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We propose a generalization of the color codes based on finite groups G. For non-Abelian groups, the resulting
model supports non-Abelian anyonic quasiparticles and topological order. We examine the properties of these
models such as their relationship to Kitaev quantum double models, quasiparticle spectrum, and boundary

structure.
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I. INTRODUCTION

Topological codes are a promising avenue to achieve robust
quantum memories [1] or implement fault-tolerant quantum
computation [2]. These codes have locality properties that are
both advantageous from the perspective of implementation,
and give robustness against realistic noise models. Topologi-
cally ordered systems can be used for information processing
in a number of ways, notably by code deformation [3,4] or
by the braiding of quasiparticle excitations [5]. The latter
approach is available only for particular types of topologically
ordered systems with non-Abelian anyonic excitations.

The color codes [6,7] are a family of topological codes with
Abelian anyonic excitations. They may be used to perform
computation by code deformation, but are particularly notable
for having a large class of transversal gates [6], giving rise
to high fault-tolerance thresholds [8]. They are also related
to many other interesting families of codes such as the
toric codes [2], topological subsystem codes [9,10], higher-
dimensional color codes [11], and gauge color codes [12].
Small examples of color codes have also been demonstrated
and manipulated in the laboratory [13].

While the color codes have interesting properties and are
related to many other interesting models, the ability to support
non-Abelian excitations is one feature they lack. Here, we
present a generalization of the color code to arbitrary finite
group G (such that the standard color code corresponds to the
group Z,). This is motivated in analogy to the generalization
of the toric code to the quantum double models [2]. These
generalized color codes support non-Abelian anyons for non-
Abelian groups G and so may in general be used for topological
quantum computation by braiding these quasiparticles.

We also study some notable properties of these generalized
color codes. Particularly, we demonstrate an equivalence
between the generalized color codes and the quantum double
models that allows us to easily determine the quasiparticle
content of these color codes. We further discuss the structure
of the boundaries of these models among other properties.
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The layout of the paper is as follows: In Sec. II, we
will review the qubit color code model and introduce the
generalized color code. We will prove the relation between
these models and the quantum double models in Sec. III.
Following this, in Sec. IV we will explore the properties of the
generalized color codes, before concluding remarks in Sec. V.

II. QUBIT COLOR CODES AND G-COLOR CODES

The qubit color code [6] is defined on a trivalent lattice
whose plaquettes are 3-colorable (see, for example, Fig. 1).
Such lattices are called 2-colexes [11]. Qubits are placed on
vertices of the 2-colex, and each plaquette has two associated
projectors, defined as
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such that i € p runs over vertices bounding the plaquette p,
and where X (i) and Z(i) are the Pauli matrices acting on
vertex i. 2-colexes are always bipartite, which means that all
cycles of the lattice are even in length, and so SI’,( and SPZ
commute with each other for the same p. It can also be seen
that [S;‘,SZ,] =0Vp,p’. The model is then defined by the

. P
Hamiltonian,
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such that the ground space of the code is the common +1
eigenspace of each of the S, operators. We will therefore refer
to the SX and SZ as X- and Z-type stabilizers.

Plaquettes of the 2-colex are colored red, green, and blue,
and similarly each link has an associated color, such that it
connects two plaquettes of its own color. The elementary
excitations of this model can be thought of as (Abelian)
anyonic quasiparticles, corresponding to stabilizer operators
that are frustrated. Anyon species can be labeled by the color
of the plaquette on which they live and the type of stabilizer
they frustrate (i.e., X or Z), or can be a composite of these
generating anyons.

On a torus the qubit color codes are 2*-fold degenerate, and
alternative boundary conditions for these codes are discussed
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FIG. 1. (Color online) Two examples of 2-colexes. (a) The 6.6.6
(honeycomb) lattice. (b) The 4.8.8 lattice.

further in Sec. IV C. Logical operators in these codes consist of
homologically nontrivial strings of X or Z operators running
along edges of a particular color, and can branch if strings along
edges of all three colors meet. An X string running along red
links will anticommute with a Z string running along blue
links, for example, and these string operators will form a Pauli
algebra acting on the degenerate codespace.

We can think of the qubit color code as being based on the
group Z,. The qubits on each link have a natural basis labeled
by elements of Z, = {0,1} (with O the identity element) and
we can consider the X operator to act on these states as group
multiplication by the 1 element, i.e.,

Xlg)=lgd1), €]

where, of course, addition modulo 2 is the relevant group
multiplication operation for this group. The X operator can
also be labeled with a group element superscript such that

X"g) =lg®h), (5)

and see that X! = X, X0 = 1.
Let us also introduce operators 78 = |g)(g| for each g €
Z.,. This allows us to write

Z=T1°-T" (6)

In particular, this allows us to rewrite

s¥ =5 Y TTxo, ™

geZ, iep

si=> [[rew. )
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where we use notation such that @ g; = 0 runs over all sets
of g1,82,...,g,suchthatg, ® g ®--- P g, =0.

When written in this form, these operators bear a close
resemblance to the A, and B, projectors used to define the
quantum double models [2] (in this case for the group Z;).

