ambp)) tr((a1 . . . amb1 . . . bk−m−2cs))

× tr((d1 . . . dk−m−2c1 . . . cmaq)) tr((c1 . . . cmb1 . . . bk−m−2dr)) ,

Cc
k,m =

fabefcd
efpqtfrs

t

2m!2(k −m− 2)!2

× tr((d1 . . . dk−m−2a1 . . . ambd)) tr((a1 . . . amb1 . . . bk−m−2ar))

× tr((d1 . . . dk−m−2c1 . . . cmcp)) tr((c1 . . . cmb1 . . . bk−m−2qs)) ,

Cd
k,m =

fabefcd
efpqtfrs

t

2m!2(k −m− 2)!2

× tr((d1 . . . dk−m−2a1 . . . ambp)) tr((a1 . . . amb1 . . . bk−m−2as))

× tr((d1 . . . dk−m−2c1 . . . cmcq)) tr((c1 . . . cmb1 . . . bk−m−2dr)) . (A.2)
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Here, tr((a1 . . . ak)) ≡ tr(T (a1 . . . T ak)) denotes a totally symmetrized trace of adjoint gauge

group generators T a, without 1/n! prefactor. In the above formulas, 0 ≤ m ≤ k − 2 for

C1,b,c,d
k,m , and 0 ≤ m ≤ k − 3 for Ca

k,m, whereas Ca
k−2 ≡ 0. Pictorially, we can represent the

color factors as

C1
k,m = , Ca

k,m = , Cb
k,m = ,

Cc
k,m = , Cd

k,m = , (A.3)

where the big circles are the operator traces, the dots are structure constants, the thin

lines are single color contractions, and the thick lines are multiple color contractions. For

C1, the horizontal thick lines stand for (m+ 1) propagators, while the vertical thick lines

stand for (k − m − 1) propagators. For the two-loop color factors Ca, Cb, Cc, and Cd,

the horizontal lines stand for m propagators and the vertical lines stand for (k −m − 2)

propagators.

Expanding the color factors to subleading order in 1/Nc (4.12), the leading coeffi-

cients (4.13) are straightforwardly computed [43, 44]. The subleading coefficients ◦C are

much harder to obtain. Their computation is outlined in the following.

Color algebra. We will evaluate the color contractions using the fission and fusion rules

tr(T aBT aC) = γ

(
tr(B) tr(C)− n

Nc
tr(BC)

)
, (A.4)

tr(T aB) tr(T aC) = γ

(
tr(BC)− n

Nc
tr(B) tr(C)

)
, (A.5)

with n = 0 for gauge group U(Nc), and n = 1 for gauge group SU(Nc). The gauge group

generators T a are normalized via

tr(T aT b) = γ δab . (A.6)

The fusion and fission rules follow from the completeness relation

(T a)ij(T
a)kl = γ

(
δilδ

k
j −

n

Nc
δijδ

k
l

)
. (A.7)

We set γ = 1 to match the normalization of [43, 44]. The structure constants are normal-

ized to

[T a, T b] = ifabc T
c , (A.8)

such that

fabc = −i tr([Ta, Tb]Tc) = −i tr(TaTbTc) + i tr(TcTbTa) , (A.9)

fabefcd
e = − tr([Ta, Tb][Tc, Td])

= − tr(TaTbTdTe) + tr(TaTbTeTd) + tr(TaTdTeTb)− tr(TaTeTdTb) . (A.10)
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Results of contractions. We have explicitly performed the contractions in (A.1)

and (A.2) with Mathematica for various different values of k and m, for some coeffi-

cients up to k = 8, for others up to k = 9. The results for the subleading color coefficients

are displayed in table 4 (page 40). Depending on the algorithm, the computation can take

very long (up to ∼1 day on 16 cores for a single coefficient at fixed k and m) and becomes

memory intensive (up to ∼100 GB) at intermediate stages.

As indicated in the main text, the subleading color coefficients ◦C1
k,m, ◦Cik,m have to be

polynomials in k and m (up to boundary cases at extremal values of k or m). This is best

understood by noting that collecting all contractions contributing to the first subleading

order in 1/N2
c amounts to summing over all ways in which the propagators in (A.3) can

be distributed on the torus. This in turn is equivalent to summing over all “cyclic” graphs

on the torus (graphs with no edge (bridge) connecting diagonally opposite operators), as

well as over all ways in which the fat propagators in (A.3) can be distributed on the edges

of the graphs, and over all ways in which the structure constants fab
efcde can be inserted.

At large values of k (with finite and fixed m/k), graphs with a maximal number of edges

(bridges) will be combinatorially dominating. At leading order in 1/k, these are exactly the

graphs shown in table 8 (page 63). Due to (6.10), two operators connected by n propagators

distributed on j bridges will contribute a factor nj−1. Looking at the graphs in table 8,

one finds that the maximal power of k is four. Hence the polynomials representing the

color factors will be quartic. Any closed formula for ◦Cik,m therefore has to be a quartic

polynomial in k and m. A general polynomial of this type has 15 coefficients. Matching

those against the U(Nc) data points in table 4 yields the following solutions:

◦C1,U
k,m = −1

6

(
k4 + 2k3(−1 + 2m) + k2(−1 + 6m+ 30m2)

− 2k(11 + 49m+ 75m2 + 34m3) + 2(1 +m)2(18 + 34m+ 17m2)
)
, (A.11)

◦Ca,U
k,m =

1

12

(
k4 + 2k3(−2 + 2m) + k2(−1 + 54m2) (A.12)

− 2k(22 + 55m+ 126m2 + 58m3) + 2(54 + 129m+ 181m2 + 123m3 + 29m4)
)
,

◦Cb,U
k,m =

1

24

(
k4 + 2k3(−3 + 2m) + k2(47− 54m+ 54m2) (A.13)

− 2k(63 +m+ 21m2 + 58m3) + 2(54 + 60m+ 31m2 + 48m3 + 29m4)
)

(1 + δm,0)

+ 1/3(−18 + 26k − 12k2 + k3)δm,0 ,

◦Cc,U
k,m =

1

6

(
k4 + 2k3(−1 + 2m) + k2(−1 + 6m+ 42m2) (A.14)

− 2k(11 + 49m+ 99m2 + 46m3) + 2(18 + 70m+ 127m2 + 92m3 + 23m4)
)
,

◦Cd,U
k,m =

1

12

(
k4 + 2k3(−1 + 2m) + k2(−1 + 6m+ 54m2) (A.15)

− 2k(11 + 49m+ 123m2 + 58m3) + 2(18 + 70m+ 151m2 + 116m3 + 29m4)
)
.
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For gauge group SU(Nc), we find

◦C1,SU
k,m = ◦C1,U

k,m − 4(k − 1)2(−2 + δm,0 + δm,k−2) , (A.16)

◦Ca,SU
k,m = ◦Ca,U

k,m + (k − 1)2(−4 + 2δm,0 + δm,k−3) , (A.17)

◦Cb,SU
k,m = ◦Cb,U

k,m + (k − 1)2(−2 + δm,k−2) + δk,2 , (A.18)

◦Cc,SU
k,m = ◦Cc,U

k,m + 4(k − 1)2(−2 + δm,0 + δm,k−2) , (A.19)

◦Cd,SU
k,m = ◦Cd,U

k,m + 2(k − 1)2(−2 + δm,0 + δm,k−2) . (A.20)

In all cases, there are more data points than degrees of freedom in the quartic polynomial.

Moreover, one can convince oneself that the difference between U(Nc) and SU(Nc) gauge

groups should not depend on m, and should be at most quadratic in k. We can thus be

fairly confident that the results are correct for general k and m.

