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ABSTRACT:

Accurate predictions of the characteristics of urban streets in particular with respect to the typical traffic situations are crucial for
numerous real world applications such as navigation, scheduling of logistic and public transportation services as well as high-level
planning of infrastructure which may include planning of construction sites or even changes of the road topology. However, this
information may be hard to obtain, especially in complex urban road networks where interdependencies between roads are highly
present. In addition, accurate and recent traffic data is not always available, especially for uncommon situations like large-scale public
events, traffic accidents or construction sites. This work demonstrates how to employ historical traffic datasets in conjunction with other,
infrastructure related data, to derive a deeper understanding of urban traffic behaviour. In particular this paper provides the following
contributions: (1) the generation of meaningful features to describe the segments in urban road networks; (2) an unsupervised machine
learning approach that identifies similar segments based on those features; (3) a supervised approach to predict unknown features of
the segments and, finally, (4) an extensive evaluation of the extracted road characteristics and the proposed methods using real-world
data. The resulting clusters reveal the similarities of the street segments and give a different perspective on the road network and the
traffic situation, respectively. The experiments on the classification approach demonstrate that unknown features can be predicted with
a good quality.

1. INTRODUCTION

Predictions of traffic situations in urban environments are crucial
for many applications including individual navigation, mobility
and logistics services as well as planning of urban infrastructure.
To this end, historical traffic data, i.a. floating car data, is typ-
ically adopted to facilitate the predictions of re-occurring traffic
situations in an urban environment (e.g. temporal fluctuations
during rush hour traffic (Ehmke et al., 2010)). However, in prac-
tice these methods may not always be feasible. On the one hand,
traffic data is typically not publicly available, i.e. difficult or ex-
pensive to obtain and can vary greatly with respect to its quality.
On the other hand, even in cases where some historical traffic
data is available, it does not sufficiently capture traffic conditions
for unusual situations such as newly installed construction sites,
incidents, or special events at a particular venue, a road or an ur-
ban area. In the literature, several aspects of traffic prediction
have been addressed, e.g. traffic predictions in presence of public
events (Kwoczek et al., 2014) or the evolution of urban conges-
tion (Anwar et al., 2016). However, those approaches strongly
depend on the availability of historical traffic data for the particu-
lar roads and segments being considered as well as comparable
conditions.

Moreover, even if information is available it is not necessarily
complete. For instance, the information about the amount or ve-
locity of traffic in either minor or rarely used streets is difficult
to obtain and therefore not available or only of poor quality. Ad-
ditional traffic information, e.g. the fraction of different traffic
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types (individual mobility, public transportation, logistics, etc.),
which is required for a more detailed analysis of the traffic related
issues, is also missing.

Thus, the goal of this work is to better understand which fea-
tures and metrics can be adopted to characterize the streets or
infrastructural segments and estimate their similarity so as to en-
able accurate predictions of the feature characteristics that are not
contained in the available datasets or do not have a sufficient qual-
ity. In particular, we assume that the similarity of street segments
can allow the prediction of unknown characteristics of the streets.
The contributions of this paper include:

• the definition of features that characterize street or infras-
tructure segments in an urban traffic network,

• the definition of similarity metrics to assess similarities
across urban infrastructure segments using these features,

• the identification of similar areas and venues in an urban
environment using a clustering approach while adopting the
proposed similarity metric,

• the prediction of unknown features by applying a supervised
learning method to the data and, finally,

• the evaluation of the proposed methods based on various ex-
periments using real-world data and the discussion of the re-
sulting clusters and the possibility to predict unknown fea-
tures.
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The remainder of this paper is structured as follows: first, in
Section 2 an overview over the most important related work is
provided. Then, in Section 3 we describe the datasets adopted.
Following that, in Section 4 the developed algorithms to identifi-
cation of similar street segments are presented. In a subsequent
evaluation presented in Section 5 the proposed approach is ap-
plied to the described real-world datasets. There, the influence of
the calculated features and the similarity metrics on the quality of
the resulting predictions is analyzed. The paper concludes with a
summary and an outlook in Section 6, in which the portability of
our approach to further scenarios, e.g. the prediction of the traffic
load at the different times of a day or different days of the week,
is also discussed.