A. G-color codes

Given our interpretation of the qubit color code in terms
of the group structure of Z,, we now define a generalized
color code. The desirable characteristics of this code are that
its Hamiltonian can be expressed as a (negative) sum of com-
muting local projectors, and that its excitation spectra includes
non-Abelian anyons for sufficiently complicated group G. The
models we present will satisfy both of these conditions. It is
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worth noting that our models defined for the (Abelian) cyclic
groups Zy will correspond precisely to the known generaliza-
tions of color codes to higher-dimensional spins [14].

A G-color code is defined uniquely by the following set of
data: A finite group G.

A 2-colex L.

A parity function s; = £1 at each site i of L.

A choice of privileged color (conventionally red), and a
choice of “clockwise” and “anticlockwise” for the remaining
colors (conventionally green and blue, respectively).

Here we will begin by defining the model for the special
case s; = +1 Vi, and subsequently describe how to relate
models with different parity functions s;. To each vertex
of the 2-colex L, we associate a qudit with dimension |G|
and an orthonormal basis labeled by elements g € G. Define
operators corresponding to group multiplication and projection
that act at a site as follows:

X"|g) = |hg), 9)
X"g) = Igh™"), (10)
T"|g) = 81=lg). (11)

As compared to the qubit case, a general group requires
a distinction between left and right multiplication, hence we
have introduced both X, and X_ to distinguish these two
operations. Note that [X§,X"] = 0, though [X§,X"]+ 0 #
[X#,X"]in general.

A further group theoretic concept that will be useful is
the commutator subgroup [G,G] = ([g,] : g,h € G) where
[g,h] = g~'h~'gh. This subgroup is normal, and the quotient
group G/[G,G] is the Abelianization of G. A particularly
useful property of [G,G] is that it can alternatively be defined
as the set of elements in G which can be written as some
product g1g>83---g, that may be reordered such that it
evaluates to identity.

In analogy to the qubit color code, the G-color codes are
specified by a number of stabilizer operators. As in the qubit
case, each plaquette will have an associated X- and Z-type
stabilizer. However, in general, the form of these stabilizers
will depend on the color of the plaquette under consideration.
With this in mind, we can define X-type stabilizers for a
plaquette as follows:

1

S¥=—— A3, (12)
P P
Gl &
Ay =[Tx4w. (13)
iep

where in Eq. (13) the X# operator acts either as left (Xi)
or right (X*) multiplication depending on the relative ori-
entation of the three colors at a given site. Explicitly, when
considering the X-type stabilizer corresponding to a blue or
green plaquette, if the colors of plaquettes around a vertex are
ordered {r,g,b} when traversed clockwise, then the operator
appearing at that vertex will be of the form X . Similarly, if the
plaquette colors around the vertex are ordered {r,b,g} when
traversed clockwise, then the operator appearing at that vertex
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FIG. 2. (Color online) Sign conventions for X -type stabilizers, for example, red, green, and blue plaquettes. These stabilizers are constructed
from products of X operators at each site around the plaquette. Those vertices with a + denote left multiplication (X ), while those with a —
denote right multiplication (X _). These signs are determined by the order of plaquette colors around a site.

will take the form X_. When considering red plaquettes, these
conventions are reversed, so that {r,g,b} clockwise ordering
corresponds to X_ and {r,b,g} corresponds to X . Concrete
examples of these conventions are illustrated in Fig. 2.

These conventions are chosen so that the S¥ operators cor-
responding to plaquettes of the privileged color (red) commute
with the SX for both blue and green plaquettes. Making all three
colored X-type stabilizers commute pairwise is impossible,
and so the blue and green S¥ will not generally commute with
each other for neighboring plaquettes. Although this may seem
at first glance to be a severe problem, it so happens that there
exists a common -+1 eigenspace of all S¥ regardless.

The Z-type stabilizers for each of the three plaquette color
are then defined as

Srea=», [[74G, (14)

[1gi€lG,Gliep

Sf,blue = Z l_[ T8 (i), (15)
[Tacw gi=e icp
Sy aeen= 2 [[T4®, (16)

[Tew gi=e i€p

where the ACW or CW denotes the product being taken
anticlockwise or clockwise around the plaquette, respectively.
The origin of the product can easily be seen not to affect these
operators. Additionally, the order of multiplication in S, does
not affect the outcome. Since [G,G] can be defined as the set of
elements that can be decomposed into a product i hyhsz - - - by
such that it can be rearranged to evaluate to identity, whether
or not some product of elements [] g; is in [G,G] will be
independent of the order of multiplication.

When considering these Z-type stabilizers, it is clear the
sense in which the red plaquettes are privileged. Their structure
is not related to the full group G. Rather, we can consider
[G,G] as the preimage of the identity element of G/[G,G]
under the quotient map. Thus the structure of the red Z-type
stabilizer is derived from that of the Abelianization of G, as
opposed to G itself. For this reason, we will sometimes refer
to red plaquettes as “Abelianized”. It should also be clear why
we identified blue and green plaquettes as “anticlockwise” and
“clockwise,” respectively.

The reason that we have defined the orderings of products
in SZ operators as above is that this allows these operators to

commute with all the S, as can easily be verified. That we are
unable to preserve this commutativity without Abelianizing
the red plaquettes can be seen as a consequence of the fact
that the blue and green S¥ fail to commute. It is impossible to
preserve the full group structure of the red plaquette and have
its 7 commute with both the blue and green S¥. In order to
avoid this noncommutativity, we have reverted to the simpler
structure of the Abelianization of G, where no such problems
exist, for the red plaquettes.

