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ABSTRACT: 
 
In this paper we investigate the potential of automatic supervised classification for urban hydrological applications. In particular, we 
contribute to runoff simulations using hydrodynamic urban drainage models. In order to assess whether the capacity of the sewers is 
sufficient to avoid surcharge within certain return periods, precipitation is transformed into runoff. The transformation of 
precipitation into runoff requires knowledge about the proportion of drainage-effective areas and their spatial distribution in the 
catchment area. Common simulation methods use the coefficient of imperviousness as an important parameter to estimate the 
overland flow, which subsequently contributes to the pipe flow. The coefficient of imperviousness is the percentage of area covered 
by impervious surfaces such as roofs or road surfaces. It is still common practice to assign the coefficient of imperviousness for each 
particular land parcel manually by visual interpretation of aerial images. Based on classification results of these imagery we 
contribute to an objective automatic determination of the coefficient of imperviousness. In this context we compare two classification 
techniques: Random Forests (RF) and Conditional Random Fields (CRF). Experimental results performed on an urban test area show 
good results and confirm that the automated derivation of the coefficient of imperviousness, apart from being more objective and, 
thus, reproducible, delivers more accurate results than the interactive estimation. We achieve an overall accuracy of about 85% for 
both classifiers. The root mean square error of the differences of the coefficient of imperviousness compared to the reference is 4.4% 
for the CRF-based classification, and 3.8% for the RF-based classification. 
 
 

1. INTRODUCTION 

A noticeable increase of flash flooding events in frequency and 
intensity caused by heavy rainfall can be observed for parts of 
Germany over the last 30 years. One of the reasons for the 
increase of flooding events, also noticeable globally, lies in 
climate change. Meanwhile, the ongoing urbanisation leads to 
an increase in impervious areas, which drives existing sewer 
systems to their limits. Consequently, there is a general interest 
in adaptation and planning of efficient sewer systems to 
minimize the damage due to flooding events. For that reason, 
urban drainage models are needed which transform precipitation 
into runoff. An important input parameter for the simulation of 
this transformation is the coefficient of imperviousness, which 
describes the proportion of area covered by impervious surfaces 
such as roofs or road surfaces relative to the catchment area. 
Typically, it is determined independently for each piece of land 
stored in a geographical information system, e.g. for each parcel 
of a cadastral database. It is common practice to determine the 
coefficient of imperviousness interactively based on the visual 
interpretation of aerial images: the cadastral boundaries are 
superimposed to an orthophoto and the operator estimates the 
coefficient of imperviousness for each piece of land. Apart from 
being time-consuming, this procedure leads to very subjective 
decisions, and thus to a poor reproducibility of the results.  
 
In this paper, we address the problem of automatic supervised 
classification of aerial imagery with a focus on the 
determination of coefficient of imperviousness. We want to 
assess how the automatic classification of such data can 
contribute to making the determination of the coefficient of 

imperviousness more objective. We use input data derived from 
aerial imagery: multispectral orthophotos, digital surface 
models (DSM) and a digital terrain model (DTM). In addition, 
we use the cadastral database of the study area, which provides 
the boundaries of the cadastral parcels as well as with the 
information about its land use. The data must cover the entire 
catchment area for which the hydrological analysis is to be 
performed. We compare two supervised classification 
techniques, Random Forests (RF; Breiman, 2001) and 
Conditional Random Fields (CRF; Kumar and Hebert, 2006). 
These methods are used to determine the land cover for each 
pixel of the area of interest, which forms the basis for the 
determination of the coefficient of imperviousness.  
 
Our processing pipeline starts with the extraction of different 
spectral, textural, structural and three-dimensional features 
using the available data. A ranking of the extracted features 
based on RF feature importance is undertaken to find out which 
features are the most relevant ones. In the second step, five land 
cover classes (asphalt, building, tree, grass and bare soil) are 
determined by supervised classification, using both CRF and 
RF. After training the classifiers, a land cover label is predicted 
for each pixel in the test area based on its features, resulting in a 
land cover map. Finally, this land cover map is post-processed 
in order to determine the required coefficient of imperviousness. 
For that purpose, we combine the classes supposed to be 
impervious (asphalt, building) and the classes that are 
permeable (grass, bare soil). Class tree requires a special 
treatment, because the material below the tree is relevant for the 
surface runoff. As the surface property is not directly visible, we 
assume that in areas corresponding to roads, trees will overhang 
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the roads, and thus tree pixels are considered to be impervious, 
otherwise they belong to the class permeable (see section 3.4 for 
details). Having thus defined impervious and permeable 
surfaces, the coefficient of imperviousness is simply the 
percentage of impervious pixels inside a certain area.  
 
Our scientific contributions can be summarized as follows: 
 
• We propose an efficient pipeline of determining coefficient 

of imperviousness, consisting of feature extraction, 
automatic classification and post processing, based on high 
resolution orthophoto and digital height models. 