2. RELATED WORK

Recently a number of studies addressed several prediction tasks
at the interface of the urban infrastructure and mobility, e.g. the
prediction of travel times and traffic characteristics in the con-
text of the individual transportation. TomTom (2009) employs
speed profiles for travel time predictions in routing applications.
The speed profiles are extracted by performing a cluster analysis
which is followed by several quality and alignment steps. The
profiles are then used to build time-dependent speed maps that
enable time aware routing algorithms. Lécué et al. (2014) em-
ploy semantic technologies to develop STAR-CITY, a system for
traffic prediction and reasoning, used for spatio-temporal analy-
sis of the traffic status as well as for the exploration of contextual
information such as nearby events.

Another line of research aims to analyze urban network infras-
tructure using mobility data. Wang and Li (2017) leverage taxi
flow data to learn vector representation of city regions. The rep-
resentations are then used to make predictions about the regions
such, e.g. crime rate, average income or average house prices.

Pan et al. (2013) make use of taxi GPS-trajectories to classify
the land use of urban areas. They propose an iterative DBSCAN
algorithm to cluster regions with respect to the frequency with
which passengers are picked up or set down. They make use of
the same information to classify the land use of regions, e.g. the
land use for hospitals or commercial districts. The analysis of tra-
jectories in the traffic context has been conducted with respect to
movement behaviour (Sester et al., 2012) or travel mode (Bohte
and Maat, 2009). This is done with different foci, e.g. for usage
in travel planning and the identification of travel mode, e.g. for
later usage in travel planning (Zhang et al., 2013). Trajectories
can also be analyzed concerning anomalies using Bayesian net-
works Huang et al. (2014). Further approaches utilizes location
based social network (LBSN) data. Song et al. (2017) leverage
LBSN data to identify functional urban regions. They employ
latent Dirichlet allocation and unsupervised machine learning al-
gorithms to determine the regions. Yin et al. (2017) make use
of LBSN data to infer boundaries of functional regions in urban
environments. They construct a mobility network from spatial
user interaction and delineate boundaries by identifying strongly
connected communities within the network space.

Furthermore, several approaches target the identification of prob-
lematic segments and areas of urban networks under specific con-
ditions (e.g. planed special events). Kwoczek et al. (2015) pro-
pose the use of an artificial neuronal network to identify road seg-
ments that are typically affected by public special events that take
place in a particular venue. Moreover, Rodrigues et al. (2017) in-
vestigate the affect of public events on the public transportation

network. They propose a Bayesian additive model that can be
employed to gain an understanding of public transportation de-
mand in the presence of events. I.e. the model is able to predict
the number of public transportation trips to the venues where the
respective event takes place.

Urban road networks have been subject to several studies aiming
at identifying problematic areas and inter-dependencies. Anwar
et al. (2016) proposed a method to keep track of the congestions
in urban road networks to identify unstable road segments. Jin
et al. (2016) make use of context-aware tensor decomposition to
identify so called urban black holes, i.e. traffic anomalies with a
greater inflow than outflow. Jing et al. (2018) analyzed the cor-
relation of node degrees within a road network. They find that
existing measures are inconsistent when the road representation
is changed and propose an own road network ratio.

Whereas the above mentioned approaches only focus on a spe-
cific prediction problems, in this work we also aim to analyze
general characteristics of the urban street segments and in par-
ticular features that can contribute to the identification of their
similarities and transfer of prediction results.

3. DATASETS

This work is based on data which is collected in the urban area of
Hanover, Germany, and is taken from different sources. On the
one hand, open geo-spatial data, the street network and additional
features from OpenStreetMap1 (OSM), as well as supplemental
internal authoritative LHH2 datasets (including inhabitants and
buildings distribution and additional street attributes) are used.
On the other hand, a proprietary traffic dataset consisting of ag-
gregated floating car data (FCD) is employed. In the following
paragraphs the different datasets are described in more detail.