In Abelianizing the red plaquette Z stabilizers, we have
introduced an additional extensive degeneracy to the system.
This degeneracy is local in the sense that it can be lifted
through the addition of an extra class of local stabilizer
operator that has no counterpart in the qubit case (or in fact for
any Abelian G-color code), where [G,G] = {e}. We call these
C-type stabilizers, and they are defined for each red link as

1
Sfed =~ Clrea(n), 17
Lrea '[G’G“,,GIXG,:G, Leea() (17)
Crrea(n) = X0 D) ® X" ), (18)

where X'L(/, 1]) acts on the upper (1) or lower () qudit
of the red link / after it has been oriented such that the blue
plaquette (ACW) is on the left of the link and the green
plaquette (CW) on the right. It can be seen that the S¢ will
commute with all SZ and S¥. By requiring the ground space
to be in the +1 eigenspace of the S€ as well as the S% and
SX, the local degeneracies caused by Abelianization of the
red plaquettes are lifted.

As noted, the SX, S%, and S stabilizers as written
do not commute (as the S¥ do not in general commute).
They nonetheless can be cast in the monomial stabilizer
framework [15], and have an associated frustration free ground
space. However, commutativity can be restored by restricting
the SX stabilizers for green and blue plaquettes to the +1
eigenspace of the S€. These modified stabilizers take the form,

S e =55 [ S° (19)
lepNred

SXowe =5y T] sF. (20)
lepnred

where p Nred denotes all red links bounding the plaquette p.
This will then give a set of commutative stabilizer operators
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generated by the S%, §%, and S€ operators, allowing us to
write the Hamiltonian of a G-color code as

H=-> (5X+57)-> sf. 1)

V4 red [

The ground space will be the common +1 eigenspace of
all the stabilizer operators, and will be protected from excited
states by a constant gap.

This completes the definition of the G-color code for the
special case that the parity function is set to s; = 1 at every
site i of the lattice. The parity at a given site may be reversed
by making the unitary transformation |g) — |g~!) at that site.
This completely exhausts the freedom we have in choosing
the S¥, §%, and S€ consistently. When viewed in this way,
we can see the parity function as being analogous to the edge
direction in the quantum double models, where reversing an
edge is equivalent to applying the unitary taking g — g~!
on that edge. We will henceforth restrict to the s; = 1 parity
case, with the understanding that all results will hold for any
possible alternative parity choice.

III. EQUIVALENCE TO COPIES OF THE QUANTUM
DOUBLE MODELS

A property of the qubit color code that will be particularly
useful to us in understanding the G-color code is that it is
locally equivalent to two copies of the toric code [16—18].
We will now sketch an alternative proof of this fact (for a
particular 2-colex)! and demonstrate how it generalizes to a
general G-color code.

A. Qubit color code < toric code equivalence

Before we present the mapping between the color code and
the toric code, we first briefly review the toric code [2]. For our
purposes, it is sufficient to define the toric code on a square
lattice, with qubits on edges. As in the color code, this model
is defined by a number of stabilizer operators. Explicitly, for
each vertex v and plaquette p of the lattice, we have

1
:5(1+]_[Xv), (22)

i~v

1
z
Ky=> 1+]]z |- (23)
i~p
where we use notation such that i ~ v runs over all qubits

incident to v, and i ~ p runs over all qubits bordering p. The
toric code Hamiltonian is then given by

Hee =— Y K=Y K7, (24)
v P

in a very similar fashion to the color code.

For simplicity, we present a mapping between the color
code and two copies of the toric code on a particular 2-colex.
Specifically, we consider the 4.8.8 lattice, where the square

!The alternative mapping we describe is implicitly defined in [19].
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FIG. 3. (Color online) Overlaid on the 4.8.8 color code lattice,
the solid lines correspond to the edges of the first toric code lattice,
while the dashed lines constitute the second toric code lattice.

plaquettes are colored green and the octagonal plaquettes blue
and red in such a way as to satisfy 3-colorability (Fig. 1(b)).
We will show how to interpret a qubit color code on this
2-colex as two copies of the toric code. That is, we will find
a local unitary map that transforms color code stabilizers to
toric code stabilizers or actions on uncoupled ancilla systems.
Intuitively, the mapping we present treats each green plaquette
as two encoded qubits, one belonging to each copy of the
toric code. The blue plaquettes will correspond to vertices
(plaquettes) of the first (second) copy of the toric code, while
the red plaquettes will correspond to plaquettes (vertices) of
the first (second) copy of the toric code (see Fig. 3).

Consider the four qubits belonging to each green plaquettes
as a stabilizer code with a fourfold degenerate codespace. The
stabilizers of this code are simply the green face stabilizers of
the color code, i.e.,

1 X X
X —_ -
Sgl’&an - 2 <1 + X X) ’ (25)
1 zZ Z
Z —_ -
Sgreen - 2 (1 + VA Z) ’ (26)
where we use a graphical notation for the four operators acting

. A B
on the vertices of the green plaquette, so that b = AQ®

B ® C ® D on the four relevant qubits.