• For the task of automatic classification, we compare 
different classification methods (Random Forests and 
Conditional Random Fields), and highlight their benefits. 

• We compare the coefficient of imperviousness determined 
by automatic classification to those estimated by a human 
operator in order to assess whether the automated 
processing chain leads to more accurate predictions.  

 
The remainder of this paper is organized as follows. Section 2 
gives an overview on related work in classification, with a focus 
on hydrological applications. In Section 3 we present automatic 
classification methods used in this work. Section 4 describes the 
experimental evaluation of our approach for real urban 
watershed. We conclude the article with an outlook and a 
discussion of future works in Section 5. 
 
 

2. RELATED WORK 

We start the review by a discussion of strategies for 
hydrological modelling, focusing on runoff simulation, based on 
remotely sensed data. We then give a brief review of hand-
crafted feature selection and automatic classification based on 
these features for deriving land cover information from remote 
sensing data.  
 
Many works proposing methods to simulate the rainfall-runoff 
have relied on remotely sensed data. Kite et al. (1992) apply 
semi-distributed watershed modelling, which requires prior 
knowledge about land cover classes (bare ground, forests and 
grass). Deguchi and Sugio (1994) evaluate the applicability of 
satellite imagery for estimating the percentage of impervious 
area in a scene with the goal of using it for runoff simulation in 
urban areas. In their work, land cover classification is achieved 
by clustering algorithms. Schmugge et al. (2002) propose 
methods for estimating snowmelt runoff by using the 
hydrological state variables such as snow cover and water 
equivalent. These variables are derived relying on physical 
models, using the characteristics of the land surface such as 
emissivity or temperature as input. The necessary physical 
parameters are determined from the visible and near-infrared 
bands of remotely sensed imagery. Kite and Pietroniro (1996) 
claim that rainfall-runoff modelling requires the separation of 
pervious and impervious surfaces and, thus, the information 
about land cover and the corresponding surface permeability. 
Lee et al. (2004) confirm this statement and show that 
imperviousness is one of the most critical parameters for runoff 
simulation. In state-of-the-art techniques for modelling runoff, 
imperviousness is typically represented by the coefficient of 
imperviousness.  
 
Methods for the supervised classification of satellite or aerial 
imagery have been used in hydrological applications for many 
years. Frankhauser (1999) apply the maximum likelihood 
method to classify land cover using a digital orthophoto and use 

the classification results to determine the surface 
imperviousness in urban areas. In (Tyrna and Hochschild, 
2010), a support vector machine (SVM; Cortes and Vapnik, 
1995) is applied to the classification of satellite imagery and 
digital elevation data to determine impervious and pervious 
surfaces, aiming at modelling surface runoff. However, the 
authors do not assess the performance of classification with 
respect to the runoff modelling. Tokarczyk et al. (2015) propose 
a workflow for runoff simulation by using the imagery captured 
by an unmanned aerial vehicle (UAV). The classification results 
of images into two (impervious, pervious) or three classes 
(rooftop, streets, vegetation), achieved by maximum likelihood 
classification or boosting, serve as input to the next processing 
stage for the prediction of surface runoff. They state that their 
boosting classifier had achieved the largest accuracy for the 
three classes, and that more advanced classification methods 
would bring more accurate results, which are essential for the 
imperviousness determination. Hartcher and Chowdhury (2017) 
use high resolution aerial images as input for determining 
imperviousness based on a non-parametric parallelepiped 
classifier. The major constraint of their work is that the 
classification method cannot deal with the intra-class variability 
of the appearance of impervious surfaces, e.g. caused, by 
shadows or different surface properties. 
 
The deterministic factor of runoff simulation is the quality of 
the imperviousness of the land cover surface, which is heavily 
affected by the performance of classification methods. 
Supervised classification using hand-crafted features have been 
applied in land cover application for many years. These features 
can be pixel-based, e.g. raw intensities of colour bands, or based 
on segments such as super-pixels, e.g. mean intensities inside a 
segment. There are many options for classifiers for deriving 
land cover information, e.g. the classical maximum likelihood 
classifier (Lillesand et al., 2003), Logistic Regression (Maas et 
al., 2016), or Random Forest (Gislason et al., 2006). 
Incorporating context as an additional information source was 
found to improve the classification results (Schindler, 2012). 
Hermosilla et al. (2012) consider context by defining specific 
context features that were fed to a standard classifier. Statistical 
models of context lead to models assuming that neighbouring 
pixels are more likely to belong to the same class than to 
different classes. This leads to a smoothing of the classification 
results. An important example for a statistical method for 
contextual classification are Conditional Random Fields (CRF; 
Kumar and Hebert, 2006). The advantages of smooth labelling 
methods, in particular CRF, were confirmed in Schindler (2012) 
and, with a focus on land cover and land use information, in 
(Albert et al., 2017). In this paper, we adopt Random Forest and 
Conditional Random Fields for the determination of land cover 
classifiers because the former one has shown good performance 
in remote sensing, while CRF additionally incorporate local 
context information (Schindler, 2012). 
 