OSM is the most common platform for open geo data and pro-
vides a comprehensive amount of spatial objects and additional
attributes. Despite general rules for tagging (attaching attributes
to objects), due to the data collection and maintaining by vol-
unteers, possible inhomogeneity, incompleteness and even faulti-
ness of the given information has to be considered. Features like
traffic signals (point object tag highway=traffic signals) can be
easily extracted for further processing. The further mentioned
aggregated FCD is referenced to OSM street segments.

The LHH dataset provided by the city administration of Hanover
is also used by this approach. Originally it is collected for ad-
ministrative and traffic management purposes and by this it is not
adapted to our purposes. One part of it consists of the location
of all buildings and the number of their residents. The second
provided dataset consists of a street network, which differs ge-
ometrically from OSM; in particular, it includes only one edge
for bi-directional streets. The segments are enriched by different
attributes like the speed limit or the number of tracks. Other at-
tributes, such as the average daily traffic on each segment are the
result of a simulation and thus are available area-covering.

The FCD dataset provides traffic speed records for each street
segment among the most important OSM road types (from ter-
tiary to motorway level). Note, that due to this limitation of road
types small roads which are typically found in residential areas
are excluded. In fact, the dataset only contains major roads of

1https://www.openstreetmap.org
2[ger.] Landeshauptstadt Hannover - [engl.] state capital Hanover
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Figure 1. An overview of the considered road segments of the
FCD set. [source: Stamen map tiles and OSM]

Hanover city and we are not able to sense traffic flowing into res-
idential blocks. Figure 1 provides an overview of the road seg-
ments contained in the dataset. The records contain information
regarding the measured traffic speed on the individual street seg-
ment of the street network at discrete time points i.e. the speed
is recorded every 15 minutes. Note that this kind of information
can easily be extracted from more commonly available floating
car data. The dataset covers the time span from October 2017 to
January 2018 and all street segments of the aforementioned cate-
gory that are located within a distance of 20 km from the centre
of the city of Hanover, Germany. The dataset contains approx-
imately 195 million records in total. Note that given the scale
and costliness of real-world traffic data, our experiments are lim-
ited to the reported duration of four months. According to our
experience this duration is sufficient to capture the typical traffic
patterns.

4. APPROACH

Claiming the assumption that similar street segments also have
similar traffic feature characteristics, the overall approach of this
work is to use machine learning algorithms to either identify sim-
ilar street segments based on their features or to predict features
which are not available on all segments. In order to be able to ap-
ply the corresponding unsupervised (section 4.2) and supervised
methods (4.3), features describing the segments sufficiently are
generated in a preprocessing phase (4.1).

4.1 Preprocessing of the Street Segments and Calculation of
Features

Street Segments. The original OSM street segments used in
the FCD dataset strongly vary with respect to their length, i.e.
the smallest segments are shorter than 0.5 meters. Moreover, this
dataset contains a large number of these segments, and thus is
difficult to handle. E.g. the region described in Figure 1 con-
tains over 23,000 road segments. To allow an efficient use of the
dataset, in the experimental settings the total number of segments
needs to be reduced, e.g. by merging multiple short segments
to form longer segments. To this end, short street segments are
merged if they satisfy the following conditions: (1) Merged seg-
ments have the same type according to the OSM taxonomy. (2)

Merged segments are directly connected. (3) Merged segments
are not separated by crossings or intersections. (4) Merged seg-
ments have the same direction, i.e. the segments are not allowed
to form circles. (5) The summed length of the merged segments
must not exceed 500 meters. Following this procedure the to-
tal number of street segments in the dataset was reduced from
approx. 23,000 to approx. 10,000. Finally, the measured FCD
speed values of the merged segments are averaged. The resulting
street graph will be used as reference in this work and additional
features will be assigned to it.