This four-dimensional codespace corresponding to each
green plaquette can be considered as two encoded qubits, one
for each copy of the toric code. In this way, the qubits of
the new toric code lattices have a direct correspondence to
the green plaquettes of the color code lattice. It will now be
convenient to bipartition these green plaquettes into those with
red plaquettes on their right and left (2 type) and those with
red plaquettes above and below them (v type).

On Ah-type green plaquettes, encoded Pauli algebras can be
defined for each of the two encoded qubits as

xtay="7. @7)
xho=% 1 (28)
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1

Z

Zo (D=7 (29)
Z Z

Zo@ =" 7. (30)

where X" (2) acts as Pauli X on the second encoded qubit for
the h-type green plaquette under consideration.
For v-type green plaquettes, the encoded operators can be

defined by

Xene(D) = X5e(2), 31)
Xene@ = X (D), (32)
Zoe(D) = Z,(2), (33)
Z2,(2) = Z2 (1), (34)

That is, on v-type plaquettes, the definitions of the first and
second encoded qubits are exchanged.

Note that these definitions are not unique. In particular,
because the codespace is the 41 eigenspace of Sgreen and

Sngeen, multiplying any operator by ))g ;( or ; ; is a trivial

operation, and so the encoded operators are invariant under
180° rotations.

One could more rigorously define the unitary enacting this
encoding as a function from operators on the four qubits of
each green plaquette to the two encoded (toric code) qubits,
as well as two ancilla qubits. Notably, this transformation
would take green color code stabilizers to an action on the
ancilla space, and so they become “trivial” in the sense of
Ref. [17].

In terms of the encoded toric code qubits, the action of the
color code stabilizers for blue and red plaquettes is

SX, — KX(1), (35)
Sta = K*(2), (36)
Soe = KX, (37)
Stﬁue — K?(), (38)

if we interpret the lattices of the two toric codes as in Fig. 3.
Thus the unitary we have described maps all the stabilizers
of the original color code model to stabilizers of the toric
code model, or operators on uncoupled ancilla qubits. This
completes the demonstration of equivalence.

B. G-color code < quantum double model equivalence

The equivalence between the qubit color code and the toric
code on the 4.8.8 lattice shown above can be generalized to
an equivalence between the G-color code and two quantum
double models. However, as compared to the qubit case (which
corresponds to G = Z,), the two quantum double models will
in general be different. One will be based on the group G,
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FIG. 4. A directed square lattice, consistent with the quantum
double stabilizers defined in Eqs. (39)—(41).

while the other will be based on the Abelianization of the
group G/[G,G].

Before we continue, we briefly review the quantum double
models [2]. Conventionally, these models are defined on a
directed lattice, with edge direction playing a similar role to
our parity function. We will define a quantum double model
for a group G on an particular directed square lattice (Fig. 4),
with qudits of dimension |G| placed at every edge, noting that
transforming the qudit on an edge by g — g~ is equivalent to
reversing the direction of the edge (qudits have a natural basis
labeled by g € G).

Ateach vertex v and plaquette p of the lattice, the stabilizers
of the quantum double model can be written as

KX =" A, (39)
8
Av(g) = Xg_’UX‘iRXi,DX_g,'_’L, (40)
-1 —1
k= > [lzire e (41)

81828384=€ i€p

where the subscript of the X operators in (40) and the T
operators in (41) denote whether they act on the qubit Up,
Right, Down, or Left from the center of the plaquette or vertex
under consideration.

As was the case for the qubit color code <« toric code
mapping (the Z, case), we will explicitly consider only the
4.8.8 lattice, where the square plaquettes are colored green, and
the octagonal plaquettes are colored red and blue (Fig. 1(b)).
The intuition for our construction is much the same, in that
we will encode the quantum double degrees of freedom in
the qudits at the vertices of the green plaquette. However,
particularly in the case of non-Abelian group G, the mapping
will be less straightforward.

As before, green plaquettes are labeled & or v type
depending on whether red plaquettes are at their sides or above
and below them. Given this, define the codespace for h-type
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green plaquettes via the stabilizers of the plaquette,

h T8t T 82
ngreen = Z T8 T8 42)
81828384=¢
C,h
Sll,green = Z Cl}:,green(n)’ (43)
nelG,G]
C.h h
Slz,green = Z Clz,green(n)’ (44)
nelG,G]
R C,h C,h
Sg)i’eﬁn = Sll,green Slz,green Z Agreen(g)’ (45)
8
with
x5 x*
Agreen(g) = X;E Xfrv (46)
A Xt I
Cll,gl‘%n(n) = in I’ (47)
I X"
Cl;;,green(n) =7 Xf:' (48)

On v-type green plaquettes, the stabilizers can be found by
rotating the h-type stabilizers by 90°. These definitions can be
seen to be invariant under 180° rotations.

Given this codespace at each h-type green plaquette, we
can write encoded operators on this space as

x&  x¢ 1 T%
8 = - + g =
X{y="p T T = Y e (49
8283=8
I Xt T8 T#
g — — g =
X@= ) 4y T@= )
keglG,G] 2182€81G,G]
(50)
I I TS I
g — 8 =
X*(l)—xi X8 T5(1) = e 7 OD
g4g1=¢""
Xk I I I
X5@= Y i o TO= Y ra e
keglG.G] 8384€87'[G,G]
(52)

As in the Z, case, we can define logical operators for
the encoded qudits in multiple equivalent ways within the
codespace. We have written two particularly useful sets of
logical operators for each of the encoded qudits here. These
encoded operators can be seen to commute with the stabilizers
defined above. The encoded operators acting on the v-type
green plaquettes can again be found by rotating the A-type
operators 90° clockwise.