 

3. AUTOMATIC CLASSIFICATION AND 
DETERMINATION OF COEFFICIENT OF 

IMPERVIOUSNESS 

For the classification of land cover, we used a multispectral 
digital orthophoto (DOP), a Digital Surface Model (DSM) and a 
Digital Terrain Model (DTM). We aim at a pixel-based 
classification using features derived from the input data. 
Sections 3.1 and 3.2 give an outline of the classification 
methods used in this study, whereas Section 3.3 describes the 
features used for classification. The land cover information is 
used to determine coefficient of imperviousness for the parcels 
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of a cadastral database, which requires some post-processing as 
described in Section 3.4.  
 
3.1 Random Forests (RF) 

RF was introduced by Breiman (2001) and has been shown to 
be a powerful classifier in remote sensing applications (e.g. 
Schindler, 2012). RF consists of many randomized decision 
trees, each of which learned from a bootstrap data set, i.e. from 
a subset of the training samples that is drawn independently 
from the available training data. In the classification procedure, 
a feature vector is presented to each tree, and each tree casts a 
vote for the most likely class. The output of the RF is the class 
receiving the highest number of votes. If a posterior probability 
P(yi | fi(x)) for the class label yi of pixel i given the feature 
vector fi(x) is required for further processing, it can be derived 
by dividing the number of votes nc for class c by the total 
number of trees:   
 

 𝑃�𝑦𝑖 = 𝑐|𝐟𝐢(𝐱)� = 𝑛𝑐
𝑛𝑇

,   (1) 
 
where the notation fi(x) implies that the feature vector fi 
determined for pixel i may be a function of the data in a 
neighbourhood that may comprise the entire image x.  
 
In the training procedure for a tree, a subset of the bootstrap 
dataset is used for learning the tests in the tree nodes and, thus, 
the structure of the tree. For that purpose, a set of tests involving 
nF features is chosen randomly. These tests area applied to split 
the training samples arriving at that node into two subsets, and a 
splitting criterion such as the Gini Index is used to select the 
optimal split of that node (Criminisi et al., 2013). This 
procedure is repeated recursively until a stopping criterion is 
fulfilled. One criterion is the number of samples arriving at a 
node; recursion is terminated if this number is smaller than a 
threshold minSsplit, in which case the node is declared to be a 
leaf. Another criterion is the maximum depth dmax of a tree. 
After the structure of the tree has been determined, the 
remaining training samples are passed through the tree and each 
leaf is assigned to the most frequent class labels among the 
training samples arriving at that leaf. 
 
In our experiments, we used the RF classifier from the Python 
machine-learning library Scikit-learn (Pedregosa et al., 2011). 
We tuned the hyper-parameters using the tool Parfit (2017) to 
achieve better results. More information about the parameters is 
presented in section 4. 
 
3.2 Conditional Random Fields (CRF) 

CRF (Kumar and Hebert, 2006) provide a flexible framework 
for contextual classification. CRF are undirected graphical 
models. The underlying graph consists of nodes n and edges e, 
where the nodes represent the image sites (in our case: pixels) 
and the edges link adjacent nodes. Given a label vector 𝐲 =
[𝑦1, … ,𝑦𝑖 , … ,𝑦𝑛], where 𝑖 ∈ 𝑆 is the index of a pixel and 𝑆 is 
the set of all image sites, the goal is to assign the most probable 
class labels y for all image sites simultaneously considering all 
the observed data x, which can be achieved by maximizing the 
posterior probability 𝑃(𝐲|𝐱) (Kumar and Hebert, 2006):  
 

𝑃(𝐲|𝐱) = 1
Z
∏ 𝜑(𝑦𝑖 , 𝐱) ⋅ ∏ 𝜓(𝑦𝑖 ,𝑦𝑗 ,𝐱)𝑗∈𝑁𝑖𝑖∈𝑆 .   (2) 

 
In (2), 𝜑(𝑦𝑖 ,𝐱) are the association potentials and 𝜓𝑖𝑗(𝑦𝑖 ,𝑦𝑗 ,𝐱) 
are the interaction potentials. The partition function Z acts as 

normalization constant, which transforms the potentials into 
probabilities, and 𝑁𝑖 is the neighborhood of image site i.  
 
3.2.1 Association potential: the association potential indicates 
how likely a node i belongs to class 𝑦𝑖 given the observations x. 
The observations x are represented by site-wise feature vectors 
fi(x), and the association potential for node i is modelled to 
correspond to the posterior of a local discriminative classifier 
based on fi(x), i.e. 𝜑(𝑦𝑖 , 𝐱)  = 𝑃�𝑦𝑖|𝐟𝐢(𝐱)�. We apply the RF 
classifier for the association potential due to its powerful 
classification ability, using eq. (1) to deliver the posterior 
probability. In this case, we use the OpenCV implementation of 
RF (OpenCV, 2016).  
 
