
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Nonlinear anisotropic diffusion filtering for the characterization of
stochastic structured surfaces
To cite this article: N Loftfield et al 2018 J. Phys.: Conf. Ser. 1044 012054

 

View the article online for updates and enhancements.

This content was downloaded from IP address 194.95.158.114 on 09/10/2018 at 10:12

https://doi.org/10.1088/1742-6596/1044/1/012054
http://oas.iop.org/5c/iopscience.iop.org/601662190/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

2017 IMEKO TC1-TC7-TC13 Joint Symposium IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1044 (2018) 012054  doi :10.1088/1742-6596/1044/1/012054

Nonlinear anisotropic diffusion filtering for the

characterization of stochastic structured surfaces
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Abstract. Structured surfaces enhance the functionality of components. Well known is the
influence of the surface structure on friction and wear behavior. Beyond this, structured surfaces
are widely used for various purposes such as optical, biological or mechanical applications.
Therefore, the characterization of structured surfaces and surface features becomes increasingly
important. The functionality of a surface can either be tested directly or indirectly. Due
to the correlation of geometric surface features and its functionality, an indirect and self-
evident way is by measuring the surface topography. To obtain the geometric essentials of
these features, they need to be separated from the raw surface data. The standard procedure
of decomposing a surface topography is by the use of a Gaussian filter bank, gaining so called
scale-limited surfaces. This procedure shows drawbacks when characterizing structured surfaces
by introducing distortions to the feature boundaries. To overcome these limitations, this work
proposes the use of an automatic nonlinear anisotropic diffusion filter as an initial step to
separate the features from the residual surface topography because of its edge preserving
properties. It is shown that the nonlinear anisotropic diffusion serves well the separation of
the features and their geometrical characterization.

1. Introduction
It is widely known that structured surfaces serve the functionality of components. Well-known
functions are of optical or mechanical nature like the Fresnel lens or the influence of surface
features on friction and wear behavior. Therefore, structured surfaces become increasingly
important, not only technologically but also economically [1]. Testing the functionality of a
surface can either be done directly or indirectly. Due to the correlation of surface features
and its physical functionality, an indirect yet obvious characterization is possible by geometric
measurements of the surface. However, Evans et al. stated already in 1999 that the function
of structured surfaces cannot be related to traditional surface finishing parameters [2]. Further,
Mathia et al. showed more recently that the traditional concept of determined parameters
for roughness and waviness does not satisfy the characterization of structured surfaces [1]. A
surface is commonly considered as a superposition of structures with different scales. Scale-
limited surface descriptions are most widely gained by spatial linear Gaussian filtering with
determined cutoff frequencies. For structured surfaces this holds some drawbacks. For example,
when filtering noise: noise is usually represented by high frequencies, however the converse
is not necessarily true, not all high frequency portions of the signal are solely due to noise.
Therefore, filtering the surface data with a linear Gaussian filter can diminish slopes at crucial
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(a) (b)

Figure 1: Raw measurement data of porous aluminum oxide layer: (a) three dimensional plot,
(b) top view.

feature boundaries. In contrast, nonlinear anisotropic diffusion has very good edge preserving
properties. In the research field of metrology different approaches have been pursued. Zeng et
al. use the advantage of the nonlinear anisotropic diffusion to separate the geometrical features
of MEMs surfaces [3]. Rather than investigating the roughness or waviness components of the
surface data, Zeng et al. state that the focus is on geometrical features like the line width, step
height, etc. Their work shows good results but no setting parameters are recommended and
the problem of an automatic stopping criterion is not addressed. Also, Wang et al. apply the
nonlinear anisotropic diffusion filter to discontinuous surfaces, thereby avoiding smoothing effects
around the edges [4]. However, the used stopping criterion is based on the cutoff frequencies of
the scale limited surfaces using the correlation of diffusion and wavelengths. As they state, this
can only be used as an approximation. Nonlinear filtering cannot be assigned to one specific
cutoff frequency. Based on the promising results of the work of Zeng et al., we propose a
nonlinear anisotropic diffusion as a preliminary filtering step for structured surfaces. For the
stopping criterion of the diffusion process a frequency based approach similar to the one proposed
by Ilyevsky et al. is pursued [5].

2. Materials and Methods
Within this work, stochastic structured, porous ceramic layers are characterized. The
measurement data of the ceramic layers are filtered to separate the structure from noise and
roughness components. This is done by nonlinear anisotropic diffusion. Following, to identify
surface features, the data needs to be segmented, e.g. by watershed segmentation. In this work
the focus lies on the filtering process and the segmentation is not further discussed.

2.1. Ceramic Layers
The investigated surfaces are comprised of porous aluminum oxide layers with a nominal planar
surface. The layers are manufactured by a thermal spraying process and are subsequently
polished. We will refer to them as stochastic structured surfaces. The porosity is influenced by
the process parameters and the material composition. The measurement data are acquired by
a confocal laser scanning microscope VK-X210 from Keyence. All data shown in this work is
acquired with a 50x magnification lens, respectively with a lateral pixel resolution of 0.277 µm.