In the Z, case, the two encoded systems (labeled 1 and
2) were both of the same dimension (they were both encoded
qubits). In general, however, this is not the case. Examining the
encoded operators on qudit 2 (50) or (52), we can see that states
in this space are labeled only by k € G/[G,G], and thus this
qudit is |G/[G,G]| dimensional. This can be seen by noting
that g[G,G] is the coset of G corresponding to a particular
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FIG. 5. (Color online) Overlaid on the 4.8.8 G-color code lattice,
the solid lines correspond to the edges of the first quantum double
lattice, while the dashed lines constitute the second quantum double
lattice.

element of G/[G,G], and in particular g[G,G] = ng[G,G]
for any n € [G,G]. In contrast, qudit 1 can be seen to have
basis labeled by g € G, and is thus |G| dimensional.

In terms of this encoding, it is clear that once again,
the X-type stabilizers of the G-color code corresponding to
green plaquettes can be thought of as acting only on some
ancilla space (they have no action on the encoded space by
construction). Similarly, the C-type stabilizers corresponding
to red links of the G-color code act only within a green
plaquette, and commute with the encoded operators, so they
can also be interpreted as acting on an ancilla space. In contrast,
the G-color code stabilizers for blue and red plaquettes can be
rewritten in terms of the encoded qudits. Their action under
the encoding map can be written as

Sr’éd — KX(1), (53)
St — K'*(), (54)
Sie = K'X(2), (55)
Slﬁue — K1), (56)

where K’ are defined by Egs. (39) and (41) over the group
G/[G,G], as opposed to the K which are defined over G. The
K’(2) and K (1) operators act on the quantum double lattices
depicted in Fig. 5.

Thus the unitary we have described maps all the stabilizers
of the G-color code model to stabilizers of the quantum double
model, or operators on uncoupled ancilla qubits, in analogy to
the qubit color code <« toric code mapping. Thus we have
demonstrated an equivalence between a G-color code and a
G quantum double model together with a G/[G,G] quantum
double model (equivalently, a single G x G/[G,G] quantum
double model).
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IV. PROPERTIES OF GENERALIZED COLOR CODES

The qubit color codes have a number of properties that
make them of interest to the topological quantum information
community. Here we will take a brief survey of some of
the most important properties of the G-color codes. Where
relevant, we will discuss the connection to the properties of the
qubit color codes. Note that some properties of these models
for Abelian groups G are explored in some depth in [14].

A. Anyon spectrum

The correspondence between the G-color codes and the
quantum double models developed in Sec. III allows us to im-
mediately import results from the study of the quantum double
models and interpret them in the context of the G-color codes.

Reference [16] shows that so-called topological stabilizer
groups are equivalent iff they have isomorphic topological
charges. This result does not apply directly to the equivalence
that we have established between quantum double models
and G-color codes because they are not Pauli stabilizer
models. However, even without the level of rigor available for
Pauli stabilizer models, we can still use the intuition behind
this theorem to draw a correspondence between the anyonic
content of the quantum double models and the G-color codes.

It is easy to see that all local operations on the qudits of the
quantum double models in Sec. III B can be mapped to some
local operations on the qudits of the G-color code (although
the converse is not so straightforward due to the presence of
the ancillae in the mapping). Similarly, anyonic charges of the
quantum double models can be mapped to charges living on
the red and blue plaquettes of the G-color code. This allows
us to state that the G-color code is supporting the anyons of
both the G and G/[G,G] quantum double models. Notably,
this includes non-Abelian anyons for non-Abelian G.

In general, since the anyons of a quantum double model
for group G are given by the irreducible representations of the
Drinfeld double of G, Irrep[D(G)], we would expect from this
line of reasoning that the anyonic content of a G-color code is
given by Irrep[D(G x G/[G,G])].

Anyonic charges of the quantum double models can be
created and moved by ribbon operators [2]. Each of these
ribbon operators must have a corresponding ribbon operator
creating or moving the analogous charges on the G-color
code. Given these operators, we could imagine braiding
charges in the G-color code corresponding to any desired
braiding in a quantum double model. In particular, we could
perform braiding of a non-Abelian anyons that implements
universal quantum computation in G-color codes for G non-
nilpotent [20,21].

B. Further implications of equivalence

A concrete motivation for demonstrating equivalence be-
tween two topological models is that it allows decoding or error
correcting routines for one model to apply to a broader class of
models [17]. In our case, this amounts to the observation that
a G-color code can be decoded if an equivalent procedure for
decoding the quantum double model for group G is known.
Although decoding for these non-Abelian anyon models has
yet to be explicitly demonstrated (though related work has
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been shown [22,23]), by equating our G-color codes to the
well-established quantum double models, we can exploit any
results in terms of decoding that are available for them.
Reference [16] shows that all Pauli stabilizer codes are
equivalent to copies of the toric code. The fact that we are
able to demonstrate equivalence between quantum double
models and our G-color codes suggests that a more general
equivalence may hold whenever the models are constructed
from commuting projectors based on the X and T operator
algebra for a group G. This may also point to a useful
restriction of the monomial stabilizer formalism [15] when
the desired algebra structure is related to a particular group.
Note that we have technically not demonstrated equivalence
between an arbitrary G-color code and quantum double mod-
els, as our mapping is specifically tailored to the 4.8.8 lattice.
This was sufficient to prove that the G-color codes are capable
in principle of supporting quantum double anyons, but we have
not shown that this is true for a general lattice. However, the
general principles of topologically ordered systems suggest
that the microscopic lattice details should not affect global
properties of the system such as its anyon spectrum, and so we
feel confident in taking this correspondence to hold in general.