3.2.2 Interaction potential: the interaction potentials models 
the dependencies of the labels at adjacent nodes 𝑛𝑖  and 𝑛𝑗, by 
considering all the observations x, the neighborhood consists of 
four direct neighbors of each pixel in an image grid. We use the 
contrast-sensitive Potts model as our interaction term, since it 
produces good results (Schindler, 2012; Albert et al., 2017) and 
represents a good trade-off between accuracy and computation 
time:  
 
ln𝜓�𝑦𝑖 ,𝑦𝑗 ,𝐱� = 𝛿�𝑦𝑖 = 𝑦𝑗� ∙ � 𝛽0 + 𝛽1 ∙ exp �− �fi(𝐱)−fj(𝐱)�

2

2∙𝜎2
��.     (3) 

 
This model yields a data-dependent smoothing of the resultant 
label image. The function δ (∙) returns 1 if the argument is true 
and 0 otherwise. The hyper-parameter 𝛽0 specifies the degree of 
smoothing that is applied independently from the data, whereas 
𝛽1  is the weight of the data-dependent smoothing term. The 
parameter 𝜎2 is the mean value of the squared distances of the 
two feature vectors and is determined during training. 
 
3.2.3 Training and Inference: The association and interaction 
potentials are trained separately. For interaction potential, the 
parameter 𝜎2 is computed from the training samples, whereas 
the hyper-parameters 𝛽0 and 𝛽1 are defined by the user. Given 
the site-wise feature vectors of an image, the most probable 
label configuration of the graphical model is determined for all 
nodes simultaneously by maximizing the posterior in eq. (2). As 
exact inference is computationally intractable (Kumar and 
Hebert, 2006), an approximate solution for the optimal label 
configuration is determined by Loopy Belief Propagation (Frey 
and MaxKay, 1998).  
 
3.3 Feature Extraction 

An efficient classification requires an appropriate set of 
discriminative features, which are extracted from the input data. 
Following Albert et al. (2017), we divide the features into three 
categories: spectral, textual and structural, and three-
dimensional geometrical. For each pixel i, we extract features 
based on the three categories and concatenate them to define a 
site-specific feature vector fi(x). 
 
The original spectral features are the original grey values of the 
DOP. The normalized difference vegetation index (NDVI) 
derived from the near infrared and red band of the orthophotos 
is included in our feature vector, because it is suitable for the 
discrimination of vegetation from non-vegetation. Furthermore, 
we apply a colour space transformation and obtain the hue, 
saturation and intensity for each pixel. In addition to these basic 
features, we determine their means and variances from a local 
neighbourhood whose size depends on the image resolution (we 
used 13 x 13 pixels in our experiments). More features are 
determined by applying Gaussian filters (σ = 2 and σ = 5, 
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referred to as Gauss2 and Gauss5, respectively). In addition, we 
use the orientation and magnitude of the intensity gradients; the 
latter were computed based on derivative of Gaussian filters of 
width σ = 2. Thus, we obtain a total of 42 features in the 
spectral group. 
 
The textural features are derived from a Grey Level Co-
Occurrence Matrix (GLCM) (Haralick et al., 1973), which is 
computed from the co-occurrences of the intensity values at 
pixel pairs in a certain spatial configuration within a window of 
5 x 5 pixels. We computed a GLCM for four directions (0°, 45°, 
90°, 135°), in all cases using a distance of 1. From the resultant 
four GLCMs, the Haralick features Energy, Contrast, 
Correlation and Homogeneity were derived, so that in total we 
used 16 textual features.  
 
Structural features are derived from the histogram of 
orientations of gradients (HOG), weighted by their magnitude, 
which is computed from a window of 32 x 32 pixels centred at 
each pixel. From the HOG, we derive the mean and variance of 
the histogram entries, the number of histogram entries that are 
larger than the mean (NoM), and the angle between the first and 
second maximum (Angle). In addition, we determine a distance 
transform feature, which delivers the distance of a pixel to the 
nearest edge, the latter derived by a Canny edge extractor based 
on gradients determined by derivative of Gaussian filters of 
width σ = 2. In total, we had 5 structural features. 
 
The 3D features are derived from the DSM and the DTM. The 
first one is the normalised DSM (nDSM), which is a model of 
the height differences between DSM and DTM. Furthermore, 
the gradient orientations and magnitudes of the DSM and the 
nDSM, all computed based on derivative of Gaussian filters of 
width σ = 2, and the mean and Gaussian curvatures of the DSM 
are determined. From the magnitudes of the nDSM gradient we 
also computed their means and variances in a neighbourhood of 
size 13 x 13 pixels. Thus, in total we extracted 9 3D features for 
each pixel. 
 
Altogether, the site-specific feature vectors 𝐟𝐢(𝐱) consist of 72 
features. Each feature is scaled linearly to the interval [0;1], 
discarding the 2% smallest and largest feature values, 
respectively, for robustness to outliers. An overview of our 
feature pool is presented in Table 1. 
 
