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Nobody ever figures out what life is all about, and it doesn’t matter. Explore
the world. Nearly everything is really interesting if you go into it deeply enough.

Richard Phillips Feynman



Abstract
The problem of the evolution of a large number of particles due to gravity is crucial

to many astrophysical phenomena. An important problem is the dynamical evolution
of a dense stellar system, such as a globular cluster (GC), a galactic nucleus (GN)
or nuclear star cluster (NSC). Such loci are the breeding grounds of sources of tidal
disruptions and gravitational waves. Right in the middle of these regions a massive
black hole (MBH) might be lurking, which makes the problem even more interesting,
because such massive objects can form a pair and later a binary, which could be
powerful source of gravitational radiation for space-borne observatories.

The detailed tracking of the dynamical evolution of a set of N stars is a complex
problem. Since we lack an analytical solution, it needs to be studied by approxima-
tions and numerical methods close to what we might expect from Nature. The close
interactions between stars define the core mechanism that determines the global evo-
lution of dense stellar systems. These interactions are responsible for defining the
timescale in which catastrophic phenomena happen, such as the core collapse of the
system; particularly relevant for the formation of a gravitational capture, that even-
tually will evolve mostly due to the emission of gravitational radiation.

Moreover, depending on the problem we are addressing we might need to add
further layers of complexity. For instance, in the case of a GN the presence of gas can
play an crucial role, so it needs to be considered, particularly in the massive black
hole binary (MBHB) formation process.

The formation of the disc structure around the MBHB is in particular a very impor-
tant problem which has received very little numerical investigation until the presen-
tation of this work. It is usually assumed that the gas is supplied via the accumulated
infall of gaseous clouds on to the binary, and hence this gas is distributed in a disc-
like structure around it. Hence, it is relevant to address the formation of binaries
taking into account such a gaseous disc around the system in different orbits, and
the interaction of the gas with the black holes, not just dynamically, but also via the
accretion on to them.

Motivated by the complexity and many open question of these fundamental prob-
lems, this thesis is (i) a detailed study of the non-linear dynamics that occur in dense
stellar systems with state-of-the-art numerical techniques, (ii) a detailed study of the
impact of gas on to the binary, in particular to address the role of circumbinary discs
on the evolution of a MBHB, and (iii) how repeated infall events of gaseous clouds
distribute and shape around such massive binaries, as well as the impact on the dy-
namical evolution of the binary itself.

All of these topics are intertwined and I have worked in them in a parallel way
during my PhD. The most remarkable findings of my work are that (i) the use of a
softening parameter is critical to analyse the long-term evolution of a dense stellar
system, with an important impact on the timescale in which crucial events happen,
including the formation of binaries, (ii) the way binaries of MBHs accrete gas in
counter-rotating circumbinary discs, will determine the evolution of the massive bi-
nary, and (iii) the formation of disc-like structures around these binaries in a GN is,
to say the least, challenging. Also, episodic circumbinary structures will modify the
orbital evolution of MBHBs, altering their associated gravitational merger timescale.

Keywords: Black holes, Accretion, Stellar dynamics, Gravitational Waves.



Zusammenfassung
Die durch Schwerkraft verursachte Entwicklung einer großen Anzahl von Teilchen

ist entscheidend für viele astrophysikalische Phänomene. Eine wichtige Fragestellung
ist die dynamische Entwicklung eines dichten Sternsystems, wie etwa eines Kugel-
sternhaufens (KS) oder eines Galaxienkerns (GK). Solche Orte sind die Brutstätten
von Quellen, die Gravitationswellen und Gezeiten-Sternzerissereignisse produzieren.
Mitten in solchen Systemen könnte ein massives schwarzes Loch lauern, was das
Problem noch interessanter macht, da sich solch massive Objekte zu einem Paar und
danach zu einem Doppelsternsystem zusammenfinden können. Diese Gruppierungen
sind mächtige Quellen von Gravitationsstrahlung für Raumfahrtobservatorien.

Die detaillierte Nachverfolgung der dynamischen Entwicklung von N Sternen ist
ein komplexes Problem. Da es keine analytische Lösung gibt, müssen wir mit Näherun-
gen und numerischen Methoden arbeiten, die möglichst gut die Natur abbilden. Die
Wechselwirkung zwischen Sternen in nächster Nähe definieren den Kernmechanis-
mus, der die globale Entwicklung des dichten Sternsystems bestimmt. Diese Wech-
selwirkungen sind für die Zeitskalen “katastrophaler” Ereignisse verantwortlich, wie
etwa den Kernkollaps des Systems. Dieser Kollaps ist von essenzieller Bedeutung
für die Bildung eines gravitativ bedingten Einfangs, dessen dynamische Entwicklung
irgendwann vom Energieverlust durch Gravitationsstrahlung getrieben wird.

Darüber hinaus kann es bei manchen Fragestellungen notwendig sein, weitere Ebe-
nen an Komplexität hinzuzufügen. Zum Beispiel kann bei einem GK das Vorhan-
densein von Gas eine entscheidende Rolle spielen. Deshalb muss Gas in diesem
Fall berücksichtigt werden, insbesondere bei der Formation eines massiven binären
schwarzen Loches (MBSL).

Die Bildung einer Scheibenstruktur um ein MBSL herum ist ein sehr wichtiges
Problem, das bis zur Präsentation dieser Dissertation wenig Beachtung durch nu-
merische Nachforschungen gefunden hat. Normalerweise nimmt man an, dass das
Gas durch den Einfall von Gaswolken auf das Binärsystem ins Innere gelangt und
sich deshalb eine scheibenartige Struktur bildet. Von daher ist es wichtig, die For-
mation von Binärsystemen unter der Anwesenheit einer solchen Gasscheibe auf un-
terschiedlichen Umlaufbahnen zu untersuchen, sowie die Wechselwirkung der MBSL
mit dem Gas. Nicht nur die dynamische Wechselwirkung, sondern auch die Akkretion
des Gases auf die MBSL ist von hoher Bedeutung.

Motiviert durch die Komplexität und vielen offenen Fragen dieser fundamentalen
Themen ist diese Dissertation (i) eine detaillierte Studie der nicht-linearen Dynamik,
die sich in dichten Sternsystemen abspielen durch modernste numerische Methoden,
(ii) eine detaillierte Studie des Effekts von Gas auf Binärsysteme, insbesondere um
die Rolle von Gasscheiben bei der Entwicklung von MBSL zu adressieren und (iii) wie
sich wiederholte Einfälle von Gaswolken verteilen und formieren um solche MBSL,
sowie die Wirkung auf die dynamische Entwicklung von Binärsystemen selbst.

Alle diese Themen sind stark verwandt und ich habe während meiner Disserta-
tionsarbeit parallel an ihnen gearbeitet. Die bedeutendsten Erkenntnisse meiner
Arbeit sind: (i) Der Einsatz eines “Softening Parameters” ist für die Analyse der
langzeitlichen Entwicklung eines dichten Sternsystems entscheidend und hat einen
wichtigen Einfluss auf die Zeitskalen, in denen wichtige Prozesse stattfinden, auch die
Formation von Doppelsternsystemen (ii) Die Art und Weise, wie massive MBSL Gas
akkretieren in entgegen-rotierenden Gasscheiben bestimmt die Entwicklung des mas-
siven Binärsystems. (iii) Die Formation von scheibenartigen Strukturen in solchen
Binärsystemen in GK ist, um es vorsichtig auszudrücken, sehr schwierig. Außerdem
verändern sporadisch auftretende Strukturen um das Binärsystem herum die Entwick-
lung der Umlaufbahn von MBSL, was deren Zeitskala für eine durch Gravitation bed-
ingte Verschmelzung beeinflusst.
Schlagworte: Schwarzes Loch, Akkretion, Stellardynamik, Gravitationswelle.





C O N T E N T S

I I N T R O D U C T I O N

1 G R AV I TAT I O N A L WAV E A S T R O N O M Y 12
2 S T E L L A R D Y N A M I C S 13

2.1 Not that easy, actually . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Getting into some more details . . . . . . . . . . . . . . . . . . 14
2.3 Different possible schemes . . . . . . . . . . . . . . . . . . . . . 15
2.4 Modern hardware: GPUs . . . . . . . . . . . . . . . . . . . . . . 15

3 M A S S I V E B L A C K H O L E S : F I R S T P I C T U R E 18
3.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Massive black holes: from quasars to our Galactic Centre . . . . 18
3.3 Our Own Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 B I N A R I E S O F M A S S I V E B L A C K H O L E S 21
4.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Formation and evolution: different phases . . . . . . . . . . . . 21

5 T H E O R I G I N O F T H E G A S : I N T E R A C T I N G G A L A X I E S 24
5.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Major mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Unequal mergers . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Minor mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 G E T T I N G T H E G A S T O T H E M A S S I V E B L A C K H O L E S 27
6.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Nuclear-disc-driven . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Circumbinary-disc-driven . . . . . . . . . . . . . . . . . . . . . 28

7 G O A L S O F T H I S T H E S I S 29
7.1 From dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 To accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 To study black hole binary systems . . . . . . . . . . . . . . . . 31

II P R O J E C T S

8 D Y N A M I C A L E V O L U T I O N O F D E N S E S T E L L A R S Y S T E M S 35
8.1 The current algorithm . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 The three flavours of GRAVIDY: tests . . . . . . . . . . . . . . . 48
8.3 The role of softening on dynamics . . . . . . . . . . . . . . . . . 55
8.4 Relativistic corrections . . . . . . . . . . . . . . . . . . . . . . . 63
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.6 Appendix A: about the code . . . . . . . . . . . . . . . . . . . . 65
8.7 N−body visualisation tool . . . . . . . . . . . . . . . . . . . . . 65

9 R E T R O G R A D E M B H B E V O L U T I O N O N C I R C U M B I N A RY A C C R E -
T I O N D I S C S 67
9.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . 67
9.2 Numerical tool and description of the initial models . . . . . . . 69
9.3 Accretion prescriptions . . . . . . . . . . . . . . . . . . . . . . . 70
9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.5 A semi-analytical model for the evolution of a binary in an un-

perturbed retrograde disc . . . . . . . . . . . . . . . . . . . . . 80
9.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C. MAUREIRA-FREDES 2



10 C I R C U M B I N A RY S T R U C T U R E F O R M AT I O N F R O M M U LT I P L E I N -
F A L L I N G C L O U D S 88
10.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . 88
10.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.3 Initial conditions and run description . . . . . . . . . . . . . . . 96
10.4 Resolution and convergence tests . . . . . . . . . . . . . . . . . 100
10.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.6 Discussion and future work . . . . . . . . . . . . . . . . . . . . 117
10.7 Complementary material . . . . . . . . . . . . . . . . . . . . . . 119

III C O N C L U S I O N S

11 M A I N C O N C L U S I O N S 125
11.1 From Stellar Dynamics... . . . . . . . . . . . . . . . . . . . . . . 125
11.2 ... To Retrograde Accretion Discs... . . . . . . . . . . . . . . . . 127
11.3 ... And The Formation Of Gaseous Structures... . . . . . . . . . 128
11.4 ... To study black hole binary systems . . . . . . . . . . . . . . . 129

Bibliography 148



L I S T O F F I G U R E S

Figure 1 Messier 53 . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2 Nvidia GTX1070 . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3 Artist’s impression of Hyperluminous quasar . . . . . . 19
Figure 4 Artist’s impression of black holes . . . . . . . . . . . . . 22
Figure 5 The Antennae galaxies . . . . . . . . . . . . . . . . . . 25
Figure 6 Artist’s impression of infalling gas onto SMBHs . . . . . 28
Figure 7 Accretion disc around BH gargantua . . . . . . . . . . . 30
Figure 8 Class diagram of the code . . . . . . . . . . . . . . . . 40
Figure 9 Block time steps illustration . . . . . . . . . . . . . . . 42
Figure 10 Hermite integration scheme illustration . . . . . . . . . 45
Figure 11 Relation between updated particles . . . . . . . . . . . 45
Figure 12 GPU Grid configuration . . . . . . . . . . . . . . . . . . 47
Figure 13 Parallelisation scheme . . . . . . . . . . . . . . . . . . 48
Figure 14 Cumulative energy error vs wall clock time . . . . . . . 51
Figure 15 Wall clock time . . . . . . . . . . . . . . . . . . . . . . 52
Figure 16 Acceleration factor . . . . . . . . . . . . . . . . . . . . 54
Figure 17 Performance of the implementations . . . . . . . . . . 55
Figure 18 Cumulative energy error vs wall clock time . . . . . . . 57
Figure 19 Comparison of the Lagrange radii . . . . . . . . . . . . 59
Figure 20 Energy conservation in a long time integration . . . . . 60
Figure 21 Plummer sphere using Kroupa IMF . . . . . . . . . . . 61
Figure 22 Plummer sphere using Kroupa IMF: core collapse . . . 61
Figure 23 Time step distribution . . . . . . . . . . . . . . . . . . . 62
Figure 24 SMBHB test using PN terms (q=1 and q=2) . . . . . . 63
Figure 25 SMBHB test using PN terms (q=5 and q=100) . . . . . 64
Figure 26 GraviDyView snapshot . . . . . . . . . . . . . . . . . . 66
Figure 27 Surface density of the initial conditions . . . . . . . . . 70
Figure 28 Relative MBH orbital separation (e=0.0) . . . . . . . . 72
Figure 29 Evolution of the secondary MBH (e=0.0) . . . . . . . . 73
Figure 30 Relative MBH orbital separation and eccentricity evo-

lution (e=0.0) . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 31 Relative MBH orbital separation versus secondary mass

for the e=0.0 case . . . . . . . . . . . . . . . . . . . . . 75
Figure 32 Relative MBH orbital separation and eccentricity evo-

lution (e=0.6) . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 33 Evolution of the secondary MBH (e=0.6) . . . . . . . . 77
Figure 34 Relative MBH orbital separation (e=0.0), including 3D 78
Figure 35 Relative MBH orbital separation (e=0.6), including 3D 79
Figure 36 Eccentricity evolution (e=0.0), including 3D . . . . . . 80
Figure 37 Eccentricity evolution (e=0.6), including 3D . . . . . . 81
Figure 38 Eccentricity vs secondary mass, semi-analytical model

(e=0.6) . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 39 Eccentricity and semi major axis vs secondary mass,

semi-analytical model (e=0.01) . . . . . . . . . . . . . 84
Figure 40 Schematic representation of selected configurations of

the simulations . . . . . . . . . . . . . . . . . . . . . . 92
Figure 41 Pericentre distance and injection of time of the clouds . 97
Figure 42 Orientation of the angular momentum of each cloud . . 98

C. MAUREIRA-FREDES 4



Figure 43 Time evolution of the relevant MBHB parameters for
different values of rsink . . . . . . . . . . . . . . . . . . 101

Figure 44 Accretion rate for all the resolutions . . . . . . . . . . . 102
Figure 45 Angle-averaged density profile . . . . . . . . . . . . . . 102
Figure 46 Column density rendering . . . . . . . . . . . . . . . . 103
Figure 47 Angle-averaged mass density profile for all runs . . . . 104
Figure 48 Mass evolution of the circumbinary structures . . . . . 105
Figure 49 Time evolution for the circumbinary structure . . . . . 107
Figure 50 Snapshots of the simulations . . . . . . . . . . . . . . . 108
Figure 51 Same as Fig. 49 but for the mini discs . . . . . . . . . . 111
Figure 52 RunA F = 0.0 last snapshot . . . . . . . . . . . . . . . . 112
Figure 53 Same as Fig. 49 but for the set of ‘forked’ simulations . 115
Figure 54 Same as Fig. 51 but for the “forked” simulations. . . . . 115
Figure 55 Last snapshot visualisation of the “forked” simulations . 116
Figure 56 Same as Fig. 49 for RunC. . . . . . . . . . . . . . . . . . 120
Figure 57 Same as Fig. 51 for RunC. . . . . . . . . . . . . . . . . . 122
Figure 58 Two SMBHs on their way to coalescence . . . . . . . . 126
Figure 59 Counter-rotating system snapshots from chapter 9 . . . 127
Figure 60 RunA F = 0.0 moment snapshot from chapter 9 . . . . . 129



L I S T O F TA B L E S

Table 1 Specification of the different systems of the Albert Ein-
stein Institute used for the tests. . . . . . . . . . . . . 50

Table 2 Cloud injection times . . . . . . . . . . . . . . . . . . . 98
Table 3 Average mass of the mini-discs surrounding the MBHs

in all our runs. . . . . . . . . . . . . . . . . . . . . . . . 113
Table 4 Initial 3-D position and velocity (x, y, z components)

of the centre of mass of each cloud for RunA and RunB. 121

C. MAUREIRA-FREDES 6





A C K N O W L E D G E M E N T S

I thank the support from the Transregio 7 “Gravitational Wave Astronomy”
and “Supermassive black holes, accretion discs, stellar dynamics and tidal
disruptions” projects financed by the Deutsche Forschungsgemeinschaft (DFG)
awarded to my adviser Pau Amaro-Seoane, which funded my doctorate.

I am honoured for being part of The International Max Planck Research
Schools (IMPRS) on Gravitational Wave Astronomy, their people, training and
education were crucial for my doctoral studies development.

To the Max-Planck-Institute für Gravitationsphysik (Albert-Einstein-Institut)
for providing an environment for first-class scientist, to lead the research field
of gravitational physics and gravitational astronomy.

To my adviser Pau Amaro-Seoane, for proving me the necessary “spiritual
guidance” through my doctorate, opening multiple doors and opportunities
in all these years, and guiding me not only on my research, but on my life in
general, helping me to overcome every new challenge.

To all the scientist that accompanied and helped me through my doctorate,
particularly to my closest collaborators and friends Alberto Sesana and Mas-
simo Dotti, for their endless support; Jorge Cuadra for triggering this whole
new chapter in my life; Xian Chen and Stanislav Babak for their scientific
and personal support. To all the people that took the time of reading pieces
of the thesis and gave me precious feedback that helped me to improve the
document, specially to Pau, Alberto, Felipe, Massimo and Steve.

To Patrick Brem, for his friendship and crucial help at the beginning of
my PhD, but most importantly for encouraging me to drink Club Mate and
even more Beer. To Felipe G. Goicovic, for his patience and guidance since we
started working together, and for his personal and professional support during
all these time. To Luciano del Valle, for his amazing disposal on helping me
through our projects and pen-and-paper skills.

To María José, you have been my constant support during the most difficult
part of my PhD. You help me every day to be a better person, professionally
and emotionally. Thanks for your kindness and for making me believe in
myself again (And everything while you were finishing your PhD too!).

To my sister, for being there whenever I have needed her, and for her end-
less patience and guidance. I will always admire you, and encourage you
to achieve all what you deserve. To my mother, for your infinite love and
concern even when we are 12,000km apart. Thanks for being there, always,
without asking for anything in return. To my father, for always encourage me
to achieve more, and be a better person, but especially for that afternoon you
helped me to prepare my Solar System exposition while sitting on the floor,
drawing planets with plates and pot lids.

C. MAUREIRA-FREDES 8



BLACK HOLE BINARY SYSTEMS: FROM DYNAMICS TO ACCRETION

G L O S S A RY

Acronym Meaning

1 M� 1 Solar Mass = 1.99× 1030 kg

1 pc 1 parsec = 3.09× 1016 m

1 Myr/Gyr One million/billion years

AGN Active Galactic Nucleus

BH Black Hole

CDM Cold Dark Matter

EMRI Extreme Mass Ratio Inspiral

GC Globular Cluster

GW Gravitational Wave

MBH Massive Black Hole (M ≈ 106M�)

MBHB Massive Black Hole Binary

NS Neutron Star

PN Post-Newtonian

SMBH Super Massive Black Hole (M > 106M�)

SMBBH Super Massive Binary Black Hole

SPH Smoothed Particle Hydrodynamics

9



Part I

I N T R O D U C T I O N





1
G R AV I TAT I O N A L WAV E A S T R O N O M Y

The final writing up and polishing of this thesis sadly coincides with the death
of Donald Lynden-Bell last 5 February 2018. I envisage him as one of the
founders of many different fields in modern astrophysics, in particular of the
concept that supermassive black holes (SMBHs) are lurking at the core of
active galaxies as a way to explain quasars. He also contributed to other
fields, such as stellar and galactic dynamics, astrophysical jets and general
relativity. My thesis addresses a few problems that arose within the new fields
that he and others conceived.

When I enrolled for a thesis at the Max-Planck Institut for Gravitational
Physics (Albert Einstein Institute), the existence of black holes (BHs) and grav-
itational waves (GWs) were questioned.

In these few years, the situation has drastically changed. In particular, the
direct detection of gravitational waves by LIGO and Virgo has proved the
existence of GWs (see the detection papers for the detections, Abbott et al.
2016a,b, 2017a,b,c,d). It must be noted that these detections are not “just”
from BHs. The LIGO/Virgo team has also observed two inspiralling neutron
stars, and the optical telescopes have impressively done what was considered
by many unlikely: the joint detection of the system in the electromagnetic
domain. The first event unleashed a flood of about 70 papers which I will not
include here for legibility reasons.

Hence, in a matter of about two years, we have observed how Gravitational
Wave Astronomy has followed a similar path to what Cosmology did in the
60’s, when it went from being a data-starved science (as many referred to
it) to one of the most important fields of research in natural sciences. Since
the announcement by LIGO about the first direct detection of GWs back in
February 11th 2016, Gravitational Wave Astronomy has grown from being a
purely theoretical discipline in astrophysics to one of its most vibrant fields,
thanks to the ground-based GW detectors LIGO and Virgo providing us with (i)
the direct detection of GWs, (ii) a very strong indication that objects consistent
with general relativity BHs exist, (iii) the observation in GWs of the inspiral
of neutron stars, (iv) the opening of multi-messenger astronomy, thanks to
the joint detection of the electromagnetic radiation associated to that inspiral,
and (v) a Nobel Prize.

The problem of formation and evolution of GW sources re-
quires bringing together insights and techniques from a vari-
ety of field, which is what makes Gravitational Wave Astron-
omy such an interesting area. In particular, since plausibly the
most straightforward way of making a changing quadrupole
moment, i.e. a source of GWs, is a binary, my thesis deals with
the formation of these in astrophysics.

C. MAUREIRA-FREDES 12



BLACK HOLE BINARY SYSTEMS: FROM DYNAMICS TO ACCRETION

2
S T E L L A R D Y N A M I C S

If allegedly the best understood way of creating a source of GWs is a binary,
the easiest possible way of doing it is via stellar dynamics. Here we will
consider dense stellar environments as the formation grounds for compact
binaries. In these environments, compact binaries form through pure gravi-
tational encounters between particles. To high approximation, we can model
these particles as points, and ignore effects other than gravity in their evolu-
tion.

With this I mean the exchange of energy and angular momentum in a dense
stellar environment such as a globular cluster (GCs) or a galactic nucleus (GN)
until two stars are bound with each other. These astrophysical objects, GCs
and GNs (or nuclear star clusters, NSC, which can be described as “observed
GNs”) have densities that can reach some 106 or even 107 stars per cubic
parsec. In such extreme environments, the exchange of angular momentum
and energy lead the evolution of the whole system. Stellar binaries are, in
particular, one of the main driving forces in this global evolution, and dictate
whether the entire sample of millions of stars will collapse or not, to just
mention one example. These binaries, if formed out of two compact objects,
will become prominent sources of GWs.

This is the connection between stellar dynamics and sources of GWs.

2.1 N O T T H AT E A S Y, A C T UA L LY

The dynamical formation of compact object binaries and the emission of GWs
is a captivating and very timely problem, but stellar dynamics per se repre-
sents also a fascinating and complex problem, in spite of the apparent simplic-
ity of “just” solving this equation:

r̈i = −G
j=N

∑
j=i, j 6=i

mj

(
ri − rj

)∣∣ri − rj
∣∣3 .

This simple equation has allowed us to study the solar system for the past
300 years, but also star clusters (i.e. GCs, GNs and NSCs), see Fig. 1 for an
example of these accumulations of stars. We can also study whole galaxies,
systems of about 1011 stars, and even clusters of galaxies. However, the kind
of dynamics I have dealt with during the work of my thesis is collisional dy-
namics, meaning that we care about the long-term effects of close (as well as
not-so-close) stellar encounters. As heat conduction in the air in a room, the
evolution of these dense stellar systems is governed by the slow diffusion of
“heat” through the system from the inside towards the edge.

In Newtonian gravity, we can only solve analytically the two-body problem
(and sometimes, with some particular exceptions, the restricted three-body
problem). If we take into account relativistic effects, which are imperative in
the addressing of the formation and evolution of GW sources, we must rely
on approximations provided that the two stars are far from each other, and
on computer simulations when they get closer and closer.
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Figure 1: Messier 53 (also known as M53 or NGC 5024) is a globular cluster
in the Coma Berenices constellation. It has a core radius of about
2pc and a half-light radius of 6pc, and a total mass of about 106 M�.

But we are not just interested in the relativistic two-body problem. Since
the binaries that will eventually turn into sources of GWs are not perfectly iso-
lated in these systems, but surrounded by up to ten million of other stars, we
must resort to numerical simulations to investigate how dense stellar systems
evolve and how binaries of compact objects form.

This “clean”, dynamics-driven formation of binaries of stars is what moti-
vated the first phase of my doctorate. I started developing from scratch a
new direct-summation N−body code in spite of the fact that there are a few
of them publicly available. The reason for that is twofold. From the one
handside, I found difficult to modify existing codes, some of which have been
under development for over 50 years by many different people with coding
styles, and last, my background in computer science.

2.2 G E T T I N G I N T O S O M E M O R E D E TA I L S

The dynamical evolution of a dense stellar system such as a globular cluster
or a galactic nucleus, has been addressed extensively by a number of authors.
For Newtonian systems consisting of more than two stars we must rely on
numerical approaches which provide us with solutions that are more or less
accurate. In this sense, one could make the following coarse categorisation of
integration schemes for pure stellar dynamics: those which are particle-based
and those which are not. In the latter, the system is treated as a continuum,
so that while we know the general properties of the stellar system such as
the mean stellar density, of the average velocity dispersion, we do not have
information about specific orbits of stars. To this group, belongs direct inte-
gration of the Fokker-Planck equation [Inagaki and Wiyanto, 1984, Kim et al.,
1998] or moments of it [Amaro-Seoane et al., 2004, Schneider et al., 2011],
including Monte Carlo approaches to the numerical integration of this equa-
tion [Spitzer and Hart, 1971]. A particle-based algorithm, however, assumes
that a particle is tracing a star, or a group of them. In this group, the tech-
niques go back to the early 40’s and involved light bulbs [Holmberg, 1941].
The first computer simulations were performed at the Astronomisches Rechen
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Institut, in Heidelberg, Germany, by [von Hoerner, 1960, 1963], using 16 and
25 particles. These first steps led to the modern N−body algorithms.

2.3 D I F F E R E N T P O S S I B L E S C H E M E S

We can distinguish two types of N−body algorithms: the so-called collision-
less, where a star just sees the background potential of the rest of the stellar
system [e.g. the Barnes-Hut treecode or the fast multipole method Barnes
and Hut, 1986, Greendard, 1987, which scale as O(N log N) and O(N), with
N the particle number, respectively], and the more expensive collisional one,
or “direct-summation”, in which one integrates all gravitational forces for all
stars to take into account the graininess of the potential and individual time
steps, to avoid large numerical errors. This is important in situations in which
close encounters between stars play a crucial role, such as in galactic nuclei
and globular clusters, because of the exchange of energy and angular momen-
tum. The price to pay however is that they typically scale as O(N2) or even
O(N3).

A very well known example is the family of direct-summation NBODY inte-
grators of Aarseth [see e.g. Aarseth, 1999, Spurzem, 1999, Aarseth, 2003]1 or
also KIRA [see Portegies Zwart et al., 2001]2. The progress in both software
and hardware has reached a position in which we start to get closer and closer
to simulate realistic systems.

However, the scaling O(N2) requires supercomputers, such as traditional
Beowulf clusters, which requires a parallelisation of the code, such as the
version of NBODY6 developed by Spurzem and collaborators, NBODY6++3

[Spurzem, 1999], or special-purpose hardware, like the GRAPE (short for
GRAvity PipE4) system. The principle behind GRAPE systems is to run on
a special-purpose chip the most time consuming part of an N−body simula-
tion: the calculation of the accelerations between the particles. The remain-
der is calculated on a normal computer which serves as host to the accelerator
board(s) containing the special purpose chips. Such a system achieves simi-
lar or even higher speeds than implementations of the N−body problem on
supercomputers [see e.g. Taiji et al., 1996, Makino and Taiji, 1998, Makino,
1998, Fukushige et al., 2005].

2.4 M O D E R N H A R D WA R E : G P U S

On the other hand, modern graphics processing units (GPUs) offer a very
interesting alternative. They have been mostly used in gaming devices, em-
bedded systems and mobile phones. In Fig. 2 we can see an example of a
modern GPU. They were originally used to perform calculations related to 3D
computer graphics. Nevertheless, due to their highly parallel structure and
computational speed, they can very efficiently be used for complex algorithms.
This involves dealing with the parallel computing architecture developed by
NVIDIA5, the Compute Unified Device Architecture (CUDA).This is the main
engine in NVIDIA GPUs, and it has been made accessible to developers via
standard programming languages, such as C with NVIDIA extensions com-
piled thanks to a PathScale Open64 C compiler. This is what allows us to cre-

1 All versions of the code are publicly available at the URL
http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm

2 http://www.sns.ias.edu/~starlab/
3 Available at this URL http://silkroad.bao.ac.cn/nb6mpi
4 http://grape.c.u-tokyo.ac.jp/grape
5 http://www.nvidia.com
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Figure 2: The Nvidia GTX 1070 GPU (Pascal chip), with 1920 CUDA cores,
reaching a theoretical peak of 6.5 TFLOPs (Single precision).

ate binary modules to be run on the GPUs. Another option is Open Computing
Language (OpenCL)6, which offers a framework to write parallel programmes
for heterogeneous systems, including also computational nodes with field-
programmable gate arrays (FPGAs), digital signal processors (DSPs), among
others. CUDA, and also OpenCL are “the doors” to the native instruction set
and memory of the parallel elements in the GPUs. This means that these can
be handled as open architectures like CPUs with the enormous advantage of
having a parallel-cores configuration. More remarkably, each core can run
thousands of processes at the same time. We selected CUDA over OpenCL,
because our systems are equipped with NVIDIA GPUs, even though we note
that OpenCL has shown similar performance to CUDA in N−body simula-
tions [Capuzzo-Dolcetta and Spera, 2013].