Analytic check. We can perform an analytic check of the expressions (A.11)–(A.15) by

studying the limit of large k with 0 < m/k < 1 fixed and finite. As outlined in the previous

paragraph, we can organize the contractions in the color factors (A.1) and (A.2) at the

first subleading order in 1/N2
c as a sum over graphs on the torus. At leading order in large

k, only graphs with a maximal number of bridges will contribute, all other graphs will be

combinatorially suppressed due to (6.10). The contributing graphs are exactly the ones

listed in table 8. For each of those graphs, we have to sum over all inequivalent labelings of

the four operators, over all possible combinations of non-zero bridge lengths on the edges

of the graph, and over all possible insertions of fab
efcde terms (expanded as in (A.10)). For

each fixed configuration of bridge lengths, the sum over all planar contractions compatible

with those bridge lengths (from the total trace symmetrizations) gives a factor k4 from

cyclic rotations of the four operators, times a factor (m+1)!2(k−m−2)!2 (for C1
m), m!2(k−

m−1)!(k−m−3)! (for Ca
m), or m!2(k−m−2)!2 (for Cb,c,d

m ), which cancel the combinatorial

denominators in (A.1) and (A.2). We will now go through the graphs of table 8 and find the

number of inequivalent labelings as well as the combinatorial factors from the summation

over bridge lengths. The insertions of fab
efcde terms will be considered below.

Cases A, C, D, E, F, H, J, N, K: The bridge configurations of these cases imply

a constraint on m: either m = 0, or m = k − 2 (m = k − 3 for Ca
m, m = k − 1 for

C1), which would set the lengths of either the vertical or the horizontal bridges

in (A.3) to zero. Hence, these cases are suppressed at large m and k.

Case B: This case has 4 · 2 = 8 inequivalent operator labelings. Depending on the

labeling, the sum over bridge lengths (6.10) for large m and k gives a factor of

either m3(k−m)/6 (call this Case B.1), or m(k−m)3/6 (call this Case B.2). Each

subcase has 4 inequivalent operator labelings.

Case G: This bridge configuration is symmetric under a horizontal flip of the graph

in table 8. Hence there are four inequivalent operator labelings. For one half of

the operator labelings, the sum over bridge lengths for large m and k gives m4/24,

for the other half it gives (k −m)4/24.
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Case L: This bridge configuration is symmetric under exchange of the top right and

the bottom left operators. Hence there are four inequivalent operator labelings for

this case. For all operator labelings, the sum over bridge lengths for large m and

k gives m2/2 · (k −m)2/2.

Case M: This bridge configuration is symmetric under simultaneous exchange of the

top left with the bottom left operator and the top right with the bottom right

operator. Hence there are four inequivalent operator labelings. For large m and

k, the sum over bridge lengths gives m2(k −m)2/2.

Case P: For this bridge configuration, all operator labelings are equivalent. There

is one more symmetry: every pair of operators is connected by two bridges. Ex-

changing all such bridge pairs simultaneously leaves the configuration invariant

(the operation is equivalent to a specific rotation of each operator, see also (2.10)).

The resulting over-counting in the naive sum over bridge lengths needs to be com-

pensated by a factor of 1/2. For large m and k, the (naive) sum over bridge lengths

gives m2(k −m)2.

Case Q. As for Case P, all operator labelings are equivalent. This graph has no addi-

tional symmetry though. The sum over bridge lengths gives a factor m2(k −m)2.

Now we come to the insertion of fab
efcde factors (called “f2” in the following). The f2

factors either attach to three of the four operators (for Ca and Cc), or to all four operators

(for C1, Cb and Cd). The bridge configurations A through Q all decompose the torus into

four octagons. One octagon of case B and two octagons of case G involve only two of the

four operators, hence they cannot accommodate an f2 factor. All other octagons involve

either three or all four operators. For all cases and all operator labelings, inserting an

f2 term into an octagon that involves only three operators produces a zero, since either

none of the four trace terms in (A.10) contributes, or all of them contribute and sum to

zero. Thus all non-trivial contributions have both f2 factors inserted into octagons that

involve all four operators. In all such insertions, only one of the four trace terms of (A.10)

contributes, and the signs of those terms of the two f2 factors always multiply to +1. The

combinatorial factors from inequivalent f2 insertions for the relevant cases are:

Cases B, G, L, M: In these three cases, there are two four-operator octagons. For

Ca,b,d, the two f2 cannot be inserted into the same octagon, hence there are only

two inequivalent ways to distribute the f2 factors. For Cc, the two f2 factors can

also be inserted into the same octagon, hence there are four ways to distribute the

f2 terms.

Case P: In this case, each of the four octagons involves all four operators. Again, the

two f2 can be inserted into the same octagon for Cc, but not for Ca,b,d. Hence,

there are 16 ways to distribute the f2 terms for Cc, but only 12 ways to do so for

Ca,b,d.

Case Q: In this case, each of the four octagons involves only three of the four opera-

tors, and hence there are no non-trivial f2 insertions.
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Case
∑

bridges Labelings f2 : C1 Ca Cb Cc Cd

B.1 k4m̃3(1− m̃)/6 4 −2 2 2 4 2

B.2 k4m̃(1− m̃)3/6 4 −2 2 2 4 2

G.1 k4m̃4/24 2 −2 2 2 4 2

G.2 k4(1− m̃)4/24 2 −2 2 2 4 2

L k4m̃2/2 · (1− m̃)2/2 4 −2 2 2 4 2

M k4m̃2(1− m̃)2/2 4 −2 2 2 4 2

P k4m̃2(1− m̃)2 1/2 −4 12 12 16 12

Q k4m̃2(1− m̃)2 1 0 0 0 0 0

all others O(k3) . . . . . .

Table 14. List of graphs that contribute to the color factors at large k with m̃ = m/k fixed and

0 < m̃ < 1. Listed are the combinatorial factors from summing over bridge lengths, the numbers of

inequivalent labelings, and the combinatorial factors from inserting the (pairs of) structure constants

fab
c into the various polygons.

Summarizing the above, at large k with m̃ = m/k fixed and 0 < m̃ < 1, we find the com-

binatorial structure displayed in table 14. Multiplying all factors and summing all cases,

we find:

C1
m = −N2k−1

c k4

(
2 +

k4

6N2
c

[
1 + 4m̃+ 30m̃2 − 68m̃3 + 34m̃4

]
+O(k3)

)
, (A.21)

Ca
m = 2Cb

m = Cd
m =

= N2k
c k4

(
1 +

k4

12N2
c

[
1 + 4m̃+ 54m̃2 − 116m̃3 + 58m̃4

]
+O(k3)

)
, (A.22)

Cc
m = N2k

c k4

(
2 +

k4

6N2
c

[
1 + 4m̃+ 42m̃2 − 92m̃3 + 46m̃4

]
+O(k3)

)
. (A.23)

One can indeed see that the above formulas reproduce the leading terms of (A.11)–(A.15).

This match is an important cross-check both of the results (A.11)–(A.15), and of the clas-

sification of torus contractions in table 8.

The quantum corrections. Inserting the above expressions (A.11)–(A.15) for the color

factors into the formulas (4.8)–(4.10) yields the one-loop and two-loop U(Nc) data shown

in table 5 (page 42, with the definitions (4.15) and (4.16)). For gauge group SU(Nc), we find

F (1),SU
k,m (z, z̄) = F (1),U

k,m (z, z̄)− 4k2(k − 1)2

N4
c

[
−t+ δ0

m

(
(2t− 1) + (1 + s− t)δ1

m − sδ2
m

)
+ δ1

m

(
(t+ s− 1)− sδm,2

)
+ sδm,2 + (s− t)δ0

mδ
k−1
m − 1

2(s+ 1)δ0
mδ

k
m

+ (crossing)

]
F (1) , (A.24)
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F (2),SU
k,m (z, z̄) = F (2),U

k,m (z, z̄) +
4k2(k − 1)2

N4
c

[
−4tF (2) − t2

(
F (1)

)2
+

1

2

{
(2t− 1)δm,0 + (t+ s− 1)δm,1 + sδm,2

}(
4F (2) + (t− s)

(
F (1)

)2)
+

1

2

{
δm,k−2 + (t+ s− 1)δm,k−1 + (2t− s)δm,k

}(
4F (2) + (t− 1)

(
F (1)

)2)
−
{
s(t− 1)δm,0 + s2δm,1 + δm,k−1 + (t− s)δm,k

}(
F (1)

)2
−
{

2δm,0 + (2t− 2s− 1)δm,1 + (t+ s− 1)δm,2 + sδm,3

}
F

(2)
1−z

−
{
δm,k−3 + (t− s+ 1)δm,k−2 + (2t− s− 2)δm,k−1 + 2sδm,k

}
F

(2)
z/(z−1)

+ δk,2

(
s+ 1

2

{
t− (t− 1)δ0

m − (s+ 1)δ1
m − (t− s)δ2

m

}(
F (1)

)2
+
{

2t− 2(t− 1)δ0
m − (2s+ 1)δ1

m − (t− s+ 1)δ2
m

}
F

(2)
1−z

+
{

2t− (t− s− 1)δ0
m − (s+ 2)δ1

m − 2(t− s)δ2
m

}
F

(2)
z/(z−1)

)]
, (A.25)

where we have suppressed the arguments (z, z̄) of all box and double-box functions, and

where (crossing) stands for s times the whole preceding expression with the replacements

t→ t/s , s→ 1/s , m→ k −m. (A.26)

Using the transformations (4.19) and (4.20), it is easy to verify that the expressions above

are invariant under crossing x1 ↔ x4.