We rank our features based on the feature importance of the 
Scikit-learn RF implementation, which is based on the expected 
fraction of samples for which a specific feature is selected 
(Scikit-learn, 2018). In our experiments based on RF, we 
compared the classification results achieved using all features to 
those that can be obtained when using only the 20 most 
important features.  
 
3.4 Post-processing for determining the coefficient of 
imperviousness 

In the classification procedure, we differentiate five land cover 
classes (asphalt / as, building / bld, tree / tr, low vegetation / lv 
and bare soil / bs). This information is used to derive coefficient 
of imperviousness for each subbasin. A subbasin is defined as 
an area which is connected to a specific pipe of the sewer 
system in which surface water will drain. The subbasins are 
delineated on the basis of individual plots corresponding to a 
residential unit (typically consisting of a building and the 
attached garden and parking space) or a street. In order to 
compute the coefficient of imperviousness, we first use the five 
land cover classes to derive the information about impervious 

and permeable surfaces in study area. The classes building and 
asphalt are merged to define the class impervious, whereas bare 
soil and low vegetation are considered to belong to class 
permeable. The assignment of pixels classified as tree depends 
on the material of the ground underneath the tree and not on the 
fact that the image shows a tree. If the ground is covered by 
asphalt, the pixel should be considered to be impervious, 
otherwise it should belong to class permeable. However, this 
information cannot be derived from the image data, because 
trees occlude the ground. Consequently, we use the GIS data for 
that purpose. We extract all road objects from the GIS and use 
them to generate a binary road mask. Pixels marked to 
correspond to roads in that mask that are labelled as tree are 
assigned to class impervious; all other tree pixels are treated as 
permeable.  
 

Group Basic Feature Derived Feature 

spectral 

Red Mean, Variance, Gauss2, Gauss5 
Green Mean, Variance, Gauss2, Gauss5 
Blue Mean, Variance, Gauss2, Gauss5 
NIR Mean, Variance, Gauss2, Gauss5 
NDVI Mean, Variance, Gauss2, Gauss5 
Hue Mean, Variance, Gauss2, Gauss5 
Saturation Mean, Variance, Gauss2, Gauss5 
Intensity Mean, Variance, Gauss2, Gauss5 
Intensity Gradient Orientation, Magnitude 

textural GLCM 

Haralick Energy 
Haralick Contrast 
Haralick Entropy 
Haralick Homogeneity 

structural 
HOG Mean, Variance, NoM, Angle 
Distance 
Transform 

Distance to nearest edge  

3D 

nDSM  
DSM Mean and Gaussian Curvatures 
DSM Gradient Orientation, Magnitude 
nDSM Gradient Orientation, Magnitude, Mean, 

Variance 
 
Table 1. Pool of spectral, textural, structural and 3D features 

extracted per pixel. NIR: Near infrared band of the 
multispectral DOP. See the main text for the 
definition of the features.  

 
After this heuristic correction step (which may introduce errors 
due to GIS road objects that contain some areas covered by low 
vegetation, e.g. in the centre between two lanes, or in non-road 
objects where trees overhang areas reserved for parking and, 
thus, are covered by asphalt), we compute the coefficient of 
imperviousness for all subbasins. The coefficient of 
imperviousness is defined as the percentage of impervious 
pixels inside the specific area. 
 
 

4. EXPERIMENTS 

The experiments are carried out to evaluate the effectiveness 
and the limitations of the proposed automatic classification 
methods for urban hydrological applications. We also compare 
different classifiers and different variants of these classifiers.  
 
4.1 Test dataset and test setup 

Experiments are based on a case study in the city of Osnabrück 
(Germany). The ground sampling distance (GSD) of the DOP is 
20 cm. It has four bands (RGB-IR) and was acquired in 2014. 
The DSM and the DTM were based on airborne laser scanner 
data acquired in 2011. Both the DSM and the DTM were 
provided at a coarser resolution (GSD = 50 cm) and were 
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resampled to the GSD of the orthophoto by applying bilinear 
interpolation. Moreover, we had building and plot outlines 
corresponding to cadastral parcels of the German Authoritative 
Real Estate Cadastre Information System (ALKIS) of 2013. A 
reference for land cover consisting of the five classes defined in 
Section 3.4 was generated in four test areas (area 0 – area 3) by 
manual annotation. These annotated areas cover a total of 1.6 
km2 (Figure 1). Due to the temporal acquisition dates of the 
DOP, the DSM/DTM and the ALKIS data, we observed data 
inconsistences: some pixels in the DSM did not represent the 
same object as the corresponding pixels in the orthophoto or in 
ALKIS. For instance, some building outlines in ALKIS were 
outdated compared to the DOP, and the DOP also showed some 
buildings that had not been available at the time of the 
acquisition of the DSM. Pixels affected by such inconsistences 
are marked as invalid and are not used in any training and 
evaluation procedure. Figure 1 presents the test data and the 
four areas with reference data. The reference consists of almost 
40 million pixels (excluding invalid pixels). In our experiments, 
17% of the labelled pixels (about 6.8 million) were used for 
training. The training areas are marked by black rectangles in 
Figure 1. The distribution of classes is rather unbalanced in both 
the training and test sets. For instance, only about 3% of the 
training pixels belong to bare soil, whereas about 30% of the 
pixels are labelled as low vegetation. 
 