FCD-based Features. Based on the speed information per seg-
ment for the complete time span of this dataset we determine typ-
ical profile types, which describe the development of the traffic
load over a week. The calculation of the traffic load TL is done
by combining the actually driven speeds v and the official speed
limits of the segments vlimit.

TL = 1− v

vlimit
(1)

Please note that negative values for the traffic load mean that
people drive faster than allowed. This can more frequently be
observed at night when less people are on the way (see Figure
2). Using the averaged week values per time step over the whole
time span of the dataset we cluster the averaged and normali-
zed profiles of the segments to extract profile prototypes. For
this purpose, we use the k-means algorithm MacQueen (1967)
with the parameter k = 4. This value has been determined using
the Davies-Bouldin-Index Davies and Bouldin (1979), which is a
cluster evaluation metric that indicates how well the clusters are
separated from each other. The resulting prototypes for the traffic
load profiles are shown in Figure 2.

Prototype 0 (blue) is characterized by the largest changes of am-
plitude in a day including a prominent PM-peak on weekdays.
Obviously, the opposite can be observed for prototype 3 (yel-
low), as is has more prominent AM-peak. There, Prototype 1 (or-
ange) represents segments with only a minimal change in daily
traffic around rush hours. Finally, type 2 (grey) also indicates
a larger PM-peak than in the morning, but in total less strong
and with flatter slopes than the previous two. Except type 1, the
weekend peaks seem to merge to a wide raising, but less strong
than formally. To summarize, street segments belonging to type 3
seem to be used mainly by people going to work in the morning,
whereas segments belonging to type 0 are used on the way back
home. Please note that profile types 1 and 2 are nearly about four
times more frequent in number (1600 and 1531 segments) and
total length (192 and 205 km) than types 0 (443 segments and 59
km) and 3 (406 segments and 49 km).

In addition to the profile types, we also extract the time of mini-
mal flow (total, AM, PM) for each segment based on an averaged
week. The minimum for each day of the week is determined, and
further split into before- and afternoon. Because many segment’s
flow does not varies much over day, a significance threshold of
15% over the daily mean is implemented. Figure 3 illustrates
the situation for a work day. The highlighted places show an in-
teresting traffic behaviour. In A the times of the peaks suddenly
change on the junction. This is caused by the people coming from
the outside going to city center (on the left) in the morning (the
green color indicates an early time of the day) and leaving in the
evening (the orange color indicates a later time of the day) in the
opposite direction. Thus, this place can be seen as sink where in-
coming streams meet. In place B the situation is similar as there
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Figure 2. The resulting traffic load profile prototypes’ mean week starting on Monday. They differ with regard to their amplitude, their
shape and the number of their peaks.

are peaks at both direction of the street, which end at same loca-
tion. This means that many people enter and leave this street at a
the same times in the morning and evening. This is good indica-
tor that there must be a point of interest (POI) for those people.
In this case, there is a children hospital, which attracts a lot of
people. The time of minimal flow feature can thus also be used to
identify POIs.

Figure 3. The times of the daily traffic load peak per segment
indicate when the traffic load is at its maximum, the velocity is
minimal, respectively. The spectral color scheme encodes the

time of the day. Green means early (usually in the morning), red
late (afternoon/evening). Gray segments do not have a

significant peak at all. The marked places A and B show two
situations of interesting behaviour. Map source: GoogleEarth

OSM-based Features. From OSM traffic signals are extracted.
They are assigned to nearby segments. To prevent double assign-
ments from different directions, signals were clustered spatially.
The feature #traffic lights value contains the number of intersect-
ing clusters.

Based on the network graph, two features were calculated to take
its topology and geometry into consideration. First, the cen-
trality is calculated using the Floyd-Warshall algorithm (Floyd,
1962). The edge weights are based on a optimistic travel time
(speed limit times length). The resulting feature consists of the
summed number of ’visits’ on each edge and represents the topo-
logical importance in the street network. The second feature,
called direction, gives the relative direction in relation to the city
centre (Kröpcke square). By this measure each street segment
can be discerned as outgoing, ingoing or in radial direction.