Due to supersymmetry, the quantum corrections to the correlator 〈Q1 . . .Q4〉 contain

a universal prefactor R (5.39) that is usually pulled out,

〈Q1 . . .Q4〉quantum = R

k−2∑
m=0

∞∑
`=1

g2`F̃ (`)
k,mX

mY k−m−2 , R = zz̄X2 − (z + z̄)XY + Y 2 .

(A.27)

In the bulk of this work, we have rather used the expansion (4.2) without R factored out,

because it is better suited for comparison with our integrability-based computation. The

relation between the different expansion coefficients Fk,m and F̃k,m is shown in (4.8). For

completeness, we also state the perturbative results for F̃k,m. For gauge group U(Nc), the

expressions are:

F̃ (1),U
k,m (z, z̄) = (A.28)

− 2k2

N2
c

{
1 +

1

N2
c

[[
17
6 r̃

4 − 7
4 r̃

2 + 11
32

]
k4 +

[
9
2 r̃

2 − 13
8

]
k3 +

[
1
6 r̃

2 + 15
8

]
k2 − 1

2k

]}
F (1) ,
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F̃ (2),U
k,m (z, z̄) =

4k2

N2
c

[{
1 +

1

N2
c

[[
17
6 r̃

4 − 7
4 r̃

2 + 11
32

]
k4 +

[
9
2 r̃

2 − 13
8

]
k3 +

[
1
6 r̃

2 + 15
8

]
k2 − 1

2k

]}
F (2)

+

{
t

4
+

1

N2
c

[([
7
2 r̃

2 − 1
8

]
k2 + 5

8k −
1
4

)
s+ − r̃

([
17
6 r̃

2 − 7
8

]
k3 + 3k2 − 13

12k
)
s−

+
([

29
24 r̃

4 − 11
16 r̃

2 + 15
128

]
k4 +

[
17
8 r̃

2 − 21
32

]
k3 −

[
23
24 r̃

2 − 39
32

]
k2 − 9

8k + 1
2

)
t

]}(
F (1)

)2
− 1

N2
c

[
r̃
{[

7
6 r̃

2 − 1
8

]
k3 + 3

2k
2 + 10

3 k
}
F

(2)
C,−

+
{[

5
4 r̃

2 − 19
48

]
k3 +

[
3
2 r̃

2 + 7
8

]
k2 + 1

3k
}
F

(2)
C,+

]
+

1

4

{
1 +

(k − 1)(k3 + 3k2 − 46k + 36)

12N2
c

}(
sδm,0 + δm,k−2

)(
F (1)

)2
+

{
1 +

(k − 2)4

12N2
c

}(
δm,0F

(2)
1−z + δm,k−2F

(2)
z/(z−1)

)]
, (A.29)

whereas for gauge group SU(Nc):

F̃ (1),SU
k,m (z, z̄) = F̃ (1),U

k,m (z, z̄)− 2k2(k − 1)2

N4
c

(
−4 + 2δm,0 + 2δm,k−2

)
F (1) , (A.30)

F̃ (2),SU
k,m (z, z̄) = F̃ (2),U

k,m (z, z̄) +
4k2(k − 1)2

N4
c

[
−4F (2) − t

(
F (1)

)2
+ 2
{
δm,0 + δm,k−2

}
F (2) +

1

2

{
(t− s)δm,0 + (t− 1)δm,k−2

}(
F (1)

)2
−
{

2δm,0 + δm,1
}
F

(2)
1−z −

{
δm,k−3 + 2δm,k−2

}
F

(2)
z/(z−1)

+
1

2
δk,2

(
(s+ 1)

(
F (1)

)2
+ 4F

(2)
1−z + 4F

(2)
z/(z−1)

)]
. (A.31)

Here,

r̃ =
m+ 1

k
− 1

2
, (A.32)

and note the definitions (4.15) and (4.16). It is easy to see that the above formulas obey

crossing symmetry: under the crossing transformation x1 ↔ x4,

X ↔ Y , z → 1/z , z̄ → 1/z̄ , R→ R/s , (A.33)

and hence crossing invariance of (A.27) is equivalent to

F̃ (`)
k,m(z, z̄) = sF̃ (`)

k,k−2−m(1/z, 1/z̄) , (A.34)

which is easily verified using (4.19) and (4.20) as well as r̃ → −r̃ under m→ k − 2−m.

Remark. From the above expressions, we note that

◦Cc
k,m − ◦Cd

k,m = −1

2
◦C1

k,m , (A.35)
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which is equivalent to the equality of coefficients in front of F (1) and F (2) in table 5 as well

as in (A.28) and (A.29). In fact, we have computed the full Nc dependence of the color

factors C1,a,b,c,d for all values 0 ≤ m ≤ (k − 2) ≤ 5, and the statement

Cc
k,m − Cd

k,m = −Nc

2
C1
k,m (A.36)

remains true for any Nc.

This equality of the coefficients (up to overall numerical factors) of the ladder integrals

F (`) at any `-loop order can be understood from integrability: this term stems from the

one-particle contribution which at ` loops is proportional to F (`). The prefactor of the

single-particle excitation is given purely by graph combinatorics, which is independent of

the loop order.

B Graph constructions

B.1 Bottom-up construction of all graphs

In section 2.2, we have manually classified all maximal graphs on the torus (displayed in ta-

ble 1 on page 8). All other graphs can be obtained by deleting bridges from these maximal

graphs. Here we want to outline an algorithm that produces all graphs, maximal and non-

maximal. The algorithm can be used for any genus and for any number of operators, but

it can become very time consuming.

The main step of the algorithm takes a list of graphs, and adds to it all graphs obtained

by inserting another bridge (that is homotopically inequivalent to all previous bridges) into

any of the graphs already in the list. The new bridge may attach to an operator in between

two existing bridges, or it may split an existing bridge in two. Graphs related by rotations

or relabelings of the operators or bridges are identified. Duplicate graphs as well as graphs

exceeding the wanted genus are discarded. This step is iterated, starting with the “empty”

graph with n vertices (operators) and no bridges. The algorithm stops once the iteration

step generates no new graphs, and will produce all inequivalent graphs with n vertices

whose genus is equal or lower than the wanted genus. The maximal graphs are the ones

that exceed the wanted genus when any possible bridge is added.

B.2 Cyclic graphs from maximal graphs

As explained in section 2.2, all cyclic graphs are obtained from the set of maximal graphs

in table 1 by grouping the four operators into pairs and deleting edges that connect the

members of each pair. In the following, we list the descendance of the cases C through Q

from the maximal graphs 1.3 through 3.1. We have only kept inequivalent cyclic graphs,

and have discarded cases that have a non-maximal number of bridges (the latter can all be
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obtained by deleting further bridges from the following maximal graphs):

Case 1.3: −→



= (case C) .

= (case D) .

(B.1)

Case 1.4.1: −→ = (case E) . (B.2)

Case 1.4.2: −→ = (case F) . (B.3)

Case 1.5.1: −→



= (case G) .

= (case H) .

(B.4)

Case 1.5.2: −→



= (case I) .

= (case J) .

(B.5)

Case 1.6: −→ = (case K) . (B.6)
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Case 2.1.1: −→ = (case L) . (B.7)

Case 2.1.2: −→ = (case M) . (B.8)

Case 2.2: −→ = (case N) . (B.9)

Case 3.1: −→



= (case P) .

= (case Q) .