 
 
Figure 1. The test data and the labelled areas (areas 0-3). Pixels 

inside the black rectangles are training samples 
 
To test the runoff simulation based on automatic classification, 
a hydrological expert defined the subbasins of the sewer system 
in test area 1. On the basis of ALKIS outlines, individual plots 
of land that are drained by the same part of the sewer were 
merged to subbasins. This resulted in a total of 23 subbasins in 
area 1 with an average size of about 5000 m2. The study 
catchment with its subbasins is shown in Figure 2.  
 
In our experiments, we used the samples inside the black 
rectangles in Figure 1 for training our classifiers (RF and CRF) 
and the remaining labelled samples for evaluation. For the RF, 
we used three variants based on different hyper-parameter 
settings. In all cases, unless noted otherwise, we used the 
default parameters of Scikit-learn (Pedregosa et al., 2011). In 
variant RF-STD, we used all the 72 features defined in Section 
3.3 for classification. The RF consisted of nT = 30 decision 
trees, and we used the default number nF = √72 = 8 features for 
learning the node tests. The minimum number of samples for 
splitting a node was set to minSsplit = 2. For the maximum tree 
depth, we used the default setting of Scikit-learn, dmax. = ∞, 

which implies that this criterion is not used in training. No 
measures were applied to obtain a balanced class distribution of 
the training samples. In variant RF-FS20 we only used the 20 
most important features according to the feature importance 
(Section 3.3.1) and the same hyper-parameter setting as in RF-
STD, which implies nF = √20 = 4. Finally, in variant RF-TND, 
we tuned the hyper-parameters in a procedure where we only 
used half of the samples in the black rectangles in Figure 1 for 
training and the rest for validation. For the RF that delivered the 
association potentials of the CRF classifier, we used all 72 
features and nT = 200, nF = √72 = 8, minSsplit = 5 and dmax. = 25. 
In this case, 100000 samples per class drawn randomly from all 
training samples were used for training. The parameters of the 
contrast-sensitive Potts model were set to β0 = β1 = 0.5. 
 
After land cover classification, we determined the coefficient of 
imperviousness for each subbasin. This resulted in four different 
variants of the coefficient of imperviousness for the four 
classification results (COI_RF-STD, COI_RF-FS20, COI_RF-
TND, COI_CRF). A reference for the coefficient of 
imperviousness (COI_REF) was generated by applying the 
post-processing procedure described in Section 3.4 to the 
reference labels. In order to assess the reliability of visual 
inspection by humans, we also asked six (non-expert) 
individuals to estimate the coefficient of imperviousness based 
on a visual inspection under professional guidance; this variant 
is referred to as COI_VIS. For each of these variants, a mean 
coefficient of imperviousness 𝑆𝐹����  was computed by averaging 
the coefficient of imperviousness over all 23 subbasins.  
 

 
 
Figure 2.  The study catchment with 23 subbasins (blue) in area 

1 (green rectangle) 
 
In order to evaluate our results for land cover classification, we 
compared them to the reference and determined a confusion 
matrix as well as metrics derived from the confusion matrix, 
only considering samples outside the training areas. We focus 
on the overall accuracy (OA) i.e. the percentage of pixels that 
are assigned the correct class label by the classification process, 
and the F1 score, i.e. the harmonic means of the completeness 
and correctness per class; we also report the average F1 score 
(𝐹1����). In addition, we evaluate the coefficient of imperviousness. 
For that purpose, we compute the difference between the 
coefficient of imperviousness obtained by the variants and the 
reference (COI_REF) for each subbasin. From these 
differences, we determine the root mean square error (RMSE) 
and the mean difference ∆avg of the 23 subbasins. 
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4.2 Land cover classification 

4.2.1 Feature selection: The 72 features were ranked by feature 
importance delivered by the RF. Table 2 shows the 20 most 
important features according to that measure. It is not surprising 
that the nDSM and NDVI-based features are among the most 
relevant ones: the nDSM is crucial for differentiating elevated 
objects from objects on the terrain, whereas the NDVI helps to 
differentiate vegetation from other objects (e.g. Rottensteiner et 
al., 2007). We used these 20 features in variant RF-FS20. 
 