Figure 4. The centrality features shows how often a segment is
used in fastest paths (required time considering the length and
the speed limit). The intensity of red symbolizes the number of

usages.

LHH-based Features. To also use information provided by
buildings in the street segment’s vicinity, the number of inha-
bited (#build.inh.), not inhabited buildings (#build.n.inh.) and
the sum of inhabitants (#inhabitants) is aggregated in the cells
framed by the street network. Street links and small interspaces
are ignored. The street segments get the total of neighbouring
cell values, shown in Figure 5. By this, a kind of commuting
area of the segments is modeled. The differentiation of buildings
by inhabitants is used to include rough information about indus-
trial and commercial areas, which is not consistently available in
OSM.

The LHH-features are linked to the street graph provided by the
city of Hannover. In order to use it in our target system - the OSM
graph - they have to be transferred. However, they are geometri-
cally different. Figure 6 shows the area of the inner city ring as an
example. Different levels of granularity (street type) are evident.
The main roads of it are included in both graphs (and two di-
rections in OSM). By this, the administrative features need to be
assigned by a matching to the OSM graph. For each OSM edge
one of the city graph in the surrounding is selected by searching
for smallest sum of distance between both combinations of start
and end point. Transferred features attributes by this matching
are the average daily amount of traffic (DTV3), number of lanes
(#lanes) and type of (land use).

3[ger.] Durchschnittlicher Tagesverkehr

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-185-2018 | © Authors 2018. CC BY 4.0 License.

 
188



Figure 5. Number of buildings and inhabitants are aggregated on
cells, which are formed by the street network (black). A street
segment (red) receives from adjacent cells (green) their sum.

Figure 6. Geometrical differences of OSM (orange) and
administration (green) street graph. In the snipped is shown the
area of inner city ring road. The administration graph includes

hierarchical smaller streets, but only one edge per street.

4.2 Identification of Similar Street Segments

Since the similarity of the street segments depends on the evalu-
ated features, we generate feature vectors FV for the street seg-
ments si containing the precalculated features of section 4.1.

FV (si) =



profile type
time min flow (total)
time min flow (AM)
time min flow (PM)

centrality
direction

#traffic lights
#build. inh.

#build. n.inh.
#inhabitants

#lanes
DTV

land use



(2)

If a feature should be estimated, it must not be included in this
vector. For instance, if we want to predict the traffic profile types
of road segments, the corresponding feature vectors for the clus-
tering obviously must not contain the profile type and the three
derived time min flow features. The vector from Equation (2) will
be reduced by the feature profile type. One might miss the road

type attribute from OSM as a strong feature for similarity. Please
be aware that we neglected it as we determined it a too strong a-
priori expert knowledge. Further, it describes one possible clas-
sification of the segments which can be used later to evaluate our
cluster results.

To obtain those clusters of similar segments we apply the k-means
algorithm to the data using the described feature vectors in com-
bination with the Euclidean distance metric. As the latter is not
capable of dealing with nominal features, e.g. the profile type and
land use, we have to transform them into numerical features us-
ing one-hot-encoding Harris and Harris (2012). To determine the
most suitable clustering parameter the same mechanism based on
the Davies-Bouldin-Index as described in section 4.1 is used.

4.3 Prediction of Street Segment Features

In contrast to the unsupervised approach of the previous section
the second analysis in this work is based on a supervised learn-
ing and aims on predicting unknown features of the street seg-
ments. To this end, besides the previously described preprocess-
ing phase, in which mainly the features are prepared, a second
preparation of the dataset for the training of the classification
model is required. It consists of a rebalancing of the dataset to
have the same number of samples for all classes. In addition to
that, numerical features are transformed to nominal ones to en-
able algorithms which are only capable to handle nominal fea-
tures. After having prepared the dataset the random forest algo-
rithm Breiman (2001) is used as classification method to predict
the unknown feature of the street segments. Excluding the feature
which should be predicted and its derived features, the feature
vector is the same as given in Equation (2).