(B.10)

C Weak coupling expansions

We give here the weak-coupling expansion and the definition of useful quantities for the

integrability computation of the mirror particle corrections. Since we give a three-loop

prediction in this work, we have to evaluate some expansions up to order g6. We have for

the measure and momenta of the mirror particles

µa(u
γ) = g2 a

(u2 + a2

4 )2
− g4 a(a2 − 8u2)

(u2 + a2

4 )4
+ g6 a(a4 − 24a2u2 + 48u4)

(u2 + a2

4 )6
+O(g8) , (C.1)

and

p̃a(u
γ) = u− g2 2u

(u2 + a2

4 )
+ g4 2u(3a2

4 − u
2)

(u2 + a2

4 )3
+O(g6) . (C.2)

In addition, the fused dynamical factor is defined as

hab(u, v) =

a−1
2∑

k=−a−1
2

b−1
2∑

l=− b−1
2

h(u[2k], v[2l]) , (C.3)

where we use the usual notation u[n] ≡ u+ in/2 for imaginary shifts. In what follows, we

will need the mirror rotated fused dynamical factor hab(u
γ , vγ) and products of it. It was
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computed in [14], and we reproduce it here for completeness:

hab(u
γ , vγ) =

g2

σab(uγ , vγ)

[
(a+b)2

4 + (u− v)2
]

(
a2

4 + u2
)(

b2

4 + v2
)×

×
Γ[−a

2 − iu] Γ[a+b
2 − i(u− v)] Γ[−a+b

2 + i(u− v)] Γ[ b2 − iv]

Γ[a2 − iu] Γ[ b−a2 − i(u− v)] Γ[ b−a2 + i(u− v)] Γ[− b
2 − iv]

, (C.4)

with

σab(u
γ , vγ) =

Γ[1− a
2 + iu] Γ[1 + a−b

2 − i(u− v)] Γ[1 + b
2 − iv]

Γ[1 + a
2 − iu] Γ[1 + b−a

2 + i(u− v)] Γ[1− b
2 + iv]

. (C.5)

Using the expressions above, one can easily deduce that

hab(u
γ , vγ)hba(v

γ , uγ) = g4

[
(u− v)2 + (a+b)2

4

] [
(u− v)2 + (a−b)2

4

]
(
u2 + a2

4

)2 (
v2 + b2

4

)2 . (C.6)

D Mirror particle contributions: integrability calculation

In this appendix, we provide details of the integrability calculation of the mirror particle

contributions used in the main text. We start considering the one-particle contribution in

a zero-length edge, then we consider the case of two particles in the same edge, and finally

the three-particle contribution involving three hexagons at one-loop is considered.

D.1 One-particle contribution with l = 0

Consider the hexagons H1 formed by the operators O1,4,3 and H2 formed by the operators

O1,2,4, as on the left in figure 19. The integrand for the one-particle mirror contribution

for gluing the edge 1–4 with l14 = 0 was given in [11]. It reads

inta14(v) =
2(cosφ− cosh(iϕ) cosθ) sin aφ

sinφ
µa(v

γ)e−2ip̃a(v)log|z| , (D.1)

where (the cross-ratio z and the R-charge cross-ratio α are defined in (3.1) and (3.2))

φ = − i
2

log
(z
z̄

)
, θ = − i

2
log
(α
ᾱ

)
, iϕ =

1

2
log
(αᾱ
zz̄

)
. (D.2)

Using the weak coupling expansions given in (C.1) and (C.2), one can find the integrand

up to order g6. The integral is done by residues and one gets the one- and two-loop results

used in our first paper [1] and the three-loop result given in (6.15).

D.2 Two particles in the same l = 0 mirror edge

This subsection is devoted to the computation of the two-particle contribution in the same

mirror edge shown in figure 19. It will be shown in particular that it contributes only at

four loops. Recall that the a-th mirror bound state Xa is composed from the tensor product
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1 2

3 4

u

v

O1

O2O3

O4

u�� u�

v�v��

Figure 19. The contribution of two particles in the same l = 0 mirror edge. There are two

hexagons involved, and we call them left and right hexagons. By an explicit calculation, one verifies

that it only contributes at four loops and beyond.

of two factors belonging to the a-th antisymmetric representation of su(2|2). A basis for

this representation is (αi = 3, 4)

|ψα1 . . . ψαa〉+ . . . , |φ1ψα1 . . . ψαa−1〉+ . . . ,

|φ2ψα1 . . . ψαa−1〉+ . . . , |φ1φ2ψα1 . . . ψαa−2〉+ . . . ,
(D.3)

where (φ1, φ2, ψ3, ψ4) form an su(2|2) fundamental multiplet, a is called the bound state

index, and the dots stand for permutations. As discussed in [11, 14], the basis above has

to be modified for the hexagonalization procedure to reproduce the perturbative data. It

is necessary to add so-called Z-markers to some of the basis states, and the prescription

used here follows from the one given in the appendix A of [14]. The addition of Z-markers

has two consequences: they give a contribution to the weight factors, and when one moves

and removes them using the rules given in [15], one can get factors of momenta. Note that

a rigorous explanation for the Z-marker prescription is still lacking. The dressing of the

basis states is as follows (the bar denotes antiparticles)

|Z−tIuX̄ Ia (u−γ)Z−t
J
v X̄ Jb (v−γ)〉︸ ︷︷ ︸

left hexagon

⊗ |X Jb (vγ)Zt
J
vX Ia (uγ)Zt

I
u〉︸ ︷︷ ︸

right hexagon

, (D.4)

where X Ia (u) is a mirror magnon with bound state index a and rapidity u, with I being a

(flavor) index for the a-th bound state representation, and γ denotes the mirror transform

that transports excitations from one edge of the hexagon to the next. The values of tIu
and tJv depend on the field content of the bound-state basis elements, and whether one is

considering the “+” or “−” dressing. The rules to find the values of the ti are:

“+” dressing : ψα → ψα , φ1 → Z
1
2φ1 , φ2 → Z−

1
2φ2 ,

ψα̇ → ψα̇ , φ1̇ → Z−
1
2φ1̇ , φ2̇ → Z

1
2φ2̇ ,

“−” dressing : ψα → ψα , φ1 → Z−
1
2φ1 , φ2 → Z

1
2φ2 ,

ψα̇ → ψα̇ , φ1̇ → Z
1
2φ1̇ , φ2̇ → Z−

1
2φ2̇ , (D.5)

where undotted/dotted labels are left/right su(2|2) fundamental indices, and the prescrip-

tion is to average over the two different dressings at the end of the calculation. Within a
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hexagon form factor h, one can move all Z-markers to the left, and then remove them via

the rules (see appendices C and F in [15])

χZ ' eipZχ , 〈h|ZnΨ〉 = zn〈h|Ψ〉 , z2 = e−ip , (D.6)

where χ is a fundamental magnon, and Ψ is a generic spin-chain state. When removing all

Z-markers in this way, it is possible to show that for any value of tIu and tJv , all momentum

factors eip cancel each other.

The hexagon form factors are matrices in flavor space. In what follows, we are going to

work in the string frame, where the non-vanishing components of the one-particle hexagon

form factors are

h12̇ = −h21̇ = 1 , h34̇ = −h43̇ = −i . (D.7)

The contribution from two particles in the same zero-length bridge is the result of the

following integral

M(2)
same edge(z, α) =

∫
du

2π

dv

2π

∞∑
a=1

∞∑
b=1

∑
I,J

µa(u
γ)µb(v

γ)× (D.8)

× h
[
X̄ Ia (u−γ)X̄ Jb (v−γ)

]
W
[
X Jb (vγ)

]
W
[
X Ia (uγ)

]
h
[
X Jb (vγ)X Ia (uγ)

]
,

where the µ’s are the measure factors, and the W’s are weight factors associated to the

particles whose origin is a PSU(2, 2|4) transformation that aligns the frames of the two

hexagons [11]. In order to simplify the calculation of the matrix part (flavor sums), it is

convenient to use the following identity to have both hexagon form factors with the same

crossed arguments:

h
[
X̄ Ia (u−γ)X̄ Jb (v−γ)

]
= (−1)Ī(−1)J̄h

[
X̄ Ica (uγ)X̄ Jc

b (vγ)
]
, (D.9)

where the superscript c indicates that the indices A and Ȧ of the excitations are swapped.