There has been recently an effort at porting existing codes to this architec-
ture, like e.g. the work of Portegies Zwart et al. [2007], Hamada and Iitaka
[2007], Belleman et al. [2008] on single nodes or using large GPU clusters
[Berczik et al., 2011, Nitadori and Aarseth, 2012, Capuzzo-Dolcetta et al.,
2013] and recently, the work by [Berczik et al., 2013] using up to 700 thou-
sand GPU cores for a few million bodies simulation with the φ−GPU 7 code,
which reached in their work about the half of the peak of the new Nvidia
Kepler K20 cards.

Large-scale (meaning number of particles) simulations have recently seen
an important improvement with the work of Wang et al. [2015, 2016]. In his
more recent work of 2016, Wang and collaborators integrated systems of one
million bodies in a globular cluster simulation, using from 2,000 to 8,600
hours of computing time.8

In chapter 8 I present the development from scratch of a
direct-summation N−body code with a relativistic treatment
of compact binaries, aimed to GPUs, but also for traditional
CPU clusters. I present a suit of different well-known tests in

6 https://www.khronos.org/opencl/
7 ftp://ftp.mao.kiev.ua/pub/berczik/phi-GPU/
8 This impressive achievement was rewarded with a bottle of Scotch whisky (not whiskey), kindly

and generously offered to him by Douglas Heggie during the excellent MODEST 15-S in Kobe.
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BLACK HOLE BINARY SYSTEMS: FROM DYNAMICS TO ACCRETION

stellar dynamics that the code successfully passed, as well as a
study of the impact of adopting a softening in the integration
of a dense stellar system on its global evolution.
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3

M A S S I V E B L A C K H O L E S : F I R S T P I C T U R E

3.1 P R E A M B L E

To follow the line of thought of Donald Lynden-Bell, in section 4.5 of Lynden-
Bell and Wood [1968], the authors state that

“Only a fool tries the harder problem when he does not under-
stand the simplest special case”.

Whilst the dynamical formation of binaries in a dense stellar system is a
well-defined and clean problem, future space-borne GW observatories will be
aiming at much more massive binaries. In particular, the Laser Interferometer
Space Antenna (LISA) mission [see e.g. Amaro-Seoane et al., 2017, 2013a,
2012a,b] will observe binaries of massive black holes (MBHs), ranging be-
tween 104 and 107 M�. These binaries form and spend the last phase of their
existence in galactic nuclei, where gas piles up and distributes around the
MBHs.

Before we get into details, and in particular how you form a binary of them,
it is necessary to understand the motivation for the existence of MBHs.

3.2 M A S S I V E B L A C K H O L E S : F R O M Q UA S A R S T O O U R G A L A C T I C C E N -
T R E

Schmidt [1963] identified a star-like object with the radio source 3C 273.
This source is very powerful, and has the highest redshift for an object of
those characteristics, of z = 0.158. This object turned out to be the second
most distant known object to astronomers at that time, with an associated
luminosity of ten times that of a galaxy. This object, which was a quasar, a
“quasi-stellar radio source” (QSO), was the first discovery, but many quickly
followed. QSOs turned out to be the most luminous, powerful, and energetic
objects known in the whole universe. They were found in the the centres of
active galaxies, with an energy output up to thousand of times the entire lu-
minosity of our Galaxy, the Milky Way (to distinguish between our and others
galaxies, I will use a capital “G” to refer to the Milky Way galaxy).

The key question here is how to produce a luminosity of some 1040 W. The
only plausible way for physicists was accretion of matter on to an object
[Hoyle and Fowler, 1963, Salpeter, 1964, Zel’dovich, 1964, Lynden-Bell, 1969,
1978, Lynden-Bell and Rees, 1971], more specifically on to MBHs. Observers
quested from that moment for MBHs, and the first solid observations started
to appear by the 80’s and 90’s [e.g. Tonry, 1984, 1987], which was an accom-
plishment considering the technology: optical instruments, using absorption-
line spectroscopy techniques, see in particular M31 [Dressler and Richstone,
1988, Kormendy, 1988], NGC3115 [Kormendy and Richstone, 1992], and
NGC3377 [Kormendy and Richstone, 1995, Kormendy et al., 1998].
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Figure 3: Artist’s impression of a hyperluminous quasar similar to those har-
bouring supermassive black holes such as e.g. TON 618 or S5
0014+81 (with masses of 66 billion and 40 billion solar masses, re-
spectively). The gas is distributed in this illustration as an accretion
disc.

Later things changed. We came to the idea of putting a whole telescope out
of the problems of Earth’s atmosphere, which provided us with a spatial dis-
tribution 5 times larger than anything before. With the advent of the Hubble
Space Telescope in 1990, we captured extremely high resolution images with
a lower background light compared to ground-based telescopes. We could
“view deeply into space and time”.

3.3 O U R O W N G A L A X Y

An obvious place to look for MBHs, if they indeed lurk in galactic nuclei, is
our own Galactic Centre (GC, and I follow the same convention I mentioned
previously of using capital letters when talking about the Milky Way). This
is because it is the galactic nucleus which is closest to us, with an estimated
distance of about D = 8.28 +−0.33kpc (see the excellent review of Genzel
et al. 2010).

The GC is however a “messy” place. The stellar density, which is a strong
source of light, has an increasing density towards the centre [Gallego-Cano
et al., 2018, Schödel et al., 2018] which very closely follows the theoretical
prescriptions of cuspy stellar distributions around MBHs [Peebles, 1972, Bah-
call and Wolf, 1976, Preto and Amaro-Seoane, 2010, Baumgardt et al., 2017].
This strong source of light impede observations. Moreover, the distribution of
dust and gas contents makes it also difficult to obtain clear observations [Beck-
lin and Neugebauer, 1968, Rieke and Rieke, 1988, Genzel and Townes, 1987,
Genzel et al., 1994, Mezger et al., 1996, Baganoff et al., 2001, 2003, Muno
et al., 2004]. In spite of all of these challenges, observers have discovered one
of the most important results in Astronomy in the last decades: by following
the motion of a cluster of a few hundreds of young stars, the “source” stars
(S-stars), we have arrived to the conclusion that a very massive, dark object re-
sides at the innermost centre of the GC. A mass of about 4× 106 M� enclosed
within a volume of ∼ 1/3 the distance between the Earth and the Sun [see
e.g. Genzel et al., 2010, and references therein] seems to suggest for a SMBH
and is indeed our very best indication for their existence. Most of the alter-
natives, more exotic models like agglomerations of compact objects [Maoz,
1995, 1998, Genzel et al., 1997, 2000, Ghez et al., 1998, 2005], Fermion
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balls [Ghez et al., 2005, Genzel et al., 2010] have been ruled out with maybe
the exception of boson balls or stars [Torres et al., 2000, Schunck and Mielke,
2003, Amaro-Seoane et al., 2010, Liebling and Palenzuela, 2012]. Our MBH
has a mass which actually falls in the low-end of the distribution. We know
that these objects can have masses of up to a few 1010 M�, as illustrated in
Fig. 3.

Massive black holes seem to inhabit the centres of most mas-
sive galaxies. Our own Galactic Centre harbours the best evi-
dence for one of them. By following the orbits of young stars
around a radio source, observers have derived with a very small
error the mass and volume of the dark massive object that are
revolving around. Although we do not yet have proof that this
object is a general relativity black hole, the evidence is very com-
pelling. We will assume for the rest of this thesis that such dark,
massive objects are super/massive black holes.
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4

B I N A R I E S O F M A S S I V E B L A C K H O L E S

4.1 P R E A M B L E

If MBHs exist, it stands to reason, as in the case of stellar-mass black holes,
that two of them could form a binary due to galaxy mergers. Such a binary
would be a very powerful source of GWs but would emit in a different fre-
quency window for ground-based detectors. As explained before, in order to
observe these systems we would need to go to space so as to investigate the
milli-Hz window of Gravitational Wave Astronomy.

These sources would be much longer-lived than LIGO/Virgo sources. In-
stead of speaking of timescales well below one minute (for stellar-mass black
holes, although neutron star binaries will be approximately limited to that
amount of time), with detectors such as LISA we could accumulate months,
if not years of data (depending on different parameters). The kind of science
that one can do in that situation is very appealing and is described in, e.g.
Amaro-Seoane et al. [2017, 2013a, 2012a,b].

4.2 F O R M AT I O N A N D E V O L U T I O N : D I F F E R E N T P H A S E S

Physicists realised about the potential of these sources a long time ago, and
Begelman et al. [1980] presented the seminal paper about the formation of
binaries of SMBHs. A long list of other authors have devoted years of their
research to further look into this problem.

Although there are many open questions, there is an emerging consensus
regarding the formation and evolution of these binaries, as well as concerning
the different phases through which the binary has to go before if successfully
merges within a Hubble time. These phases are the following:

I. Pairing. If modern Cosmology is right, galaxies interact many times with
other galaxies, and they eventually merge with each other. After the
merger, and with the proviso that they both harbour a MBH in their
centres, dynamical friction in the stellar bulge is the main mechanism
for bringing the two MBHs together to successfully form a Keplerian bi-
nary. Their progressive sinking towards the centre [Chandrasekhar, 1943,
Begelman et al., 1980, Colpi et al., 2009, Yu, 2002], is due to the dynam-
ical friction on each BH, both because of the gas and the stars. Regard-
ing the stars, and assuming an isothermal sphere formed by N− stars,
the density profile can be approximately described by ρ? = σ2

?/(2πGr2).
One can derive that the timescale associated to the dynamical friction is:

τdf = 2× 108 ln−1 N
(

106M�
M•

)(
r

100pc

)2 ( σ?
100kms−1

)
yr. (1)
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Figure 4: Artist’s impression of two black holes about to merge with each
other. The masses are different, as one can see from the im-
print in space-time. Credit: Marshmallow Laser Feast (visual), and
Samaya Nissanke (science advisor). See video at https://vimeo.
com/254467760 (music: Arthur Jeffes).

We have introduced the black hole mass M•, the velocity dispersion σ?,
and the separation r. It is important to note that there is no significant
amplification of the eccentricity during this process [Colpi et al., 1999].

II. Hardening. The two MBHs form now a binary, they are gravitationally
bound. From distances of about some tens of parsecs (for MBHs in the
range of masses that LISA can detect), dynamical friction is not efficient
anymore. The binary will now shrink due to a different physical process.
The individual dynamical interaction with stars originating from the sur-
rounding stellar system helps the semi-major axis of the binary to further
shrink. Three-body interactions with stars happen within a timescale
given by

τhard ∼
σ?

πGρ?a
∼ 70

( σ?
100kms−1

)(104M�pc−3

ρ?

)(
10−3pc

a

)
Myr.

(2)
Where we have introduced the semimajor axis a. Contrary to τdf, τhard
increases when the semimajor axis deceases. There is however a prob-
lem because for spherical nuclei, and for BH masses in the LISA range,
the binary needs to interact (actually eject) the equivalent of ∼ 2− 3×
(M•, 1 + M•, 2) stars, while the reservoir of stars is, being generous, of
about one if not two orders of magnitude less than that amount. The
two BHs are hence doomed to dance around each other for eternity, and
they will never enter the GW-dominated regime. Since this happens at
distances of about one parsec, it has been coined as “the last parsec prob-
lem” [Milosavljević and Merritt, 2001, Yu, 2002, Merritt and Milosavlje-
vić, 2005]. However, it seems that this is an artefact of the oversimpli-
fication of current numerical models, in particular probably the spheric-
ity [see, e.g. Preto et al., 2011, Khan et al., 2011] although there has
been a lot of work in this direction in the last years.

III. GW inspiral. If the binary manages to shrink its semimajor axis and sur-
mount the last parsec problem, the main driving mechanism in the evolu-
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tion is the loss of energy due to the emission of GWs. Assuming Keplerian
orbits and neglecting the effect of periapsis shift, one can obtain an an-
alytical expression for the timescale within which the binary will merge
[Peters, 1964]:

τGW ∼ 5.4× 108 f (e)−1 (1 + q)2

q
a4

M3•,∗

(
1

10−3pc

)4 (106M�
M•,∗

)3

, (3)

with M•,∗ = M•,1 + M•,2, and f (e) = (1 + (73/24)e2 + (37/96)e4)(1−
e2)−7/2.

IV. Gravitational recoiling. If the two BHs have a spin different of zero
and they do not have exactly the same mass, general relativity predicts
that the centre of mass of the resulting merger product will receive a
recoiling velocity in a preferred direction. This is due to the fact that
the emission of GWs in that situation is not isotropic. This prediction
has been corroborated thanks to numerical relativity [Campanelli et al.,
2006, Baker et al., 2006, González et al., 2007]. Depending of the
orientation and magnitude of the spins and orbital angular momentum,
this speed can achieve values of a few thousand km/s and hence leave
the galactic bulge and the entire galaxy [Gualandris and Merritt, 2008,
Merritt et al., 2009, Devecchi et al., 2009].

Binaries of massive black holes form and evolve in the con-
text of pure stellar dynamics and perfect sphericity of the host
stellar system. Now that we have relatively well understood this
approximate first narrative, we must proceed and add the next
most important layer of complexity: gas.
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5

T H E O R I G I N O F T H E G A S : I N T E R A C T I N G G A L A X I E S

5.1 P R E A M B L E

According to modern Cosmology, structures in the Universe form from smaller
to bigger. This means that baryonic matter, typically proto galaxies in the
young Universe, accompanied by their dark matter haloes, merge many times
over the Hubble time with each other. Hence, these proto galaxies can be en-
visaged as building blocks which lead to the formation of galaxies in the local
Universe. This is important and relevant for my study, because this has a cru-
cial implication: since galaxies merge with each other, the gas contents they
harbour will not follow the usual Keplerian orbit around the centre. Gaseous
clouds will interact among each other. Some gas contents might be set on
such an orbit that it might arrive to the centre of the galaxy, where the two
SMBHs are sinking towards the new centre of the two merged galaxies. Gas
will distribute around the binary, maybe in the form of a disc, as it has been
put forward in the related literature many times. This has been the working
assumption for many theoretical articles written in this field. Motivated by
this, and the evolution of a binary of two SMBHs, I decided to address this
problem in two different ways, as I will explain later. But, first, as more de-
tailed introduction to this subject, we will succinctly review the most relevant
ideas.

In the jargon of this field, depending on the mass ratio of the galaxies inter-
acting, we distinguish between “major” or “minor” mergers (i.e. with similar
or very different masses, respectively, see e.g. Colpi 2014).

5.2 M A J O R M E R G E R S

Major mergers have been addressed in a number of articles, of which proba-
bly the one I would highlight is Mayer et al. [2007]. In this article, Mayer and
collaborators simulated a gas-rich galaxy merger using a Smooth Particle Hy-
drodynamics (SPH) code with a relatively large number of particles for each
galaxy. This line of work encouraged others to investigate the fate of the gas
and, more interestingly for the goals I want to achieve in this PhD, the impact
on the evolution of the SMBH binary. The work of Mayer et al. [2007], Colpi
et al. [2009], Colpi and Dotti [2011], Chapon et al. [2013], Mayer [2013]
addressed the first shrinkage of the SMBH pair, from separations & 10kpc
down to the formation of the (Keplerian) binary, which typically happens at a
distance of about . 10pc. Other authors analysed the hardening phase of the
binary with dedicated simulations [Escala et al., 2005, Dotti et al., 2006, 2007,
2009, Fiacconi et al., 2013]. The situation is somewhat more complicated for
disc galaxy mergers, because the multi-component nature of the physics re-
quires the inclusion of both the dark matter and stellar dynamics (although
in a collision-less way). Moreover, it is crucial to include the evolution of the
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Figure 5: The Antennae galaxies are a good example of interacting galaxies.
These two galaxies, which are located about 19 Mpc from Earth,
are shown in this composite image using results from the Chandra
X-ray Observatory (in blue), from the Hubble Space Telescope (in
gold and brown), and from the Spitzer Space Telescope (in red).

gas as well, which makes the whole simulation setup not only very expensive,
but also very challenging.

Van Wassenhove et al. [2012, 2014] later improved the picture by look-
ing into the further . 10pc dynamics of the SMBH binary with N-body/SPH
simulations, starting from initial separations of 100kpc. Mayer et al. [2007],
Chapon et al. [2013] used Adaptive Mesh Refinement (AMR) simulations and
reached the impressive separation of ∼ 1pc for the binary. More recently,
Roškar et al. [2014] has added more layers of complexity in the physics be-
hind these N-body/SPH simulations, by including radiative cooling and heat-
ing, feedback and star formation processes in the process of the merger of two
Milky-Way-like galaxies. More and more levels of complexity are been added
to the general picture, as in the work of Fiacconi et al. [2013], which add the
formation, dynamics, and implication of gaseous clumps in the pairing phase
of two BHs.

5.3 U N E Q UA L M E R G E R S

When two merging galaxies differ in their masses, besides dynamical friction
other mechanisms play a crucial role in the evolution of the process, as shown,
for instance, by Governato et al. [1994], Taffoni et al. [2003]. More partic-
ularly, (i) tidal stripping, i.e. the effect of tidal fields on to the the primary
halo, can significantly reduce the mass of the secondary, and (ii) tidal heating,
the effect of short impulses by bound particles on to the the secondary galaxy,
heats the system and can lead to a partial dissolution of the primary galaxy.
Due to this, we could have configurations in which the less massive black hole
is set on a peripheral orbit within the primary galaxy.

Addressing the configuration of unequal mergers have laid bare features
that were hiding in the equal mass ratio case. Simulations of this configu-
ration with different techniques have led to the conclusion that there is a
relationship between the central concentration of the interacting galaxies and
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the specific geometry of the encounter. This is important to understand how
the secondary SMBH can sink towards the primary [Kazantzidis et al., 2005,
Callegari et al., 2009, 2011, Van Wassenhove et al., 2012, 2014].

Depending on the amount of gas on the disc in the secondary galaxy, we
have different situations. If the starburst fraction close to the secondary SMBH
is large, & 10%, there will be important transformations of the structure and
dynamics, and the merger is said to be wet. On the other hand, if the sec-
ondary remains in a peripheral orbit far away, of some ∼ 1kpc, the potential
merger between the SMBHs will merely depend on dynamical friction, due to
the lack of starburst, and the merger is called dry [Callegari et al., 2009, 2011,
Khan et al., 2012].

5.4 M I N O R M E R G E R S

An extreme case of unequal mergers are minor mergers, with mass ratios
of about 1:10. In this case, the probability that the two MBHs do not pair
and form a binary is high. For minor mergers not only the gas contents and
distribution matters, but also the initial orbital configuration of the MBHs.
Moreover, their masses might significantly change during the process, which
renders the whole problem even more complicated [see e.g. Callegari et al.,
2011].

If the merger of the two galaxies is co-planar and prograde, the outcome
has a higher mass ratio MBHs pair, with a small separation. However, if there
is some inclination the binary is very likely doomed to never form, because
tidal shocks prevent accretion on to the secondary MBH. Nonetheless, if the
initial setup for the orbits of the galaxies is such that the pericentre distance is
small, and considering a gas-rich environment, the pairing will be even more
difficult due to the relative higher velocities of the small periapsis distance. In
this case, ram pressure strips the gas and notably reduces starburst and accre-
tion, hence reducing the possibility of pairing. Where the threshold lies turns
out to be a complicated problem which depends on the geometry, amount of
gas, internal structure for the galaxies, and the dynamics of the MBHs at the
shortest separations [Khan et al., 2012].
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6
G E T T I N G T H E G A S T O T H E M A S S I V E B L A C K H O L E S

6.1 P R E A M B L E

If minor mergers are efficient, the secondary MBH can sink towards the centre
of the merged galaxies to meet and form a pair with the primary MBH and,
eventually, a binary, as showed by Escala et al. [2005], Dotti et al. [2006,
2007, 2009], Fiacconi et al. [2013]. These simulations, and others, typically
reach distances of . 100pc down to a few parsecs, which is still very far
away from the GW-led phase, which starts at about . 10−3pc. The ulterior
evolution from these numerical models is not just a problem of resolution, but
of “micro-physics”, such as star formation episodes, gas thermodynamics, self-
gravity, gas dissipation (radiative cooling), viscosity, turbulence and rotation,
to mention the most relevant physical phenomena.

We mainly distinguish two well-separated regimes in this problem. Firstly,
we have the nuclear-disc-driven one, typically from 100pc to ∼ 0.1pc. The
MBHs evolve due to perturbations in the density field [Escala et al., 2005,
Dotti et al., 2006, 2007, 2009]. Later, we have the disc-driven migration, the
torques exerted from the binary on to the gas causes the opening of a gas
cavity. The binary is hence located in a region in which gas density is orders
of magnitude below what we can expect to have in the main disc [Gould
and Rix, 2000, MacFadyen and Milosavljević, 2008, Hayasaki, 2009, Cuadra
et al., 2009, Roedig et al., 2011, Noble et al., 2012, Kocsis et al., 2012, Roedig
et al., 2012, D’Orazio et al., 2013a, Farris et al., 2014]. There is an interplay
between the disc and the binary itself, because of angular momentum transfer,
and the gravitational and viscous torques.

6.2 N U C L E A R - D I S C - D R I V E N

The circumnuclear disc (CND) is usually modelled as a Mestel distribution,
which is self-gravitating and vertically pressure-supported, with an aspect ra-
tio of between 0.1 and 0.05. So as to prevent gravitational instabilities, one
adapts a Toomre parameter Q & 3, and the effect of the stellar bulge is repre-
sented with a Plummer sphere more massive than the disc itself [Escala et al.,
2005, Dotti et al., 2006, 2007, 2009].

In this setup the secondary is dragged into a co-planar co-rotating orbit
around the primary and remains in a circular orbit [Dotti et al., 2006, 2007,
2009], which is faster if the disc is denser (colder). However, retrograde discs
lead to a flip in the angular momentum [Dotti et al., 2009]. This renders the
problem particularly complex and interesting, which is why we decided to
study it in detail, and formed part of my research for my PhD.

As usual, and going back to the thought of Donald Lynden-Bell, once we
have understood the ideal consideration in which the disc is treated as per-
fectly smooth, the question about the effect of fragmentation arises. We in-
deed expect this to happen in nature, because of gravitational instabilities
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Figure 6: Gas distributed around a binary of two SMBHs from the multiple
infall of gaseous clouds. The black holes are depicted as black dots.
This is the same image as in the cover page, and is the result of one
of the many different simulations I did to address the problem of
how gas distributes around binaries of SMBHs.

triggering stellar formation. Hence clumpyness needs to be addressed. In-
deed, I did this also during my PhD with a colleague of mine in Chile, and we
published the results in del Valle et al. [2015] but I do not include this work
here because I did not lead it.

6.3 C I R C U M B I N A RY- D I S C - D R I V E N

Once the binary forms, the gas should be distributed as a circumbinary disc,
dominated by the binary’s gravity and quadrupolar field. However, as I men-
tioned before, this relies on a number of theoretical assumptions that needed
to be check. In particular, the migration phase is dominated by the torques
excited by resonances, which are in charge of bringing the secondary very
close to the centre. This is essential to understand whether the binary will
ever merge or stall, with the two MBHs dancing around each other for ever.

How do we form a gap? How is it formed? del Valle and Escala [2012,
2014] find that the binary needs to be surrounded by a geometrically thick
disc for a gap to be open. There is a strong coupling between the binary
and the disc due to viscous torques in the disc that leads to a slow orbital
decay[Artymowicz and Lubow, 1994, 1996, Gould and Rix, 2000, Armitage
and Natarajan, 2002, Armitage et al., 2013]. If this gap does indeed open,
the associated timescale of the hardening process is slower than that of the
nuclear-disc-driven phase.

Moreover, there seems to be small persistent discs around each BH forming
within the inner cavity, because of the porous nature of the inner edge of
the main circumbinary disc [Farris et al., 2014, Roedig et al., 2011, 2012].
These “mini discs” are essential to understand the ulterior evolution of the
binary, because the torques might be significantly enhanced. Complementary,
as observed by Roedig et al. [2011], the binary seems to have a tendency to
saturate its eccentricity around the value of 0.6 [Roedig et al., 2011].

All of these observations have far-reaching implications for the evolution of
both the binary and, to some extent, also of the CND.
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7

G O A L S O F T H I S T H E S I S

The main question I wanted to address when I first arrived to the Albert Ein-
stein Institute was the following: if black holes exist and form binaries, where
do these binaries form and what characteristics do they have? One of my
strongest motivations was, obviously, the generation of sources of gravita-
tional waves.

Sooner than I thought, I had already spent all of my available time with this
question, which had turned out to be even more interesting that I previously
thought. From “pure” stellar dynamics systems (conceptually thinking) such
as galactic nuclei or globular clusters, to the cores of interacting galaxies with
plenty of gas, the problem showed to be anything but straightforward. More-
over, the implications of addressing this problem increased with time, just as
the complications did.

7.1 F R O M D Y N A M I C S

I started writing a new direct-summation N−body code to study the dynami-
cal formation of binaries of black holes. For this, I adopted a softening into the
integrator, which means I added a constant value for the square of the separa-
tion between two stars or black holes when they come too close to each other.
This is a common trick in the field of stellar dynamics, because a proper inte-
gration of very hard binaries requires very delicate and convoluted numerical
techniques that would have exceeded my time to deliver this PhD. Neverthe-
less, in spite of this trick, the integrator can give a robust idea of what is
happening in a dense stellar system such as a globular cluster, down to the
moment in which it collapses. This is the most interesting moment, because
the concentration of compact objects at the centre is higher, and one expects
binaries to form binaries that eventually will emit GWs. However, I was in-
trigued by the role of softening and investigated this in detail. The results
regarding the softening that one adopts are very interesting, because differ-
ent values for this constant will have a global impact on the whole dynamics
of the sample of thousands of stars. I will keep working on this integrator in
the future, which I have made publicly available to anyone. The integrator
and several tools can be found in

http://gravidy.xyz/

As Sverre Aarseth told us when I gave him the draft of the paper which is
now published, now “it is just a matter of another ten years until you have in-
cluded a proper treatment of binaries and regularisation into your integration
scheme”.
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Figure 7: Artist impression of the accretion disc around the black hole gargan-
tua, warped because of gravitational lensing. Credit: Warner Bros,
Entertainment Inc. and Paramount Pictures Corporation. Author:
double negative, http://www.dneg.com

7.2 T O A C C R E T I O N

As I mentioned many times, my main goal was not solely the running of nu-
merical experiments, but the understanding of the formation of binaries of
black holes, either of stellar masses or supermassive. This is what led me to
address different problems. The first problem was the impact of a realistic
treatment of gas accretion on to a secondary MBH on its way to merge with
a primary MBH embedded in a gaseous disc. The more difficult question to
investigate were retrograde orbits, and the effort led us to the publication of
a paper in which we gave a detailed description of this problem with different
interpretations of what accretion should be in reality.

This was my first contact with binaries of SMBHs and gas, and I found the
problem motivating, but one fundamental question emerged when I started
reading more and more literature on this subject. Although it has been as-
sumed by many authors, to my surprise I did not find a detailed analysis of
how gaseous structures form around binaries of SMBHs. This is a pivotal,
as explained in this introduction a few times, because how gas is distributed
around the binary, and how the binary interacts with it will settle (i) whether
the binary will merge within a Hubble time or not, (ii) the orbital character-
istics of the binary, if any, when it reaches the GW led regime and (iii) any
potential electromagnetic counterpart that might be triggered in the process.

I hence decided to lead the effort of a rather gargantuan (in the sense of
titanic, not of the black hole of Fig. 7) effort to analyse the effect of repeated
gas clouds infalls on to a binary of two SMBHs in a galactic centre. I was
interested by the formation of structures and their architecture around the
binary, and also by the fate that this binary would have depending on the
infall properties. The most interesting result I found was that the formation
of disc-like structures in the gas is very challenging, as one can see for instance
in Fig. 6. The scientific results are available to anyone, because the papers are
published, but the tools, scripts, and code as well, because science should be
reproducible and open to anyone. Everything can be found in the following
web site:

http://multipleclouds.xyz/
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7.3 T O S T U D Y B L A C K H O L E B I N A RY S Y S T E M S

In view of all I explained and introduced in this first part of the PhD, the main
aim and goal of my study was the addressing of a a very simple question.

Where, when and how do black holes form binaries? I
have studied the dynamical formation of binaries in dense stel-
lar systems by developing a completely new direct-summation
N−body code for the GPUs and multiple CPUS which I have
released publicly. In a completely different range of masses,
differing by some 5 orders of magnitude, the formation of bi-
naries of supermassive black holes in galactic nuclei has the
additional complication of gas dynamics. As I studied massive
binaries in retrograde discs, I realised that, although it has al-
ways been assumed to be so, the gas does not necessarily need
to be distributed around the binary in a disc-like structure. The
implications of my findings are important for a plethora of dif-
ferent fields in astrophysics, not just in gravitational-wave as-
tronomy.
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8
D Y N A M I C A L E V O L U T I O N O F D E N S E S T E L L A R S Y S T E M S

The project presented on this chapter was published under:

GRAVIDY, A GPU MODULAR, PARALLEL DIRECT-SUMMATION

N−BODY INTEGRATOR: DYNAMICS WITH SOFTENING.

Cristián Maureira-Fredes & Pau Amaro-Seoane
Monthly Notices of the Royal Astronomical Society,

Volume 473, Issue 3, 21 January 2018, Pages 3113–3127.

In this chapter we present the initial version of GRAVIDY (Gravitational dy-
namics), a highly-modular, direct-summation N−body code written from scratch
using GPU technology ready to integrate a pure dynamical gravitational sys-
tem. In §8.1 we present in detail the structure of the code, the most rele-
vant and innovative parts of the algorithm, and their implementation of the
scheme in the idiom of GPU computing. In §8.2 we check our code with a
series of well-known tests of stellar dynamics for a dense stellar system and
evaluate global dynamical quantities and we also evaluate the performance
of the GPU version against the CPU one. In §8.3 we study the implications of
using a softening parameter in these kind of simulations. In §8.4 we present
the implementation of the relativistic corrections, and a set of tests. In §8.5
we summarise our work and give a short description of the immediate goals
that will be described in upcoming publications.

We have decided to focus on single-node clusters (meaning one or more GPU
cards embedded in a host PC) and traditional multi-CPU clusters (e.g. Beowulf
clusters), since this setup is more common to most users who aim to run middle-
scale simulations. In the appendices we give a succinct description on how to
download the code, how to compile it, and the structure of the data. We also
include a set of python tools to analyse the results. Moreover, we also introduce
a simple visualisation tool based on OpenGL, which can provide us with informa-
tion sometimes difficult to obtain with two-dimensional graphics. In particular,
we have made a significant effort in documentation and modularity, since it is
our wish that the code is used, shaped and modified at will.