5. EXPERIMENTS AND DISCUSSION

In the following section the results of both, the similarity analy-
sis and the feature prediction, are evaluated and discussed. For
this purpose experiments based on the described datasets are per-
formed.

5.1 Identification of Similar Street Segments

The experiment based on the application of the k-means method
to identify similar segments in the road network provides the re-
sulting clusters illustrated in Figure 7. The required clustering
parameter is set to k = 10, which is the number of resulting clus-
ters. It has been determined by the described procedure using the
Davies-Boulding-Index.

In order to evaluate the resulting clusters, we first inspect them
visually. It turns out that in most cases the differently directed
lanes of the same street are assigned to the same cluster. How-
ever, looking at the bigger streets, e.g. motorways and trunks,
the different directions fall into different clusters (see example
regions A in Figure 7, left). This can be explained by the dif-
ferent peaks in the daily traffic behavior mainly caused by the
people’s way to work. For instance, in the morning many peo-
ple drive into the city, in the evening they use the opposite di-
rection. Further, multiple adjacent segments along a street are
relatively uniformly clustered. Only in junction areas segments
are sometimes assigned to different clusters (see regions B). A
reason for this are the very different traffic profiles of the street
segments. While on non-junction segments there is often moving
traffic with relatively high velocities, on junctions there regularly
are low velocities caused by cautiously turning cars.
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Figure 7. The resulting clusters of similar street segments (left) and OSM road types (right) for visual comparison.

Comparing our solution to the original OSM road types (see Fig-
ure 7, right) a general correspondence between both can be recog-
nized, after a rough resorting of the color assignment. The calcu-
lated overlap between both is about 42%. The top three clusters
1, 7 and 9 (light-green, red, dark-blue) are basically motorways,
trunks and partly complemented by primary streets. Secondary
roads are especially inner city main axes, which are covered by
cluster 3 (pale-purple). Tertiary streets seem to be split into clus-
ters 0 and 2 (orange and light-blue).

However, there are some deviations in this assignment, which can
be observed, when, for example, segments of minor OSM road
types are assigned to the motorway cluster, too. The reason for
this is the way the segments are classified. The OSM road types
are based on traffic relevance, development state, administrative
assignments and are further tried to keep constant for one road,
whereas our clusters have been determined using the generated
features for each segment individually and thus are showing the
actual traffic behavior and urban surrounding. Resulting, our re-
sults look less homogeneous than the OSM types (see Figure 7).

5.2 Prediction of Segment Features

In several experiments the performance of the prediction is ex-
emplarily evaluated based on the nominal features profile type,
land use and #inhabitants (ten discrete intervals). For the evalua-
tion the classification task is interpreted as multi-class and binary-
class problem, respectively. The latter is done to find out whether
certain feature characteristics are better predictable than others.
The different classes are balanced for each scenario. The result-
ing performance is shown by the precision and recall indicators
in Table 1.

The prediction of the land use feature, performs very well, even
as multi-class problem (precision and recall values of about
95%). The classification of the data with respect to the profile
type feature is in the range 80% for the binary scenarios. The
precision and recall values for the multi-class classification are
only 65 and 64%, respectively. Even if the values are low, they
are considerably higher than a random guess, which would be in
the range of 25

The corresponding values for the multi-class classification of the
#inhabitants feature are in both cases at 98%, using all available
features. Ignoring the features #build. inh. and #build. n.inh., as
they are certainly related to #inhabitants, the values decrease to
71% in both cases.