The precise values for the signs can be deduced from the crossing rules [15, 64]

χaḃ
2γ−−→ χbȧ , χαβ̇

2γ−−→ −χβα̇ , χαȧ
2γ−−→ χaα̇ , χaα̇

2γ−−→ −χαȧ (D.10)

for fundamental magnons χ. In particular, one has

(−1)Ī = (−1)] scalarsĪ + ḟĪ , (D.11)

with ḟĪ the number of fermionic dotted indices. The weight factorW was computed in [11],

and it was rewritten in [14] taking both the Z-markers prescription and the “+” and “−”

dressings into account as

W±[X Ia (uγ)] = e−2ip̃a(uγ)log|z| eiL
Iφ eiR

I(θ±ϕ) , (D.12)

where the angles were defined in (D.2), and the eigenvalues LI and RI of the generators L

and R can be deduced from the action of these generators on the fundamental excitations

given by (the dotted indices have opposite eigenvalues)

eiLψ1 = e
i
2ψ1 , eiLψ2 = e−

i
2ψ2 , eiRφ1 = e

i
2φ1 , eiRφ2 = e−

i
2φ2 . (D.13)
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As a consequence of the formulas above, one has

M(2)
same edge(z, α) =

∫
du

2π

dv

2π

∞∑
a=1

∞∑
b=1

µa(u
γ)µb(v

γ)hab(u
γ , vγ)hba(v

γ , uγ)×

× e−2ip̃a(uγ) log |z| e−2ip̃b(v
γ) log |z|Fab . (D.14)

Here, Fab contains the matrix part and the flavor-dependent part of the weight factor. It

is given by

Fab =
∑
I,J

(−1)Ī(−1)J̄W±flavor

[
X Jb (vγ)

]
W±flavor

[
X Ia (uγ)

]
×

× 〈χJ̄ab (vγ)χĪaa (uγ)|S|χĪba (uγ)χJ̄bb (vγ)〉 〈χIba (uγ)χJbb (vγ)|S|χJab (vγ)χIaa (uγ)〉 , (D.15)

with S being the mirror bound state S-matrix [14]. In principle, one can use the unitar-

ity of the S-matrix to simplify the expression above, however one has to check that the

weight factors do not spoil this simplification. Indeed, the S-matrix has a block-diagonal

decomposition [14, 65, 66], and fixing the indices Ja and Ia, one can show that the result-

ing states, after the action of the S-matrix, have a non-vanishing inner product only with

definite weight-factor eigenstates, so indeed unitarity can be used. As an example, let us

select a particular value of Ja and Ia to have the case Ia of [14], i.e. we have for some k

and l that

|χJab (vγ)χIaa (uγ)〉Ia = |k, l〉Ia , with |k, l〉Ia = |φ1ψ
b−k−1
1 ψk2 〉 ⊗ |φ1ψ

a−l−1
1 ψl2〉 . (D.16)

The S-matrix, when acting on a state of type Ia, produces a linear combination of states

of type Ia of the form (N = k + l)

S · |k, l〉Ia =

N∑
n=0

Hk,l
n |N − n, n〉Ia . (D.17)

As a consequence of the equation above, all final states have precisely two φ1’s and the same

total number of ψ1’s and ψ2’s. Thus they have non-zero inner products only with definitive

weight-factor eigenstates, and this selects only a particular non-trivial set of values for Jb
and Ib. Using the unitarity of the S-matrix, we have

Fab =
1

2
(−1)a(−1)b (T+

a T
+
b + T−a T

−
b ) , (D.18)

where the factor of 1/2 is present because we are averaging between the “+” and “−”

dressings, and the T± are twisted transfer matrices given by

T±a = 2(−1)a
(
cosφ− cos(θ ± ϕ)

)sin aφ

sinφ
. (D.19)

Notice that the twisted transfer matrices are defined by

T±a = Tra

[
(−1)F eiLφeiR(θ±ϕ)

]
(D.20)

= (−1)a

(
eiaφ

a∑
n=0

e−2inφ − 2 cos(θ ± ϕ)ei(a−1)φ
a−1∑
n=0

e−2inφ + ei(a−2)φ
a−2∑
n=0

e−2inφ

)
.
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Substituting the expression for Fab in (D.14), it only remains to evaluate the integral. Using

the weak-coupling expansions given in appendix C, it is easy to see that this contribution

contributes only at four loops. The integral is easily evaluated by residues and at order g8

it gives

M(2)
same edge(z, α)

∣∣∣
g8

= −2

[
(z − α)2(z̄ − α)2

α2
+

(z − ᾱ)2(z̄ − ᾱ)2

ᾱ2

]
×

×
(

1

6

(
F (2)(z, z̄)

)2
− 1

2
F (1)(z, z̄)F (3)(z, z̄)

)
, (D.21)

where F (1), F (2) and F (3) were given in (4.4), (4.5), and (6.16). Another representation

for F (L) is

F (L)(z, z̄) =
1

z − z̄

[
L∑

m=0

(−1)m(2L−m)!

L!(L−m)!m!
logm(zz̄)(Li2L−m(z)− Li2L−m(z̄))

]
. (D.22)

D.3 The three-particle contribution

Next, we compute the three-particle contribution, shown in both figure 14 and figure 20,

using integrability. Note that this is a particular kind of three-particle contribution, as one

can flip the line connecting the operators at positions x1 and x5, such that it connects the

operators at position x6 and x4 instead. These two kinds of three-particle contributions

are related by flipping invariance, and it is possible to deduce one from the other.

To compute the three-particle contribution, it is necessary to evaluate four hexagon

form factors h, to use three weight factors W for gluing the hexagons together, and to sum

over three mirror bound-state basis elements X I , whose bound state indices are going to

be denoted by a, b, and c. The three-particle contribution is given by the integral

M(3)(z1, z2, z3, α1, α2, α3) =
∞∑
a=1

∞∑
b=1

∞∑
c=1

∫
du1

2π

du2

2π

du3

2π
µa(u

γ
1)µb(u

γ
2)µc(u

γ
3)
∑
I,J,K

h[X̄ Ic (u−γ3 )]W[X Ic (uγ3)]×

× h[X Ic (uγ3)X̄ Jb (u−γ2 )]W[X Jb (uγ2)] h[X Jb (uγ2)X̄Ka (u−γ1 )]W[XKa (uγ1)] h[XKa (uγ1)] . (D.23)

A naive basis, i.e. without the Z-markers, for the a-th mirror bound state X is given

in (D.3). The dressing of the states by Z-markers with exponents ti appearing below are

found using the rules of (D.5). Notice the values of tI1, tJ2 and tK3 depend on the field

content of the bound state basis elements, and on whether one is considering the “+” or

the “−” dressing. We have

|Z−tI3X̄ Ic (u−γ3 )〉︸ ︷︷ ︸
left hexagon

⊗|X Ic (uγ3)Zt
I
3Z−t

J
2 X̄ Jb (u−γ2 )〉︸ ︷︷ ︸

second hexagon

⊗|X Jb (uγ2)Zt
J
2Z−t

K
1 X̄Ka (u−γ1 )〉︸ ︷︷ ︸

third hexagon

⊗|XKa (uγ1)Zt
K
1 〉︸ ︷︷ ︸

right hexagon

.

(D.24)

– 88 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

Figure 20. The figure at the top represents the four hexagons involved in the three-particle com-

putation. The circles and the corresponding squares represent complementary sets of fundamental

indices, i.e. if one of them equals 1, then the other equals 2, if one equals 3, the other equals 4, and

vice versa, see [15]. The hexagons are glued together using three weight factors W (not shown in

the figure). We have chosen to rotate some of the particles of the second and third hexagons by

sequences of mirror transformations. The figure in the middle represents the contractions of the

flavor indices, and the white circle with four lines denotes a mirror bound state S-matrix. The last

figure schematically shows the sum over the indices denoted by circles and squares. The sum is

not a straight trace, but rather is weighted by the three weight factors W. We restrict ourselves

to operators that lie in a common plane; in this case the weight factors are diagonal in the mirror

state space. The result of the last figure is proportional to the three-particle matrix part. Note

that it involves two mirror bound state S-matrices, and, unlike in the two-particle contribution, the

sum represented by the red lines includes elements that are non-diagonal in the su(2|2) preserved

by the hexagon.