C. Degeneracy and boundaries

As is generic for topological codes, the degeneracy of
a particular code is highly dependent on the topology of
the surface in which it is embedded, or, in the planar case,
the particular choice of boundary conditions. On closed
(orientable) manifolds, this degeneracy is independent of
the microscopic details and can be derived from the anyon
spectrum [5]. This means that the degeneracy of the G-color
codes on closed manifold can directly be calculated as the
degeneracy of the quantum double model for G x G/[G,G].

Similarly, characterization of the possible gapped bound-
aries for topologically ordered models is based on the anyon
spectrum rather than microscopic details. Possible boundary
types and their properties can thus be found by appealing to
the known results for the quantum double models [24-26].
Since this theory is already well established in general, there
is no reason to delve into it here. However, before moving on
we will briefly discuss some special boundary types that are
natural in the context of the color codes, and planar codes that
can be constructed from them.

The most common planar qubit color codes are triangu-
lar [6] (Fig. 6(a)). Each side of the triangle is associated
with the color not appearing in plaquettes on that bound-
ary. These triangular color codes encode one qubit. Small
triangular color codes have been experimentally prepared and
manipulated [13]. Another common form of planar color code
is rectangular, as in Fig. 6(b). In this case, two logical qubits
are encoded. More generally, a natural boundary for the color
code is labeled by a color according to the color not appearing
on plaquettes at that boundary. Degeneracy is introduced to the
system when the lattice boundary consists of several different
colored segments. Although these boundaries arise naturally
in the study of color codes, they are not the only boundary
types that can occur. In particular, note that the number of
boundary types we have just described is three (labeled by
colors), while a topologically ordered model equivalent to
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FIG. 6. (Color online) Two examples of planar code boundaries,
together with examples of logical operator strings on these lattices.
(a) A triangular boundary. (b) A rectangular boundary.

two copies of the toric code can give rise to six types of
boundary [24,25,27-30]). The reason that the boundaries we
described are particularly natural is that they require no special
modification to the stabilizer operators (only the 2-colex on
which the model is defined).

In the general case of a G-color code, the effect of
boundaries is a little more complicated due to the asymmetry
between the three colors (and of course the more complicated
algebraic structure). As before, degeneracy is introduced to the
codespace when more than two distinct boundaries exist, but
the counting of this degeneracy depends on the color (or type)
of the boundaries. Since the general case can be determined
by appealing to results for the quantum double models, we
will simply describe the logical operators and degeneracy of
three distinct planar G-color codes: the blue-green rectangular
codes (i.e., one with alternating blue and green boundaries
as shown in Fig. 6(b)), the blue-red rectangular codes, and
the triangular codes. Up to the equivalence between the
blue-red rectangular code and a green-red rectangular code,
this exhausts all possible rectangular and triangular codes.

In order to describe the logical operators in these codes ex-
plicitly, it would be necessary to construct ribbon operators as
in the quantum double models [2,31], which is straightforward
but tedious. Instead, we will simply state the types of logical
operators that arise and their relationships in order to calculate
the degeneracy of these codes.

1. Blue-green rectangular code

Before discussing the logical operators of these codes, we
should quickly note a subtlety in their definition. Ateach corner
between a blue and green edge, there is a red plaquette with one
qudit that touches neither green nor blue plaquettes. This qudit
should be understood to have a C-type stabilizer associated
with it, as would be the case if there were an edge emanating
from this qudit.

Between the two blue boundaries of this code, it is possible
to construct a set of X-type operators labeled by group
elements in G that we call Xfog’b]ue. These would (largely)
run along blue links of the lattice. However, note that along
a green boundary, the distinction between blue links and red
links disappears. Thus along this boundary, we can construct
a family of operators from C-type stabilizers, each labeled
by n € [G,G] that runs along blue links connecting the blue
boundaries. After accounting for equivalence up to these
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operators, only blue X-type logical operators labeled by
k € G/[G,G] are independent. Similarly we can construct a
set of independent green logical X operators labeled by k €
G/1G,G], X{‘Og,grm. These operators will commute pairwise.

We can also construct Z- (or T)-type logical operators
between the blue boundaries. However, if we were to construct
an entire set Zﬁ)g’blue labeled by each g € G, these would not
commute with the stabilizers. Instead, we can only construct
independent representatives labeled by each k € G/[G,G].
Similar considerations apply to the Z{‘Og’ green’

We can then form two pairs of logical qudit algebras
generated by Xi\, oreen With Zji, 1y, and Xio, e With ZJ oo
for k € G/[G,G]. We thus say the logical qudits associated
with each of these sets of operators are Abelianized. The total

degeneracy is |G/[G,G]|*.