Predicted feature Precision Recall
profile type {0, 1, 2, 3}

Multi-class 0.65 0.64
0 vs. all 0.79 0.74
1 vs. all 0.78 0.78
2 vs. all 0.72 0.72
3 vs. all 0.83 0.80
land use {commercial, residential, radial, none}
Multi-class 0.95 0.95
commercial vs. all 0.94 0.94
residential vs. all 0.97 0.97
radial vs. all 0.97 0.97
none vs. all 0.94 0.93

#inhabitants (10 discrete intervals)
Multi-class 0.98 0.98
Multi-class

0.71 0.71
(without #build. inh. and
#build. n.inh. features)

Table 1. The evaluation of the segment feature prediction is
performed by a multi-class- and one-against-all-classification.

Feature Information gain [bit]
profile type land use #inh.

profile type n.a. 0.05 0.03
time min flow (tot.) n.a. 0.04 0.03
time min flow (AM) n.a. 0.08 0.02
time min flow (PM) n.a. 0.02 0
centrality 0.04 0.12 0.22
direction 0.03 0.04 0
#traffic lights 0.04 0.11 0.03
#build. inh. 0.05 0.16 2.18
#build. n.inh. 0.07 0.15 2.12
#inhabitants 0.04 0.16 n.a.
#lanes 0.03 0.17 0.07
DTV 0.05 0.18 0.55
land use 0.05 n.a. 0.08

Table 2. The information gain of the features in relation to the
corresponding classification task. Not evaluated features are

marked by ’n.a.’.

In order to explain the varying prediction qualities, we analyze
the influence of the evaluated features in relation to the corre-
sponding classification task. To this end we calculate the informa-
tion gain of each feature to describe its relevance. The results are
shown in Table 2. For each classification task the most relevant
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features are highlighted. In case of the profile type-classification
the influence of the #build. n.inh. feature can be explained by
the fact that it indicates typical destination hot spots for the daily
way to work of many people. Those areas favor the profile types
showing the typical rush hour behaviour. Resulting from the vi-
sualization of the profile types (Figure 2), work traffic seems to
be the most characteristic component of traffic load for type 0
(blue) and 3 (yellow). In this way, a dependency between the
profile types and those hot spots can be concluded. Comparing
the information gain values between the different classifications
scenarios, relatively low values for the profile type-classification
can be noticed. This is a good indicator for the absence of a
really significant feature, which would improve the overall pre-
diction quality. The same relationship can be observed for the
#inhabitants feature. If the two dominant and, of course, some-
how related #build. inh. and #build. n.inh. features are ignored,
the precision and recall will decrease to only 71%.

6. CONCLUSION AND OUTLOOK

In this paper we addressed the problem of identifying urban street
segment similarities and predicting segment features by applying
machine learning algorithms on real-world data. We presented
an unsupervised approach, in particular the k-means algorithm,
that clusters the segments based on pre-calculated meaningful
features describing the segments with respect to the associated
actual traffic behavior. Further, a supervised learning method, i.e.
the random forest algorithm, was used to predict unknown fea-
tures. In this case, we exemplarily showed the prediction of the
profile type, land use and #inhabitants by using the remaining
features.

The results of the clustering reveals the similarity between street
segments. After a comparison to OSM they do not fully match
to the original road types. However, in contrast to the OSM road
classification, which mainly results from relevance, our clusters
also include the actual traffic behaviour. In further experiments,
related to the supervised learning, we obtained different quali-
ties for the prediction of the profile type and land use feature.
Whereas the latter worked well, the profile types could be im-
proved, especially if the learning task is interpreted as multi-class
problem (all against all).

Besides those findings there are several open issues, which can
be addressed in future work. An issue is still the prediction of
the traffic load profiles. There, additional features or different
learning techniques, e.g. methods from the deep learning field,
could further improve the prediction quality. Also, it has to be
investigated, which applications need which quality traffic load
profiles. Nevertheless, this work can be considered as a basis for
further analyses. The prediction of the traffic load at different
times of a day or different days of the week is one of them as it
provides information, which, for example, will be useful for nav-
igation purposes, in particular, if no FCD is available. Moreover,
the calculated features can also be used for other purposes. For
instance, the time of min flow feature can be used in the context
of detecting POIs automatically.
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