Moving all Z-markers to the left and removing them, one gets some non-trivial factors of

momenta that will contribute to the integrand. The expression above is equal to

eit
I
3p(u

γ
2 )/2e−it

J
2 p(u

γ
3 )/2eit

J
2 p(u

γ
1 )/2e−it

K
1 p(u

γ
2 )/2×

× |X̄ Ic (u−γ3 )〉︸ ︷︷ ︸
left hexagon

⊗ |X Ic (uγ3)X̄ Jb (u−γ2 )〉︸ ︷︷ ︸
second hexagon

⊗ |X Jb (uγ2)X̄Ka (u−γ1 )〉︸ ︷︷ ︸
third hexagon

⊗ |XKa (uγ1)〉︸ ︷︷ ︸
right hexagon

. (D.25)

A mirror particle-antiparticle pair is always created on a mirror edge shared by two

hexagons. The particle is absorbed by one of the hexagons, the antiparticle is absorbed by

the other hexagon. The weight factor originates in the symmetry transformation needed

to bring both hexagons to the same frame — this transformation acts non-trivially on the

– 89 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

mirror particles as one moves them from one hexagon to the other. The expression for

the weight factor was given in (D.12), here we give its expression for the case with more

cross ratios

W±[X Iai(u
γ
i )] = e−2ip̃ai (ui)log|zi|eiL

IφieiR
I(θi±ϕi) , (D.26)

with

eiφi =

√
zi
z̄i
, eiθi =

√
αi
ᾱi
, eiϕi =

√
αiᾱi
ziz̄i

, (D.27)

and the charges of the fundamental excitations under the generators L and R are given

in (D.13).

In the expression (D.23), the hexagon form factors corresponding to the left and right

hexagons only have one excitation. These hexagons have a trivial dynamical part and they

contribute only with a possible sign that can be computed using a combination of the one-

particle hexagon form factors given in (D.7). In addition, they imply that the excitations

with rapidities u1 and u3 are both composed of transverse excitations only, and that their

states are not changed by the scattering with the particles with rapidity u2. As a matter of

choice, we are going to mirror-rotate the two middle hexagon form factors before evaluating

them. One has for the non-zero cases

h[X Ic (uγ3)X̄ Jb (u−γ2 )] = (−1)] scalarsJ̄ + fJ̄ h[X̄ Jcb (u5γ
2 )X Ic (uγ3)] , (D.28)

with fJ̄ the number of undotted fermionic indices in the set J̄ , and

h[X Jb (uγ2)X̄Ka (u−γ1 )] = (−1)a h[X̄Kca (u5γ
1 )X Jb (uγ2)] . (D.29)

Notice that an important property of the dynamical factor of the hexagons that will be

used below is

hab(u
5γ , vγ) =

1

hba(vγ , uγ)
. (D.30)

Collecting the expressions above, we have

M(3)(z1, z2, z3, α1, α2, α3) =

∞∑
a=1

∞∑
b=1

∞∑
c=1

∫
du1

2π

du2

2π

du3

2π

µa(u
γ
1)µb(u

γ
2)µc(u

γ
3)

hcb(u
γ
3 , u

γ
2)hba(u

γ
2 , u

γ
1)
×

× e−2ip̃a(uγ1 )log |z1| e−2ip̃b(u
γ
2 )log |z2| e−2ip̃c(u

γ
3 )log |z3| 1

2
Fabc ,

(D.31)

with40

Fabc =
∑
I,J,K

(−1)] scalarsJ̄ + fJ̄ (−1)a eit
I
3p(u

γ
2 )/2 e−it

J
2 p(u

γ
3 )/2 eit

J
2 p(u

γ
1 )/2 e−it

K
1 p(u

γ
2 )/2×

× h[X̄ Ic (u−γ3 )]W±[X Ic (uγ3)]W±[X Jb (uγ2)]W±[XKa (uγ1)] h[XKa (uγ1)]× (D.32)

× 〈χĪac (uγ3)χJ̄ab (uγ2)|S|χJ̄bb (uγ2)χIac (uγ3)〉 〈χJbb (uγ2)χK̄aa (uγ1)|S|χKaa (uγ1)χJab (uγ2)〉 .
40We have changed all the matrix part arguments: 5γ → γ. It seems at least at one-loop that possible

additional signs from a nontrivial monodromy of the S-matrix are not important. Notice that every index

breaks in two, for example I → {Ia, Ib}, however these two indices are related for the first and the last

hexagons to give a nonzero result, as they are fused one-particle hexagon form factors.
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The mirror bound-state S-matrix using the “hybrid” convention41 was derived in [14] by

adapting the derivation of the physical bound-state S-matrix of [66]. The S-matrix has

a block-diagonal form, and it can be organized into three cases, depending on the values

(2, 1, 0,−1,−2) of the following charge (the superscripts 1 and 2 denotes the first and the

second bound state being scattered)

C1 = ]φ1
1 + ]φ2

1 − ]φ1
2 − ]φ2

2 . (D.33)

A basis for each case can be found in [14], and they are functions of two parameters k and

l that are related with the number of fields ψ2 within the bound states. The S-matrices

are denoted by H, Y , and Z for the cases I, II, and III respectively. Notice that the sum

in Fabc has many terms, and each term involves a product of two S-matrix elements that,

because of the sum in J corresponding to the u2 rapidity, can be diagonal or non-diagonal,

see figure 20. Some of the terms do not contribute at one-loop order, and to select the

ones that do contribute, one has to analyze the dependence of the S-matrix elements on

g2. Using the results of [14], we have in a particular basis

Hk,l
n (uγ , vγ) ∼ O(1) , Y k,l

n (uγ , vγ) ∼


O(1) O(g) O(g) 0

O(g) O(1) 0 O(g)

O(1
g ) 0 O(1) O(g)

0 O(1
g ) O(g) O(1)

 , (D.34)

and

Zk,ln (uγ , vγ) ∼



O(1) O(g) O(g) O(g2) O(g2) O(g2)

O(1
g ) O(1) O(1) O(g) O(g) O(g)

O(1
g ) O(1) O(1) O(g) O(g) O(g)

O(1) O(1
g ) O(1

g ) O(1) O(1) O(1)

O(1) O(g) O(g) O(g2) O(1) O(g2)

O(1) O(g) O(g) O(g2) O(g2) O(1)


. (D.35)

As an example, let us evaluate one of the contributing terms of Fabc, namely the term

proportional to α1α2α3 (where αi are the internal cross ratios, defined as in (3.3)). One

can show that this term is obtained using the + dressing and it only involves diagonal

S-matrices elements. We have at one-loop order

Fabc
∣∣g2

α1α2α3
= −

a−1∑
m=0

b−1∑
l=0

c−1∑
k=0

(−1)a+c(−1)b(a+c)

√√√√u2
3 + c2

4

u2
1 + a2

4

×

× 1

z1z2z3

(
z1

z̄1

)a
2
−m(z2

z̄2

) b
2
−l (z3

z̄3

) c
2
−k
Hm,l
m (uγ1 , u

γ
2)H l,k

l (uγ2 , u
γ
3) . (D.36)

After computing Fabc at one loop, one has to perform the triple integration in (D.31).

The integrand is singular for a = b and/or b = c, because it has a pole lying on the

41In the hybrid convention, the supercharges schematically act on the fundamental particles as Q|χ〉 =

|Z
1
2χ〉 and S|χ〉 = |Z−

1
2χ〉. Notice that the powers of the Z-markers differ from both the spin frame and

string frame.
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integration line. We regularize the integral using the same iε prescription used for the two-

particle calculation of [14], described there in appendix E. Basically, we close the contours

of integration of u3 and u2 from below, and the contour of u1 from above. With this choice

of contours, we do not get the contributions from the poles u1 = u2 and u2 = u3, due to

the iε prescription. The integration can be done for chosen values of a, b, and c, and this

generates a power series in z1, z2, and z3. Taylor-expanding the result for the three-particle

contribution given in (3.8), one can show that both series agree.

This concludes the integrability derivation of the three-particle result. As mentioned

in the main text, the same result can be derived assuming that flip invariance holds. It

would be very interesting to integrate (D.31) directly and get the full three-particle result

instead of its Taylor expansion. We leave this for future work.

E The planar n-point functions of BPS operators and non-1EI graphs

In this appendix, we further test the integrability formula for the 2n-gon given in (3.13).