8.1 T H E C U R R E N T A L G O R I T H M

8.1.1 The integration scheme

In this section we give a very brief introduction to the numerical N−body
problem. We refer the reader to e.g. [Aarseth, 2003, Heggie and Hut, 2003]
or the excellent on-line course “The art of computational science”1. The evo-
lution of an N−body system is described by the second order ordinary differ-
ential equation

1 http://www.artcompsci.org/
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r̈i = −G
N

∑
j=1
j 6=i

mj
(ri − rj)

|ri − rj|3
, (4)

where G is the gravitational constant, mj is the mass of the jth particle and
rj the position. We denote vectors with bold fonts. The basis of the problem
is purely dynamical, because the orbital evolution is determined exclusive by
the gravitational interaction.

The total energy of the system is a useful quantity to keep track of every
time step in the integration. It is given by the expression

E =
1
2

N

∑
i=1

miv2
i −

N

∑
i=1

N

∑
j>i

Gmimj

|ri − rj|
, (5)

where vi is the velocity of the particle i.
To numerically integrate the system of equations we adopt the 4th-order

Hermite integrator (H4 from now onwards) presented in [Makino, 1991, Makino
and Aarseth, 1992] [and see also Aarseth, 1999, 2003]. H4 is a scheme based
on a predictor-corrector scenario, which means that we use an extrapolation
of the equations of motion to get a predicted position and velocity at some
specific time. We then use this information to get the new accelerations of the
particles, later we correct for the predicted values using interpolation based
on finite differences terms. One can use polynomial adjustment in the gravi-
tational forces evolution among the time because the force acting over each
particle changes smoothly (which is the reason why adding a very massive
particle representing e.g. a supermassive black hole will give you sometimes
a headache). To advance the system to the following integration time we ap-
proximate the equations of motion with an explicit polynomial. This predic-
tion is less accurate, but it is improved in the corrector phase, which consist of
an implicit polynomial that will require good initial values to scale to a good
convergence.

This is a fourth-order algorithm in the sense that the predictor includes the
contributions of the third-order polynomial, and after deriving the accelera-
tions, adds a fourth-order corrector term. In the remaining of this chapter we
focus on the implementation of the scheme into our GPU (and CPU) code and
how to maximise all of the computational resources available. For a detailed
description of the idea behind H4, we refer the reader to the article in which
it was presented for the first time, [Makino and Aarseth, 1992].

An advantage of the choice for H4 is that we can use the family of Aarseth’s
codes (among others) as a test-bed for our implementation. These codes –
some of which adopt H4, but not all of them– have been in development
for more than 50 years. The codes are public and have been widely used
and validated, improved and checked a number of times by different people,
they have been compared to other codes and even observational data. In this
regard, to test our implementation and parallelisation of H4, the access to the
sources of the codes is an asset.

8.1.2 Numerical strategy

A main goal in the development of GRAVIDY is its legibility. We have focused
in making it easy to read and modify by other users or potential future devel-
opers without compromising the computational performance of the algorithm.
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Listing 8.1: gprof output of a serial GRAVIDYsimulation, using 1024 particles
up to 1 N−body time unit, showing the amount of time of the
particle-particle force interaction.Some output columns are omit-
ted.

Flat profile:

Each sample counts as 0.01 seconds.
% self

time seconds calls name
92.5 12.05 125186180 Hermite4 :: force_calculation (...)
1.1 0.15 5161 Hermite4 :: predicted_pos_vel (...)
0.3 0.04 5161 Hermite4 :: correction_pos_vel (...)
0.2 0.03 5161 Hermite4 :: next_integration_time (...)
0.2 0.03 5161 Hermite4 :: find_particles_to_move (...)
0.0 0.00 5161 Hermite4 :: update_acc_jrk (...)
...

This means that we have made a significant effort in keeping a clear structure
in the source code so that, in principle, it can be well understood by somebody
who has not previously worked with it with relatively little effort. The modu-
larity of the code should allow new users to easily implement new physics or
features into it or adapt it to the purposes they seek. It is unfortunately easy
–at least to a certain extent– to miss either clarity in coding or performance,
when trying to have both in a code. For instance, if we want to obtain the best
performance possible, one has to use low-level instructions that for an outside
user might result into something difficult to understand when reading or try-
ing to modify the source code. On the other hand, name conventions for files,
functions and variables might become a burden to certain applications.

While most existing N−body codes have achieved certain balance between
the two to some degree, it is difficult to adapt them to new architectures and
technology to boost their performance. For the development of GRAVIDY, we
have followed the next steps:

S E R I A L I M P L E M E N TAT I O N : The first logical step in developing a code us-
ing GPU technology is –in our opinion– to have a full, one-thread CPU
version. This allows us to check for the robustness of the code, as it is
usually easier to find and fix any potential bugs when introducing new
features or improving the performance.

P R O F I L I N G A N D A S S E S S M E N T: After that, we localise the main bottlenecks
of the code. One obvious one is the computation of the gravitational
forces, but it is in general a good idea to check for other potential hin-
drances. For this, we typically employ gprof 2.

In the case of our CPU code, for instance, we see that more than 93%
of the wall clock time goes into the updating of a particular function,
the gravitational interaction, as displayed in listing 8.1. There are some
tools to perform the profiling of CUDA application, but they are not
discussed in this work. The idea of keeping an updated CPU version
of the code, helps to find potential errors or bottlenecks of the parallel
version.

G R A N U L A R I T Y A N D H O T-S P O T S : After having identified the bottlenecks
of the code, the objective is to use parallel computing to attack them
to speed up the calculations. Ideally, this would be a one-time task, but

2 GNU Gprof Documentation: http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
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the fact is that the implementation, which will be described in detail
later, depends on the hardware at our disposal, which keeps quickly
evolving in the case of GPU technology, the release of new libraries and
new ideas to speed up the force calculation. This means that the code
is on a cycle process of constant improvement, and has to be revisited
regularly.

Before we get into the details of the parallelisation, it is important to
introduce the concept of granularity. This is a classification of the algo-
rithm at play based on the communication and performance. We usually
distinguish two types of granularity: fine-grained algorithms are com-
putationally lightweight, because the task performed (in this case by
threads) is small compared with communication, which is a frequent
process. On the other hand, coarse-grained algorithms do the oppo-
site. They require less communication but are computationally more
demanding for each task.

A good example of the difference in granularity is the comparison of
Message Passing Interface (MPI) and GPU computing: usually, a code
relying on MPI splits a bigger task in many sub-tasks, which are sent
to different computational nodes. After finishing the computation, the
data are gathered in a so-called “master” node. Programming in GPU
is quite different; there is a frequent communication between the CPU
and the GPU and the tasks assigned to the many threads available in
the GPUs are quite small. This is why in GPU computing, the finer the
granularity, the more efficiently we can follow a parallelisation scheme.

O P T I M I S AT I O N : In the process of parallelisation of a code in CUDA one has
to bear in mind the following characteristics, inherent to this program-
ming language and GPU architecture: (i) while the use of local memo-
ries improves the performance of a CUDA code, the GLOBAL memory (the
GPU off-chip memory) is accessed in “chunks”, multiples of 32 bytes, the
so-called warps. Failing to use them completely leads to a so-called lack
of occupancy, (ii) Indeed, the usage of SHARED memory (the CUDA-block
shared memory) can lead to a number of issues if not employed prop-
erly: since we are accessing chunks of memories in warps, we have to
retrieve information from the GLOBAL memory also in chunks. More-
over, if threads within a warp access different banks of memory, we will
confront a bank conflict. E.g. two threads access the same value from
the local memory. (iii) Divergence is another issue to take into account.
When a control flow statement (e.g if-else) is inside a kernel execution
and it splits the threads to perform different pieces of code, the prob-
lem is that one of those tasks could be more expensive computationally.
Hence, at the moment of synchronisation, the threads executing the less
expensive code will need to wait for the others to achieve a synchroni-
sation. While it is not forbidden to use control flow, we need to at least
leave one warp do some task. This means that control flow must be
at warp level; different warps can do different tasks without running
into divergence. (iv) The hardware that we have at our disposal plays a
crucial role: GPU chips are formed by several Streaming Multiprocessor
(SM), which contain the GPU cores (Streaming Processor, SP). All SM
can execute only one warp per core at a time, so that we must try to
use them constantly, which is what we refer to as the occupancy. This
will be determined by the usage of every thread in a block respect to the
registers and the SHARED memory, which is GPU-dependent.
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8.1.3 Particular choices

O B J E C T O R I E N T E D P R O G R A M M I N G : Object oriented programming (OOP)
is a powerful paradigm that allows us to program an algorithm as ob-
jects interactions. In GRAVIDY, we use OOP. The reason beneath it is
related to our parallelisation scheme, which is described below, more
concretely with the data structure we have chosen.

We have mainly two possible choices for data structures: classes with
arrays, or Arrays of Objects, which follows the basic idea of Struct of
Arrays (SoA) and Array of Structs (AoS). For GRAVIDY we have chosen
classes with arrays for the main units of the program structure. It is a
good strategy to minimise the data transfer between Host and Device,
so as to avoid having large communication times.

Calling the GPU kernels3, we only transfer a piece of information rel-
ative to all the bodies, e.g. only the masses of the bodies or only the
position of a certain amount of bodies, but not all of them. Because
of this, we deem it more practical to handle the data transfer of our
scheme by using arrays containing information on different particles.

In practice, this means that we use the GPU to only compute some spe-
cific integration steps like the force calculation, and the energy. Hence,
we have to transfer to the GPU at every iteration the predicted positions
and velocities, to then transfer from the GPU the new calculated forces
(i.e. the acceleration and its first derivative). It is also possible to have
all the integration steps on the GPU, but we do not see a significant im-
provement for our integrator scheme. Higher integration schemes show
a better performance using the whole process on the GPU [Capuzzo-
Dolcetta et al., 2013]

It is not required to update the forces of all the particles, so that we
encapsulate the information of the active particles, and then we transfer
the AoS to the GPU. All the remaining attributes of the bodies (i.e. those
not transferred to the GPU) are just class-members (arrays), and need
to be in the host CPU. An example of this could be large linear arrays,
such as the time steps of the particle.

C L A S S D I S T R I B U T I O N : Since our code is using OOP, we describe a brief in-
teraction between the classes in Fig. 8. The main header, common.hpp,
contains the definition of the constants, structures, macros, etc. The
idea behind this model is to easily be able to add more features in up-
coming versions of our code, from new utilities functions to new inte-
gration schemes.

Every class is in charge of a different mechanism, from getting the in-
tegration options from command-line, to the different integration meth-
ods using parallelism or not 4.

D O U B L E -P R E C I S I O N (D P ) OV E R S I N G L E -P R E C I S I O N (S P ) : Using DP or
SP in N−body codes has been already addressed by different authors in
the related literature [see e.g. Hamada and Iitaka, 2007, Nitadori, 2009,
Gaburov et al., 2009]. Using DP is not the best scenario for GPU com-
puting, because there is a decrease factor in the maximum performance
that a code can reach. We can reach only half of the theoretical max-
imum performance peak, which depends on each individual card: for

3 We depict as “kernel” the set of functions which can be executed on the GPU
4 For more information, please refer to the code documentation

39



common

OptionParser

NbodySystem

NbodyUtils Logger

Hermite4

Hermite4CPU Hermite4MPI Hermite4GPU

GraviDy

Figure 8: Class diagram of the code that shows the hierarchy of the applica-
tion structure (GRAVIDY).

example, the NVIDIA Tesla C2050/M2050 has a peak of the processing
power in GFLOPs 1030.46 with SP, but only 515.2 with DP.

We choose DP for a more accurate numerical representation, because
it provides us a simple way of getting better energy conservation, at
the expenses of performance. There are different approaches, like the
mixed-precision, [Aarseth, 1985], and pseudo DP (Nitadori 2009, cur-
rently used in the code φ−GPU, Berczik et al. 2011). These offer a
relatively more accurate representation (compared to SP) without a big
impact in performance.

8.1.4 The implementation scheme

These are the steps that GRAVIDY follows when running a simulation:

1. Memory allocation of the CPU and GPU arrays.

2. Initialisation of the variables related to the integration.

3. Copy the initial values of positions, velocities and masses of the particles
to the GPU to calculate the initial system energy, and calculate the initial
acceleration and its first time derivative, the so-called “jerk”. The cost
of this force calculation is O(N2).

4. Copy the initial forces from the GPU to CPU.

5. Find the particles to move in the current integration time, Nact, with a
cost O(N).

6. Save the current values of the forces, to use them in the correction step,
with a cost O(N).
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7. Integration step:

a) Predict the particle’s positions and velocity up to the current inte-
gration time, with cost O(N).

b) Copy of the predicted positions and velocities of all the particles
from the CPU to the GPU.

c) Update the Nact particles on the GPU, which is explained in detail
in §8.1.5.

i. Copy the Nact particles to a temporary array on the GPU.

ii. Calculate the forces between the particles on the GPU, with a
cost O(Nact · N).

iii. Reduce forces on the GPU.

iv. Copy the new forces from the GPU to the CPU.

d) Correct the position and velocity of the Nact updated particles on
the CPU, O(Nact).

e) Copy the positions and velocities of the corrected Nact particles
from the CPU to the GPU.

GRAVIDY adheres to the usual good practises of the beginning of the devel-
opment of every direct-summation N−body code:

• Direct-summation, also known as particle-particle strategy, This approach
is the simplest way to address the task of calculating the exerted force
by all the N − 1 bodies on a single body that we need to update at cer-
tain time step. This brute-force procedure has an order O(N2), which
represents the bottleneck of the algorithm.

• Softened point-mass potential, as an alternative in this version of the code
to a proper close encounter regularisation. All particles are represented
by a dimensionless point mass. We introduce a softening parameter (ε)
in the distance calculation between two bodies while we get the new
forces,

r̈i = −G
N

∑
j=1
j 6=i

mj

(r2
ij + ε2)3/2

rij, (6)

so as to handle the situation in which two bodies get closer.

• Block time steps, It is not straightforward to have an N−body code using
individual time steps in parallel computing, because the idea behind
massive parallelism is to perform the same task on different data chunks.
We use the block time steps algorithm [Press, 1986], to update group
particles simultaneously. This scheme has been adopted by a number of
authors [Portegies Zwart et al., 2001, Hut, 2003, Aarseth, 1999, 2003,
Harfst et al., 2008, Nitadori and Aarseth, 2012].

The main idea is to have several blocks (groups) of particles sharing
the same time steps. This decreases the amount of operations of the
integration process, which allows us to obtain a similar accuracy to the
individual time steps scheme.

In this scenario the parallelisation is ideal, because compared with the
individual scheme, we have several chunks of threads working on differ-
ent blocks of particles.
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Figure 9: Block time steps illustration. The different blocks are represented
by the length of the jump. Each particle is predicted (but not moved)
at every time t (dotted arrows), even if it is not the turn of their
block time step (empty circles). The particles will be updated (and
moved) only in their corresponding block time step (filled circles).
Whenever a particle is updated, its block time step can be change.
In this illustration, particles 1, 4 and N change their block (length of
the jump).

In this approach, particle i is part of the lower nth block time step be-
tween two quantities,

2n∆ts ≤ ∆ti < 2n+1∆ts. (7)

∆ti is determined by equation 24, and ∆ts is a constant.

The particles distribution among the different blocks is determined by
the following condition,

∆ti,new = 2dlog2 ∆tie−1, (8)

and is described in Fig. 9.

For the boundaries of the time steps, we use the Aarseth criterion [Aarseth,
2003] for the lower limit of the time steps allowed in the system:

∆tmin = 0.04
( ηI

0.2

)1/2
(

R3
cl

m̄

)1/2

, (9)
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where ηI is the initial parameter for accuracy, typically 0.01; R3
cl is the

close encounter distance and m̄ the mean mass.

Usually ∆tmin = 2−23. On the other hand, we set a maximum time step
∆tmax = 2−3. When updating a particle’s time step, if it is out the this
boundaries, we modify the value to ∆tmin if ∆t < ∆tmin, and to ∆tmax if
∆t > ∆tmax.

The algorithm uses a Hermite of 4th order to integrate the evolution, which
follows these steps:

1. Select the particles with the minimum ti,0 + ∆ti,0 and assign this mini-
mum time to the global integration time t.

2. Calculate the predicted position (ri,pred) and velocity (vi,pred) at time t,
for all i particles, using these expression:

ri,pred = ri,0 + vi,0∆ti +
1
2!

ai,0∆t2
i +

1
3!

ȧi,0∆t3
i (10)

vi,pred = vi,0 + ai,0∆ti +
1
2!

ȧi,0∆t2
i (11)

in this case, the ∆ti,0 is calculated as follows:

∆ti = t− ti,0 (12)

3. Calculate the acceleration (ai,1) and the jerk (ȧi,1) using the predicted
position and velocity only for the i-particles in which the global time t,
is equal to ti,0 + ∆ti,0

5.

ai,1 =
N

∑
j=0
j 6=i

Gmj
rij

(r2
ij + ε2)

3
2

, (13)

ȧi,1 =
N

∑
j=0
j 6=i

Gmj

 vij

(r2
ij + ε2)

3
2
− 3(vij · rij)ri

(r2
ij + ε2)

5
2

 , (14)

where

rij = rj,pred − ri,pred, (15)

vij = vj,pred − vi,pred, (16)

rij = |rij| (17)

It is important to note, that (vij · rij) correspond to the dot product, and
not a simple multiplication.

4. Calculate the 2nd and the 3rd derivative of the acceleration (a(2)i,1 , a(3)i,1 )
using the third-order Hermite interpolation polynomial constructed us-
ing ai,0 and ȧi,0:

5 Eq.(2) of Makino and Aarseth [1992] has a typo in the sign of the second term in the sum of ȧi,1.
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ai,1(t) = ai,0 + ȧi,0∆ti,0 +
1
2

∆t2
i,0a(2)i,0 +

1
6

∆t3
i,0a(3)i,0 (18)

where ai,0 and ȧi,0 are the acceleration and jerk calculated at the previ-

ous time t, the second and third acceleration derivatives a(2)i and a(3)i
are given by:

a(2)i,0 =
−6(ai,0 − ai,1)−∆ti,0(4ȧi,0 + 2ȧi,1)

∆t2
i,0

(19)

a(3)i,0 =
−12(ai,0 − ai,1)− 6∆ti,0(ȧi,0 + ȧi,1)

∆t3
i,0

(20)

where ai,1 and ȧi,1 are the acceleration and the jerk at the time ti + ∆ti.

5. After the previous calculation, it is necessary to add the corrections to
the position and the velocity for the particle i at the time ti + ∆ti

ri,1 = ri,pred +
1
24

∆t4
i a(2)i,0 +

1
120

∆t5
i a(3)i,0 (21)

vi,1 = vi,pred +
1
4

∆t3
i a(2)i,0 +

1
24

∆t4
i a(3)i,0 (22)

6. We then need to calculate the next time step for the i particle (∆ti,1) and
time t using the following formulae:

ti,1 = ti,0 + ∆ti,0 (23)

∆ti,1 =

√√√√√η
|ai,1||a(2)i,1 |+ |ji,1|2

|ji,1||a
(3)
i,1 |+ |a

(2)
i,1 |2

. (24)

Here η is the accuracy control parameter, ai,1 and ȧi,1 are already known,

a(3)i,1 has the same value as a(3)i,0 due the third-order interpolation, and a(2)i,1
is given by:

a(2)i,1 = a(2)i,0 + ∆ti a(3)i,0 (25)

We depict the process of the integration in Fig. 10.

8.1.5 The parallelisation scheme

As we have already mentioned, the bottleneck of any N−body code is the
force calculation Fig. 10. In this respect, GRAVIDY is not different and a quick
performance test to get the profile of our serial code yields almost 100% of the
execution time in this calculation 8.1. We hence introduce a parallelisation
scheme, which we discuss in detail now.

GRAVIDY is based on a direct-summation Hermite 4th order integrator and
uses block time steps, so that in the force update process we have a nested
loop for every i−active particle (which we will refer to from now with the sub-
script “act”). This means that for every particle which needs to be updated we
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Input (m, r,v)

Det. particles to move

Prediction (rpred,vpred)

Force calculation (a, ȧ)

Correction (rcorr,vcorr)

Tint = T?

Output

Tint = Tint + ∆T

no

yes

Figure 10: Hermite integration scheme illustration. This flow diagram shows
the steps of every iteration. The force calculation is marked with
red, because it is the bottleneck of the computational time.

. . .

. . .

N

Nact

Figure 11: Relation between the particles which will be updated in a certain
integration time (Nact) and the whole set of particles (N). The
relation between the active particles and the others is Nact � N in
non-synchronisation times.
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have a loop run on the whole set of particles of our system to check whether
particle j− is interacting with i−.

The whole process scales with the amount of i−particles, as we can see in
Fig. 11.

We then need to parallelise the loop corresponding to each of the i−particles.
For each of them we circulate through all of the j−particles, and this is the
process which needs to be parallelised. Although this is in principle a straight-
forward scheme, since we focus on GPUs, we run into the following issues:

1. A GPU can launch a large number of threads, easily up to thousands
of them. In our scenario, however, the number of active particles Nact
is very small compared to the total amount of particles (N). This has
an impact on the performance: we do not use all available threads, we
are integrating a grid of Nact × N forces. When the number of active
particles is very low our occupancy will be bad.

2. Contrary, in the case in which we have to move all particles, we will
have an O(N2) parallelism, which maximises the GPU power. In this
case, however, the memory bandwidth is the limitation factor, since every
particle requires all information about all other N − 1 particles.

The N×N forces grid allows us to use tiles, as explained in Nguyen [2007],
and introduced in a direct-summation N−body for the first time by Nitadori
[2009]. Using tiles means that we work with a square of the GPU grid of
p rows and p columns, as depicted in Fig. 12. Instead of having the usual
p2 power that arises from all particles interacting with all particles, we need
to only take into account the sum of p blocks in the SHARED memory of the
GPU. Synchronisation only takes place at some particular moments, displayed
as bold vertical lines in the figure, and we only have a load from GLOBAL to
SHARED memory of p particles per tile, which implies a reusing of existing in-
formation instead of loading new one. The circles in the figure represent that,
given a certain moment, the calculation can be in any column, because the
threads are synchronised during the computation. We evaluate the interac-
tions row by row and have parallelism in every column.

Whilst tiles are optimal when we need to evaluate force interaction for
all particles in the system, GRAVIDY rarely deals with this situation due to
the nature of the base algorithms and main goals behind it. The amount of
particles that we need to update at every step is Nact � N, with N the total
number of them. This means that we will be wasting computational resources,
since some threads will not do the entire work. This is why we have to look
for an alternative scheme which handles better the fact that we only need to
move a subgroup of particles instead of the whole system.

It is better to have all particles handled by the GPU, and not only the active
ones, because even though this subgroup is smaller, or even much smaller,
it is more efficient from the point of view of the GPU, since the occupancy
is improved. The parallelisation happens at j−level (i.e. when calculating
the forces between active particles with the rest of the system). This idea
was first implemented by Nitadori [2009], and has proven to yield very good
performance.

The main ideas behind the j−parallelisation is how force calculation is done
and the summation of the forces (“reduction”):

• Force calculation: The interaction between the i−particle and the rest of
the system is distributed among the GPU threads, which means that we
launch N threads, and each of them calculates its contribution with the
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Figure 12: Grid configuration using the tiles approach (This figure is based
on GPU-Gems3 book [Nguyen, 2007])

i−particle. After this calculation, we have an array where each element
contains the contributions all the particles.j This corresponds to the up-
per part of Fig. 13, which illustrates a set-up of two GPUs. After the
force calculation we end up with an array containing the information
about the forces for all particles.

• Force reduction: In the lower part of the same Fig. we depict the sum-
mation of all of these forces, which is also performed in parallel, so that
we use the blocks distribution of the GPU for this task.

So as to illustrate these steps, we give a particular example of a system with
1024 particles: let us assume that we need to move 300 of them (Nact = 300)
at the moment of launching the kernel. Before this, we need to set up the
kernel configuration. We define the grid size (number of thread blocks), and
the block size (number of threads per block). This sizes are 3-component
vectors, to help an easy identification of the thread-ID and block-ID at every
kernel launch.

Since we have a two-phase force calculation process, we use a different
configuration for each kernel call (block and grid size): one for the prelimi-
nary force calculation, which calculates the total force on an active particle,
in 16 values (the JPBLOCK size), and another one to reduce those sets into the
final total force on an active particle. We base our configuration on the idea
presented in Nitadori and Aarseth [2012], with some variations of the data
scheme. We use two-dimensional blocks to handle the indexes of the threads.
In the case of the force calculation, we have:

1 dim3 blockSize(BSIZE , 1, 1); // (64, 1, 1)
2 dim3 gridSize (1 + Nact/BSIZE , JPBLOCKS , 1); // (5, 16, 1)
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Figure 13: parallelisation scheme to split the j−loop instead of the i−loop.
Two GPUs are depicted to represent how the code works with mul-
tiple devices. In this case, we have two sections, the first is to
calculate the force interactions of the i−particle with the whole
system but by different threads (upper part). Then a reduction,
per device, is necessary to get the new value for the i−particle
force ( fi).

Firstly, we define the block size to 64 (number of threads). Next, we config-
ure the grid: the first dimensions of the blocks (blockIdx.x = 5) are thought
to handle the Nact = 300 particles (5 blocks using 64 threads each = 300 to-
tal threads), and the second dimension of the blocks (blockIdx.y) JPBLOCKS,
to handle the N particles in groups of N/JPBLOCK = 64. Lastly, we need 64
more threads to use the JPBLOCKS, which is the reason for having the 1+ at
the beginning of the first dimension of the grid. After this process, the tempo-
rary forces are allocated in an N × JPBLOCKS array, so that for every particle
we continuously save their force interaction with the other particles of the
system. We then perform reductions (summations) to obtain the final forces
for every Nact particle, which are distributed in JPBLOCKS (16) blocks. Hence,
the kernel configuration must be different, and we use a simple one. In this
case, we use a simple parallel CUDA reduction of Nact arrays of JPBLOCK (16)
elements.

1 dim3 blockSize(JPBLOCKS , 1, 1); // (16, 1, 1)
2 dim3 gridSize(Nact , 1, 1); // (300, 1, 1)

8.2 T H E T H R E E F L AV O U R S O F G R AV I D Y : T E S T S

Thanks to the fact that there is a number of codes implementing similar
approaches to ours, we are in the position of running exhaustive tests on
GRAVIDY. Indeed, the global dynamics of a dense stellar system (typically an
open cluster, because of the limitation in the number of particles we can in-
tegrate) has been addressed numerically by a large number of authors in the
field of stellar dynamics. Therefore, we have decided to focus on the dynami-
cal evolution of a globular cluster with a single stellar population. We present
in this section a number of tests to measure the performance and the accuracy
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of the three versions of GRAVIDY which we present using different amount of
particles. Our goal is to be able to offer an OpenSource code that fits different
needs and requirements. This is why this first release of GRAVIDY offers three
different choices, which are general enough for different users with different
hardware configurations. These are:

( I ) T H E C PU V E R S I O N consists in the more basic implementation in this
work, a CPU version. I.e. This version uses OpenMP and is intended for
a system without graphic processing units, but with many cores. This
flavour can be used for debugging purposes by disabling the OpenMP
directives (#pragma omp). This is the basis for our further development
of the code.

( I I ) T H E M P I V E R S I O N is virtually the same serial implementation, but with
OpenMPI directives added to improve the performance of the hot-spots
of the algorithm, in particular the force and energy calculation. In this
case we use the MPI library, and hence it can be run on a single machine
using a certain amount of cores as “slave” processes or on a large cluster
with separated machines as slaves.

( I I I ) T H E G PU V E R S I O N discards all CPU usage and only relies on the GPU
to integrate all gravitational interactions. As we mention later, we tried
to use CPU combined with GPU, but we did not see any benefit in it,
and the approach was hence neglected. We use CUDA to be able to
interact with NVIDIA graphics processing units. The code is designed
to detect the amount of present GPUs and use all of them, unless oth-
erwise required by the user. This means that this version can use in a
parallel way as many GPU cards as the host computer can harbour in a
very simple and efficient way. The communication between the different
GPU cards in the host computer is internal and run through Peripheral
Component Interconnect Express (PCIe), a high-speed serial computer
expansion bus standard, so that the data flows rapidly because of the
low overhead.

The specifications of the hardware (CPU, GPU and available RAM) and op-
erating systems we used are summarised in table 1.

8.2.1 Initial conditions and N−body units

For all of our tests we choose an equal-mass Plummer sphere [Plummer, 1911]
for the sake of comparison with other codes. We choose standard N−body
units (NBU, hereon) for the calculations and in the resulting output [Hénon,
1971, Heggie and Mathieu, 1986]. This means that

• The total mass of the system is 1: ∑N
i=0 mi = 1.

• The gravitational constant (G) is set to 1: G = 1.

• The total energy of the system is equal to −0.25: Etot = K + U =
−0.25, with K and U the total kinetic and potential energy of the system,
respectively.

• The virial radius is set to ≈ 1.

The Plummer spheres have a fixed half-mass radius of 0.8 and a Plummer
radius of 0.6.

We used the code by Küpper et al. [2011] (McLuster) to generate all the
initial conditions for the test we performed on the current work.
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System A datura (165 nodes)
CPU Intel(R) Xeon(R) CPU X5650 @ 2.67GHz (24 cores)
GPU none
RAM 24 GB
OS Scientific Linux 6.0
System B gpu-01 (1 node)
CPU Intel(R) Xeon(R) CPU E5504 @ 2.00GHz (4 cores)
GPU 4 x Tesla M2050 @ 575 Mhz (448 cores)
RAM 24 GB
OS Scientific Linux 6.0
System C krakatoa (1 node)
CPU AMD Opteron 6386SE @ 2.8 GHz (32 cores)
GPU 2 x Tesla K20c @ 706 MHz (2496 cores)
RAM 256 GB
OS Debian GNU/Linux 8

System D sthelens (1 node)
CPU Intel(R) Xeon(R) CPU E5-2697v2 @ 2.7GHz (24 cores)
GPU 2 x Tesla C2050 / C2070 @ 1.15 Ghz (448 cores)
RAM 256 GB
OS Debian GNU/Linux 8

Table 1: Specification of the different systems of the Albert Einstein Institute
used for the tests.

8.2.2 Accuracy, performance and speed

For GRAVIDY, as we have seen, we have chosen a Hermite 4th-order integra-
tor. The numerical error introduced scales hence as O(∆t4) assuming a shared
time step, which means that the previous is true only if all particles are up-
dated at every integration step. Since we use a block time step scheme, certain
groups of particles share a time step value, but not all of them. Thanks to this
approach, the numerical error which we reach in our integrations is slightly
less than the value mentioned previously.