2. Blue-red rectangular code

As in the blue-green rectangular code, we can define
X ﬁ)g’bme. However, since there is no green boundary, these are
now independent for all g € G. In contrast, red X -type logical
operators are only defined for each k € G/[G,G] (again due
to equivalence under C-type stabilizers).

Conversely, the red Z-type operators are defined for each
g € G, while the blue Z-type operators are only independently
defined for each k € G/[G,G]. This leads to logical qudit

algebras generated by Xi, ., with Z{, ., for each g € G
and X}

log, red with ZI’;g_b]ue fo.r each k € G/[G,.G].. In this case
only one of the logical qudits has been Abelianized, and the

total degeneracy is |G| - |G/[G,G]|.

3. Triangular codes

For the triangular code, it is not so straightforward to
assign a color type to each logical operator because they may
branch. Despite this, by constructing logical operators that
run entirely along one side of the triangle, it can be seen that
only independent X lkog and Zlkog foreach k € G/[G,G] may be
defined, and so determine the degeneracy of these codes to be

IG/[G.G]|.

D. Topological defects

Topological defects can play an important role in topo-
logical systems. In particular, braiding of certain types of
defects can implement quantum computation (through code
deformation) in much the same way as braiding of anyons.
Particular types of topological defects such as holes [3] and
twists [4,32] have been developed for this purpose in simple
models such as the toric codes or qubit color codes. As with
our discussion of the anyon spectrum of G-color codes, we
can import many known results from quantum double models
into our study of topological defects in these models, taking
the equivalence between quantum doubles and G-color codes
to be general (i.e., independent of the details of the lattice).

The theory of topological defects is closely related to the
theory of boundaries. The study of domain walls (general
boundaries) between two topological phases can be used to
explore all the topological defects we will consider here.
This theory is developed for the quantum double models
in [24] (see also [25] for related work). By making use of the
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correspondence between the G-color codes and the quantum
double models, we can import the characterization of the
domain walls possible between two phases of G-color codes.

Twists are topological defects at which domain walls
terminate [25]. They induce an automorphism of the set of
anyons, such that an anyon braiding around a twist will return
as a different species (as dictated by the automorphism). Twists
have well-defined fusion and braiding amongst themselves,
and can be used for topological quantum computation [4,32].
Possible twists for quantum double models (and hence G-color
codes) are studied in Refs. [24,25].

The second type of defects we consider are holes (or
punctures). These are closed boundaries between the G-color
code and vacuum (the topologically trivial phase) within a
planar topological code. They can also have well-defined
fusion and braiding relations, and can be used for topological
quantum computation [3]. Again, the characterization of such
hole types can be imported from the boundary theory of
quantum double models, as discussed in Sec. IV C.

Finally, condensation is a mechanism via which the
topological order in an anyonic model can be changed. In
a condensed phase, the anyon density for a particular species
is given a nontrivial value in the ground space, and this can lead
to interesting effects, e.g., confinement of other anyon species.
Condensation amounts to a deformation in the bulk of the
model under consideration and again an analogy can be drawn
to equivalent processes in quantum double models as studied
in [31] (see also [25,33,34]). These kinds of effects may also
be used to perform quantum computation by manipulating the
regions of condensed phases [35].

E. Transversality properties

One feature of the qubit color codes that is particularly
appealing is its large set of transversal gates [6] (in comparison
to the toric code, for example). In fact, this feature is inherited
for the color codes based on Abelian groups [14]. The most
important transversal gate that these Abelian color codes
possess is the Hadamard gate. However, as discussed in [36],
operator algebras based on finite non-Abelian groups will
not have a counterpart to the Hadamard gate, due to the
inequivalence of the group algebra and the corresponding
representation algebra.

In a similar vein, logical operators for codes with similar
algebraic structure to the G-color codes (significantly the
quantum double models) do not generally have large transver-
sal gate sets. The transversal “string”-like logical operators that
appear for Abelian groups generally become nontransversal
“ribbon” operators in this context [2,31] when the topological
charges of the model become non-Abelian (and thus able to
perform quantum computation by braiding). For these reasons,
we do not expect the G-color codes to have particularly
interesting transversal gate sets.

F. Construction from cluster state

The qubit color code can be constructed in a straightforward
way from a suitable cluster state [37]. We can view this
relationship (appropriately generalized) as one way to define
the G-cluster states.
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FIG. 7. (Color online) By preparing a generalized cluster state
on the lattice shown with black edges, and projecting a subset of the
qudits (those represented by open circles) into particular states, we
can prepare a G-color code.

The qubit color code can be produced by beginning with
a cluster state on the lattice shown in Fig. 7, and projecting
a subset of the qubits (corresponding to each plaquette of the
color code) into the |0) state [37]. This procedure can directly
be generalized to produce G-color codes from generalized
cluster states [36] based on the group G. Given a suitably
prepared generalized cluster state, the analog of the |0) state
projections would naively be expected to be a projection to |e).
However, performing these projections would not give rise to
the G-cluster states we have defined (the resulting states would
not have local stabilizers).

Instead, the projection on the qudits corresponding to red
plaquettes must be generalized to projections to ZHE[G_ G ln)s
while those on blue and green plaquettes would remain as
projections to |e). This will result in the desired G-color code
state. Of course for any Abelian group G, [G,G] = {e}, and
so we recover the standard qubit procedure for G = Z,.