We start by comparing the integrability result for the planar n-point functions of length-two

BPS operators in a plane derived using this formula with the perturbative data at one loop

computed in [67]. It will be shown that both results agree. In principle, one can compare

the results for BPS operators of any length, however the combinatorics for the general case

are complicated due to non-trivial cancellations among the different contributions. The

argument for the general case will be based on the relation between the integrability results

and the N = 2 formulation of N = 4 SYM that was also used in [13]. We end the appendix

with a discussion about non-one-edge-irreducible graphs at one loop. These graphs were

expected to cancel among themselves for some cases, and they were excluded from the

calculations of four- and five-point functions in [11, 14]. In this paper, the multi-particle

mirror contributions were determined, and it is now possible to compute the contributions

from all graphs without making any assumption. It will be shown that this will imply a

refinement of the prescription of the sum over graphs of [11].

E.1 The correlation functions of n BPS operators

E.1.1 The case of n 20′ operators

The connected planar one-loop correlation function of n BPS operators of lengths ki was

computed perturbatively in [67]. The result is

〈Ok1(x1)Ok2(x2) . . .Okn(xn)〉
∣∣∣g2

connected
=

∑
i,j,l,p

kikjklkp Dijlp Disk

Oki−1Okj−1Okl−1Okp−1;

n∏
m 6={i,j,l,p}

Okm

 , (E.1)

where the summation over i, j, l, p is to be understood as follows. For every set of four

different indices {i, j, l, p}, one has only three different terms in the sum, precisely ijlp,

iljp and ijpl. In addition, Disk means the tree-level correlation function with all the Wick

contraction lines contained inside a disk, and with the operators listed in the first argument
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being inserted in the boundary of the disk, respecting their cyclic order, and the operators

in the second argument inserted inside the disk. In evaluating the function Disk, one also

does not consider disconnected graphs. Notice that the four operators at the boundary of

the disk are already connected to each other by interaction lines lying outside of the disk,

and this has to be taken into account when classifying the disconnected graphs. As an

example, the graph where all the operators at the boundary of the disk are not contracted

with the ones inside the disk is disconnected. Finally, using the definition of m given

in (3.9),

Dijlp = 2m(zijpl)dipdjl + 2m(zipjl)dijdlp , (E.2)

with the cross ratios zijlk being defined as

zijklz̄ijkl =
x2
ijx

2
kl

x2
ikx

2
jl

, (1− zijkl)(1− z̄ijkl) =
x2
ilx

2
jk

x2
ikx

2
jl

. (E.3)

Notice that the function D is invariant under both a reflection and a cyclic rotation of its

indices due to the properties of the function m given in (3.11). This is consistent with the

fact that there are only three terms in the summation (E.1) for every set of four indices.

Here, we are going to consider the restriction of the general formula (E.1) to ki = 2 for

all i = 1, . . . , n. Moreover, in order to compare the perturbative result with the integrability

result, it is enough to consider the contribution to the sum in (E.1) coming from a definite

set of four indices, say {1, 2, 3, 4} for definiteness. For this set of indices, we have that the

sum on the right-hand side gives

r.h.s. of (E.1)
∣∣
{1,2,3,4} = 24D1234 Disk

O1
1O2

1O3
1O4

1;
n∏

m 6={1,2,3,4}

Om2

+

+ 24D1324 Disk

O1
1O3

1O2
1O4

1;

n∏
m 6={1,2,3,4}

Om2

+ 24D1243 Disk

O1
1O2

1O4
1O3

1;

n∏
m 6={1,2,3,4}

Om2

 . (E.4)

The Disk correlation functions appearing above can be computed in a closed form. By the

definition of the Disk function, one has to consider only connected planar correlators, and

there are two distinct cases that have to be considered. Firstly, two neighboring boundary

operators can contract, and the remaining operators form a string starting and ending on

the remaining boundary operators. Secondly, it is possible to have two separate strings

starting and ending on two neighboring boundary operators. We have, for example

Disk
[
O1

1O2
1O3

1O4
1;

n∏
m 6={1,2,3,4}

Om2
]

= 2(n−4)
∑

i,j,k,l∈{1,2,3,4}
(i,j) and (k,l) neighbors

∑
permutations
σ of {5,...,n}

[
dijdkσ(5)dσ(5)σ(6) . . . dσ(n)l

+
n−1∑
p=5

diσ(5)dσ(5)σ(6) . . . dσ(p)jdkσ(p+1)dσ(p+1)σ(p+2) . . . dσ(n)l

]
. (E.5)

– 93 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

As an example application of the formula above, let us consider the following five-operator

case

Disk
[
O1

1O2
1O3

1O4
1;O5

2

]
= 2 (d12d35d54 + d34d15d52 + d14d25d53 + d23d15d54) . (E.6)

Using the formula (E.5), one can compute (E.4). Recall that the D function given in (E.2)

is a sum of two terms and each of them contains a function m with some argument. In order

to compare with the integrability computation, we can focus on the terms with m(z1423)

and m(z1324), as the argument for the remaining terms is similar. Firstly, notice that

m(z1423) +m(z1324) = 0 , (E.7)

and that both of these functions appear multiplied by d12d34 in D1234 and D1243 respec-

tively. This implies that the contributions to (E.5) proportional to m(z1423) and m(z1324),

consisting of strings of operators starting at the operators O1 and O3 and ending at the

operators O2 and O4 respectively, cancel among themselves. For m(z1423), one has the

final result

(E.4)
∣∣
m(z1423)

= 2n+1m(z1423) d12d34×

×
∑

permutations
σ of {5,...,n}

[
d14d2σ(5)dσ(5)σ(6) . . . dσ(n)3 + d23d1σ(5)dσ(5)σ(6) . . . dσ(n)4

+

n−1∑
p=5

d1σ(5)dσ(5)σ(6) . . . dσ(p)4d2σ(p+1)dσ(p+1)σ(p+2) . . . dσ(n)3

]
. (E.8)

The next step is to compare the above result with the integrability calculation. The

integrability result can be obtained by using the formula for the 2n-gon given in (3.13).

The argument of the function m appearing in that formula is given by the cross ratios

zi,j z̄i,j =
x2
i,j+1x

2
i+1,j

x2
i,i+1, x

2
j,j+1

, (1− zi,j)(1− z̄i,j) =
x2
i,jx

2
i+1,j+1

x2
i,i+1x

2
j,j+1

. (E.9)

where i and j labels the operators in the polygon with i 6= j, i+1 6= j and i 6= j+1 modulo

n. The cross ratios zijkl were defined in (E.3) and they are related with zi,j by

zi,j = zi,j+1,i+1,j . (E.10)

The connected tree-level graphs of n length-two BPS operators consist of polygons with n

vertices. The integrability computation, assuming that disconnected tree-level graphs give

zero contribution, consist in using the 2n-gon formula of (3.13) for the tree-level connected

polygons. Note that the internal and the external polygons give the same result, hence

one gets a factor of two. The terms proportional to m(z1423) are generated by polygons

where (i, i + 1) = (1, 2) and (j, j + 1) = (3, 4) for some i and j, as consequence of the

relation (E.10). Summing over all possible polygons, it is not difficult to see that the

integrability result agrees with the perturbative result of (E.8). The argument is similar

for the other terms m(zijkl), and this proves the equality of both computation methods.
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E.1.2 The case of n arbitrary BPS operators

We have shown above that the integrability result for the n-point function of length-two

BPS operators agrees with the perturbative answer. The perturbative result was computed

using the general result for correlation function of BPS operators described by Drukker

and Plefka [67]. In principle, one can use a similar procedure as above for proving the

equality for general BPS operators. However, the combinatorics for the general case are

more complicated, and one has to take into account nontrivial cancellations between terms

with different D(zijkl). We are going to argue that the integrability result agrees with the

perturbative result by using the N = 2 off-shell superfield formulation of N = 4 SYM as

discussed in [13, 68].