2.2. Anisotropic Diffusion
Anisotropic diffusion was first published by Perona and Malik, suggesting a new definition of
scale-space. The scale-space is modeled as a diffusion process [6]. The linear heat diffusion
equation describes the dissipation of heat in a specific region. In image processing or signal
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processing this can be transferred to a smoothing process at a constant rate dependent on the
diffusion time, similar to Gaussian filtering depending on the variance. With the topography
height data I(x, y, t), where I(x, y, 0) is the initial surface topography, the linear diffusion is
described by:

∂I(x, y, t)

∂t
= div(c · ∇I(x, y, t)), (1)

where div is the divergence operator, ∇ is the gradient operator and c is a constant conductance
coefficient indicating the diffusion speed. Though linear diffusion reduces noise, it also blurs the
signal, which in turn results in smoothed structure boundaries.

The nonlinear anisotropic diffusion is a modified linear diffusion process with an adaptive
conductance coefficient c which is updated in every iteration step as a function of the gradient:

c(x, y, t) = g(∇I(x, y, t)). (2)

Perona and Malik suggest two conductance functions:

g1(∇I(x, y, t)) = e(−(||∇I(x,y,t)||/K)2) (3)

and

g2(∇I(x, y, t)) =
1

1 + ( ||∇I(x,y,t)||K )2
, (4)

with the diffusion coefficient K controlling the rate of diffusion. The first conductance
function g1(∇I(x, y, t)) privileges high-contrast edges over low-contrast ones, the second one
g2(∇I(x, y, t)) privileges wide regions over small ones [6]. In the following g1(∇I(x, y, t)) and
g2(∇I(x, y, t)) will be denoted as g1(∇I) and g2(∇I). In any case the conductance function is
chosen to provide fast diffusion within regions and a slow diffusion at sharp edges with a high
gradient to avoid smoothed structure boundaries.

With It the discrete sampled image at the iteration step t the discretized anisotropic diffusion
is given by Perona and Malik by:

It+1 = It + λ · [cNONIt + cSOSIt + cEOEIt + cWOW It] (5)

with 0 ≤ λ ≤ 1/4 for the numerical scheme to be stable, ci the conductance function and OiIt
the difference of the neighboring pixels. The indices i ∈ {N,E, S,W} indicate the 4-neighbor
pixel: North, East, South, West, e.g. in the North direction:

ONI(x, y, t) = I(x, y − 1, t)− I(x, y, t). (6)

As Perona and Malik state this is not an exact discretization of the anisotropic diffusion but
a good approximation and is chosen due to its simplicity.

2.3. Choice of Parameters
The choice of the conductance function, the diffusion coefficient K and the number of diffusion
iterations n is very decisive for the result of the filter operation. Therefore, these have to be
chosen carefully. Oftentimes, the parameters are determined by trial and error and appointed
manually, however, an automated parameter selection is desirable. A detailed overview of dif-
ferent approaches on the choice of parameters for anisotropic diffusion is given by Tsiotsios and
Petrou, further, they discuss the importance and influence of the different parameters [7].



4

1234567890 ‘’“”

2017 IMEKO TC1-TC7-TC13 Joint Symposium IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1044 (2018) 012054  doi :10.1088/1742-6596/1044/1/012054

The conductance function characterizes the diffusion process in terms of which parts of the
signal are favored. In any case the conductance function is a monotonically decreasing func-
tion of the gradient. Other conductance functions have been proposed, e.g. by Black et al.
or Weickert adjusting the diffusion speed or even stopping the diffusion at a given gradient, in
respect to avoiding an over-smoothed filter result [8, 9]. However, in this work we focus on the
proposed conductance functions of Perona and Malik. The input of the conductance function
is the gradient of a smoothed image rather than of the original image to avoid the influence of
outliers. The regularization process is done by Gaussian smoothing. The cutoff frequency of the
Gaussian filter is picked depending on the resolution of the measurement data according to the
DIN Norm 25178 [10].

The diffusion coefficient K controls the rate of diffusion. K is a soft threshold between the
image gradients that are attributed to noise or edges. K can either be set to a constant related
to the original data or be updated in every iteration step related to the diffused image. Most
approaches are based on the gradient distribution, e.g. K is updated as the mean value or
the maximum value of the gradients in every iteration [3, 4]. In this work, K is set adaptively
in every iteration step according to the Canny noise estimator: the histogram of gradients is
determined and the threshold is set to the 90% value of its integral [11]. Further Tsiotsios and
Petrou suggest the use of two separate thresholds, evaluated in the horizontal (EW ) and in the
vertical (NS) direction to individually consider the gradients in the smoothing process oriented
along the separate axes [7]. As we determine the 8-neighbors gradient, four different thresholds
are used, differentiating also the diagonal directions, NW SE and NE SW . This is done with
respect to filtering structured surfaces in general. Isotropic surfaces show a predominant direc-
tion, different gradients respectively. The thresholds Kj with j ∈ {NS,EW,NW SE,NE SW}
are, therefore, evaluated based on four different histograms of gradients.