Nitadori and Makino [2008] use a 6th- and 8th-order Hermite integrator
scheme, which leads to higher-order (2nd and 3rd) acceleration derivatives
and hence to better results in energy conservation, in particular the 8th-order
case, but also in parallelisation efficiency. The reason for this is that by going
to higher order in the truncation, we allow particles to populate ranges of
time steps forbidden in the lower-order approximation. This leads to a larger
number of block steps, and hence more parallelism efficiency. This efficiency
comes from the amount of particles updated in every block step, because using
this higher order integrator, we have bigger groups of particles in every block.
One of our goals for the future version of our code is to try different integra-
tion schemes, like the Hermite 6th-order scheme described before. However,
for the current purpose of GRAVIDY with softening, as presented in this work,
we deem it sufficient to employ a 4th-order, which yields a good conserva-
tion of the energy, as we will see below. Although GRAVIDY aims at users
with access to a handful of GPU cards on one node, we note that the work of
Capuzzo-Dolcetta et al. [2013], which is based on the same integrator, shows
a good performance in large GPU clusters, which means that theoretically one
could run the current version of GRAVIDY in this kind of facility.

We have introduced in Eq. (24) a free parameter, η, responsible for de-
termining the calculation of every time step of the system, from the initial
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Figure 14: Cumulative energy error (dashed black line) and wall clock time
(solid red line) in function of η for six different systems consisting
of a Plummer sphere with N = 1, 2, 4, 8, 16, 32 k particles, with
k := 1000, from the top to the bottom, left to right. The integra-
tion corresponds to one time unit, namely from t = 1 to t = 2
in the wall clock time analysis, and for t = 2 in the energy error
calculation. The reason for choosing the elapse between 1 and 2
is to get rid of any initial numerical error at the simulation startup,
from 0 to 1. All tests have been performed on System B of Tab. (1).

calculation to the update after every iteration. Hence, so as to assess an opti-
mal value for it, we perform different tests to find a balance between a good
energy conservation and a minimum wall clock time. We explore values be-
tween 0.001 and 0.1 integrating a series of systems with N ranging between
1024 to 32768, for convenience 6, and up to 2 NBU. We show the results in
Fig. 14 performed on System B of Tab. (1). For small values of η, the cumu-
lative energy error approximately stays constant, because the error is small
enough to leave accuracy in hands of the integrator scheme and the hard-
ware. Increasing η leads to larger errors. This is particularly evident when we
use systems with a larger number of particles. The system with N = 32768
particles, and a ε = 10−4, achieves ∆E/E0 ≈ 10−3 for η = 0.1, while it is as
low as ∆E/E0 ≈ 10−6 for the same value and 1024 particles.

In the same figure we describe the performance in function of η by using the
wall clock time in seconds for the code to reach one NBU for the same values
of the parameter. We can see that the value of η is inversely proportional to
the time, since increasing its value results in decreasing the execution time.

6 Any number of particles can be also handle properly, not necessarily powers of 2.
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Figure 15: Wall clock time of integration from t = 1 NBU up to t = 2 NBU,
using η = 0.01 and ε = 10−4 using different amount of particles
on System C of Tab.(1).

When we increase η we implicitly increase the time step of every particle, so
that one unit of time is reached sooner. We find that a value of about 0.01 is
the best compromise for most of our purposes, yielding an accuracy of about
∆E/E0 = 10−7 in most of the cases.

To measure the execution speed of our code we perform a set of tests by
integrating the evolution for one NBU of a Plummer sphere with different
particle numbers, ranging from N = 1024 to N = 262144. For the analysis,
we choose the time starting at t = 2 and finishing at t = 3, since the first
time unit is not representative because the system can have some spurious nu-
merical behaviour resulting from the fact that it is not slightly relaxed. When
testing the parameters η and ε, we picked the time starting at t = 1 and fin-
ishing at t = 2 because we wanted to understand their impact not right at
the beginning of the simulation. Now we allow the system to further relax so
as to obtain a more realistic system. In particular, the distribution time steps
drifts away from the initial setup. For the simulations we choose η = 0.01 and
ε = 10−4 which, as we discussed previously, are a good compromise in terms
of accuracy and performance.

We display the wall clock time of each integration in Fig. 15. We also
display reference curves for the powers of N3, N2 and N log N, multiplied by
different factors to adapt them to the figure. We see that GRAVIDY scales very
closely as a power of 2. The deviations arise from the fact that not all particles
are being updated at every time step.

We employ different combinations of techniques during the parallelisation,
both at GPU and CPU level. One of the most important points in the develop-
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ment of the algorithm is the low amount of work required by the GPU when
Nact � N, as we have seen. To address this we have explored other algo-
rithms, such as using only the CPU when Nactα N, with α a free parameter to
be determined by the experiment of interest, or when Nact < Nβ, with Nβ a (a
priori) fixed amount of particles. In both cases, none turned out to be better
than the j−parallelisation, even with very small amount of Nact, because of
the prevailing GPU usage.

In Fig. 16 we show the acceleration factor for all parallel scenarios as com-
pared to the single-thread CPU case, which we use as a reference point. Due
to the design of the code, the maximum performance is achieved with the
larger particle number. The most favourable scenario for GRAVIDY is, as we
can see in the figure, System B. The 4 GPUs available boost the performance
up to a factor of 193 as compared with the single-thread CPU case. A similar
speed up is achieved on System D, which reaches a factor of 92 for the 2 GPUs.
The CPU-parallel version lies behind this performance: only reaching a factor
of 58 for System A, using up to 240 cores.

8.2.3 Scaling of the three different flavours of the code

An obvious question to any user of a numerical tool is that of scaling. In this
subsection we present our results for the three different versions of GRAVIDY

of how wall clock time scales as a function of threads or cores, or what is the
acceleration of the multiple-GPU version of the code in function of the particle
number as compared with a single GPU run, which we use as reference point.

In Fig. 17 we depict this information for the CPU, MPI and GPU versions.
We can see in the CPU version that for small amounts of particles, in par-
ticular for 2k and 1k, we have an increase in the execution time with more
threads, contrary to what we would expect. This is so because the amount
of parallelism is not enough and the code spends more time splitting data
and synchronising threads than performing the task itself, a usual situation in
tasks with a low level of computation.

The MPI version uses the same j-parallelisation idea from the GPU one. In
this case the code splits the whole system to the amount of available slaves
(be it cores or nodes), performs the force calculation and finally sums up
(“reduces”) the final forces for all active particles. This procedure was per-
formed developing our own forces datatype operations and reduction, based
on structures. This means that we define our own operations to be able to
“sum” two forces (which are two three-dimensional arrays per particle). The
simulations with small amount of particles (1k, 2k, 4k, 8k and 16k) are a
clear example of a parallelisation “overkill”: using more resources than what
is actually needed. Additionally, the communication process plays a role in
scaling, which can be seen in the curves corresponding to these simulations
for a number larger than 200 cores - the execution time increases instead of
decreasing. On the other hand, large amount of particles (cases with 32k, 64k,
128k and 256k) show the expected behaviour, a better execution time with
more nodes or cores. Surely this is not a solution for all simulations, since at
some point the curves flatten.

The GPU version is a different scenario, since every device has its own
capability, limitations and features that makes it difficult to compare their per-
formances. For this reason we have decided to present the acceleration factor
of every case normalised to a single-GPU run in the same system. This flavour
of GRAVIDY should always have a better performance when increasing the
particle number. Although having a good occupancy is in principle the ideal
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Figure 16: Acceleration factor and wall clock time for the different parallel
versions of the integrator (see Tab. 1). The acceleration factor is
normalised to the single CPU version (1 thread), up to T = 3 NBU.
For the CPU parallel version of the code, we give information about
the number of cores with the letter “c”. The GPU-parallel cases
display the information on the number of cards with multiplying
numbers.
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Figure 17: Performance of the three different flavours of GRAVIDY, as a func-
tion of the number of OpenMP threads, and number of cores and
GPUs, for the CPU, MPI and GPU versions, respectively and from
left to right. The integration corresponds to up to t = 2 NBU. Left
panel: The CPU version runs on a single node with different num-
bers of threads. The experiments were performed on system C of
Tab.(1). Mid panel: The MPI version running on different numbers
of cores, using up to 600 of them and particles, up to 262144. In
this case we use system A of the same table. Right panel: The GPU
flavour using different amount of devices in parallel and particles.
We show the acceleration factor as compared to a single GPU run
for three different setups with different GPU specifications, corre-
sponding to systems B, C and D of the same table.

scenario in this case, it is not necessarily the best reference point to assess the
efficiency of the CUDA kernels, because it is related to register uses, but also to
the amount of redundant calculations and the arithmetic intensity. We show
the acceleration factor of two and four Tesla M2050 devices as compared to a
single-GPU run which have hardware and performance differences 7 but they
nonetheless reach a similar acceleration factor. We have access to two Tesla
K20c, which have more than the double peak performance in double precision
floating point compared to the other mentioned models. The scaling between
using one and two devices has a factor of 1.6.

Every GPU is a different device, so that in order to obtain a proper opti-
misation we need to first do a study in terms of kernel calls configuration.
The current work present a fixed configuration of 32 threads per block, using
a number of blocks corresponding to N/32. A deeper study on each GPU-
device configuration is planned for future publication, where speeding up the
first GPU implementation will be one of the main concerns.

8.3 T H E R O L E O F S O F T E N I N G O N D Y N A M I C S

For the current version of GRAVIDY, and quoting Sverre Aarseth on a comment
he got some years ago during a talk, “we have denied ourselves the pleasure
of regularisation”[Kustaanheimo and Stiefel, 1965, Aarseth and Zare, 1974,
Aarseth, 1999, 2003]. This means that the code resorts to softening, via the
parameter ε, introduced in Eq. 14. This quantity can be envisaged as a critical
distance within which gravity is, for all matters, nonexistent. This obviously
solves the problem of running into large numerical errors when the distance
between two particles in the simulation become smaller and smaller, because

7 The primary difference is that model M is designed for Original Equipment Manufacturer (OEM)
for an integrated system, without active cooling, while model C includes the active cooling and
can be installed on any standard computer.
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since they are 0-dimensional, this induces an error which grows larger and
larger as they approach. This comes at a price, however. The relaxation time
of the system is, approximately [see e.g. section on Two-body relaxation by
Amaro-Seoane, 2012],

trlx ∼ N∗
tdyn

ln(dmax/dmin)
. (26)

In this equation dmin and dmax are the minimum and maximum impact
parameters. In an unsoftened N−body problem they are of the order of
dmin ≈ G m/σ2, and the size of the cluster, respectively. In other words,
dmin u Rcl/N, with Rcl the radius of the self-gravitating cluster, if the system
is virialised, and dmax is of the the half-mass radius order. Now suppose the
code uses a softening parameter ε. If the value of ε is smaller than dmin, then
softening should play only a minor role in two-body relaxation, and the global
dynamical evolution of the cluster must be similar to that of another cluster
using regularisation. In the contrary case in which ε > dmin, the relaxation
time is artificially modified, as we can read from the last equation. The larger
the quantity ln(dmax/dmin), the more efficient is relaxation, and hence the
shorter the relaxation time.

8.3.1 “Best” value for the softening?

We perform a series of simulations to assess the relevance of ε in the global
dynamical evolution of an autogravitating stellar system. In Fig. 18 we depict
the energy error and wall clock time for six different particle numbers as
a function of the softening. The lower its value, the faster the simulation.
However, by using larger values of the softening, we must understand that
we are evolving a system in which two-body deflections are not being taking
into account. This is the most important aspect of two-body relaxation, and
therefore a critical factor in the general evolution. Thus, the fundamental
feature which drives the global evolution of the system is non-existing below
larger and larger distances. In particular, the larger values correspond to
about 10% of the virial radius of the system. From these panels it seems
that a value of ε ≈ 10−4 is a good compromise for this particular test that
we are running in this example. A good practice would be that the user tests
different softening values for the case which is being addressed before making
a decision for the softening. This choice is left for the user of the code, because
we deem it difficult, if not impossible, to implement a self-regulating scheme
in which the best value for the softening is calculated a priori.

8.3.2 Core collapse

Single-mass calculations

A good reference point to assess the global dynamical evolution of a dense stel-
lar system is the core collapse of the system [see e.g. Spitzer, 1987, Aarseth
et al., 1974, Giersz and Spurzem, 1994]. We present here the evolution of
the so-called “Lagrange radii” (the radii of spheres containing a certain mass
fraction of the system) in Fig. 19, for three representative values of the soft-
ening, the three upper panels, as calculated with GRAVIDY, and depict also
the results of one calculation performed with NBODY6GPU [Nitadori and
Aarseth, 2012], the lower panel, which uses KS regularisation [Kustaanheimo
and Stiefel, 1965, Aarseth, 2003]. This can be envisaged as the “best answer”,
which provides the reference point with which the other calculations should
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be compared. In the figures we use the half-mass relaxation time, which we
introduce as

trh = 0.138

(
Nr3

h
Gm

) 1
2 1

ln(Λ)
, (27)

where N is the number of particles of the system, m the average mass of a
star, rh the half-mass radius, and Λ := γN, with γ = 0.1 the argument of the
Coulomb logarithm.

From the panels we can easily see the impact of the softening parameter
in the calculations: the collapse of the core is retarded for larger values. Our
default choice for the softening, 10−4 is just 2 Trh earlier than a NBODY6GPU
calculation that we performed to compare with our code.

Another way of looking at the core collapse is in terms of energy. In Fig. 20
we display the evolution of the energy for the same systems of Fig. 19. As the
collapse develops, the average distance between particles becomes smaller
and smaller. There is an obvious correlation between the conservation of
energy and the value of the softening. The transition between a fairly good
energy conservation and a bad one happens more smoothly for larger and
larger values of the softening, since the error has been distributed since the
beginning of the integration. This means that, the smaller the value of the
softening, the more abrupt the transition between the good and bad energy
conservation, which leads to a big jump for the lowest value, 10−5. We stop
the simulations at this point because of the impossibility of GRAVIDY to form
binaries, the main way to stop the core collapse.

As discussed previously, and as we can see in Fig. 20 and 19, the introduc-
tion of softening in the calculations has an impact on the global dynamical
behaviour of the system. We find factors of 1.001, 1.08 and 1.55 of delay
to reach the core collapse for the softening values ε = 10−5, ε = 10−4 and
ε = 10−3, respectively.

The NBODY6GPU simulation was run on a different system, using a GeForce
GTX 750 (Tesla M10) GPU, which is why we compared with the overall sys-
tem evolution instead of the wall clock time.

Calculations with a spectrum of masses

Additionally to the single-mass calculations, we have also addressed multi-
mass systems. The fact of having an Initial Mass Function (IMF) accelerates
the core collapse of the system, as shown by many different authors [Inagaki
and Wiyanto, 1984, Spitzer, 1987, Kim and Lee, 1997, Kim et al., 1998]. In
our calculations, we use a Plummer sphere with a Kroupa IMF [Kroupa, 2001]
and 8192 particles. In Fig. 21 we present the evolution of the Lagrange radii
and the energy conservation of the system. We can see that the core collapse
happens around 2 Trh, which is the point from which the energy conservation
becomes worse and worse, to achieve a value of about 6 orders of magnitude
worse than in phases before the collapse. Another way of depicting the col-
lapse is by identifying the heaviest 10% of the stellar population and how it
distributes in the core radius as calculated at T = 0. We can see this in Fig. 22.

The equilibrium of the system can be evaluated by analysing the distribu-
tion of the time steps. As we have mentioned previously, in Section (8.1.4),
the initial distribution of time steps in the system has a log-normal distribu-
tion, which in a balanced system must remain similar, or close. In Fig. 23 we
show the step distribution after the core collapse for the single-mass system
with ε = 10−4
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Figure 19: Comparison of the Lagrange radii of a Plummer Sphere with
N = 8192 particles, using different values of ε (softening) for
GRAVIDY and the NBODY6GPU code, from upper to bottom. The
mass percentages are 0.5, 1, 2, 3, 4, 5, 6, 75 and 90 % of the total
mass, from the bottom to the upper part of each plot. The core
collapse is reached at ≈ 24, 18 and 16 Trh for ε = 10−3, 10−4

and 10−5 respectively. The half-mass relaxation time for this sys-
tem is Trh = 112.186 NBU The NBODY6GPU code does not in-
clude a softening parameter, and treat binary evolution with a KS-
regularisation.
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Figure 20: Energy conservation in a long time integration of a system with
N = 8102 Comparison of the Energy conservation of a Plummer
Sphere with N = 8192 particles, using different values of ε (soft-
ening) for GRAVIDY and the NBODY6GPU code, from upper to
bottom. The core collapse is reached at ≈ 24, 18 and 16 Trh for
ε = 10−3, 10−4 and 10−5 respectively. The half-mass relaxation
time for this system is Trh = 112.186 NBU The NBODY6GPU code
does not include a softening parameter, and treat binary evolution
with a KS-regularisation. All the runs were stopped after the core
collapse.
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Figure 21: Plummer sphere using 8192 particles and following a Kroupa IMF.
Top Panel: Cumulative energy of the system. Bottom Panel: La-
grange radii distribution for 0.5, 1, 2, 3, 4, 5, 6, 75 and 90% of the
total mass.
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Figure 24: Upper panel: Evolution of the initial distance RBH between the two
supermassive black holes for a mass ratio q = 1 (and q = 2 in the
set of three right panels). The three horizontal lines correspond,
from the top to the bottom, to a distance of 10 RS, with RS the
Schwarzschild radius, 4 RS, and 1 RS. Mid panel: Evolution of the
relative velocity between the two supermassive black holes. The
four horizontal lines correspond, from the top to the bottom, to a
fraction of the speed of light c of 50%, 30%, 20% and 10%. Bottom
panel: Evolution of the eccentricity of the binary as a function of
time in hours. We mark the point in the evolution at which the
separation is 4 RS with an orange dot.

8.4 R E L AT I V I S T I C C O R R E C T I O N S

GRAVIDY includes a treatment of relativistic orbits. This has been imple-
mented for the code to be able to study sources of gravitational waves. The
approach we have used is the post-Newtonian one, presented for the first time
in an N−body code in the work of Kupi et al. [2006] (and see also Amaro-
Seoane and Chen 2016) and later expanded to higher orders in Brem et al.
[2013]. The idea is to modify the accelerations in the code to include rela-
tivistic corrections at 1PN, 2PN (periapsis shifts) and 2.5PN (energy loss in
the form of gravitational wave emission). Contrary to the scheme of Kupi
et al. [2006], which implements the modification in the regularised binaries,
in the case of GRAVIDY, the corrections are active for a pair of two particles
for which we set the softening to zero. The expressions for the accelerations,
as well as their time derivatives can be found in the updated review of 2017
Amaro-Seoane [2012].

We run a series of different tests for binaries with different mass ratios and
initial semi-major axis. In Fig. 24 we display the evolution of a binary of two
supermassive black holes of total mass 1.336 M� and mass ratios of 1 and
2. In Fig. 25 we show mass ratios of 5 and 100, and the latter starts with a
smaller initial semi-major axis. For each of these cases we plot the geometric
distance, the relative velocity and the eccentricity. Higher mass ratios lead to a
more complex structure in the evolution. We can see how the relative velocity
increases up to a significant fraction of the speed of light c as the separation
grows smaller. We however note that the post-Newtonian approach should
not be trusted for velocities larger than about 20% c.
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Figure 25: Same as Fig. 24 but for mass ratios q = 5 (left panels) and q = 100
(right panels), and a different initial separation, of 7 × 10−7 pc
(also right panels).

8.5 C O N C L U S I O N S

In this chapter we have presented the first version of our new N−body code,
written purely in C/C++, using OpenMPI and CUDA, which we call GRAVIDY.
The current version of our code provides an environment to evolve a self-
gravitating stellar system, and uses a Hermite 4th-order integration scheme,
using block time steps and softening, and features relativistic corrections (pe-
riapsis shift and energy loss) for sources of gravitational radiation. This first
release of GRAVIDY has been mainly focused on users who can have access to
a machine hosting few GPUs, or usual parallel CPU systems.

We summarise here the main features of GRAVIDY:

1. The code is written using an iterative and incremental development,
which is methodology similar to the Assess, Parallelise, Optimise, Deploy
(APOD) development cycle presented by NVIDIA.

2. The code organisation is designed to be highly modular. Every critical
process of the integrator is represented by a separate function or chain
of functions. Our goal is to produce a code which can be read without
difficulties, which makes easier future modifications or forks.

3. Since maintainability is one of our main goals, the documentation is also
a critical factor. We document every function in the inner procedure of
the integrator.

4. We use a Hermite 4th order integrator scheme.

5. The code uses block time steps to improve the performance of the inte-
grator. We evolve particles in groups of block time steps, which allows
for an update of several particles at the same time.

6. We use GPU computing techniques, OpenMP and OpenMPI to parallelise
the calculation of the gravitational interactions of our system after hav-
ing localised the hot-spots of our algorithm. The main objective here
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Listing 8.2: Example run of the integrator. Columns, decimals, and informa-
tion were modified to fit the output on this document.

$ ./gravidy -gpu -i ../ input /04-nbody -p1024_m1.in -p -t 1
[2017 -01 -28 01:60:56] [INFO] GPUs: 1
[2017 -01 -28 01:60:56] [INFO] Spl. 1024 particles in 1 GPUs
[2017 -01 -28 01:60:56] [INFO] GPU 0 particles: 1024
Time Iter Nsteps Energy RelE CumE ETime

0.000 0 0 -2.56e-01 0.00e+00 0.00e+00 3.08e-02
0.125 698 30093 -2.56e-01 2.41e-07 2.41e-07 3.84e-01
0.250 1262 61319 -2.56e-01 1.10e-07 1.30e-07 6.60e-01
0.375 1897 91571 -2.56e-01 4.19e-08 8.84e-08 9.49e-01
0.500 2530 121963 -2.56e-01 8.51e-08 3.30e-09 1.23e+00
0.625 3132 150924 -2.56e-01 2.89e-08 3.23e-08 1.52e+00
0.750 3725 180446 -2.56e-01 1.39e-08 1.83e-08 1.76e+00
0.875 4354 212425 -2.56e-01 5.23e-07 5.41e-07 2.02e+00
1.000 5160 244165 -2.56e-01 2.32e-07 3.09e-07 2.32e+00
[2017 -01 -28 01:60:59] [SUCCESS] Finishing ...

was to be able to update a relatively small amount of particles which
share a common time step in a given moment, a situation which is
against the design of GPU cards, developed to reach a high parallelism.

8.6 A P P E N D I X A : A B O U T T H E C O D E

GRAVIDY is a C/C++ and CUDA application, that uses the CUDA, OpenMPI
and boost libraries.

As an overview, the compilation can be done with: make <flavour>, for
the cpu, mpi and gpu versions. A simple run of the code is displayed in the
Listing 8.2.

The URL hosting the project is:

• http://gravidy.xyz

where you can find the prerequisites, how to get, compile and use the code
more detailed. Additionally, documentation regarding the code, input and
output files is included.

Inside the repository, there is a scripts directory with a set of classes to be
able to handle all the output files of the code.

The code was compiled using gcc (4.9.2), openmpi(1.6.5), CUDA(6.0) and
boost (1.55).

The following compilation FLAGs were used -O3 -Wall -fopenmp -pipe
-fstack-protector -Wl,-z,relro -Wl,-z,now -Wformat-security -Wpointer-arith
-Wformat-nonliteral -Wl,-O1 -Wl,–discard-all -Wl,–no-undefined -rdynamic.

8.7 n−B O D Y V I S UA L I S AT I O N T O O L

A graphical representation of N−body simulations is always an attractive idea
to display how the simulation was performed (Fig. 26). Due to this reason,
we decided to write an small application to have a simple 3D visualisation of
GRAVIDY snapshots, based in OpenGL.

GRAVIDYVIEW is a lightweight and simple OpenGL N−body visualisation
tool, written in C/C++. It can be downloaded from:

• https://gitlab.com/cmaureir/gravidy-view.
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Figure 26: Snapshot pre-visualisation with GraviDyView using a N = 1024
system.
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9

R E T R O G R A D E M B H B E V O L U T I O N O N C I R C U M B I N A RY
A C C R E T I O N D I S C S

The project presented on this chapter was published under:

RETROGRADE BINARIES OF MASSIVE BLACK HOLES

IN CIRCUM-BINARY ACCRETION DISCS

P. Amaro-Seoane, C. Maureira-Fredes, M. Dotti & M. Colpi
Astronomy & Astrophysics, Volume 591, July 2016, id.A114, 12 pp.

In this chapter we present a suite of 2D hydro-dynamic simulations to study in
detail the evolution of a MBHB embedded in a counter-rotating disc with fo-
cus on how different prescriptions on the accretion onto the secondary MBH
can influence the evolution of the orbital elements. In §9.2 and §9.3 we
describe the numerical tools, the initial configurations and the accretion pre-
scriptions. In §9.4, we evaluate the effect of the different accretion recipes on
the dynamics of the binary. Furthermore, we present results obtained from
a set of 3D Smoothed-particle hydrodynamics simulations of MBHBs in a ret-
rograde non-self gravitating disc to highlight commonalities and differences
with the results from 2D simulations. In §9.5 we present a semi-analytical
model in order to explore the long term evolution of the binary. We discuss
the implications of our findings in §9.6.

9.1 I N T R O D U C T I O N A N D M O T I VAT I O N

We have seen in the introduction that massive black hole pairs are thought
to be the natural outcome of galaxy mergers along the cosmic history [Begel-
man et al., 1980]. When two galaxies collide, the gravitational interaction of
their galactic cores with the underlying dark matter, stellar, and gaseous back-
ground guides the sinking of the two massive black holes (MBH) at the centre
of the galaxy remnant, which leads to the formation of a Keplerian binary.
This occurs when the mass in gas and stars enclosed within the MBH orbit
is smaller than the masses of the two MBHs, typically of ∼ parsec for MBH
masses of million suns [Colpi, 2014]. If the binary further hardens to attain
separations as small as ∼< 0.001 pc1, the emission of gravitational waves forces
the two MBHs to coalesce in less than an Hubble time. Their final pairing and
coalescence is measurable with a LISA-like observatory, e.g., LISA, if the total
mass is / 107 M� [Amaro-Seoane et al., 2012b].

The evolution of the massive MBH binary (MBHB) on sub-pc scales depends
on the properties of the cores of their hosts. In gas-poor remnants, MBHBs
lose energy and angular momentum via scattering individual stars. The final
fate of the binary depends on the effective reservoir of stars the MBHs can

1 The exact separation at which an MBH binary coalesces in less than a Hubble time depends on
the binary eccentricity, mass, and mass ratio [see e.g., Peters, 1964, for an approximation based
on Keplerian ellipses].
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interact with. It has been shown that the presence of some degree of tri-
axiality [naturally present in galaxy merger remnants, Preto et al., 2011, Khan
et al., 2011, 2012] can excite centrophilic orbits in a high number of the stars
of the galaxy remnant, bringing the two MBHs to the scales of gravitational
wave-driven inspiral and coalescence [see also Berczik et al., 2006, Berentzen
et al., 2009, Gualandris and Merritt, 2012, Khan et al., 2013].

The presence of dense gas structures could accelerate the evolution of the
binary, resulting in a faster coalescence [Begelman et al., 1980]. A funda-
mental difference between gas-poor and gas-rich environments is that, in the
presence of a consistent amount of gas, accretion onto the MBHs is expected
to be significant. This would enable us to detect dual AGN as spatially re-
solved nuclear sources and MBHBs at shorter separations from peculiar sig-
natures in their optical/X-ray spectra [e.g., Begelman et al., 1980, Shen and
Loeb, 2010, Tsalmantza et al., 2011, Eracleous et al., 2012, Montuori et al.,
2011, 2012, Sesana et al., 2012, Tanaka et al., 2012, D’Orazio et al., 2013b,
Bogdanović, 2015, D’Orazio et al., 2015], enabling us to map the orbital de-
cay of MBHs in the electromagnetic spectrum. In gas-poor environments, the
most robust way of identifying MBHBs is through the detection of gravita-
tional radiation during the inspiral phase. For large MBH ∼> 108 M�, the
Pulsar Timing Array experiment, operating at nano-Hz frequencies, might re-
veal their signal [Hobbs et al., 2010]. Furthermore, MBHBs can be detected
during the inspiral, merger and ring-down in experiments such as LISA, at
shorter wavelengths (around 0.1 mHz-1 Hz), and for lighter MBHB coales-
cence (∼ 107 M�) [Amaro-Seoane et al., 2012b].

The presence of massive gas structures close to MBHBs is not unexpected.
If the two merging galaxies initially had a significant amount of gas, their
reciprocal perturbation drives gas inflows toward the centre of the two struc-
tures. These inflows result in massive gas discs in the centre of the galaxy rem-
nant [e.g., Escala et al., 2005, Mayer et al., 2007, Dotti et al., 2007, Hopkins
and Quataert, 2010, Dotti et al., 2012]. However, the details of the interac-
tion between the binary and a gas disc are still debated [Fiacconi et al., 2013,
Roškar et al., 2015, Lupi et al., 2015b, del Valle et al., 2015]. The gas disc
can either be corotating or counter-rotating with respect to the MBHB [Nixon
et al., 2011b, Roedig and Sesana, 2014]. The corotating case seems to be
the more natural outcome of a gas rich galaxy merger [see, e.g., Mayer et al.,
2007], since the MBHs bind in a binary during the natal process that forms the
nuclear gas disc. For this reason, MBHBs embedded in co-rotating circumbi-
nary discs have been extensively studied [Goldreich and Tremaine, 1980, Lin
and Papaloizou, 1986, Artymowicz and Lubow, 1994, Ivanov et al., 1999, Es-
cala et al., 2005, Hayasaki et al., 2007, Dotti et al., 2007, 2009, MacFadyen
and Milosavljević, 2008, Cuadra et al., 2009, Lodato et al., 2009, Farris et al.,
2011, Roedig et al., 2011, 2012, Noble et al., 2012, D’Orazio et al., 2013b].
However, the degree of misalignment between the gas in the remnant nucleus
and the binary could depend on the parameters of the merger [Blecha et al.,
2011, Hopkins et al., 2012] so that counter-rotating accretion is not ruled
out. Furthermore, if the binary does not coalesce on a short timescale (com-
parable with the timescale over which star formation depletes the central co-
rotating gas), subsequent inflows of gas could be uncorrelated to the angular
momentum of the binary, possibly resulting in counter-rotating circumbinary
discs [Goicovic et al., 2016].