R Feature R Feature 
1 nDSM 11 NDVI: var.  
2 ∇DSM: mean mag.  12 Distance transform 
3 NDVI: mean 13 Hue: Mean 
4 NDVI: Gauss2  14 Hue: Gauss5  
5 ∇nDSM: mag.  15 Hue 
6 NDVI 16 Blue: Gauss2  
7 NDVI: Gauss5  17 Red: Gauss2  
8 ∇DSM: mag. 18 Saturation: Gauss5 
9 ∇nDSM: var. of mag. 19 Intensity : Mean  

10 DSM: mean curvature  20 Hue: Gauss2 
 
Table 2. The 20 most important features. R: Rank. ∇: Gradient; 

mag.: magnitude; var.: variance. For a definition of 
the features, cf. Section 3.3.  

 
4.2.2 Tuning the RF hyper-parameters: To find the best 
values of the hyper-parameters for variant RF-TND, we split the 
training areas (black rectangles in Figure 1) horizontally into 
two subset of equal size and used the upper half for training and 
the lower half for validation. We used different hyper-parameter 
settings, trained the RF and classified the validation set. Then 
we compared the results with the reference labels of the 
validation set and determined the average F1 score (𝐹1����) as our 
main criterion for evaluating the quality of the results.  
 
We carried out tests using two different values for the number 
of features to be tested in the RF nodes (all features, i.e. nF = 72, 
and the default setting nF = √72 = 8). For nF = 72, we did not 
compensate for the unbalanced class distributions in the training 
data (bal. = no), whereas for nF = 8, we additionally 
investigated the effects of balancing the training samples to 
compensate for this effect, carrying out two groups of tests (bal. 
= no and bal. = yes, respectively; Pedregosa et al., 2011). In 
each of the resultant three groups of tests, we varied the 
parameters nT and minSsplit within certain ranges. Table 3 shows 
the resultant average F1 scores (𝐹1����) on the validation set.  
 
Comparing the results for the first two groups of experiments in 
Table 3, both conducted without balancing the training samples, 
it is obvious that using the default setting for nF (nF = √72 = 8) 
outperforms the variant using all features (nF = 72) for all 
combinations of nT and minSsplit. A comparison of the two 
groups of experiments conducted using nF = 8 (bal. = no vs. 
bal. = yes; second and third group in Table 3) shows that 
balancing the training samples has a positive but almost 
negligible effect on the average F1 scores. In general, increasing 
the number of trees has a positive effect, independent of the 
other parameters; using a very large value for minSsplit (1000) 
leads to a deterioration of the results. The table shows that in 
general, the RF is relatively robust against varying the hyper-
parameters, but careful tuning can lead to an improvement in 
the average F1 scores (𝐹1����) of about 2.5%. The best average F1 
score of 82.8% was achieved when using nT = 100 decision 
trees, balancing the training data (bal. = yes), nF = √72 = 8 

features for learning the node tests and splitting a node if more 
than minSsplit = 2 samples reach that node in training. These 
values are used for variant RF-TND in the evaluation.  
 

nT  
minSsplit 

nF bal. 2 10 100 1000 
10 80.3 80.3 80.6 80.2 

72 no 30 80.9 80.9 81.0 80.1 
60 81.0 81.0 81.0 80.1 
100 81.1 81.1 81.1 80.0 

 

10 81.5 81.7 82.0 81.5 

8 no 30 82.4 82.5 82.4 81.7 
60 82.6 82.6 82.6 81.8 
100 82.7 82.8 82.6 81.8 
 

10 81.8 81.7 81.7 80.2 

8 yes 30 82.5 82.5 82.3 80.6 
60 82.7 82.7 82.3 80.7 
100 82.8 82.7 82.4 80.8 

 

Table 3. Average F1 score ( 𝐹1���� ) in [%] for different 
combinations of hyper-parameters of the RF 
classifier. nT: number of trees; nF: number of 
features used in a node test; minSsplit: minimum 
number of samples in a tree node for splitting; bal: 
balancing the training set or not.  

 
4.2.3 Evaluation: Table 4 presents the evaluation of the land 
cover classification results of all variants of RF and the CRF. In 
general, all RF variants and CRF delivers very similar results 
(all about 85% OA). Besides, all classifiers have difficulties in 
classifying the class bare soil, for which only very few (training 
and test) samples are available. Examples for some 
classification results are shown in Figure 3. In the subsequent 
paragraphs, we analyse the variants in more detail. 
 

Classifier 
F1 [%] 𝐹1���� 

[%] 
OA 
[%] bld. as. tr. gr. bs. 

RF-STD 91.5 82.3 85.8 84.5 60.3 80.9 85.4 
RF-FS20 91.6 81.8 85.7 84.2 60.0 80.7 85.1 
RF-TND 91.7 82.6 86.2 85.0 60.4 81.2 85.8 
CRF 91.5 82.6 85.8 84.2 59.9 80.8 85.3 

 
Table 4. Results of land cover classification for different 

variants of RF (cf. Section 4.1) and the CRF. Best 
scores are printed in bold font. 