As stated, anisotropic diffusion is an iterative process and the filtering result is highly
dependent on the number of iterations. The used stopping criterion for t is based on a frequency
approach similar to Ilyevsky et al. by estimating the energy of the signal’s high frequency
components and stopping at an ideal stopping time [5]. They define the determination based
on a highly denoised smoothed signal and a ratio at which to stop. Commonly, high frequencies
are labeled as frequencies in the range of N/4 and N/2 in the frequency band. The energy
of the frequencies is the Euclidean norm of the frequency section, denoted by Lh

2 . Noise is
mainly composed of high frequencies but the opposite is not always true. In our approach we
determine the number of iterations n in which the high frequency component energy falls in
the first local minimum with a minimum distance of eight or, alternately, when the function
runs approximately in a constant course. Instead of choosing the high frequency components
in the range of N/4 and N/2, the cutoff frequency could also be defined according to the DIN
25178 [10]. Just as before, the stopping criterion for the diffusion time would be set to the local
minimum of the frequencies’ energy of the specified band width.

3. Results
The results show well preserved features of the stochastic structured surface together with high-
level noise suppression or, if desired, roughness separation. In comparison to linear filtering,
e.g. Gaussian filtering, the edges are well preserved and the filtered signal follows the features’
structure even in very steep regions. The surfaces were filtered according to the proposed ap-
proach with the use of both conductance functions g1(∇I) and g2(∇I). Different results for the
decreasing energy and diffusion coefficients were detected for the different conductance functions.

From the filtering results, it can be seen that the energy portion of the high frequencies
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(a) (b) (c)

Figure 2: Course of energy Lh
2 and diffusion coefficients Kj of the filtering process with g1(∇I)

and g2(∇I) over 1000 iteration steps: (a) Lh
2 , (b) Kj with g1(∇I), (c) Kj with g2(∇I).

(a) (b)

Figure 3: Profile sections at y = 175 µm of the aluminum oxide layer (figure 1) and the filter
results: (a) with g1(∇I), (b) with g2(∇I).

Lh
2 falls with increasing time. Due to the different characteristics of the conductance functions

g1(∇I) and g2(∇I) the course of Lh
2 also differs. The results of the filtering process with the con-

ductance function g1(∇I), privileging high contrast edges over low-contrast ones, show higher
Lh
2 preserved in the data, see figure 2a. The sequence of the four different diffusion coefficients

KNS KEW , KNW SE and KNE SW are shown in figures 2b and 2c. The diffusion coefficients
show a similar decreasing course. The different directions vary just slightly due to the form of
the micro-structure, there is no preferable structure direction, see figure 1.

The filtering results of the stochastic structured aluminum oxide surfaces of the proposed ap-
proach are shown in figure 3. With the conductance function g1(∇I) the micro-structure edges
are well preserved and the high frequency portion is suppressed. With g1(∇I) the diffusion
process is stopped at the iteration step t1 = 116, the first local minimum in the Lh

2 course. In
contrast, when filtering with g2(∇I), also the edges of big structures are well preserved, however,
small regions get smoothed and modified by the filtering process. The diffusion is stopped at
the iteration step t2 = 273.

Concluding, filtering results show the advantage of the proposed method with respect to
Gaussian filtering. The surface micro-structure shows steep edges, see figure 4a. Filtered
by the proposed nonlinear anisotropic diffusion filter, the edges are preserved very well and
the roughness and noise components are filtered. Because the advantage to linear filtering is
best seen at steep edges the filtered signal is compared to Gaussian filtering. With the same
filter result for the roughness and noise with the Gaussian filter the micro-structure edges are
smoothed, see section x = 800 µm.
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(a) (b)

Figure 4: Filter results of a deterministic micro-structure: (a) deterministic structure, (b) profile
section at y = 140 µm of raw data, filtered by nonlinear anisotropic diffusion and by Gaussian.

4. Discussion and Conclusion
Nonlinear anisotropic diffusion with a frequency based stopping condition was used for the scale-
space representation of structured surface data with focus on the features. It is shown that the
micro-structures can be well segmented from the other surface components with good edge pre-
serving conditions. The smoothed edges impede the following segmentation of structures, e.g.
by watershed segmentation.

However, as stated the filter result of the surfaces is dependent on the choice of the con-
ductance function. Filtered with g1(∇I), the results show sharper edges and preserves small
regions, whereas when filtered with g2(∇I) the filter result smooths small regions. For our pro-
posed stochastic structured surfaces we recommend filtering with g1(∇I) rather than g2(∇I).
Although, filtering large micro-structures with wide region, good results can also be achieved
with g2(∇I), see figure 4b.

While mainly shown based on porous surfaces yet, we believe that for other structured surfaces
the anisotropic diffusion is a powerful tool to separate the features from the surfaces.
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