Regarding the evolution of an MBH binary, retrograde and prograde discs
differ in a few important aspects: (i) in the prograde scenario, the disc-binary
interaction leads to the opening of a gap, i.e., a hollow region surrounding the
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MBHs of a size comparable to twice the binary separation, and binary harden-
ing is somewhat reminiscent of a planet type II migration. In the retrograde
scenario resonances are either absent (for circular binaries) or weak [Nixon
and Lubow, 2015]. In many cases the binary does not manage to excavate a
gap [Bankert et al., 2015], and the MBHB-disc interaction actually enhances
the inflow of matter toward the centre [Nixon et al., 2011a]; (ii) retrograde
gas interacting with the MBHs can remove more angular momentum per unit
of mass than in the prograde case, since its initial angular momentum has
sign opposite to that of the binary and this leads to an increase in the eccen-
tricity [Nixon et al., 2011a, Roedig and Sesana, 2014, Schnittman and Krolik,
2015]; (iii) in the retrograde case, the relative velocities between the MBHs
(in particular between the secondary MBH, in an unequal mass binary) and
the disc are significantly larger, so that the interaction between the gas and
the MBHs is confined to smaller regions.

9.2 N U M E R I C A L T O O L A N D D E S C R I P T I O N O F T H E I N I T I A L M O D E L S

We consider the case of MBH binaries orbiting in the orbital plane of an ac-
cretion disc. This enable us to limit the dimensions in our simulations to two.
Thus, we can use FARGO2, a two-dimensional hydrodynamical grid program
that integrates the isothermal Navier-Stokes equations using a staggered polar
grid [Masset, 2000].

The code is particularly suited for quasi-Keplerian scenarios, since it sep-
arates the azimuthal averaged motions from azimuthal and radial perturba-
tions, resulting in longer time steps [the FARGO algorithm was originally
presented in Masset, 2000]. This algorithm speeds up significantly the cal-
culations and hence enable us to study the parameter space more efficiently
than with other schemes. FARGO is parallelised by splitting radially the grid
in rings, which are calculated in different CPUs.

We run a set of 14 simulations of unequal mass MBHBs in gaseous discs.
In every run the primary MBH (M1) is treated as an external potential, and
is not evolved during the simulations; it is considered a point-like source. In
internal units, the mass of M1 is 1, and is placed at rest at the centre of the
disc. The disc is confined within an outer radius defined by the radial limits
of the grid. In internal units, the outer radius is 25, and the inner radius is
0.1. The disc follows a Mestel profile, as we depict in Fig. 27, with a surface
density Σgas(R̂) ∝ R̂−1, and a total mass of 0.078, i.e., ≈ 1/12 of the mass of
the primary.

The disc follows an isothermal equation of state, with a thermal profile
resulting in an aspect ratio H/R̂ = 0.04 constant throughout the disc. The
dynamics of the disc is initially quasi-Keplerian, since, globally, the potential
is dominated by M1. The initial angular speed is however not strictly Ke-
plerian, since the code accounts for the pressure support to the rotational
equilibrium. The computational domain is divided in a grid of 128 radial and
384 azimuthal sectors.

In every simulation a second MBH, M2, of initial mass M2,0 = 0.1 M1 is
placed in the disc, at a distance d = 10 from M1. The secondary is initially
moving on a bound orbit, and counter-rotates with respect to the disc. M2 can
either be on a circular or on an eccentric orbit. In this last case we choose the
initial eccentricity to be e0 = 0.6, corresponding to an initial apocentre R̂apo =
16. At the beginning of each simulation, the secondary MBH is implanted in
the disc as a particle with mass increasing from 0 to M2,0 over one orbital

2 http://fargo.in2p3.fr
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Figure 27: Face-on, colour coded map of the disc’s surface density at the onset
of each simulation. The position of the secondary is marked with
a solid green circle. For all quantities, we use the internal units
of the code, except for the time, which is in units of Ω−1

0 , i.e., the
inverse of the initial binary’s rotational frequency.

timescale. This choice prevents the growth of unphysical disc perturbations
close to the secondary.

We pay particular attention on how the gas is added and removed from
the disc. The amount of gas present can change only if it crosses the radial
edges of the computational domain, or if it is accreted by the secondary. At
the outer and inner edge of the computational domain we set out-flowing
boundary conditions, i.e., matter crossing the boundaries disappears from the
computational domain, but no gas can inflow into the computational domain.

So as to check the stability of the initial conditions, we first corroborate that
the disc is stable by setting the mass of the secondary to a very small value (a
100th of the primary). We confirm the stability for what indeed is the range
of mass ratios characteristic to the code -written to study the migration of a
planet of mass much smaller than that of the central star- for some tens of
initial periods of the binary.

Every set of initial conditions has been run five times, using different pre-
scriptions for the accretion onto M2. The secondary is modelled either as a
sink particle that can accrete gas from the disc, or as a point mass whose
mass is fixed in time. Since the accretion of mass has strong consequences
on the dynamical evolution of M2 we use different prescriptions for the mass
accretion, as it is discussed in the next section.

9.3 A C C R E T I O N P R E S C R I P T I O N S

Accretion onto the secondary MBH is a key process affecting the dynamical
evolution of the MBHB as (i) the accreting gas changes the mass and velocity
of M2, according to conservation of the total momentum of the system, and
(ii) the process of accretion itself decreases the gas density close to the sec-
ondary. In addition, the perturbation induced by the motion of M2 further
changes the underlying disc density pattern, back reacting on the dynamics
of the MBHs in the binary. It is therefore important to implement an accre-
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tion prescription that does not bias the evolution of the binary. The safest
approach would be to follow the hydrodynamics of the gas down to the inner-
most stable circular orbit around each MBH, or at least around the secondary
MBH. Our simulations however do not model all the physics needed to evolve
gas down to such extremely small radii. Further out from this physical limit,
the numerical nature of our investigation prevents us to set a too small value
of the sink radius, that in a number of cases is a free parameter of the simu-
lation. When gas reaches the sink radius, the gas itself is removed from the
computational domain and its mass and momentum is added to the MBH. As
a consequence, we decided to use different prescriptions for the gas accretion
onto the secondary, to test if any accretion prescription results in an artificial
orbital evolution of the secondary.

The first prescription we use is the standard FARGO implementation that
we will refer as RL model, hereon: gas is accreted onto the secondary if its
distance from M2, denoted as Rgas

2 , is less than a given fraction (0.75) of
the Roche Lobe (RL) radius RRL around M2. The mass accretion is modelled
by reducing the gas density within the RL by a factor (1 − fred), at every
timestep ∆t. To prevent spurious high density and pressure jumps, fred = 1/3
if 0.45RRL < Rgas

2 < 0.75RRL, while fred = 2/3 if R2 < 0.45RRL [see for more
details Kley, 1999].

However, we note that for a binary counter-rotating with respect to the
accretion disc in which it is embedded, the Roche Lobe of the secondary
MBH is far from being comparable to its gravitational sphere of influence
radius Rbound. The counter-rotating gas crossing the Roche Lobe in the region
Rbound < Rgas

2 < RRL is moving too fast with respect to the secondary MBH
to bind to it. For M2 � M1, the Roche Lobe radius is

RRL ∼
1
2

d
(

M2

M1

)1/3
, (28)

where d is the separation between the two MBHs, while

Rbound ∼
G M2

V2
rel
∼ 1

4
d

M2

M1
, (29)

where G is the gravitational constant, and Vrel is the modulus of the relative
velocity between the gas and the secondary. The ratio between the two radii
is then

Rbound
RRL

∼ 1
2

(
M2

M1

)2/3
. (30)

As a consequence, the Roche Lobe based standard implementation of accre-
tion could result in an overestimated accretion rate, hence in an unphysical
dynamical evolution of the secondary.

A second prescription we implement is based on the choice of a fixed sink
radius Rfix. To prevent spurious pressure jumps we use the same two zones
implementation discussed above, accreting 1/3 of the material present in the
0.5 Rfix < Rgas

2 < Rfix shell and 2/3 of the material with Rgas
2 < 0.5 Rfix at

each timestep. The size of the fixed sink radius around M2 could affect the
dynamics of M2 in an unphysical manner if Rfix > Rbound. To check for this
spurious effect we run the same set-up with different values of Rfix =0.5, 0.25,
and 0.05, in code units. For a circular binary at the onset of the simulation
Rfix/Rbound is approximately 2, 1, and 0.2 for Rfix =0.5, 0.25, and 0.05,
respectively; similarly Rfix = 0.5 corresponds to Rfix/RRL ≈ 0.2.

A third prescription we test requires gas to be gravitationally bound to M2
in order to get accreted. This automatically solves the problem of unbound
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Figure 28: Relative MBH orbital separation (in units of the initial separation)
as a function of time in units of Ω−1

0 for a binary with initial ec-
centricity e0 = 0. Only the first ∼ 2 orbits are shown to highlight
the differences in the orbital evolution caused by the different ac-
cretion prescriptions. Black solid line refers to the run without any
implementation of accretion onto the secondary (the no-accretion
model). The red plus line refers to the Bound model and the blue
crosses line to the RL model (lowest line). Green diamonds, pur-
ple stars and orange circles refer to the Fix models with sink radii
Rfix = 0.5, 0.25, and 0.05, respectively. Colour version is available
in the on-line version.

gas spuriously binding (and accreting) to the secondary. In this case, the gas
density reduction factor is either fred = 1/3 if the total gas energy per unit
mass (with respect to the secondary) is (3/4)W < E < (1/2)W, or fred = 2/3
if E < (3/4)W, where W = −GM2/R2.

Finally, we test the dynamical evolution of an accreting secondary against
a non-accreting one. In this case, the secondary MBH is allowed to bind gas
according to the above prescription, but the bound gas is not removed from
the simulation, and can either remain bound to M2, co-moving with it on
retrograde orbits, or can be stripped by either the tidal field of the primary or
by the ram pressure of the gas disc. In the following, for the standard FARGO
implementation we will refer to as the “RL model”, as “Fix” 0.5, 0.25, and
0.05 for the models with fixed sink radii, and as “Bound” and “No-accretion”
for the remaining last two.

9.4 R E S U LT S

9.4.1 Effect of the accretion prescription on the dynamics

Figure 28 shows the evolution of the binary separation as a function of time,
for different accretion prescriptions over a short timescale (i.e., an interval of
2 orbital times). Initially the MBHs move on a circular orbit.
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Figure 29: Mass of the secondary MBH, in units of the initial mass M2,0, as a
function of time in units of Ω−1

0 . Line colour and style codes are
as in Figure 28.

The timescale of MBH evolution strongly depends on the accretion prescrip-
tion assumed. Over a timescale of a few orbital times, the binary hardening
in the RL model is faster that in the Bound model, as illustrated in Figure 28.
The reason for this is simple. Gas at a distance from M2 in between the influ-
ence radius of the secondary and its Roche Lobe (Rbound < Rgas

2 < RRL) is, by
definition, not bound. When the sink radius is forced to be equal to RRL, the
full momentum of the gas (i.e., also the momentum of unbound gas) is added
to the MBH, resulting in an artificially fast dynamical evolution of the binary,
because of the unrealistically high accretion rate.

We can test the above interpretation exploring additional cases varying Rfix.
Whenever a fixed sink radius is assumed, the dynamics depends on the size of
the sink radius itself. As expected, larger sink radii correspond to faster migra-
tion. In Figure 28 we show how the evolution of the MBH separation, which is
sensitive to Rfix, converges with continuity to the Bound model when decreas-
ing the values of the sink radius. We further find that the No-accretion model
in which the MBH does not accrete results in a binary decay very similar to
the Bound model. The reason is straightforward: in both cases gas is allowed
to bind to the secondary MBH. In the No-accretion run, the gas transfers its
(negative) linear momentum to the secondary when it starts co-moving with
it, i.e., during the binding process. The same happens in the Bound model
in which the gas either binds to the MBH (transferring its linear momentum)
or gets immediately accreted during the binding process. In this last case the
linear momentum conservation is forced by the accretion prescription. Fur-
thermore, material that would not bind to the secondary is not accreted by
default. We further notice that in the Fix models, when the sink radius of
M2 is larger than its gravitational influence radius, the MBH absorbs the lin-
ear momentum of gas that, in reality, would not be fated to interact with it.
Under these conditions the MBHB separation again has a fast artificial decay.

The amount of mass that is accreted by the secondary MBH can be used
as a tracer of the linear (and angular) momentum that the disc transfers to
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Figure 30: MBHB orbital separation (left) and eccentricity (right) as a func-
tion of time, for e0 = 0. We follow the same notation as in Fig-
ure 28. The RL model is not considered, here.

the MBH, and in turn to the MBHB. Figure 29 shows the evolution of the
secondary mass as a function of time, for the different accretion prescriptions.
The MBH in the RL run displays the fastest mass growth and higher amount
of accreted mass. In particular in the RL model, the MBH accretes 30% of its
mass in order to reduce the separation by 25%. By contrast a reduction of
25% in the relative MBH distance is attained with a fractional mass increase
∼ 0.3% in the Bound model. This indicates that in the process of binary
hardening, the fractional decay per unit accreted mass is less effective in the
RL model. In this case, the significant mass accreted by the MBH creates an
empty region resulting in a much weaker frictional drag on the MBH from the
torque of surrounding gas particles that contribute to the deceleration without
being accreted. An interpretation of the results will also be discussed in §9.5.

9.4.2 Evolution of circular binaries

The evolution of a circular binary is studied further in this section. Fig. 30
illustrates the run of the BH separation versus time over ∼ 6 Ω−1

0 , for the
different accretion prescriptions. The RL case is not included in the figure
because of the too large, unrealistic accretion prescription. On such a long
timespan, all the other runs but for the Fix 0.5 show similar evolution. The
discrepancy between Fix 0.5 and the other runs can be ascribed to the large
sink radius of Fix 0.5 resulting in an overestimate of the accretion rate and
of the orbital brake. As shown in Fig. 30 the binary eccentricity, increasing
slightly at start, fluctuates around a mean of 0.08 and never exceeds 0.16
during the whole evolution.

Figure 31 shows the MBHB separation as a function of M2, the mass the
secondary MBH, to illustrate again that the RL model represents the less ef-
ficient mechanism of binary hardening in terms of normalised accreted mass.
In our case, the high efficiency is caused by the drastically reduced amount
of matter accreted onto M2 (see Figure 29). The not-accreted gas still exerts
a non negligible gravitational torque onto the secondary, breaking its orbit
and driving its pairing. Such a torque is incorrectly computed (and overesti-
mated) in the simulations with unphysically high accretion rates, where the
gas responsible for most of the torque is removed from the simulations and
its mass artificially added to the secondary.
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Figure 31: Binary separation as a function of the secondary mass, for dif-
ferent accretion prescriptions. The binary separation and M2 are
normalised to their initial values. The evolution is followed for a
time equal to 6 Ω−1

0 . Line colour and style codes are the same as
in Figure 28.

9.4.3 Evolution of eccentric binaries

In this section we study the hardening of an initially eccentric binary, in the
retrograde disc. Because of the results about the accuracy of the dynamical
evolution of the binary presented for the circular case, we confine the analysis
of the eccentric cases to the Bound, No-accretion and Rfix = 0.05 runs. The
evolution of MBHB separation (upper panel) and eccentricity (lower panel)
for a binary with initial eccentricity e0 = 0.6 is shown in Fig. 32.

The initial (t ∼< 2Ω−1
0 ) evolution of the MBHB is quite similar in the three

cases. The binary hardens and contemporary the eccentricity grows consider-
ably, up to e ∼> 0.7, in qualitative agreement with the analytical predictions
of Nixon et al. [2011a]. The slight differences between the different cases are
due to the different amount of mass accreted. As shown in Fig. 33 the sec-
ondary accretes more gas when assuming the bound prescription with respect
to, e.g., the Rfix = 0.05 run.

Such differences depend on the accretion prescriptions used. The Bound
and No-accretion prescriptions avoid implicitly the inconsistency of maintain-
ing a sink radius Rfix constant throughout the orbital phase, over the time
span explored. In the eccentric case the secondary MBH experiences, along
a single orbit, different regions of the disc. The disc density is the highest at
pericentre where the relative velocity between the gas and the MBH is also
the highest. The notion of Rbound becomes thus time (phase) dependent. The
outcome of the Bound, No-accretion and Fix models can thus be different.
The run with Rfix can give a consistent description of the MBH dynamics only
if, along the orbital phase, Rfix remains smaller than the gravitational influ-
ence radius. On the other hand on an eccentric orbit, the bound prescription
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Figure 32: Upper panel: binary separation versus time,for an eccentric binary
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ures.Lower panel: evolution of the binary eccentricity versus time
for an eccentric binary with e0 = 0.6.
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Figure 33: Evolution of the mass of the secondary (M2/M2,0) as a function
of time (in units of Ω−1

0 ) for the eccentric case, with e0 = 0.6.

over-predicts the amount of matter accreted. Gas that is bound at apocen-
tre is accreted promptly when using the bound prescription. However, gas
bound at apocentre would unbind at pericentre due to the closer action of
tidal forces from the primary MBH. The instantaneous capture prescription in
the Bound model thus over-predicts the mass accreted, affecting the underly-
ing dynamics of the disc. In other terms, a small Rfix, smaller than the bound
radius Rbound (at any time over orbital evolution), or the No-accretion model
that allows gas to remain dynamically active inside the grid, can account for
dynamical processes that can not be captured by the Bound prescription.

9.4.4 Three-dimensional Smoothed-particle hydrodynamics experiments

A clear advantage of using a 2D modelling is that we are able to run many dif-
ferent cases with a relatively low computational cost. However, the approach
upon which the 2D models rely must be tested3. In particular, it is important
to asses the role of disc thickness in affecting the results.

We hence run a few representative cases using full 3D Smoothed-particle
hydrodynamics simulations with GADGET-2 4 (Springel 2005). The gaseous
disc is modelled with 2 × 105 Smoothed-particle hydrodynamics particles,
following an isothermal equation of state but for the possible heating term as-
sociated with the Smoothed-particle hydrodynamics artificial viscosity. Such
viscosity is needed in order to properly recover the occurrence of shocks in
the gas, as it acts when converging flows are in place. The viscosity term
follows a modified Monaghan-Balsara prescription [Monaghan and Gingold,
1983, Balsara, 1995], with the viscosity parameter α=0.5 and β = 2 × α.
Gravity is computed on a oct-tree, with close encounters among particles be-
ing softened through a [Monaghan and Lattanzio, 1985] spline kernel with
the same softening parameter of 0.1 for the BHs and gas particles (in internal
units).

3 We note that a recent release of the code includes the possibility of 3D models, as described in
http://fargo.in2p3.fr/

4 http://www.mpa-garching.mpg.de/~volker/gadget/index.html
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Figure 34: Same as Figure 28, MBHB Orbital separation as a function of time
(in units of Ω−1

0 ) for the circular case, with e0 = 0. Upper Panel:
Evolution of the 3D runs assuming the Rfix and Rbound accretion
prescriptions. Lower Panel: Comparison between the Rbound pre-
scription between the 2D and 3D experiments.

We implemented a fixed sink radius Rfix and a bound radius Rbound to mimic
the second and third prescriptions presented in §9.3. The same Rfix used in
the 2D simulations is introduced here, i.e., 0.05, 0.25 and 0.5. For the "third"
prescription, we select gas particles within a fix radius of 1 from each MBH,
and among these we check which particles are gravitationally bound to the
black hole. In order to do so, we include a parameter α = 0.3, similarly to the
implementation discussed in [Dotti et al., 2009]. This α parameter enable us
to require that a gas particle is more bound to the secondary MBH using the
Bondi-Hoyle-Lyttleton radius,

Rbound =
2 G MBH

v2
bh + C2

s
, (31)

where vbh is the relative velocity between the secondary MBH and the gas
particle, and Cs is the sound speed of the gas. We accrete particles whenever
their separations from the MBHs are less or equal to α times Rbound. We
initialise the disc using GD_BASIC 5 [Lupi et al., 2015a] following the same
prescription for the 2D case, presented in §9.2, preserving the same aspect
ratio H/R̂ = 0.04. We depict the orbital separation between the two MBHs
for the three-dimensional simulations in Fig. 34 and 35 for the circular and
eccentric case, respectively. So as to facilitate the comparison with the 2D
case, we have added a panel in which we display the bound cases for both
the 2D and 3D simulations. After 5 orbital periods, which require about one
week of computation on 12 CPUs, the 3D experiment reaches a value of ≈ 0.7
instead of the ≈ 0.8 value of the 2D simulation. Two important results can be
inferred from the comparison of the different runs:
• All the discussion about the importance of the accretion prescription already
presented for the 2D runs is equally valid in their 3D counterparts. The very

5 http://www.dfm.uninsubria.it/alupi/software.html
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Figure 35: Same as Fig. 32: orbital separation of the binary as a function of
time (in units of Ω−1

0 ) for the eccentric case, with e0 = 0.6. Upper
Panel: Evolution of the 3D runs assuming the Rfix and Rbound accre-
tion prescriptions. Lower Panel: Comparison between the Rbound
prescription between the 2D and 3D experiments.

similar evolution of the MBH separation as a function of time for the Rfix =
0.05 and Rbound case strengthen the claim that resolving the MBH sphere of
influence is a necessary requirement for a proper dynamical evolution.
• We can readily see that the agreement between the 2D and 3D runs in
Fig. 34 is satisfactory: in spite of the very different numerical approaches and
the simplifications introduced in the 2D case, the evolution of the distance
of the binary is very similar, although not identical. The small differences
present in the MBH evolution are due to the fact that, in the 2D case the gas
and the MBHs are confined to the plane of the disc and, hence, the MBHs are
forced to interact with more gas than in the 3D case. In the 3D case, however,
the non-negligible disc thickness allows some of the gas not to interact with
the MBH.

The effect of the disc vertical profile on the secondary dynamics is way more
significant in the eccentric case. In Fig. 35 we see a much more pronounced
difference between the 2D and 3D bound cases (lower panel).

As a note of caution we remark that neither the 2D nor the 3D simulations
are realistic and accurate representations of circumbinary discs. The idealised
thermodynamics of the gas does not catch all the cooling processes taking
place in such high density regions. If the disc were allowed to radiate a sig-
nificant amount of the energy acquired from the interaction with the MBH,
it would settle in a geometrically thinner configuration, more similar to the
2D case. In this study we aimed at isolating the effect of the accretion pre-
scriptions on the MBH dynamics, and a detailed study of the effect of the gas
thermodynamics is beyond the scope of this thesis.

The comparison of the evolution of the secondary eccentricity in the dif-
ferent runs gives similar results. Fig. 36 shows the eccentricity as a function
of time for the circular cases. The trends are similar, although not identical
in the 2D and 3D bound cases, reaching the same maximum value (≈ 0.12).
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Figure 36: Same as Fig. 30, Evolution of the MBHB eccentricity as a function
of time (in units of Ω−1

0 ) for the circular case, with e0 = 0. Upper
Panel: Evolution of the Rfix accretion prescriptions. Lower Panel:
Comparison between the Rbound prescription between the 2D and
3D experiments.

The differences between these two cases are due to the reduced amount of gas
mass the secondary interacts with in the 3D case, in which the disc thickens
as the time goes by. The comparison among the 3D runs demonstrates again
the need of resolving the secondary sphere of influence, with the bound and
Rfix = 0.05 resulting in the same dynamical evolution of the binary. The same
comments apply to the eccentric cases shown in Fig. 37.

9.5 A S E M I - A N A LY T I C A L M O D E L F O R T H E E V O L U T I O N O F A B I N A RY I N

A N U N P E RT U R B E D R E T R O G R A D E D I S C

In a retrograde disc, the secondary MBH experiences a drag force resulting
from gas-dynamical friction on scales larger than Rbound and from accretion
on scales smaller than Rbound. Here we propose an analytical scheme that
helps interpreting the run of the eccentricity and semi-major axis of the MBHB
versus time (or equivalently the accreted mass), varying the slope of the un-
derlying gas density profile.

In the simplifying assumption that the gaseous background is stationary
and that the MBH motion is supersonic, the deceleration force can be approx-
imated as

Fdrag = −4πλG2M2
2ρgas

Vrel

V3
rel

, (32)

where ρgas is the density of the gas at distances near Rbound, and Vrel = VrelṼrel
is the velocity of the accreting MBH relative to the gas velocity. The factor λ
identifies with the eigenvalue of the Bondi-Hoyle-Lyttleton model for accre-
tion (equal to 1.12 for a isothermal gas) but here λ, suitably rescaled, can also
account for the gas dynamical drag according to Ostriker [1999]. In equation
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Figure 37: Same as Fig. 32, Evolution of the MBHB eccentricity as a function
of time (in units of Ω−1

0 ) for the eccentric case, with e0 = 0.6.
Upper Panel: Evolution of the Rfix accretion prescriptions. Lower
Panel: Comparison between the Rbound prescription

32, Vrel = V2 − Vgas, where V2 is the velocity of M2 relative to the centre of
mass of the binary (we here consider the limit M2 � M1 for simplicity, so
that the total mass M = M1 + M2 of the binary is approximated to M1, and
the reduced mass µ as M2) and Vgas the Keplerian velocity of the gas, relative
to M1, at the current position R̂ of M2, i.e., Vgas = (GM1/R̂)1/2Ṽgas, with
Ṽgas a unit vector in the direction of Vgas.

To explore the MBHB dynamics and describe the sinking of the secondary
MBH in the retrograde disc, we consider the drag force as a perturbation on
the Keplerian motion of M2 in the gravitational potential of the primary MBH,
M1 Vecchio et al. [1994]. We then trace the dynamics of M2 computing the
change of the orbital elements, i.e., the energy and angular momentum, or
equivalently the semi-major axis a and eccentricity e under the action of the
mean drag force,

〈Fdrag〉T =
(1− e2)3/2

2π

∫ 2π

0
Fdrag(ψ)

dψ

(1 + e cos ψ)2 , (33)

where ψ the orbital phase, and the mean is over the orbital period. In this
way we separate the instantaneous motion of M2 from the motion averaged
over an orbital period: here on we will refer to as secular motion, and secular
evolution.

The drag force can be cast in the following form in order to separate the
modulus from the direction, both time (phase) dependent:

Fdrag = −ξ(R̂, Vrel) (Ṽ2 − Ṽgas) (34)

with

ξ(R̂, Vrel) = 4πλ(GM2)
2ρgas,0

(
R̂0

R̂

)n 1
V2

rel
. (35)

In equation 34 and 35, the distance R̂ and the velocity vectors are function of
phase ψ, along the Keplerian motion, while the constants R̂0 and ρgas,0 denote
a reference radius and density in the retrograde, in-homogeneous disc.
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In equation 35, the power-law exponent n describes the distribution of the
gas density as a function of the distance R̂: ρgas(R̂) = ρgas,0(R̂0/R̂)n. The
value n = 1 corresponds to the disc’s density profile at the onset of the hydro-
dynamical simulations.

After some calculation (sketched in Appendix) the equations for the secular
evolution of the MBH mass m2, in units of M2,0, of the semi-major axis ã =
a/a0, in units of the initial semi-major axis a0, and of the eccentricity e can be
cast in a simple form:

ṁ2

m2
= Γ0(1− e2)(3−n) ã(3/2−n)〈A(e)〉ψ, (36)

where dot denotes the “secular” time derivative, m2 = M2/M2,0, and 〈A(e)〉ψ
a dimensionless function of the running value of e (eq. in Appendix). Γ0 is a
constant equal to

Γ0 = 4πλGρgas,0
1

Ω0

M2,0

M1

(
R̂0

a0

)n

. (37)

In this last expression Ω0 is the Keplerian frequency of the MBHB at a0 :
Ω0 = (GM1/a3

0)
1/2. The equation for the dimensionless semi-major axis

reads

˙̃a
ã
= −2 Γ0 m2 ã(3/2−n) [1− e2](2−n)〈B(e)〉ψ, (38)

where 〈B(e)〉ψ is given in Appendix.
Similarly, one can calculate the rate of change of the angular momentum

and in turn of the eccentricity e. As the orbit of M2 is coplanar, the direction
of the binary orbital angular momentum does not vary with time as the drag
is causing only a decrease in the modulus of J. According to equation 34, the
eccentricity evolves as

ė
e
= Γ0 m2 ã(3/2−n) (1− e2)(4−n)

e2 〈C(e)〉ψ, (39)

where 〈C(e)〉ψ is a dimensionless function of the running value of the eccen-
tricity e (eq. in Appendix).

Equations 36, 38 and 39 are coupled and can be solved numerically for
m2,0 = 1, ã0 = 1 and initial eccentricity e0 at time t = 0. The results can
then be rescaled for any arbitrary value of M2,0 and a0. In 36, 38 and 39, the
timescale that enters the equations is τ0 = Γ−1

0 that can be displayed in the
form

τ0 ∼
1

8λ

VK,0

πGΣgas,0

H
R̂0

M1

M2,0

(
a0

R̂0

)n
, (40)

where VK,0 is the Keplerian velocity at R̂0, and Σgas,0 ∼ 2Hρgas,0. Recalling
that H/R̂0 ∼ cs,0/VK,0 in a thin isothermal disc (with isothermal sound speed
cs,0), τ0 scales as

τ0Ω0 ∼
1

8λ
Q0

M1

M2,0
, (41)

where we have introduced the Toomre parameter Q0 = cs,0Ω0/(πGΣgas,0)
for disc stability. In the following we will describe the solutions of this simple
model in the e versus M2/M2,0 and ã versus M2/M2,0 planes.
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Figure 38: Orbital eccentricity e versus M2/M2,0 for e0 = 0.6, as computed
within the semi-analytical model. Solid (black) line refers to a
background gas density scaling with distance R̂ as a power law
with n = 1, corresponding to the profile of the hydrodynamical
simulation. Red (dotted), green (dashed), magenta (long dashed)
and blue (dot-dashed) refer to retrograde discs with n = 1.3, 2, 2.2
and 3, respectively.

9.5.1 Binary evolution trends

In a fixed and non steep gaseous background (n < 3), eccentric binaries
evolves into more eccentric binaries 6 .

Fig. 38 shows the run of the eccentricity e versus M2/M2,0 for e0 = 0.6, and
n = 1, 1.3, 2, 2.2 and 3. The eccentricity grows monotonically up to unity, and
this occurs before ã has decayed significantly (i.e., by more than two orders
of magnitude). The limit e → 1 is reached after the secondary has accreted a
mass comparable to 30%− 60% of the initial mass M2,0.

In the case of a steep density background, i.e., n = 3, the eccentricity
shows an opposite trend and decreases with time, since the gas disc density
at pericentre is so high that the secondary MBH experiences the largest drag
there. A higher braking force at pericentre reduces the eccentricity and the
MBH spirals inwards along orbits progressively less eccentric. The semi-major
axis drops dramatically by more then three orders of magnitude, on a time τ0.