 
Random Forest: The standard RF variant (RF-STD) delivers 
promising results with an OA of 85.4% and an average F1 score 
of 80.9%. The RF with fine-tuned hyper-parameters (RF-TND) 
delivers the best results, not only in terms of the OA (85.8%) 
and average F1 score (81.2%), but also in all class-specific F1 
scores. The biggest improvement in the class-specific F1 score 
occurs with low vegetation (0.5% compared to RF-STD). Using 
only the 20 most important features (variant RF-FS20) delivers 
a slightly worse result, with a decrease of 0.3% in OA and 0.2% 
in the average F1 score compared to the RF-STD. The biggest 
class-specific drop in F1 occurs with asphalt (0.5%). However, 
this small drop in performance is contrasted by a large reduction 
in computation time. For variant RF-FS20, training and testing 
only require 40% and 70% of the time needed by variant RF-
STD, respectively. 
 
Conditional Random Fields: in the CRF, we used all the 72 
features for training and testing, and we did not apply any 
hyper-parameters tuning. Due to the properties of the model 
used for the interaction potential, the CRF delivers a smoother 
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classification result, especially at the object boundaries (cf. 
Figure 3). Table 4 indicates that the result of CRF is very close 
to the one of RF-STD, but slightly worse than the one of RF-
TND (0.5% in OA). This could be caused by the fact there was 
no tuning of the hyper-parameters of the RF used in the CRF. 
The CRF achieves the best F1 score for class asphalt. However, 
introducing the interaction potentials causes the training and 
inference time to be increased by factors of 3 and 20, 
respectively, compared to RF-STD. 
 

 
 
Figure 3: Classification results. Top left: input image; top right: 

reference labels; bottom left: results of RF-STD; 
bottom right: results of CRF. 

 
4.3 Coefficient of imperviousness 

Table 5 shows the average coefficient of imperviousness and 
the average difference to the reference as well as the RSME for 
all variants. Of the automatic methods, COI_RF-TND performs 
best, showing a mean difference ∆avg of -0.6% and a RMSE of 
3.8%. The coefficient of imperviousness computed from the 
results of the other RF variants are very promising as well (-
0.9% and -1.1%, respectively). Interestingly (and somewhat 
surprisingly), COI_CRF delivers the worst results; compared to 
COI_RF-TND, the mean difference is larger by 1.4% and the 
RMSE by 0.6%. However, these numbers have to be interpreted 
with caution. As the reference was generated by using the same 
heuristics as the ones used to deal with class tree, it may not be 
perfect.  
 

Variant 𝑆𝐹���� [%] ∆avg [%] RMSE [%] 
COI_RF-STD 42.1 -0.9 3.8 
COI_RF-FS20 42.3 -1.1 3.8 
COI_RF-TND 41.8 -0.6 3.8 
COI_CRF 43.2 -2.0 4.4 
COI_VIS 51.5 -10.3 12.2 
COI_REF 41.2 --.-- --.-- 

 
Table 5.  Results of coefficient of imperviousness computed in 

different variants. All values are computed based on 
the 23 subbasins. Best results are print in bold font 

 
It is interesting to see that the visual determination of the 
coefficient of imperviousness by humans (COI_VIS) shows 

both, the largest mean difference to the reference (-10.3%) and 
the largest RMSE (12.2%). It would seem that humans tend to 
over-estimate the coefficient of imperviousness by a 
considerable margin. It is also noteworthy that there exists a 
large difference in the coefficient of imperviousness determined 
by the six individuals (standard deviation of 9.3% with respect 
to the mean). It would seem that the visual interpretation of non-
expert humans is subjective and may be not reproducible. Our 
results indicate that the coefficient of imperviousness derived by 
an automatic procedure based on classification can be more 
accurate and reproducible.  
 
 

5. CONCLUSION 

In this paper, we proposed and evaluated a methodology for 
determining the coefficient of imperviousness, which is a major 
parameter for urban drainage models, based on the supervised 
classification of aerial imagery and height data. We compared 
three variants of a RF classifier and a CRF. The results of land 
cover classification show no clear advantage of either classifier, 
both achieving an overall accuracy of about 85.5%. To 
determine the coefficient of imperviousness, the classification 
results had to be corrected to compensate for the occlusion of 
the ground surface by trees. This was achieved by a heuristic 
method taking into account information from a GIS. The best 
result for the coefficient of imperviousness is achieved on the 
basis of the classification results of the best RF classifier (RF-
TND) with a mean difference of -0.6% and a root mean square 
error of 3.8% compared to the reference. This is considerably 
better than the results obtained by visual interpretation by six 
non-expert humans under a professional guidance. Visual 
interpretation did not only result in a high variance of the results 
between the individuals, but also in a considerably larger error 
compared to the reference than the automated methods. This 
indicates that the automated derivation of the coefficient of 
imperviousness, apart from being more objective and more 
reproducible, delivers more accurate results than the manual 
estimation.  
 
In the future, we want to investigate how the determination of 
the coefficient of imperviousness can benefit from using 
Convolutional Neural Networks (CNN, LeCun et al., 1998), 
which have been shown to outperform classification methods 
based on hand-crafted features (Zhu et al, 2017).  
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