The N = 4 supermultiplet decomposes into a N = 2 supermultiplet and a hypermulti-

plet. When computing a correlation function of BPS operators, it is possible to restrict the

polarization vectors to a certain subspace, and treat the external operators as containing

only hypermultiplets. The polarization vectors Y (we called these αi for most of this work)

were parametrized as a function of a complex parameter βi in [13] as follows

Yβi =

(
1 + βiβ̄i

2
, i

1− βiβ̄i
2

, i Imβi, iReβi, 0, 0

)
. (E.11)

Notice that the polarizations above give, for a generic value of the parameters βi, a non-zero

inner product between two arbitrary polarizations vectors. This property of the polariza-

tions is important for the integrability computation, since when some of the inner products

are zero, it is necessary to consider deformed graphs, as for example in the subleading

computation of section 6.2.2. By a direct computation one has

Yβi · Yβj = y2
ij = (βi − βj)(β̄i − β̄j) . (E.12)

The one-loop correlation functions in the N = 2 superfield formalism are computed by

inserting N = 2 YM lines in all possible ways in all tree-level graphs, see [13] for details.

Take two edges of a tree-level graph, one connecting the operators Oi and Oj and the other

connecting the operators Ok and Ol. Deleting two propagators and respecting the cyclic

order, one inserts the following function for computing the one-loop correction:

Fij;kl =
g2

2
Tij;kl dijdkl gijkl F̃ij;kl , (E.13)

where Tij;kl is a color factor, dij = y2
ij/x

2
ij , and

F̃ij;kl = x2
ilx

2
jk − x2

ikx
2
jl − x2

ijx
2
kl

(
y2
ily

2
jk

y2
ijy

2
kl

−
y2
iky

2
jl

y2
ijy

2
kl

)
, gijkl =

1

π2

∫
d4xa

x2
aix

2
ajx

2
akx

2
al

. (E.14)

Defining the following cross ratios (similar definitions apply to the R-charge cross ratios

αijkl)

z̃ijkl ˜̄zijkl =
x2
ikx

2
jl

x2
ijx

2
kl

, (1− z̃ijkl)(1− ˜̄zijkl) =
x2
ilx

2
jk

x2
ijx

2
kl

, (E.15)

– 95 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
5

1

2

3 4

5

a)

2

3
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b)

Figure 21. The two kinds of non-1EI graphs that appear in the computation of a five-point

function of three length-two and two length-three BPS operators. The perturbative result was

reproduced by an integrability calculation in [14] without considering these graphs, in other words

their contributions must vanish. In this paper we have computed the n-particle contribution, and

show that they indeed give a zero contribution.

it is possible to rewrite (E.13) as

Fij;kl = −Tij;kl dijdklm(zijkl) , (E.16)

where the function m(z) is defined in (3.9), and it is the same function appearing in the

formula of the 2n-gon. It is possible to get rid of the minus sign above by using the last of

the m function identities given in (3.11), and by changing variables zijkl = (1− zi,k).
In the integrability calculation, one hexagonalizes the tree-level graphs and corrects the

tree-level result by adding the mirror-particle contributions. It follows from using (E.16)

that disconnected tree-level graphs give perturbatively zero contribution at one-loop order,

and the only tree-level graphs that one has to consider are connected graphs that decom-

pose the sphere into a set of polygonal faces. It is hard to prove using integrability that

disconnected graphs give a zero contribution at one loop, as the calculation involves loops

and spirals. See appendix F for details. However, using our prescription, it is possible to

argue that they vanish, and all the integrability contributions from any planar graph can be

calculated using the 2n-gon formula. Due to the fact that the same function m appears in

the 2n-gon integrability formula and in the perturbative building block Fij;kl defined above,

it is easy to see that the integrability result agrees with the perturbative result for general

n-point functions of BPS operators. In particular, this implies the non-renormalization of

the extremal and next-to-extremal correlation functions by integrability, as mentioned in

section 3.2.

E.2 On non-1EI graphs

The connected graphs were classified into two types in [11]: the one-edge irreducible (1EI)

graphs and the non-1EI graphs. By definition, 1EI graphs are graphs that do not become

disconnected when a set of lines connecting any two operators are cut. Typically, non-1EI

graphs have more zero-length bridges, hence their calculations using integrability are harder

because they involve more multi-particle contributions. In this work, we have computed

these integrability contributions, and we are in a position to evaluate all non-1EI planar

graphs without making any assumption about them.
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23 5

4

1

Figure 22. One non-1EI graph contributing to the five-point function of four length-two and

one length-four BPS operators. Contrary to the original expectation, this graph gives a non-zero

contribution from the integrability calculation. This requires a refinement of the prescription for

summing over graphs of [11].

We start by showing that the non-1EI graphs not considered in the analysis of the

five-point function of three length-two and two length-three BPS operators done in [14] do

indeed vanish. The graphs are shown in figure 21. Considering that the five-point function

lies in a plane, there are four spacetime cross ratios characterizing it (similarly for the

R-charge cross ratios). They are given by

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

, ww̄ =
x2

15x
2
34

x2
13x

2
54

, (1− w)(1− w̄) =
x2

14x
2
35

x2
13x

2
45

.

(E.17)

One can use the 2n-gon formula of (3.13) to compute the integrability result for these

graphs. The relevant polygons have the edges

Diagram a) = {1, 5, 3, 4, 2, 4, 3, 5} , Diagram b) = {1, 2, 5, 4, 3, 4, 5} . (E.18)

Using the properties of the functions m given in (3.11), it is possible to show that indeed

the graphs of figure 21 give a zero one-loop contribution, and the comparison between

integrability and the perturbative data of [14] is correct.

In [11], the prescription for summing over graphs was to not include non-1EI graphs

in the summation, because they were expected to vanish. Using this prescription, the four-

point functions of arbitrary BPS operators and some five-point functions were computed

using integrability, and the result agreed with perturbation theory. Nevertheless, the gen-

eral case for n-point functions is more complicated even at one loop. In figure 22, we show

an example of a non-vanishing one-loop non-1EI graph for the case of four length-two and

one length-four BPS operator, as one can see by computing the graph using the 2n-gon

expression of (3.13) (it gives two times the one-particle contribution of the square). This

result contradicts the assumptions of the prescription that has to the refined. The correct

prescription is to sum over all graphs including both 1EI and non-1EI graphs. This gives

the correct result for arbitrary one-loop planar correlation functions of BPS operators, as

argued in the previous subsection using YM insertion lines.
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Figure 23. In the left figure, we depict a disconnected graph drawn on a sphere, including its

hexagonalization. The solid lines are non-zero-length bridges, while the dashed lines denote zero-

length bridges. The red dots are a combination of magnons that can potentially contribute at one

loop. On the right, we drew a corresponding subtraction graph which is given by two disconnected

spheres, each with one marked point.

F Contributions from disconnected graphs

In this appendix, we discuss disconnected planar graphs on the sphere, and argue that

their contribution to the planar four-point function vanishes at one loop (in agreement with

perturbation theory). In fact, there is only one disconnected planar four-point graph; it is

depicted in figure 23, including its hexagonalization. Much like the secretly planar graphs

discussed in the main text, this graph corresponds to a degenerate Riemann surface, namely

a sphere which splits into two connected components. We therefore need to consider Dehn-

twist identifications as well as the subtraction of the degenerate case in order to correctly

evaluate its contribution.

As shown in the figure, the graph has a cycle formed by the zero-length bridges, and

one has to identify magnon configurations that are related by Dehn twists performed on

this cycle. As in the case of secretly planar graphs discussed in the main text, we conjecture

that the net effect of the Dehn twist is to identify configurations that include closed loops of

magnon with the analogous configurations without any loops. For the tessellation we chose,

the only configuration that does not contain a loop (and that “feels” all the four-operators)

is the one depicted in figure 23 (on the left). The contribution from this configuration is

given by polygon(1, 3, 1, 2, 4, 2), which evaluates to zero owing to the pinching rule.

Having evaluated the contribution from the disconnected graph on the sphere, the next

task is to evaluate the subtraction, which comes from two spheres, each with two operator

insertions and a single marked point (on the right in figure 23). As discussed in section 2.4,

their contributions are related to the one without marked points by a shift of the gauge

group rank. Since the (planar) two-point functions do not receive loop corrections, this

immediately shows that the contribution from the subtraction is zero for our case.

Therefore, in summary, we have (0−0) = 0, which shows that the disconnected graphs

do not contribute at one loop, as claimed in the beginning of this section.

Open Access. This article is distributed under the terms of the Creative Commons
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