Nearly circular orbits (with e0 = 0.01) show interesting behaviours in their
long-term evolution. We first notice that n = 3/2 is a critical value, separating

6 We notice that a rapid increase in the eccentricity is also found in an analytical study by
Schnittman and Krolik [2015] who expressed the negative torque of a retrograde disc on a MBHB
as function of the mass accretion rate, motivated by magneto-hydrodynamical simulations by
Bankert et al. (2014).
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Figure 39: Eccentricity e (left panel) and semi-major axis ã (right panel) ver-
sus M2/M2,0 for a nearly circular orbit, with e0 = 0.01, as com-
puted within the semi-analytical model. Line colours and style
codes are the same as in Fig. 38. For a retrograde disc with back-
ground density ρgas ∝ R̂−n scaling with n < 3/2 (solid-black,
red-dotted lines) the evolution stops at the time the eccentricity
e → 1. By contrast, when n > 3/2 (as in the remaining cases, i.e.,
n = 2, 2.2 and 3) the semi-major axis decays very rapidly before
the eccentricity has time to rise up to unity.

two trends. Solutions with n < 3/2 evolve toward e → 1 before the semi-
major axis has decreased significantly. By contrast, when n > 3/2, the decay
of the semi-major axis is faster than the increase of e. The value of n = 3/2 is
critical since the logarithmic derivatives of our variables all scale as ã(3/2−n),
as indicated in equations 36, 38, and 39. For n > 3/2 the decay of the semi-
major axis accelerates with decreasing ã.

Fig. 39 shows the run of e and ã versus M2/M2,0. As a rule of thumb and
for circular binaries, the secondary needs to accrete a mass of the order of
(2-4) M2,0 to slide on the path leading to coalescence by gravitational waves.
For n = 3, the eccentricity remains small for the entire evolution, and never
rises.

In the early phase of the binary evolution (corresponding to M2 < 0.2M2,0),
nearly circular binaries remains almost circular, as their eccentricity growth
occurs after a sizeable increase of the MBH mass (see Fig. 39). This explains
why the initially circular binary models studied with FARGO with different
accretion prescription do not display a sizeable increase of e, on the time span
of the simulation. This is in line with the findings by Roedig and Sesana
[2014].

Our semi-analytical model has applicability in the limit of M2/M1 � 1.
Only if M2/M1 � 1 the secondary, lighter MBH causes minor perturbations
in the underlying disc so that the background density can be treated as a
constant over the binary evolution timescale. For high MBH ratios (as the
one considered in this chapter) changes in the density background occur in
response to the mutual perturbation excited by the secondary MBH in the
retrograde disc, and the evolution needs to be traced only via direct numerical
simulations.
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9.6 D I S C U S S I O N

In this chapter we explored the evolution of a MBHB embedded in a counter-
rotating circumbinary disc. As mentioned in the introduction, the retrograde
case differs from the prograde one in three main points: (i) the gravitational
torque responsible for the binary shrinking does not halt inflows of gas around
the MBHs embedded in the disc; (ii) retrograde gas interacting with the MBHs
can remove more angular momentum per unit of mass, since its initial angular
momentum has sign opposite to that of the binary; (iii) in the retrograde case,
the relative velocities between the MBHs and the disc are significantly larger,
so that the interaction between the gas and the MBHs is limited to smaller
regions. Since points (i) and (ii) facilitate the binary shrinking while point
(iii) limits its strength, it is not obvious a priori if the interaction between a
MBHB and a counter-rotating circumbinary disc results in rapid hardening of
the binary.

In particular, we pointed out that, as a consequence of the high relative
speed between the secondary and the gas, simulations of counter-rotating
MBHB-disc systems are strongly affected by the prescription assumed for the
accretion of gas onto the MBHs. We argued that in order to model the disc-
MBH hydro-dynamics in an appropriate way, a necessary condition is that
gas bound accretes onto the lighter, secondary MBH. We confirmed our claim
running a suite of 2D hydrodynamical simulations, showing that assuming a
too large accretion (sink) radius, such as e.g., the Roche Lobe radius of the
secondary (Nixon et al. [2011a]), results in a too fast spurious evolution of
the binary (see Figures 28, 29, 31). We further noticed that, while for sec-
ondaries moving on quasi-circular orbits the "Bound" prescription results in
the correct dynamical evolution of the secondary, for MBHs moving on very
eccentric orbits this prescription is not sufficient. This is due to the fact that
gas bound to the secondary at the apocentre can unbind during the close peri-
centre passages, avoiding to be accreted. The non-accreted gas changes the
effective mass of the secondary (i.e., the mass of the secondary plus the mass
of the gas co-moving to it), and can rejoin the background gas distribution,
possibly further interacting with the secondary at later times. For this reason,
a sink radius smaller than the influence radius of the MBH, varying over the
orbital phase, has to be set properly in order to predict the binary dynamical
evolution (see Fig. 32, 33).

The 3D Smoothed-particle hydrodynamics simulations run in parallel for
selected cases have shown a close match with the results of the 2D simulations
validating the findings in 2D, despite the intrinsic physical difference related
to the different dimensionality and the difference in the numerical method.

We focused on the evolution of the binary orbit giving particular emphasis
to the effects of the accretion prescriptions. The present analysis still lacks of
some possibly important physical effects. We limited the mass of the disc to
its initial value, and we do not study the effect of a continuous (or episodic)
re-fuelling of the disc from the outer regions of the nucleus. Such a fuelling
is necessary for the coalescence of a binary in a prograde disc [as discussed in
Dotti et al., 2012], and can boost the brake of the binary in the retrograde case
as well. Finally, we did not model any disc fragmentation and star-formation
in the disc, that (together with the fuelling of the binary from large scales) is
the main unknown in the evolution of binaries in prograde discs as well [see
e.g., Lodato et al., 2009, Amaro-Seoane et al., 2013b]. The effects of these
processes, together with a detailed discussion of the peculiar observational
properties of counter-rotating systems, is postponed to future investigations.
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9.7 A P P E N D I X

In this Appendix we shortly outline the key steps for deriving the evolution
equations 36, 38 and 39 of Section 5. We follow closely the derivation by
[Vecchio et al., 1994].

First we specify the instantaneous motion of the secondary MBH, described
by the velocity vector V2 and the separation vector R̂2, relative to the centre
of mass of the binary. Since the accretion drag is a weak perturbing force, the
motion is determined by the driving force by the MBH primary. The instanta-
neous values of R̂2 and V2 are expressed in term of the orbital phase ψ, along
the Keplerian motion. They are defined uniquely by the instantaneous values
of the energy and angular momentum per unit mass that we here denote as
E and J, or alternatively a and e. For the distance modulus we have

R̂2 =
a(1− e2)

1 + e cos ψ
. (42)

The velocity is decomposed along the radial and tangential directions

V2,R̂2
=

[
GM

a(1− e2)

]1/2
e sin ψ , (43)

V2,t =

[
GM

a(1− e2)

]1/2
(1 + e cos ψ) , (44)

where M = M1 + M2 ∼ M1 in the limit of a massive primary. Furthermore,

V2 =
GM1

a(1− e2)
(1 + 2e cos ψ + e2) . (45)

The instantaneous deceleration on the secondary MBH due to accretion can
be written as

V̇drag = − 1
M2

ξ(R̂2, Vrel) (Ṽ2 − Ṽgas) (46)

with

ξ(R̂2, Vrel) = 4πλ(GM2)
2ρgas,0

(
R̂0

R̂2

)n 1
V2

rel
. (47)

The Keplerian velocity of the fluid elements at distance R̂ is Vgas = (GM1/R̂)1/2Ṽt,gas
which is vector tangential to R̂/R̂, as the gas in the retrograde disc is moving
on circular orbits. According to equations 42, 43, 44 and 46,

V2 · Vgas = −
GM1

a(1− e2)
(1 + e cos ψ)3/2. (48)

The instantaneous rate of change of the energy per unit mass and angular
momentum per unit mass (in the direction of J, as the orbit is coplanar with
the disc’s plane ) read:

Ė = V̇drag · V2 (49)

J̇ = (R̂× V̇drag) ·
J
J

(50)

The rate of change of the energy per unit mass correlates with the rate
of change of the semi-major axis through the relation Ė/E = −ȧ/a, where
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E = −GM1/2a. Similarly, the rate of change of the eccentricity e scales as
eė = −(1− e2)[ J̇/J + (1/2)Ė/E], where J2 = GM1a(1− e2) [Vecchio et al.,
1994]. As the secondary MBH accretes gas, the instantaneous rate of change
of the mass M2 is set equal to the Bondi-Holye-Littleton accretion rate:

Ṁ2 = ṀBHL. (51)

The drag force due to accretion induces secular changes in the orbital ele-
ments of the binary. We thus calculate the secular rate of change of a, e and
M2 averaging all physical quantities over the Keplerian period P. As along a
Keplerian orbit, the phase ψ is related to the time coordinate by

1
P

dt =
1

2π
(1− e2)3/2 1

(1 + e cos ψ)2 dψ, (52)

we convert the means in the time domain to the phase domain, defining
〈·〉T = (1− e2)3/2〈·(1 + e cos ψ)−2〉ψ, hereon.

Using the above relations, we derive equations 36, 38 and 39. If we define
f = 1 + e2 + 2e cos ψ and g = 1 + e cos ψ, the expressions for the means in
the phase domain introduced in equation 36, 38 and 39 read:

〈A(e)〉ψ =
1

2π

∫ 2π

0
dψ

g(n−2)

( f + g + 2g3/2)3/2 (53)

〈B(e)〉ψ =
1

2π

∫ 2π

0
dψ

g(n−2)( f 1/2 + g)
( f + g + 2g3/2)

(54)

〈C(e)〉ψ =
1

2π

∫ 2π

0
dψ

g(n−2)

( f + g + 2g3/2)
I(ψ, e) (55)

where

I(ψ, e) =
(

f−1/2 + g−1 − f 1/2/(1− e2)− g/(1− e2)
)

. (56)

Notice that in the limit of e → 0, ė is order O(e). The expansion analysis
around e → 0 shows that ė/e is proportional to (11/4− n). Thus, for small
initial eccentricities and n > 11/4, the orbit circularises while in the opposite
case (n < 11/4) , e grows in time. In the same limit ȧ is finite, and the MBH
continues to spiral in.
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10
C I R C U M B I N A RY S T R U C T U R E F O R M AT I O N F R O M
M U LT I P L E I N FA L L I N G C L O U D S

The project presented on this chapter was published under:

ACCRETION OF CLUMPY COLD GAS ONTO MASSIVE BLACK HOLES BINARIES:
THE CHALLENGING FORMATION OF EXTENDED CIRCUMBINARY STRUCTURES

C. Maureira-Fredes, F. G. Goicovic, P. Amaro-Seoane & A. Sesana
Monthly Notices of the Royal Astronomical Society,

Volume 478, Issue 2, 1 August 2018, Pages 1726–1748.

and

ACCRETION OF CLUMPY COLD GAS ONTO MASSIVE BLACK HOLE BINARIES:
A POSSIBLE FAST ROUTE TO BINARY COALESCENCE

F. G. Goicovic, C. Maureira-Fredes, A. Sesana, P. Amaro-Seoane & J. Cuadra
Monthly Notices of the Royal Astronomical Society,

Volume 479, Issue 3, 21 September 2018, Pages 3438–3455.

10.1 I N T R O D U C T I O N A N D M O T I VAT I O N

We have mentioned in the introduction that thanks to advances in high an-
gular resolution instrumentation, our understanding of the central regions
in galaxies has gone through a major breakthrough. Space-borne telescopes
such as the Hubble Space Telescope and adaptive optics from the ground
allow us to investigate the kinematics and distribution of gas and stars at sub-
parsec scales for external galaxies [see e.g. Kormendy, 2003, Kormendy and
Ho, 2013] and to milli-pc for the Milky Way (see e.g. Schödel et al. 2003,
2014, Gallego-Cano et al. 2018, Schödel et al. 2018 and, in particular, the re-
view of Genzel et al. 2010). A capital conclusion is that massive dark compact
objects, very likely massive black holes (MBH), with a mass typically ranging
between 106−9M� are lurking at the innermost centre of most large galax-
ies in the observable range. Moreover, the formation and evolution of these
objects and their host galaxies seem to be linked [Magorrian et al., 1998, Fer-
rarese and Merritt, 2000, Gebhardt et al., 2000, Häring and Rix, 2004].

On the other hand, from a theoretical standpoint hierarchical models best
explain the formation of structures in the Universe, down to the size of a
galaxy. This implies that galaxies, during their lifetime, have suffered at least
one merger, if not several [see e.g. Volonteri et al., 2003, for hierarchical
merger studies in ΛCDM Cosmology]. If these galaxies harbour a MBH in their
centre, during the collision they will sink to the centre of the merged galaxy,
form a binary and shrink its semi-major axis and become “harder” thanks to
the interaction with stars coming from the surrounding stellar system in which
they are embedded [seee.g. Begelman et al., 1980, Quinlan, 1996, Sesana
et al., 2007, Colpi and Dotti, 2011]. A star will strongly interact with the
binary of MBHs by removing energy and angular momentum out of it, so that
it will be re-ejected into the stellar system with a higher kinetic energy, and
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the semi-major axis of the binary will shrink a bit more. Nevertheless, the
loss-cone [see e.g. Frank and Rees, 1976, Amaro-Seoane et al., 2004], which
provides the MBH binary (MBHB) with stars to interact with, is soon empty,
halting the evolution of the binary. The pace of subsequent shrink of the
MBHB is dictated by the rate at which new stars are scattered into the loss
cone. For spherical stellar distributions, the relevant scale is set by the two-
body scattering timescale, that can exceed the Hubble time [Milosavljević and
Merritt, 2001]. When this happens, the binary stalls: the MBHs are still bound
but they will not coalesce in a Hubble time. They are emitting gravitational
waves, but the energy loss is too weak.

This situation is known as “the last parsec problem”, because the separation
between the MBH s is typically of the order of ∼ 1 pc [Begelman et al., 1980,
Milosavljević and Merritt, 2003, Merritt and Milosavljević, 2005]. Whether
or not these binaries will merge in a Hubble time is a question that depends
on various issues and is currently debated. However, the emerging consensus
is that such binaries will in most of the cases overcome this hang-up, due to
efficient loss cone re-population in the triaxial, dynamically un-relaxed stellar
distribution produced by galaxy mergers [Berczik et al., 2006, Preto et al.,
2011, Khan et al., 2011, Vasiliev et al., 2015, Sesana and Khan, 2015]. MBHB
s will therefore get to the phase in their evolution in which they efficiently
emit gravitational waves to be detected with a GW observatory such as the
Laser Interferometer Space Antenna [LISA, see Amaro-Seoane et al., 2017,
2013a, 2012b].

In gas rich galaxies, which become dominant at low galaxy masses and/or
high redshifts, a key factor to surmount this last stretch is the role of the gas,
which may be crucial in the evolution of the binary [Escala et al., 2004, 2005].
For instance, the work of Cuadra et al. [2009] found that gaseous discs should
commonly help in the merger of MBH s with masses of interest for LISA, whilst
this mechanism fails for masses larger than ∼ 107 M�.

The evolution of MBHB s interacting with a circumbinary gaseous structure
has been investigated by a number of authors. In most studies, gas is assumed
to be distributed in a steady, extended circumbinary disc that is either co-
rotating [see e.g. Armitage and Natarajan, 2005, Cuadra et al., 2009, Haiman
et al., 2009, Kocsis et al., 2012, Amaro-Seoane et al., 2013b, D’Orazio et al.,
2013a, Tang et al., 2017] or a counter-rotating [see e.g. Roedig and Sesana,
2014, Nixon and Lubow, 2015, Amaro-Seoane et al., 2016] with respect to
the rotation of the MBHB. The binary-disc system is assumed to evolve in
isolation, and almost no attempt has been made to connect the system with
the larger scale galactic environment that is providing the mass supply to the
gaseous structure. The violent interaction of two merging, gas rich galaxies
is expected to produce a turbulent environment in which cold clumps and
filaments of gas continuously interact exchanging angular momentum and
eventually infalling toward the centre of the merger remnant. The initial or-
bit of the galaxy merger provides a large source of angular momentum, the
geometry and angular momentum distribution of the infalling matter is there-
fore set by the competing effect of ordered dynamics due to the large scale
rotation of the merger remnant and chaotic motions driven by turbulence and
clumps and filament scattering [Sesana et al., 2014].

It has been proposed that accretion of gas on to the binary can happen
either (i) in a coherent way, so that the angular momentum direction is basi-
cally kept constant through all the episodes of accretion [Dotti et al., 2010],
(ii) stochastically, meaning that the gas accretes on to the black holes in
randomly oriented planes [King et al., 2005, King and Pringle, 2006], for
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which we have observational evidences, such as in the nucleus of the Abell
2597 galaxy cluster [Tremblay et al., 2016] or in the AGN PKS B1718-649
[Maccagni et al., 2018]. Cold chaotic accretion has been linked to several
physical mechanisms acting on the interstellar medium, such as turbulence,
rotation, AGN/Supernovae feedback, among others [Hobbs et al., 2011, Gas-
pari et al., 2013, 2015, 2017]. Also, it has been pointed that (iii) actually
accretion might be a mixture of both, coherent and stochastic accretion, with
different degrees of anisotropy, as investigated by Dotti et al. [2013] to ad-
dress possible anisotropies present in the gas in the nuclear regions of active
galaxies.

Accretion on to a MBHB of single clouds has been investigated numerically
by Dunhill et al. [2014], Goicovic et al. [2016] and Goicovic et al. [2017],
taking into account different orbital configurations and cooling rates. We
have found that the interaction prompts a transient phase of high accretion
onto the MBHB, while part of the leftover gas settles into a circumbinary
disc of various masses and sizes depending on the initial orbit of the cloud.
Whether such gaseous structure can be kept stable and grow in time under the
influence of a series of episodic accretion events is unclear, as the successive
infall of various clouds on to a MBHB has not been addressed yet. In this
chapter, we present for the first time to our knowledge dedicated, detailed
numerical simulations of repeated gaseous infall episodes and accretion on to
a MBHB in a post-merger galactic nucleus to assess the architecture of the
gas forming around the binary. We consider stochastic feeding of the binary,
assuming different degrees of anisotropy in the distribution of the infalling
clouds, as well as different feeding rates.

This chapter is organised as follows. In §10.2 we describe the main techni-
cal features of the simulation, focusing on physical ingredients and numerical
details that have been developed specifically for this suite of simulations. In
§10.3 we define the initial conditions of each individual run, providing all the
cloud parameter details necessary to reproduce our runs. We test the stability
and convergence of our numerical scheme against critical parameters such as
the assumed sink radius and the number of particles used to simulate each
cloud in §10.4. The results of all simulations, including an extensive descrip-
tion of the transient and long term circumbinary structures, and individual
mini-discs are presented in §10.5 and the significance of our main finding
and future outlook are discussed in §10.6. The impact on the evolution of the
binary itself is presented in a complementary paper (Goicovic et al. [2018])
to this chapter.

Additional data and multimedia material can be found in the website of the
project 1.

10.2 M E T H O D S

We study the evolution of the MBH-clouds system using GADGET-3, a Smooth
Particle Hydrodynamics (SPH) and N−body code, which is a modified version
of GADGET-2 2. Every particle is represented as a point-mass, characterised
by its 3-D position and velocity, and the code solves for the hydro-dynamical
and gravitational interaction of the elements, which are organised in a tree
structure [Barnes and Hut, 1986].

Specific to our implementation is the modelling of the MBHB as two equal-
mass sink particles, initialised in a Keplerian circular orbit with centre of mass

1 http://multipleclouds.xyz/
2 http://wwwmpa.mpa-garching.mpg.de/galform/gadget/
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at rest in the origin of our Cartesian reference frame. We established the code
units such as the initial semi-major axis, orbital period and mass of the black
hole binary are equal to one, i.e. a0 = P0 = M0 = 13, which can be re-scaled
to an astrophysical system as detailed in Goicovic et al. [2016]. Along the
chapter, we will present results for a physical MBHB with initial semi-major
axis of a = 0.2pc, a total initial mass of Mbin = 106M�, and an orbital period
of P = 8400 yr. We will refer to this astrophysical rescaling as our fiducial
system.

Each infalling molecular cloud is modelled as a spherical distribution of
equal-mass SPH particles. Each cloud has a mass of Mc = 0.01 M0 and, to
verify the convergence of our simulations, is modelled with increasing resolu-
tion, using four different number of particles

• Nc = 5× 104 (50k, default simulation value),

• Nc = 2× 105 (200k),

• Nc = 5× 105 (500k),

• Nc = 1× 106 (1m).

The main configuration of our simulation set-up is described in Goicovic
et al. [2016] and visualised in Fig. 40. It is an adaptation of the scheme
presented in Bonnell and Rice [2008], in which we:

• replace the central black hole by a MBHB;

• set the initial separation between the cloud and the MBHB to 15 (in
code units, corresponding to 3 pc rescaled to our fiducial system);

• adopt an initial velocity modulus of the cloud of vc = 0.5 v0 = 0.5
√

GM0/a0;

• gauge the encounter impact parameter by varying the θvc angle formed
by the cloud velocity vector with the direction connecting the centre of
masses of the cloud and of the MBHB.

In the top panels of Fig. 40, we sketch the set up of a co-rotating and a
counter-rotating encounter. In the first case, the angular momentum vector of
the cloud orbit,~Lc, is aligned with the orbital angular momentum vector of the
MBHB, ~Lbin; in the latter, the two angular momenta have opposite direction.
In general, the two angular momenta can have arbitrary relative orientation.
In our set-up, we fix the reference frame so that the MBHB is initially at rest
in the origin and ~Lbin is along the positive z axis. We then generally refer
to a cloud as “co-rotating”(“counter-rotating”) if the z component of its ~Lc is
aligned(counter-aligned) to~Lbin.

When added to the simulation, the cloud is composed by spherically dis-
tributed particles with uniform density, sustained against gravitational col-
lapse by a turbulent internal velocity field. We set up this turbulence by draw-
ing from a Gaussian random distribution with a power spectrum Pv(k) ∝ k−4,
where k is the wave-number of the velocity perturbation in Fourier space. This
distribution is chosen to match the observed velocity of molecular clouds [Lar-
son, 1981].

3 Throughout the chapter the subscript 0 will refer to initial system parameters.

91



θ•

(a) Co-rotating

θ•

(b) Counter-rotating

θvel

vc = 0.5v0

M0 = 1 (106M�)

Mc = 0.01(104M�)

d = 15(3pc)rc = 2.5(0.5pc)

a0 = 1(0.2pc)

(c) Configuration

Figure 40: Schematic representation of selected configurations of the simu-
lations: (a) Co-rotating case, the gas cloud infalls following the
MBHB orbit; (b) Counter-rotating case, the gas cloud infalls oppo-
sitely to the MBHB orbit. Panel (c) sketches how the cloud impact
parameter is tuned by changing the angle θvel (see description in
main text). The parameters of the system (initial separation be-
tween the cloud and MBHB, initial cloud velocity, masses and sizes
of both the cloud and the MBHB) are listed in the figure.
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10.2.1 Additional physics

Accretion

Each MBH in the simulation is represented by a sink particle, which means
that it will accrete any particle entering a pre-defined sink radius, but other-
wise it interacts only gravitationally with other SPH particles. We do not use
the built-in stochastic accretion model that is included in GADGET, which is
not appropriate for the problem in hand, where a reliable accretion procedure
for individual gas particles, beyond a stochastic selection scheme, is required.
Entering the sink-radius must be a necessary but not sufficient condition for
accretion. In fact physically unbound particles can simply fly-by across the
sink radius. Therefore, to avoid spurious accretion, we verify that each can-
didate particle entering the sink radius is bound to the associated MBH. In
practice, a gas particle will be accreted if the following conditions are satis-
fied:

rgas ≤ rsink (57)

Ebind < 0 (58)

where rgas is the relative distance between the MBH and gas particle, and
we take a fiducial rsink = 0.1 which is a 10% of the initial separation of the
MBHB. A convergence study of the results against the chosen value of rsink
is presented in §10.4.1. In order to be able to verify angular momentum
conservation, it is important to keep track of the accreted gas particles. The
positions and velocity of those particles at the moment of accretion are locally
stored, to be used in the computation of the angular momentum of the system
when required.

Thermodynamics

The thermodynamics of the gas is modelled using a barotropic equation of
state [Bonnell, 1994, Escala et al., 2005, Dotti et al., 2006],

P = Kργ, (59)

where the constant γ depends on the gas density. The value of K represents
the entropic function of each gas particle in the code [Springel and Hernquist,
2002], and because it depends explicitly of γ, it must be calculated so that the
pressure behaves as a continuous function of density. We choose an effective
equation of state that represents the behaviour of a collapsing protostellar
cloud, whereby the low density gas evolve isothermally up to some critical
density (ρc), at which point it becomes adiabatic [Bate et al., 1995]. This can
be represented as:

γ = 1.0 for ρ ≤ ρc; (60)

γ = 1.4 for ρ > ρc (61)

As explained in Goicovic et al. [2016], the addition of these two regimes
breaks the scale-free nature of our simulations, although the results can be
scaled within a certain range of critical densities, as explained in Goicovic
et al. [2016].
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For the simulations presented in this chapter we choose ρc = 10−2M0a−3
0 in

code units, corresponding to 10−16g cm−3 ≈ 1.5× 106M� pc−3 when scaled
to our fiducial system. Note that this is two orders of magnitude smaller
than the value adopted in Goicovic et al. [2016]. This modification was in-
troduced to save computational cost, as some of the configurations produce
a large number of gas clumps. Evolving these high density regions requires
very small time-steps. Hence, by effectively stopping the collapse at much
lower densities, this modification prevents simulations from stalling due to
excessively small time-steps.

With this approach we are mimicking the evolution of a multi-phase gas
without implementing sophisticated cooling mechanisms or radiative transfer
schemes. The isothermal treatment of the gas is qualitatively representative
of optically thin media, where cooling is very efficient. Since our goal is to
study the dynamics of the gas and not the detailed thermodynamic evolution
of the dense regions, this treatment suites our purposes. Because the gas
dynamics is mostly dominated by the gravitational potential generated by the
binary, we do not expect the thermodynamics to have a major impact in our
results. Nevertheless, future studies should include a proper thermodynamic
treatment of the gas.

External potential

MBHBs live in the dense environment of galactic nuclei, sitting at the bottom
of the galactic potential well. Although this potential does not significantly
affect the cloud-MBHB individual interaction, it is important to take it into
account when performing an extensive experiment including the interaction
of multiple clouds. In fact, the external potential is relevant in two ways:

• it changes the dynamics of the gas flung away by the binary, keeping it
bound to the system and allowing it to come back for further interac-
tions;

• it acts as a restoring force, keeping the binary close to the origin of the
reference frame (i.e. to the bottom of the potential well).

In practice the inclusion of the potential does not greatly affect the dynam-
ics of the close MBHB-cloud encounters – which remains dominated by the
gravity exerted by the MBHB – and it ensures angular momentum and en-
ergy conservation due to its spherically symmetric nature. Most importantly,
it avoids drifting of the system away from the coordinate origin, which is prob-
lematic when clouds are added to the system at different times. Instead, the
MBHB experiences a gentle wandering with no secular effects Fig. 43 and, to-
gether with its surrounded gas structures, is kept close to the reference frame
origin.

To determine the potential, we assume that matter is distributed around
the origin following an Hernquist density profile [Hernquist, 1990]:

ρ(r) =
M∗
2π

a∗
r

1
(r + a∗)3 , (62)

which implies a cumulative mass distribution given by

m∗(r) = M∗
r2

(r + a∗)2 , (63)

C. MAUREIRA-FREDES 94



BLACK HOLE BINARY SYSTEMS: FROM DYNAMICS TO ACCRETION

where M∗ and a∗ are the total mass and scale radius of the distribution.
Based on our fiducial system where Mbin = 106M�, we derived M∗ by as-
suming the hole to bulge mass relation of Magorrian et al. [1998] and we
computed the scale radius using the radius to stellar mass relation of Dabring-
hausen et al. [2008]. In code units, this gives

• M∗ = 4.78× 102M0,

• a∗ = 3.24× 102a0,

which implies m∗(< a0) ≈ 5 × 10−3M0, thus a negligible effect on the
Keplerian nature of the MBHB.

10.2.2 Other technical adjustments and numerical calibration

Dynamics of the sink particles

The simple inclusion of dynamical ’sinks’ several order of magnitude more
massive than the other SPH particles, introduced a number of issues with the
SPH scheme. This was already noticed in Cuadra et al. [2009], who proposed
to extract the sink particles from the tree for a better integration of their tra-
jectories. We adopted the same strategy here, integrating the MBHB orbit
with a fixed time step ∆T = 0.02P0, thus allowing the binary positions and ve-
locities to be updated more often then typical SPH particles. We verified that
this made the evolution more reliable, ensuring that no crucial interactions
between particles and the MBHs were missed along the integration.

Still, close inspection of the MBHB evolution showed unphysical jumps in
the angular momentum of the system. We verified that this was related to
the frequency of update of the SPH tree. In SPH simulations one can choose
how often the particle tree (that defines how particles are grouped in comput-
ing mutual forces) is generated and updated, which can be controlled by a
adjustable parameter in GADGET. So long as the system does not experience
dramatic changes, simulations run smoothly with sparse tree updates. How-
ever, we are dealing here with multiple clouds infalling onto a MBHBfrom
different directions, triggering violent episodes of accretion, which is clearly
not the standard system handled by SPH codes of this type. We found that
this required reconstructing the tree 100 times more often than in the default
GADGET configuration.

Injection of clouds

At the beginning of each simulation, only one cloud is present in the system
besides the MBHB. All the following clouds interact with the binary at later
times and therefore need to be included into the system ‘on the fly’. Once the
injection time for the new cloud is reached, the simulation is stopped and the
new cloud is added. Each cloud is characterised by a specific set of ids, so
that particles can always be tracked back to their original cloud. This is useful
to track the relative importance of each cloud in the accretion process, or in
the formation of specific circumbinary structures. Once the cloud is added,
the simulations is resumed and the integrator can adapt to the new particles,
forming the tree again, and handling this new scenario. The procedure is
repeated for each cloud. Note that due to the inclusion of new clouds, the
total angular momentum is not conserved. The angular momentum of each
injected cloud is, however, known, and it is therefore easy to track angular
momentum conservation along the integration of the system.

95



With the exception of the ones accreted by the MBHB, we do not remove
any particle from the simulation. In fact, because of the way the tree is con-
structed, particles that are flung far away from the binary are grouped in
large structures and integrated rarely, representing a negligible contribution
to the computational burden. Moreover, the addition of the external potential
keeps the structure compact, minimising the number of particles escaping at
distances larger than 100a0.

Softening and sink radius

Finally it is important the selection of appropriate softening parameter. We
choose for the sink particles a value of εBH = 0.01a0 = 0.002pc, and for
SPH particles εgas = 0.001a0 = 0.0002pc. These values are small enough to
ensure we are not bypassing gravitational interactions, and are an order or
magnitude smaller than the maximum value recommended by Bonnell and
Rice [2008]. As mentioned above, we fix the sink radius at rsink = 0.1a0. We
performed (see §10.2.2) a series of tests ensuring that neither the dynamics of
the MBHB nor the accretion of SPH particles is sensitive to the specific choice
of rsink.