As discussed in Ref. [36] for the similar case of the toric
code, if we were to physically use measurements of a suitable
basis in lieu of projections to the |e) or ZnE[G‘G] |n) states
in an attempt to prepare G-color code states from generalized
cluster states in the laboratory, the resulting state could be
interpreted as an excited state of the G-color code with
excitations determined by measurement outcomes.

V. DISCUSSION

We have defined a generalization of the color codes to
finite group G, and explored many of their basic properties.
Some of the useful features of the qubit color codes do not
carry over to the general case, most notably the large set of
transversal gates. Nonetheless, we do not have many exactly
solvable models of topologically ordered systems and so this
new family may be of interest as a testbed for topological
phenomena, or may have properties that are difficult to find
in existing models. Furthermore, the relationship between the
color codes and many other interesting systems may allow for
further extension of this work. We briefly discuss a few of the
most obvious extensions below.
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FIG. 8. (Color online) The topological subsystem code is defined
on an an expanded 2-colex lattice. In this example, we have expanded
the 6.6.6 honeycomb lattice. The links of the expanded lattice come
in three types, shown as dashed, dotted, and solid, corresponding to
the three possible interaction types: X, Y, or Z.

A. Extensions of the model
1. Topological subsystem codes

Topological subsystem codes are a family of models that are
related to color codes, but whose Hamiltonians require only
two-body interactions [9,10]. They are defined on 2-colexes
whose links and sites have been expanded to create a new
lattice, as in Fig. 8. Each edge of the expanded lattice carries
an operator of the form X ® X, Y @ Y,or Z ® Z.

We will not go into details about these models, but we would
not expect them to be generalizable to an arbitrary finite group
G as we have done for color codes for the following reason. In
our generalization, we have treated the X operator as if it were a
group multiplication operator. We could also have generalized
the Z operator as erj = Zg[F(g)],-j T, for [I"(-)];; the @,
matrix element of a representation I'. In particular, for the
group Z, this gives Z" = I and Z¥ = o, for the trivial and
alternating representations, respectively. In this way, we can
interpret the Z operators as acting like representations (see
Ref. [36] for a more detailed discussion).

Given these interpretations of X and Z, we can attempt to
generalize a given CSS model. However, when presented with
anon-CSS model such as the topological subsystem codes, the
immediate problem of how to interpret a Y operator in terms
of group structure has no obvious answer. For the Z, case (and
indeed any cyclic group), there is a natural correspondence
between the group elements and the representations of the
group. This allows us to unambiguously define products
of X8Z%8 that can serve as a generalization of Y (up to
constants). For this reason, we would not expect significant
obstacles to generalizing the topological subsystem codes to
Abelian groups. In contrast, for non-Abelian groups we cannot
generally rely on a natural correspondence between group
elements and representations, and for this reason it seems
unlikely that our strategy will provide a sensible generalization
of the topological subsystem codes for these groups. We refer
the interested reader to Ref. [36] for a more comprehensive
discussion of similar issues.
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2. Higher dimensional models and gauge color codes

The three-dimensional qubit color codes are introduced
in [7], and D-dimensional qubit color codes can also be de-
fined [38] and generalized to gauge color codes [12]. They are
based on the notion of a D-colex in analogy to the 2-colex of the
two-dimensional (2D) model. We anticipate that the same alge-
braic structure used here to define the 2D G-color codes (such
as the commutator subgroup) may be used to define general-
izations of the higher-dimensional color codes in some cases.

The gauge color codes are the most general setting for these
higher-dimensional color codes, and are defined for spatial
dimension D by a D-colex and two positive integers d,e such
that d + e < D. These two integers specify the geometry of
the generators of the stabilizer group (or more generally the
gauge group in the language of subsystem codes [39,40]).
In particular, the Z-type interactions in the Hamiltonian are
associated with (d + 1)-dimensional objects, while the X -type
interactions are associated with (e + 1)-dimensional objects.
When generalizing these models to the arbitrary finite group G
in the most naive way, it seems necessary to restrict tod = 1,
since the definition of the S stabilizers (14)—(16) requires
these operators to be associated to an object with a notion of
cycles, i.e., a two-dimensional face. The same considerations
restrict the kinds of higher-dimensional generalizations that are
possible for, e.g., the quantum double models and string net
models, although more complex higher-dimensional analogs
can be defined [41]. However, the fact that the gauge color
codes allow more general structures than the quantum double
models (the analogous construction for quantum double
models would not allow d + e < D) suggests that there may
be novel ways to implement non-Abelian topological orders
in higher dimension with these methods.

3. Extension to more general algebras

Our model is very similar in construction to the quantum
double models, as can be seen by the mapping of Sec. I1I, which
makes this correspondence explicit. Given that more general
quantum double models can be defined based on Hopf algebras
(and potentially more general algebraic structures) [42,43],
a natural question arises whether these models, too, have
color code counterparts. We expect that this may be possible
using similar methods to those used here, and that the
resulting models would have an analogous relationship to the
corresponding quantum double models.

It may also be possible to pursue a similar generalization
of the color codes based on fusion categories rather than finite
groups, in the spirit of the string-net models [44], of which the
quantum double models are examples [45].
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