10.3 I N I T I A L C O N D I T I O N S A N D R U N D E S C R I P T I O N

In the previous Section, we defined the main physical ingredients and techni-
cal features of our simulations, we now proceed in detailing the initial condi-
tions of our set of runs. Our goal is to simulate a series of clouds interacting
with a central MBHB sitting at the bottom of a fixed potential well. The
MBHB is initially in the coordinate frame origin and has a separation a0 = 1
in code units. Each cloud is injected at a distance d = 15 and needs the speci-
fication of a time of injection, impact parameter and direction of the orbit.

We construct two series of 30 events, drawing the time between each event
from a cumulative Gamma distribution with k = 2 and θ = 2.5P0. We made
several draws from the Gamma distribution and picked two markedly distinct
sets. In the first set, hereinafter RunA, we perform an “aggressive” feed to the
MBHB, with an average ∆t ≈ 3P0 between events. On the other hand, in the
second set, hereinafter RunB, clouds are fed to the MBHB with an average
∆t ≈ 6P0 , allowing the system more time to relax in between each infalling
cloud. Note that when scaled to our fiducial system, the above infall rates
correspond to 0.4M�yr−1 and 0.2M�yr−1 entering the inner parsec respec-
tively, comparable to what is typically found in high resolution simulations of
gas-rich high redshift galaxies [see, e.g. Prieto et al., 2017], and is in broad
agreement with observations of post-merger galaxies [see e.g. Sanders and
Mirabel, 1996, Naab and Burkert, 2001].

Cloud impact parameters are drawn so that the periapsis passage is uni-
formly distributed in the range rp ∈ [0, 2a0], if the MBHB was replaced by
a single MBH sitting at the origin of the coordinate system and the potential
well was ignored. A uniform periapsis distribution corresponds to a standard
impact parameter distribution p(b) ∝ b at infinity, when the trajectory is dom-
inated by gravitational focusing of the central object, as it is the case in our
simulations. The injection time and rp value of each cloud for both RunA and
RunB are shown in Fig. 41.

After specifying the time of injection and impact parameter, we define the
orbit of the incoming cloud by assigning a direction to its orbital angular
momentum, ~Lc, with respect to~Lbin. We explore three different sets of initial
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Figure 41: Pericentre distance rp and injection time of the clouds in RunA (top
panel) and RunB (bottom panel). Each individual cloud is repre-
sented as a black dot (numbered in ascending order). The small
panels to the right show the rp cumulative distribution of the in-
jected clouds.
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Figure 42: Orientation of the angular momentum of each cloud on the sphere
for the three F distributions. In this representation ~Lbin points
to the north pole. Each panel reports only the clouds that were
integrated in that specific run, numbered by injection order. The
top row is for RunA and the bottom row for RunB.

RunA RunB
Cloud ti[P0] ∆ti[P0] ti[P0] ∆ti[P0]
1 0.0 1.87 0.00 3.33
2 1.88 2.22 3.33 8.48
3 4.10 2.46 11.81 6.93
4 6.57 3.61 18.74 8.20
5 10.18 1.60 26.94 10.53
6 11.78 4.32 37.47 6.74
7 16.11 3.42 44.21 4.31
8 19.54 2.53 48.52 4.03
9 22.08 2.47 52.55 2.38
10 24.55 8.85 54.94 13.28
11 33.41 1.29 68.21 5.33
12 34.71 6.86 73.54 4.52
13 41.57 7.70 78.06 4.98
14 49.27 2.16 83.04 2.78
15 51.44 1.84 85.82 3.75
16 53.28 1.10 89.57 9.16
17 54.39 5.71 98.73 5.63
18 60.10 1.25 104.36 6.20
19 61.36 1.63 110.55 5.53
20 62.99 3.01 116.09 3.12
21 66.01 5.94 — —
22 71.95 3.49 — —

Table 2: Cloud injection times in RunA and RunB. For each cloud we report the
time of injection (second and fourth columns) and the time to the
next cloud injection (third and fifth columns). The two horizontal
lines in column 2 and 3 identify the last cloud injection for RunA
F = 1.0 (after cloud 12) and RunA F = 0.0 (after cloud 15), while
RunA F = 0.5 reached cloud 22. Conversely all RunB configurations
reached cloud 20.
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conditions, defined by the fraction F of counter-rotating clouds interacting
with the MBHB [Dotti et al., 2013]:

1. F = 0.5: ~Lc are randomly distributed on the sphere. In this case, on
average, 50% of the clouds will be co-rotating and 50% will be counter-
rotating with respect to the MBHB. This is known as ‘chaotic’ accretion
scenario and is visualised in the left panels of Fig. 42,

2. F = 0.0: all clouds are co-rotating with the MBHB, i.e. they all have
Lc,z aligned to~Lbin, as shown in the central panels of Fig. 42,

3. F = 1.0: all clouds are counter-rotating with the MBHB, i.e. they all
have Lc,z counter-aligned to~Lbin, as shown in the right panels of Fig. 42.

We first generate 30 random clouds (F = 0.5 case) and obtain the F = 0.0
and F = 1.0 cases by simply ‘mirroring’~Lc with respect to the equatorial plane,
as shown in Fig. 42. The mirroring procedure is crucial to single out the effect
of co- and counter-rotation both on the formation of gaseous structures and
on the evolution of the binary, because it allows us to consider systems that,
besides the flipping of ~Lc, are otherwise identical. Note that once ~Lc and rp
are specified, one still has the freedom to rotate the orbit of the cloud within
its orbital plane. To define the orientation of the cloud orbit, we consider the
intersection of its orbital plane with the x, y plane defined by our coordinate
system, and we place rp at an angle Θ randomly drawn in the range [0, 2π].
All the mathematical details of the generation of the initial conditions are
given in Appendix 10.7.1.

Although we generate 30 clouds for each set of initial conditions, we only
show initial conditions for 22 clouds for RunA, and 20 clouds for RunB in
Fig. 41 and 42. Due to time constraints and necessary maintenance of the
computer clusters employed for the calculation, we were in fact only able to
integrate RunA F = 0.0 up to cloud 15, RunA F = 0.5 up to cloud 22 and
RunA F = 0.0 up to cloud 12. All RunB were integrated up to cloud 20. The
full information about the initial condition of each cloud, including initial
positions and velocities, are given in Appendix 10.7.1.

In summary, we generated two sets of runs, RunA and RunB defined by dif-
ferent cloud impact parameters and injection times. For each of the runs
we considered three angular momenta distributions, F = 0.0, F = 0.5 and
F = 1.0, for a total of six different sets of initial conditions. Each of the sets
is integrated at four single cloud resolutions: 50k, 200k, 500k and 1m. In the
following, we will concentrate on the results of the 50k simulations, which
reached the larger number of clouds in the system. Runs at higher resolutions
are obviously slower; for example, only 4-5 clouds are generally injected in
the 1m case. Higher resolution runs are used as benchmark for comparison
and to assess convergence of the simulations.

To study the relaxation of the system after the infall of several clouds, we
also ‘forked’ each of the 50k runs after the injection of 5 and 10 clouds. In
practice, we ran in parallel two additional sets of simulations in which the
system was allowed to evolve unperturbed after 5 and 10 clouds interacted
with the binary, to study the long term properties of the relaxed system.

Commonly for this type of numerical investigations, a large computational
infrastructure was needed to handle the required set of runs and tests.
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10.4 R E S O L U T I O N A N D C O N V E R G E N C E T E S T S

The simulations presented in this work feature complex dynamics of multiple
clouds interacting with a MBHB, it is therefore important to test the incidence
of our main numerical assumptions on the evolution of the system, to keep the
impact of spurious numerics under control. The tree reconstruction frequency
has been tuned to optimise angular momentum conservation, as described in
§10.2.2, and softening has been chosen to guarantee a proper resolution of
the gravitational interaction between particles. The other numerical ‘degrees
of freedom’ are the choice of rsink and of the number of particles used to
simulate each cloud, Nc (i.e. the ‘resolution of the simulation’). In this section
we check the robustness of our set-up against our choice of these parameters.

10.4.1 rsink value and accretion convergence

Ideally, a particle will be accreted when it approaches the MBH at about r =
6GM/c2 = 3RS, where RS is the Schwarzschild radius. If we consider our
fiducial system, this distance is ≈ 5× 1011 cm, equivalent to 2× 10−6 in code
units. It is clear that a realistic condition for particle accretion is beyond any
feasible resolution in our numerical scheme. Thus a fictitious sink radius is
introduced by hand, as explained in §10.2.2. The numerical value of rsink
is set ad-hoc for numerical convenience. To test its impact on the dynamics
of the system we ran four otherwise identical simulations with rsink = 0.1
(standard model), 0.05, 0.2 and 0.5 in code units thus spanning an order of
magnitude. For these test simulations we considered RunA F = 0.0, with 200k
resolution.

Fig. 43 shows the evolution of the key parameters describing the evolu-
tion of the MBHB in the four runs, evolved for about 25 initial binary orbital
periods, sufficient to follow the strong dynamical interaction with eight subse-
quent clouds. Results match so well across the runs that we had to offset the
lines, otherwise they would overlap almost perfectly. The value of rsink does
not appreciably impact any of the MBHB parameters, not even the eccentric-
ity evolution, which depends on a fine balance between energy and angular
momentum exchanges, and is therefore sensitive to minor fluctuations in the
dynamics. Note that the pool of interacting clouds span a large dynamical
range, including clouds with rp < a0 (clouds 5 and 8, see Fig. 42) whose
dynamics might in principle be severely affected by an improper treatment of
rsink.

Critically, the evolution of the two MBH masses is independent on rsink,
which indicates that gas accretion is not affected by its unphysically large
value. This is because of the conditions spelled in §10.2.2, whereby particles
are required to be bound to the MBH for being accreted. In practice only par-
ticles that settle into orbits enclosed in the MBH Roche Lobe can be accreted.
These particles form eccentric (either transient or persistent) mini-disks that
are continuously perturbed by infalling material and are swiftly drained into
the sink. Therefore, setting a smaller sink radius only causes a small delay
in the time at which a particle is recorded as accreted. Note that this does
not mean that all particles crossing rsink will be accreted in reality, as we will
discuss in the next section.
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Figure 43: Time evolution of the relevant MBHB parameters in RunA F = 0.0,
with 200k, for different values of rsink, displayed in simulation
units. In each plot, the black line is for rsink = 0.1a0 (the
adopted default values), while different shades of blue are for
rsink = 0.05a0, 0.2a0, 0.5a0. Note that lines have been progressively
shifted upwards for clarity, since they would otherwise almost per-
fectly overlap. Grey vertical stripes indicate the ‘arrival time’ of
each new cloud, i.e. the time of first periastron passage in its orbit
around the MBHB. In the mass panel (fourth from the top), solid
and dashed lines represent M1 and M2 respectively, normalised to
their respective initial values.
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Figure 46: Column density rendering of RunA, F = 1.0 at T = 10.2[P0]. Each
column represents a cloud resolution, 50k, 200k, 500k and 1m from
left to right. In each column, the top and the bottom panels repre-
sent views in the x− z and x− y plane respectively.

10.4.2 Robustness against Nc

It is obvious that the level of dynamical detail that traceable in a numerical
simulation critically depends on its resolution, and the SPH technique is no
exception to this rule. Simulations shall be performed with a number of parti-
cles sufficient to resolve the physical features of interest in an N−independent
fashion. Of particular interest for this work are accretion onto the MBHB and
the distribution of non accreted gas around the binary. To test that our simu-
lations are ‘well behaved’ we ran each of them at the four particle resolutions
50k, 200k, 500k and 1m particles, thus spanning a range of 20.

In Fig. 44, we show the accretion rate on each individual MBH in the case
RunA F = 0.0, for all values of Nc. Accretion is highly variable, showing promi-
nent intermittent spikes in correspondence to the arrival times of clouds with
small impact parameters. Note that, at peak, dM/dt > 0.005P−1

0 on each
individual MBH. Converted to our fiducial system this is about 0.6M�yr−1 ≈
60ṀEdd. The actual fate of the gas during these high accretion episodes is
unclear. Photon trapping might allow gas to be accreted at super-Eddington
rates [e.g. Abramowicz et al., 1988, Ohsuga et al., 2005], or alternatively,
radiation pressure might cause the expulsion of the majority of the gas in
powerful winds, as observed in [e.g. Tombesi et al., 2010, 2015]. As dis-
cussed in Goicovic et al. [2017], the fate of the gas in itself has only a minor
impact on the dynamical evolution of the system, which is driven more by
gas capture from the MBHB, rather than gas accretion. Winds can, how-
ever, strongly interact with the surrounding infalling clouds, affecting their
dynamics. We caution that this effect is not captured in our simulations. Nev-
ertheless, Fig. 44 shows that, despite minor differences in the definition of the
accretion peaks, neither the accretion rate nor the total mass growth of the
MBHs have an appreciable dependence on the amount of particles used in the
simulation.

To test the dependence of the gas distribution on Nc, we show in Fig. 45 the
angle-averaged gas density as a function of radius for all RunA at T = 10.2P0,
after the disruption of the third cloud. The density is displayed in physical
units, by scaling the results to our fiducial system (Mbin = 106M�). Density
profiles are equivalent at all resolutions, even though they are noisier in the
50k and 200k runs, due to the smaller Nc. Increasing the number of particles
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Figure 47: Angle-averaged mass density profile for all 50k runs (as indicated
in each panel) at different snapshots, in physical units, scaled to
our fiducial system. Curves are labelled by the number of clouds
present in the system, and represent the density profile at the last
recorded snapshot before the subsequent cloud is injected in the
system (e.g.: 05 represents the status of the system at the last snap-
shot before adding the 6th cloud). In each panel, the dashed line
refers to a ρ ∝ r−2 profile, for comparison. The solid vertical black
line shows the initial position of each of the MBHB components.

allows to better capture fine details in the gas distribution. For example in
the F = 0.0 case (left panel), the sharp density drop around 0.15pc is better
resolved in the 1m run. Likewise, in the F = 1.0 case (right panel) the larger
amount of particles in run 500k and 1m allows the resolution of two density
peaks around 2.2pc, which are blended into a single peak in runs 50k and
200k. Nevertheless, differences are minor, and the overall structure of the gas
distribution is preserved across resolutions.

A visualisation of the 3-D particle distribution is shown in Fig. 46, where
snapshots of the F = 1.0 case at T = 10.2P0 are shown in the x− y and x− z
plane. The overall gas distribution is exquisitely consistent at all resolutions,
even though structures appear slightly blurrier going from the right to the
left. The aforementioned difference in the density peaks at 2.2pc, is due to
the regions highlighted with black circles on the rightmost column. Looking
at this critical areas, and moving left in the panel sequence (going down in
resolution), the dense areas become less defined eventually blending the fine
structures in larger clumps. These differences, however, do not affect the
overall dynamical evolution of the systems and are relevant only in the deter-
mination of the statistics of dense clumps prone to star formation. Since this
specific investigation is beyond the scope of the current work, we deem the
50k runs sufficiently accurate for our purposes.

10.5 R E S U LT S

In this section we present the main results of the simulations concerning the
formation and evolution of gaseous structures around the MBHB 4. In a
complementary paper (Goicovic et al. [2018]) to this chapter, we focus on the

4 Animations of all the simulations can be seen in http://multipleclouds.xyz/movies/
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Figure 48: Mass evolution of the circumbinary structure for the models F =
0.0 (left), F = 0.5 (centre) and F = 1.0 (right). The first row rep-
resents RunA while the bottom row represents RunB. The different
coloured lines are the mass contribution from each infalling cloud
while the black line is the sum of the contribution from all clouds

evolution of the MBHB. We will describe the general outcome of both RunA
and RunB, in order to make comparisons between the two. When a specific
aspect is investigated in more depth, we consider RunA as default case. We
also ran an extra suite of simulations, that we call RunC, mixing the cloud
configuration of RunA and the time distribution of RunB. Some relevant results
for this extra suite of runs is presented in Appendix 10.7.2. In the figures
of this Section, relevant quantities are displayed in physical units, scaled to
our fiducial system (i.e. a MBHB with initial mass Mbin = 106M� and initial
separation a = 0.2pc), whereas run snapshots are shown in simulation units
(Mbin = a = 1).

10.5.1 Overall evolution of the gas distribution

We first look at the evolution of the (angle averaged) gas density profile as
a function of distance to the MBHB centre of mass. This is shown Fig. 47
as runs advance and more clouds are added to the system. As a general
trend, we see that in all cases the gas density outside the binary orbit tends
to follow a ρ ∝ r−2 distribution, even though the profile is necessarily time
dependent and there is a large scatter. In the long run, this has to be expected;
by throwing gas at the binary from all directions, the resulting envelope will
be almost at rest with respect to the binary centre of mass. One can then
estimate the Bondi radius as RB = 2GM/c2

s . For our fiducial system, the gas
temperature is T = 100 K, resulting in cs ≈ 2 km s−1. This means that the
Bondi radius is several tens of parsecs i.e. much bigger than the domain of
the simulation. We are hence injecting within the Bondi radius of the binary
gas at a roughly constant rate, which is therefore expected to settle into an
r−2 density profile.

The “humps” – observed for example in the middle top-panel on the 22th
cloud line around 5pc, or bottom-right panel at 0.5pc and 1pc for the 10th
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and 15th cloud lines, respectively – correspond to new clouds infalling into
the system, and are not properties generated by bound material that is falling
back to the binary after cloud disruption. Each new infalling cloud will gener-
ate a “hump” that will move from right to left until is disrupted by the MBHB.
Conversely, the sharp lines accumulating at R > 1pc are due to high density
clumps formed during the phase of cloud compression in the interaction with
the MBHB and then ejected at large distances.

The figure also highlights few interesting features specific to each of the
F−distributions. On the F = 0.0 panels (left column) we can observe a clear
dip in the density profile around 0.2-0.3pc, comparable to the binary orbital
separation, building up over time as more clouds get into the system. This is
a clear indication that the action of the MBHB is carving a cavity in the gas
distribution. In fact in the F = 0.0 case, clouds are mostly co-rotating and
we expect a lot of gas will re-arrange in a co-rotating circumbinary structure.
Lindblad resonances are then expected to carve a hole in the gas distribution
of a size of ≈ 2a [Artymowicz and Lubow, 1994]. The large overdensities at
the MBH location are instead indicative of prominent mini-discs, that are also
expected to form in the co-rotating case [Goicovic et al., 2016]. Note, more-
over, how the density just outside the cavity in RunB builds up with time much
more prominently than in RunA, which is a sign that a more massive circumbi-
nary disc is being built in the former case (as we will see below, cf Fig. 48 and
Fig. 50). Conversely, clouds are mostly counter-rotating in the F = 1.0 case
(right panels), and Lindblad resonances do not operate. No steady dip is in
fact observed in this case, however prominent transient overdensities can be
seen forming around 0.2pc, which are indicative of the formation of compact
dense rings that get disrupted in the interaction with new incoming clouds
(again, see example in Fig. 50). The isotropic nature of the F = 0.5 runs
can be also appreciated (central panels), which shows a relatively smooth
and steady shape. In the following, we will examine in detail the evolution of
these gas structures, paying particular attention to the formation of mini-discs,
circumbinary discs and rings.

10.5.2 Circumbinary structures

Following the infall of each cloud, some of the non-accreted material will
remain bound to the binary, forming structures around it, as well as around
each MBH. Previous work by Goicovic et al. [2016] studied the impact of the
orbital configuration of the infalling cloud on the formation of such structures,
showing a rich phenomenology depending on the initial orbital inclination
relative to the MBHB plane and impact parameter. In particular they found
that the binary is generally unable to change significantly the orientation of
the gas, which produces discs that follow the initial cloud’s inclination.

For the simulations presented in this chapter, the incoherence of the accre-
tion events produces a variety of gaseous streams that continue interacting
with the binary and between each other, making a clear identification of cir-
cumbinary disc structures much harder. To study any type of stable structure
around the MBHB is essential to devise a set of conditions defining whether
an SPH particle belongs or not to that structure. In practice we define cir-
cumbinary structures by considering all particles that:

• are bound to the MBHB (to avoid including unbound streams of gas
flung away in the interaction with the MBHB);
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Figure 49: Time evolution of the circumbinary structure in each of the simula-
tions. The three columns, left to right, are for the F = 0.0, F = 0.5
and F = 1.0 scenarios; the top 3× 4 grid of plots is for RunA and
the bottom for RunB. In each grid, the top row shows the time evo-
lution of the total mass of the structure, Mgas. All the other rows
show in log-scale the time evolution of selected particle distribu-
tions, normalised so that the integral of any vertical slice of any
panel gives the total mass Mgas at that specific time. With such
normalisation, the second row represents dMgas/di, the third row
dMgas/da (a is displayed in units of initial binary separation) and
the forth row dMgas/de. The colour gradient is displayed in log-
scale, as indicated by the bars at the far right of each row. Grey
lines on the Mgas panels, indicate the time of arrival of infalling
clouds.

107



Figure 50: Snapshots of RunA (top row) and RunB (bottom row) at selected
time (as indicated in each panel), highlighting features described
in Fig. 49. In all panels, the binary is viewed face-on in the x− y
plane, and the gas column density (integrated along the z−axis) is
shown in log-scale as indicated on the right of each panel.

• are inside a critical radius r < 7a0. The specific choice is arbitrary, but
is motivated by the typical size of circumbinary discs found in Goicovic
et al. [2016].

For each SPH particles identified by this first cut, we can take 3-D position
and velocity, replace the MBHB with a point mass centred in the centre of
mass of the system, and compute a Keplerian orbit around this point. This
calculation is an approximation of the true orbit of the particle, since it ig-
nores the binary nature of the central massive object, as well as the external
potential. The advantage of this approach is that it allows to define orbital
elements such as semimajor axis a, eccentricity e and inclination i for each
particle. We therefore impose the further condition that the particle orbit

• has a(1− e) > 1, to make sure that it does not intersect the MBHB;

• has e < 0.9. Although this is also a somewhat arbitrary choice, it allows
to exclude particles belonging to new infalling clouds (which are on
almost radial orbits).

Fig. 48 shows amount of gas that meets the aforementioned conditions as
a function of time, together with the breakdown of the contribution of each
individual cloud. Despite stochasticity and differences between the runs, we
identify some general trends. As new clouds get into the system, their contri-
bution to the circumbinary structure initially rumps up to M ≈ 10−3Mbin (i.e.
10% of the initial mass cloud), since material settles on orbits with a < 7a0
and circularises to e < 0.9. This process is evident for the initial clouds in
RunA which have fairly large periapsis passage and tend to not interact with
each other (cf the top panel of Fig, 41). Up to T ≈ 15P0, the circumbinary
structure mass tends to steadily grow in time to about 1% of the MBHB mass.
Eventually, incoming new clouds on intersecting orbits prompts accretion of
pre-existing circumbinary gas, preventing the structure to significantly further
grow in mass. This is why the total mass in these structures never grows to
much more than few% of the MBHB mass. This process is more evident right
from the start in RunB. In this case, the first clouds have rather small periap-
sis and they strongly interact with each other upon arrival onto the MBHB.
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The net effect is that the circumbinary structure does not grow much beyond
M ≈ 10−3Mbin until a number of clouds with larger periapsis contribute a
substantial mass budget from T ≈ 40P0 onwards (cf the bottom panel of
Fig. 41).

It is clear that the contribution of each individual cloud to the circumbinary
structure tend to decrease in time (although with large fluctuation). With
“older” clouds contributing less to the mass budget. This causes the large
rainbow-like spread towards the end of the runs, whereby the contribution
of each individual cloud ranges between 10% to about 0.01% of their initial
mass. It is interesting to note that the spread is much larger in the F = 0.5 and
F = 1.0 cases, in which clouds experience more violent interactions among
themselves and with the binary. In the F = 0.0, conversely, most of the cir-
cumbinary material is stored into a disc held-up by Lindblad resonances. The
income of new clouds in mostly co-rotating orbit tends to add new material
to the disc without a substantial disruption of the pre-existing conditions. For
example, the first incoming cloud (red curve) still contributes about 5% of its
mass to the circumbinary disc by the end of the simulations in both RunA and
RunB.

Although Fig. 48 quantifies the amount of material that forms a circumbi-
nary structure, it does not provide much information about the nature of that
structure. For example, the gas might be configured in a disc or in a cloud or
in multiple rings and it would not make a difference. For each SPH particle
belonging to the structure, we reconstructed the orbit and we computed a, e
and i. We can now construct the distributions of these quantities, and follow
their evolution in time.

This is shown in Fig. 49 for all our runs, together with a replication of
the total circumbinary gas mass shown in Fig. 48 (top rows). Each panel
is built as follows. We take a uniform grid in the desired quantity and, at
each simulation snapshot, we construct an histogram by adding particles to
the bins and normalising so that the integral over the bins gives the total
mass in the structure. Histograms at subsequent steps are then concatenated
along the x-axis and smoothed to produce the 2-D density maps displayed
in the figure (in logarithmic scale). Fig. 49 clearly show the connection be-
tween the F−distribution and the geometry of the circumbinary structures
for both RunA and RunB. We now describe the diverse phenomenology of each
F−distribution, referring to representative examples of each individual case
shown in Fig. 50.

For the co-rotating case (F = 0.0, left column), after an initial transient
phase, most of the particles have less than 50o respect to the binary, and tend
to distribute in a co-rotating, extended circumbinary disc, displaying a variety
of eccentricities. In RunA, the disc does not build up as a coherent structure,
as hinted by the low total mass (panel A0.0-m) and large range of inclina-
tions (panel A0.0-i). The presence of large amount of gas at high inclinations,
prevents resonances from being efficient, and a well defined cavity cannot be
seen in panel A0.0-a, where we see gas been distributed in the whole range
1 < a < 7, although a concentration of gas at a < 5 appears from T ≈ 40P0
onwards. Conversely, in RunB, a prominent thin disc builds up coherently
and progressively aligns with the MBHB. This is demonstrated by the mass
build-up up to about Mgas = 0.03M (panel B0.0-m) and by the narrow range
of inclinations decreasing with time (panel B0.0-i). The density contrast in
panel B0.0-a highlights that the bulk of the disc lies in the range 2 < a < 4,
with the decline at a < 2 indicative of the resonance-sustained cavity. Gas
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within the disc remains in fairly eccentric orbits spread around e = 0.5 (panel
B0.0-e).

The left column of Fig. 50 displays representative snapshots of these two
simulations. The top panel is taken when the 13th cloud of RunA F = 0.0
interacts with the system, at T ≈ 49P0. An extended circumbinary structure,
almost in the binary orbital plane (i ≈ 20o) is clearly visible, but it is about to
be partially disrupted be the 13th cloud streaming-in from the left (which will
cause the subsequent drop in Mgas observed in panel A0.0-m). The bottom
panel shows the status of RunB F = 0.0 at the peak of Mgas at T ≈ 95P0.
Comparisons between the two highlights the prominence of the circumbinary
disc forming in RunB, featuring a massive spiral that extends to a ≈ 5,

Not surprisingly, in the counter-rotating case (F = 1.0, right column), the
gas distribution around the binary has high inclinations. Also in this case, the
two runs display quite different behaviours. In RunA, we see the formation of a
persistent structure. The mass gets to Mgas ≈ 10−2M at the peak, declining to
Mgas ≈ 10−3M by the end of the simulation (panel A1.0-m), is spread across
the whole a range (panel A1.0-a), and displays a wide range of inclinations
(panel A1.0-i). The gas essentially configures into a tenuous and low mass
counter-rotating cloud. This is clearly shown in the top right panel of Fig. 50
taken at T = 28P0; no clear disc-like structure is present, and the binary is
surrounded by a relatively compact cloudy envelope with streams extending
to a > 5.

The situation is strikingly different in RunB. Here we see that the violent
interaction with the binary causes most of the gas to be either accreted or ex-
pelled and no steady circumbinary structure is formed. A prominent eccentric
transient ring forms around T = 60P0, being disrupted about 20 periods later
(note that in our fiducial system the ring would last for about 0.2 Myr), as
clear from panel B1.0-m. The structure is almost perfectly counter-aligned to
the binary (panel B1.0-i), is confined within a < 2.5 (panel B1.0-a) and has
an average eccentricity e ≈ 0.3 (panel B1.0-e). The ring is clearly visualised
in the bottom right panel of Fig. 50.

The F = 0.5 simulations, shown in the central column of Fig. 49, highlight
the impact of the specific cloud distribution on the formation of circumbinary
structures. RunA features a number of transient, incoherent structures extend-
ing at all radii (panel A0.5-a) and inclinations (panel A0.5-i). The top central
panel of Fig. 50 shows the system at T = 41P0. Cloud 12 and 13 are bringing
fresh gas into the system, causing a temporary enhancement of the mass in
the circumbinary structure, that looks like an incoherent, extended envelope.
Conversely, RunB shows a behaviour similar to the F = 0.0 case; at T ≈ 60P0,
a co-rotating circumbinary structure forms, progressively aligning with the
MBHB as it gains mass in subsequent interactions (panels B0.5-m and B0.5-
i). The structure persists for about 30 binary orbits (≈0.3 Myr, when scaled to
our fiducial system), before being completely disrupted by the arrival of new
clouds on small pericentre orbits (clouds 13-to-16, cf Fig. 41). A snapshot of
the system at T = 89P0, shown in the bottom central panel of Fig. 50, high-
lights the similarity with the F = 0.0 run; in this case, the circumbinary spiral
is less massive and slightly more compact.

Interestingly, in both RunA and RunB, there is the tendency to form more co-
rotating than counter-rotating structures. This can be clearly seen in panels
A0.5-i and B0.5-i of Fig. 49, where the particles tend to cluster below 90
degrees in inclination even though half of the events come from the southern
hemisphere. This occurs simply because resonances with the MBHB orbital
motion efficiently transfer angular momentum to co-rotating gas, which can
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Figure 51: Same as Fig. 49 but for the mini-disc of MBH1 in the F = 0.0,
F = 0.5 and F = 1.0 cases (left to right), for RunA (top 3× 4 grid)
and RunB (bottom grid). Each panel is labelled as in Fig. 49, note
the log-scale in the top rows showing the total mass in the mini-
discs, Mgas.
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Figure 52: Snapshot of the last stage of RunA F = 0.0 (shown in Fig. 51, first
column of the top grid). The top and bottom panels show the x− y
and x− z views respectively.
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Simulation Distribution MMD1[106M�] MMD2[106M�]

RunA
F = 0.0 3.58× 10−5 3.39× 10−5

F = 0.5 6.64× 10−6 6.82× 10−6

F = 1.0 1.17× 10−6 9.93× 10−7

RunB
F = 0.0 1.08× 10−5 1.07× 10−5

F = 0.5 4.84× 10−6 5.15× 10−6

F = 1.0 4.15× 10−6 4.32× 10−6

Table 3: Average mass of the mini-discs surrounding the MBHs in all our runs.

therefore settle into more extended and stable structures. An effect that is
absent for the counter-rotating material.

10.5.3 Mini-discs

It is also interesting to study the dynamics of gaseous structures inside the
MBHB corotation radius, which are generally directly responsible for the bi-
nary feeding and the associated high energy electromagnetic radiation. In the
standard picture of a steady circumbinary disc, the forcing imposed by the
binary quadrupolar potential induces gas streams that feed prominent mini-
discs around each MBH [D’Orazio et al., 2013a]. Conversely, in the counter-
rotating case, the absence of Lindblad resonances allows gas at the edge of
a putative circumbinary disc to impact directly onto the binary. Since the
MBH and the gas have opposite directions, |~v BH − ~vg| ≈ 2vBH; this means
that the capture cross section of the gas is very small, and only gas inside the
sink radius becomes bound to the MBH being promptly accreted. In practice,
mini-discs extending beyond rsink are unlikely to form in this case.

Similarly to §10.5.2, we now select all particles inside either of the MBH
Roche Lobes, defined as circles around each MBH with radius

RRL =
0.49 q2/3

0.6 q2/3 + log
(
1 + q1/3

) a (64)

[Eggleton, 1983], where q is the binary mass ratio, which we assume to be
unity throughout all of our simulations. We then use 3-D positions and veloc-
ities to compute their Keplerian orbit around the closest MBH. We define the
mini-disc around each MBH as the collection of gas particles on orbits that:

• are bound to that MBH;

• have a pericentre larger than the sink radius, i.e.: a(1− e) > rsink = 0.1
(equivalent to 0.02pc for our fiducial system);

• have an apocentre smaller than the Roche Lobe size, i.e.: a(1 + e) <
RRL.

The evolution of the mini-disc around MBH1 in each run is summarised
in Fig. 51. There we show the time evolution of the mini-disc total mass
(top row), and the distribution of inclination (second row), semimajor axis
(third raw) and eccentricity (bottom row) of the particles belonging to it, con-
structed as detailed in §10.5.2. The first thing we notice is that, due to the
complex dynamics triggered by the infall of incoherent gas clouds, mini-discs
are far from being well defined, stable structures in our simulations. How-
ever, some general features of relaxed ‘steady state simulations’ are preserved.

113



In particular, we see that the prominence and persistence of mini-discs is a
strong function of F. This is also supported by numbers reported in Table 3,
demonstrating that the average mass in the mini-discs is much higher in the
F = 0.0 runs. Note that this is particularly true for RunA: here the frequent
supply of fresh clouds has the effect of feeding the mini-discs in the F = 0.0
case, whereas increases the chance of disrupting them quickly in the less co-
herent F = 0.5 or in the counter-rotating F = 1.0 cases. In RunB, clouds are
supplied at a lower rate, leaving more time for the gas in the mini-discs to
be accreted. This mostly affects the F = 0.0 run, in which we see a smaller
amount of mass accumulating in the mini-discs on average.

In general Fig. 51 show that mini-discs are more massive and persistent in
the F = 0.0 runs (left column). Note that both in RunA and RunB there is a
significant scatter in the particle inclination distribution. This is because par-
ticles partially preserve memory of the inclination of their parent cloud and
tend to form mini-discs aligned with their incoming orbital angular momen-
tum. In the long run, however, the MBHB potential torques the disks causing
a partial alignment with its orbital angular momentum (effect visible both in
panels A0.0-i and B0.0-i). An example of such persistent mini-discs forming in
the co-rotating case is shown in Fig. 52, displaying the last snapshot of RunA
F = 0.0.

As expected, mini-discs becomes much more intermittent as F increases.
This is essentially because mini-disc formation is a more natural outcome in
the interaction with co-rotating clouds. In fact, we can see that in the F = 0.5
case (central column) the formation of structures with i < 90o is strongly
preferred ( panels A0.5-i and B0.5-i). In the extreme F = 1.0 case, mini-discs
are very intermittent and, contrary to the circumbinary structures, often show
a significant fraction of co-rotating material (i.e. with i < 90o, see panel
B1.0-i). The shrinking of the binary as the simulations advance, is clearly
noticeable in the a and e panels of all the F = 0.5 and F = 1.0 simulations. In
fact, as the two MBHs get closer to each other, their Roche Lobes contract and
the size of the mini-discs that they can accommodate shrink accordingly.

Finally, we note that the study of mini-discs is a delicate matter in this kind
of simulations, due to the relatively large sink radius and to the inherent small
size of these structures which makes their resolution difficult. In fact, even the
most prominent mini-discs in the F = 0.0 simulations have an average mass
of about 10−5, which means that in the 50k simulations they are resolved with
about 50 particles. We therefore checked convergence of our results by com-
paring mini-discs at 50k and 500k resolutions finding essentially no difference
neither in the intermittent behaviour nor in the average masses, indicating
that our results are robust. Likewise, we tested that shrinking the sink radius
by a factor of two does not appreciably affect the mini-discs evolution.

10.5.4 ‘Forked’ simulations: stopping the supply of clouds

The variability of a system being constantly affected by multiple chaotic accre-
tion events has clearly emerged in the previous sections, where we showed the
continuous formation and disruption of structures as new clouds were added
to the system. An interesting question is what happens when the supply of
new clouds ceases and the system is allowed to relax. To answer this question,
we took two snapshots from all the RunA simulations at the moment when the
5th and the 10th clouds were added to the system and ‘forked’ them, thus
starting two parallel series of runs in which no further clouds were added,
allowing the system to evolve unperturbed. We show in this section results
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Figure 53: Same as Fig. 49 but for the set of ‘forked’ simulations. The F = 0.0,
F = 0.5 and F = 1.0 distributions are shown from left to right. The
vertical grey stripes in the first row mark the time of arrival of the
5th cloud. No further cloud is included into the system.
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Figure 55: Visualisation of the last snapshot of the “forked” simulations. F =
0.0, F = 0.5 and F = 1.0 runs are shown left to right. The top and
bottom row display x− y and x− z views of the system.

from simulations forked after the 5th clouds, the outcome of the ones forked
after the 10th cloud are qualitatively very similar.

To illustrate the evolution of the system, we perform the same analysis de-
scribed in §10.5.2 and build 2-D density plots to study the main properties of
the particles forming both the circumbinary disc, and the mini-discs around
each MBH. Those are shown in Fig. 53 and 54 respectively. We now dis-
cuss the main long term features of the F = 0.0, F = 1.0 and F = 0.5 run
separately.

In the left column of Fig. 53 we can see that in the F = 0.0 run, after
the infall of the 5th cloud, the remaining material from the other disrupted
clouds falls back forming a prominent circumbinary disc around the MBHB
(panel 0.0-m). The disc is relatively thin, with an inclination of about 10o

with respect to the binary orbital plane (panel 0.0-i), and it most of the mass
is concentrated at a distance 2 ≤ a ≤ 5 from the binary centre of mass, with a
broad range of eccentricities 0.1 < e < 0.7 (panels 0.0-a and 0.0-e). The left
column of Fig. 54 allow us to confirm the long term stability of the mini-discs,
which is almost aligned with the MBHB orbital plane.

The circumbinary disc in the F = 1.0 simulation (right column) displays a
very similar behaviour. Disrupted cloud material falling back on orbits with
comparable inclinations, interact with each other leading to the formation of
a relatively massive circumbinary disc (panel 1.0-m). From panel 1.0-i, we
note that, due to the high initial inclination and to the fact that Ld � LB, the
disc tends to counter-align with the MBHB [King et al., 2005]. By the end
of the simulation, an almost perfectly counter-rotating circumbinary disc has
formed, with i ≈ 170o. The circumbinary disc is much better defined than
in the F = 0.0 case; particles are mostly confined confined within a ≤ 2.5
(panel 1.0-a) and have lower eccentricities e < 0.3 (panel 1.0-e). The right
column of Fig. 54 shows that mini-discs are much lighter, intermittent, and
tend to be consumed with time. Note the increase in the mini-disc mass
around T = 35P0 (panel 1.0-m), in correspondence of the decrease in the
circumbinary disc mass. This is due to a stream of gas partially disrupting the
circumbinary structure and feeding gas to the central MBHB.

The F = 0.5 simulation does not seem to converge towards a specific re-
laxed state. The very diverse orbits of infalling clouds prevent the stream
to efficiently interact, dissipate angular momentum and circularise into any
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specific circumbinary structure. In fact, the mass in a putative ‘circumbinary
disc’ does not grow in time (panel 0.5-m) and streams at different inclinations
are clearly recognisable until the end of the simulation (panel 0.5-i). Fig. 54
shows that mini-discs are not very prominent, and also tend to be consumed
with time.

A summary of the overall structures formed by the end of these “forked”
simulations is displayed on Fig. 55. The x − y and x − z views highlight
the thin circumbinary discs forming in both the F = 0.0 and F = 1.0 runs,
along with the well defined mini-discs in the former case. Conversely, in the
F = 0.5 case, no coherent structure is recognisable, and at least four distinct
streams originating from different clouds are clearly visible. The aftermath
of an epoch of incoherent accretion events is therefore strongly dependent
on the properties of the infalling clouds. In general, ordered circumbinary
structures persist only if the sum of all infalling material has a substantial net
angular momentum (either co- or counter-aligned with the MBHB).

10.6 D I S C U S S I O N A N D F U T U R E W O R K

In this work we have used detailed SPH simulations performed with a mod-
ified version of the code GADGET-3 to study the interaction with a circular,
equal mass MBHB with a series of infalling clouds in very eccentric orbits.
We performed six main runs, considering two distributions of cloud pericen-
tre distances and arrival times (defining RunA and RunB), and three distribu-
tion of angular momenta with different degree of anisotropy that we labelled
F = 0.0 (co-rotating clouds), F = 0.5 (isotropically distributed clouds) and
F = 1.0 (counter-rotating clouds). The goal is to study the dynamics of the
MBHB-gas interaction when the binary is supplied with gas in incoherent
discrete ‘pockets’, which might be a typical situation in the turbulent environ-
ment of high redshift, gas-rich galaxies [e.g. Prieto et al., 2017] and merger
remnants [e.g. Perret et al., 2014] , relevant to the early build-up of MBHs
[see Volonteri, 2010, for a review] and to future low frequency gravitational
wave observations with LISA [Amaro-Seoane et al., 2017]. The main focus of
this chapter was on the formation and evolution of bound gaseous structures,
in a complementary paper (Goicovic et al. [2018]) to this chapter, we will
turn our attention on the evolution of the MBHB.

Our main findings are summarised in the following points.
Post interaction gas distribution. In general, the density profile distribution

of the gas post-interaction with the MBHB follows a ρgas ∝ r−2 distribution.
This is expected since the speed of sound of the gas is just few km s−1, im-
plying a large Bondi radius of the MBHB, extending beyond the bulk of the
extended gas. Compression of the clouds at pericentre also causes the forma-
tion of several, extremely dense self-gravitating clumps that can be favourable
sites for in-situ star formation. In this work, we stopped gravitational collapse
of the clumps by imposing an adiabatic behaviour of gas region above a criti-
cal gas density.

Circumbinary structures. Many theoretical and numerical studies of MBHB
evolution in gaseous environments rely on the presence of a relatively stable,
extended circumbinary disc that can efficiently extract energy and angular
momentum from the binary [e.g. MacFadyen and Milosavljević, 2008, Cuadra
et al., 2009, Roedig et al., 2011, Kocsis et al., 2012, Tang et al., 2017]. How-
ever, the route to the formation of such stable, extended disc has hardly been
investigated. Our simulations show that, when the gas is fed to the binary
in incoherent pockets, it is hard to form a massive circumbinary structure.
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Adding more clouds to the system is a two-edged blade: on the one hand,
new clouds supply fresh material that can add-up to the mass budget of the
disc; on the other hand, clouds intersecting at high inclinations with a pre-
existent disc can cause its partial disruption. Even in the co-rotating simula-
tions (F = 0.0), after the addition of 20 clouds, injecting in the system a gas
mass equal to 20% of the MBHB mass, the circumbinary disc mass does not
exceed a mere 1% of the binary mass (≈ 104 solar masses for our fiducial sys-
tem). Extrapolating from Goicovic et al. [2016], the naive expectation would
be that about 50% of the injected mass ends up in a circumbinary structure
(≈ 105 solar masses for our fiducial system). More isotropic and counter-
rotating cloud distributions (F = 0.5 and F = 1.0) result in even lighter and
more transient circumbinary discs.

Counter-rotating rings. The interaction with counter-rotating gas clouds
result in the formation of compact counter-rotating rings. Due to the ab-
sence of Lindblad resonances for co-rotating orbits, the inner edge of the
ring has about the size of the MBHB orbit and is not sustained by its forcing
quadrupolar potential, resulting in an extremely unstable structure. The net
consequence is that interaction with clouds on small impact parameters eas-
ily disrupt those rings, triggering copious accretion on the MBHB. Therefore,
building-up extended counter-rotating structures is virtually impossible in our
scenario, since it would require a much more gentle supply of material with
larger angular momentum, within a relatively small range of inclinations.

Mini-discs formation. As expected from previous studies [Goicovic et al.,
2016], a co-rotating cloud distribution (F = 0.0) results in the formation of
prominent mini-discs. Although those mini-discs can also be significantly af-
fected by the infall of new clouds, they are usually able to maintain certain
stability, and they re-build quite efficiently following disruption from particu-
larly aggressive cloud interactions. There is a notable tendency of the mini-
discs to align after a few orbital periods (see, Fig. 51). mini-discs are much
less prominent in the F = 0.5 and F = 1.0 runs. Because of the higher rela-
tive velocity between the gas particles and the MBHs, the cross section of gas
capture within the MBH Roche Lobe is often smaller than the sink radius. It is
possible that mini-discs form also in those cases, but on much smaller scales,
that cannot be resolved by our current set-up.

Post interaction relaxation. When the supply of gas clouds ceases, the sys-
tem tends to relax into a configuration that depends on the overall angular
momentum distribution of the gas. This was investigated in our “forked” sim-
ulations, in which we limited the supply of gas to the 5th cloud. The stopping
of cloud infall avoid further disruption of the circumbinary structures, that
grow their mass in time, approaching a stable configuration. After about 20P0
from the infall of the last cloud, a prominent co-rotating circumbinary disc
forms in the F = 0.0 case, whereas a well defined compact thin ring forms in
the F = 1.0 case. The mass in these structures is about 10% of the total mass
content of the supplied clouds. Post-infall relaxation does not lead to any well
defined structure in the isotropic case F = 0.5, and several incoherent streams
are still present at the end of the simulation. We speculate that in the long
term, interaction within the stream will result in a relatively homogeneous,
tenuous gas envelope.

Accretion onto the MBHB. A consequence of the violent interaction between
different clouds and the continuous disruption of circumbinary structure is
the triggering of the infall of enormous amount of gas onto the MBHs. This
has been sees in larger scale simulations of MBH fuelling [Hobbs et al., 2011,
Carmona-Loaiza et al., 2015], and in simulations of accretion onto a MBHB
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due to ‘disk tearing’ [Doğan et al., 2015]; the interaction of gas streams com-
ing from different direction cause efficient cancellation of their respective an-
gular momenta, resulting in efficient infall onto the binary. In the test runs
presented here, we showed that the associated accretion rate can be as high
as ≈ 100ṀEdd, when scaled to our fiducial system. This has a strong effect on
the dynamics of the binary, which we investigate in detail in a complementary
paper (Goicovic et al. [2018]) to this chapter.

Most importantly, our results show that the effect of multiple cloud interac-
tions with a MBHB, does not sum-up to the effect of the single clouds taken
individually. Cloud-cloud interactions have a fundamental role in shaping the
gaseous structures forming around the binary, promoting continuous forma-
tion and disruption of circumbinary discs or ring and triggering episodes of
enhanced accretion onto the MBHB. In general, we found that it is difficult
to grow extended, massive circumbinary structures. This means that the evo-
lution of the MBHB in this incoherent-feeding scenario is driven mostly by
direct gas capture and accretion rather than resonant torques exerted by a
circumbinary disc, as we explore in Goicovic et al. [2018]. Our simulations
are the first to explore in detail this incoherent MBHB feeding scenario. We
focused on some specific aspects of the system evolution, but there is a num-
ber of different properties of the systems that can be further investigated. For
example, the distribution of dense clumps can be used to simulate star cluster
formation in the vicinity of the binary and to study their further interaction
with the binary. Likewise, the final state of the system can be evolved for
longer time to better assess the stability and fate of the gaseous structures on
longer timescales. Due to computational constraints, we could follow “forked”
simulations only for 20-25P0, corresponding to only 0.2 Myr for our fiducial
system. Finally, we remark that we implemented an extremely simplified hy-
drodynamic scheme, featuring an effective isothermal/adiabatic equation of
state and ignoring any feedback from accretion onto the MBHB. Eventually,
our result should be tested against enhanced simulations including realistic
cooling prescription capturing disc fragmentation, together with a scheme
tracing accretion feedback on the surrounding gas.

10.7 C O M P L E M E N TA RY M AT E R I A L

10.7.1 Generating the clouds’ initial conditions from the angular momentum
vector

The initial angular momentum vector of each cloud orbit is determined by
sampling the orientation and the pericentre distance. However, the orbit of
each cloud is not fully determined, as a Keplerian trajectory is defined by a
total of 6 parameters. Having (θ`, φ`, rp), together with the initial distance
and speed of the cloud, leaves one degree of freedom, which basically means
that we can choose the initial position to be oriented in any direction as long
as it lies on the plane defined by the unitary vector

ˆ̀ = (cos φ` sin θ`, sin φ` sin θ`, cos θ`), (65)

where θ` and φ` are the polar and azimuthal angles of the angular momentum
direction, respectively.

The initial position and velocity vectors are generated by first obtaining an
arbitrary unitary vector ê lying on the aforementioned plane by taking the
cross product with the x-axis

ê = ˆ̀ × x̂. (66)
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Figure 56: Same as Fig. 49 for RunC.

Then we rotate this vector by a random angle β, drawn uniformly between 0
and 2π, using the expression

r′ = ê cos β + ( ˆ̀ × ê) sin β. (67)

This ensures that there is no preferential direction of incoming gas.
On the other hand, the velocity vector also lies on the plane defined by the

angular momentum ( ˆ̀), but is rotated by an angle θvel with respect to the
position vector, and therefore it can be obtained using a similar expression

v′ = ê cos(β− θvel) + ( ˆ̀ × ê) sin(β− θvel), (68)

where β has the same value as used in eq. (67). The angle θvel is directly
related to the pericentre distance as follows

θvel = arcsin
(

vp

vini

rp

dini

)
, (69)

where dini = 15a0 is the initial distance to the binary centre of mass, vini =
0.25
√

GM0/a0 is the initial velocity and vp is the velocity at periapsis.
Finally, we normalise these vectors to the initial distance and velocity,

r =
dini

‖r′‖ r′, (70)

v = − vini

‖v′‖v′, (71)

which yields the orbit defined by the sampled angular momentum vector. The
initial position and velocity vectors of each cloud are displayed in Table 4,
listed here so that the results can be reproduced by future studies.

10.7.2 Supplementary suite of simulations (RunC)

We show here some results for the extra suite of simulations (RunC) combining
the cloud angular momentum distribution and pericentre distances of RunA
(see Fig. 42 and 41) with the cloud time of arrivals of RunB (see Table 2). Due
to limiting computing power, only 16 10 and 5 clouds arrived onto the binary
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RunA RunB
Distribution Cloud ~r [a0] ~v [v0] ~r [a0] ~v [v0]

F = 0.0

01 14.63 1.24 3.04 -0.22 0.09 -0.04 1.68 10.45 -10.63 -0.05 -0.23 0.09
02 -10.06 -5.58 -9.62 0.21 -0.01 0.15 -11.00 -7.22 -7.21 0.22 0.10 0.05
03 -12.28 6.96 -5.08 0.12 -0.14 0.17 -0.38 6.18 -13.66 -0.02 -0.17 0.18
04 -4.13 -10.12 10.28 0.06 0.09 -0.22 -10.65 -5.85 -8.80 0.21 0.10 0.09
05 12.21 7.61 -4.25 -0.22 -0.08 0.07 -13.12 7.25 0.43 0.19 -0.16 0.01
06 1.54 -7.94 12.63 0.05 0.21 -0.12 -12.88 -0.82 -7.65 0.22 -0.08 0.09
07 6.10 6.20 -12.22 -0.04 0.00 0.25 -4.80 11.49 8.36 -0.03 -0.15 -0.20
08 11.08 3.20 9.60 -0.19 0.00 -0.15 6.41 12.84 -4.38 -0.11 -0.22 0.06
09 10.63 -10.37 -2.10 -0.16 0.19 -0.04 -13.07 -0.03 -7.35 0.18 -0.11 0.14
10 13.52 4.21 -4.93 -0.22 -0.02 0.12 12.04 8.12 -3.75 -0.24 -0.03 0.05
11 10.23 10.79 1.97 -0.21 -0.09 -0.07 -5.79 -9.17 -10.36 0.13 0.20 0.08
12 -1.35 11.93 -8.99 -0.07 -0.23 0.07 -0.85 -14.98 -0.06 0.01 0.22 -0.11
13 -2.67 -6.03 -13.47 0.14 0.10 0.19 8.24 -5.29 11.36 -0.11 0.11 -0.20
14 8.18 -1.46 -12.49 -0.09 0.05 0.23 -10.31 -8.45 6.88 0.20 0.15 -0.05
15 4.68 5.60 13.11 -0.09 0.01 -0.22 6.82 3.50 -12.90 -0.16 -0.03 0.19
16 — — — — — — -9.59 -10.59 4.56 0.17 0.18 -0.04
17 — — — — — — -4.74 -12.65 6.52 0.15 0.20 -0.04
18 — — — — — — -13.91 4.85 2.84 0.20 -0.13 -0.09
19 — — — — — — 14.41 -3.42 2.38 -0.19 0.05 -0.16
20 — — — — — — -12.34 -8.50 0.73 0.13 0.21 0.02

F = 0.5

01 14.63 1.24 3.04 -0.22 0.09 -0.04 1.68 10.45 -10.63 -0.05 -0.23 0.09
02 -10.06 10.81 2.62 0.21 -0.09 -0.10 -11.00 0.12 -10.20 0.22 0.04 0.11
03 -12.28 6.96 -5.08 0.12 -0.14 0.17 -0.38 -8.35 -12.46 -0.02 0.07 0.24
04 -4.13 -14.40 -0.76 0.06 0.23 -0.08 -10.65 -1.93 -10.39 0.21 0.06 0.12
05 12.21 -8.52 -1.82 -0.22 0.11 0.02 -13.12 -4.87 -5.39 0.19 0.12 0.10
06 1.54 -7.94 12.63 0.05 0.21 -0.12 -12.88 -0.82 -7.65 0.22 -0.08 0.09
07 6.10 11.37 -7.64 -0.04 -0.12 0.22 -4.80 11.49 8.36 -0.03 -0.15 -0.20
08 11.08 3.20 9.60 -0.19 0.00 -0.15 6.41 12.84 -4.38 -0.11 -0.22 0.06
09 10.63 -9.54 4.59 -0.16 0.12 -0.14 -13.07 -5.28 5.12 0.18 0.18 -0.02
10 13.52 4.21 -4.93 -0.22 -0.02 0.12 12.04 8.12 -3.75 -0.24 -0.03 0.05
11 10.23 10.79 1.97 -0.21 -0.09 -0.07 -5.79 -7.62 -11.55 0.13 0.18 0.11
12 -1.35 -13.21 -6.97 -0.07 0.16 0.19 -0.85 -14.98 -0.06 0.01 0.22 -0.11
13 -2.67 5.47 -13.71 0.14 -0.06 0.21 8.24 -5.29 11.36 -0.11 0.11 -0.20
14 8.18 6.74 -10.61 -0.09 -0.10 0.21 -10.31 -5.12 9.61 0.20 0.11 -0.10
15 4.68 5.60 13.11 -0.09 0.01 -0.22 6.82 3.50 -12.90 -0.16 -0.03 0.19
16 -1.93 -13.95 5.17 0.11 0.17 -0.15 -9.59 -10.59 4.56 0.17 0.18 -0.04
17 12.22 -6.54 -5.73 -0.22 0.12 -0.02 -4.74 -12.65 6.52 0.15 0.20 -0.04
18 0.21 7.90 -12.75 0.03 -0.02 0.25 -13.91 -4.08 3.86 0.20 0.12 -0.10
19 2.26 -5.10 13.92 -0.03 0.04 -0.24 14.41 -3.28 2.56 -0.19 0.04 -0.16
20 6.53 -8.72 -10.31 -0.15 0.09 0.18 -12.34 7.32 -4.38 0.13 -0.20 0.07
21 13.38 0.58 6.75 -0.24 -0.01 -0.05 — — — — — —
22 -10.89 -3.93 -9.53 0.17 -0.04 0.19 — — — — — —

F = 1.0

01 14.63 -1.46 -2.94 -0.22 -0.08 0.06 1.68 1.55 -14.83 -0.05 -0.12 0.21
02 -10.06 10.81 2.62 0.21 -0.09 -0.10 -11.00 0.12 -10.20 0.22 0.04 0.11
03 -12.28 -2.25 -8.31 0.12 0.10 0.20 -0.38 -8.35 -12.46 -0.02 0.07 0.24
04 -4.13 -14.40 -0.76 0.06 0.23 -0.08 -10.65 -1.93 -10.39 0.21 0.06 0.12
05 12.21 -8.52 -1.82 -0.22 0.11 0.02 -13.12 -4.87 -5.39 0.19 0.12 0.10
06 1.54 11.66 9.31 0.05 -0.10 -0.21 -12.88 6.29 4.43 0.22 -0.01 -0.12
07 6.10 11.37 -7.64 -0.04 -0.12 0.22 -4.80 -7.31 12.19 -0.03 0.18 -0.17
08 11.08 -6.62 -7.64 -0.19 0.06 0.15 6.41 1.77 -13.45 -0.11 -0.04 0.22
09 10.63 -9.54 4.59 -0.16 0.12 -0.14 -13.07 -5.28 5.12 0.18 0.18 -0.02
10 13.52 3.18 5.66 -0.22 -0.09 -0.06 12.04 -8.91 0.81 -0.24 0.05 -0.04
11 10.23 -8.59 -6.82 -0.21 0.05 0.12 -5.79 -7.62 -11.55 0.13 0.18 0.11
12 -1.35 -13.21 -6.97 -0.07 0.16 0.19 -0.85 -13.70 -6.04 0.01 0.25 -0.01
13 — — — — — — 8.24 10.96 6.07 -0.11 -0.19 -0.13
14 — — — — — — -10.31 -5.12 9.61 0.20 0.11 -0.10
15 — — — — — — 6.82 -7.47 -11.08 -0.16 0.12 0.15
16 — — — — — — -9.59 -8.97 7.25 0.17 0.16 -0.09
17 — — — — — — -4.74 8.48 11.43 0.15 -0.07 -0.19
18 — — — — — — -13.91 -4.08 3.86 0.20 0.12 -0.10
19 — — — — — — 14.41 -3.28 2.56 -0.19 0.04 -0.16
20 — — — — — — -12.34 -8.50 0.73 0.13 0.21 0.02

Table 4: Initial 3-D position and velocity (x, y, z components) of the centre of
mass of each cloud for RunA and RunB.
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Figure 57: Same as Fig. 51 for RunC.

in run F = 0.0, F = 0.5 and F = 1.0 respectively. And main properties of the
gas structures forming along the simulations are shown in Fig. 56 and 57.

The overall behaviour of simulations is quite similar to what shown in
Fig. 49 and 51 for RunA. Indicating, not surprisingly, that the distribution
of the cloud parameters, rather than their times of arrival, leaves a strong
imprint on the forming gas structures. The F = 0.0 case (left column in
both figures) initially builds up a prominent, co-rotating circumbinary struc-
ture confined to i < 30o and a < 3 (Fig. 56), which is partially destroyed by
clouds incoming at T ≈ 50P0. A similar behaviour is seen in the mini-discs
evolution (Fig. 57). Note, however that the mini-disc inclination shows much
larger fluctuations often reaching values larger than 45o. Mass accumulation
in circumbinary structures is much smaller in the F = 0.5 and F = 1.0 cases
(central and right columns, respectively), and mini-discs are much lighter and
intermittent (especially in the F = 1.0 case), in line with the general finding
of RunA and RunB. Overall, this new suite of runs confirm the robustness of
the general features highlighted in the main body of the chapter.
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11
M A I N C O N C L U S I O N S

Most of the work of my PhD has been devoted to answering the question
about how do black hole binary systems form and evolve. I have addressed
(i) the dynamics of dense stellar systems with a direct-summation N−body
code which I have written from scratch. The developing and testing of the
code took a considerable amount of time of my PhD. It has proved to be a
robust integrator, yielding results very similar to other codes, in particular
to Sverre Aarseth’s well known NBODY, which he has developed for over 50
years. I have been able to investigate the impact of the softening on to the
global evolution of the whole cluster, and I have also included a treatment for
relativistic encounters, vital to simulate sources of GWs. Since the first version
of GRAVIDY was ready I have been exploring how to manage the formation
and evolution of binaries of stellar-mass black holes formed dynamically to-
gether with the evolution of globular clusters, this is part of current, on-going
work, which I will hopefully present in the near future as a follow-up of my
research.

On a very different regime of masses, I have studied (ii) binaries of su-
permassive black holes, such as the one depicted in the illustration of Fig. 58.
Because of the characteristics of the problem, in this case we need to take into
account another layer of complexity, the interaction with gas. It may seem a
trivial addition to the problem at first sight, but the truth is that by adding
gas dynamics to the vacuum problem, a plethora of -not quite but almost-
completely free parameters seems to be similar to opening Pandora’s box.

When I got involved in the research project of retrograde accretion discs
around binaries of SMBHs, I got more and more interested by the problem and
decided to investigate a maybe more fundamental issue: how do accretion
discs form around binaries of SMBHs, and do they form “clean” discs, as often
used in the literature, or may we expect other episodic architectures, and what
is the interplay between the binary itself and the disc, if any? Responding this
question turned out to be such a complex problem that I spent the remaining
of my available time with it, but the findings were very relevant.

In this final chapter I give an overview of the most inter-
esting findings of my work. This list is not exhaustive, because
each chapter has its own conclusions, more detailed and tech-
nical. In this chapter I relax the technical terms on purpose to
help gather a general impression rather than some particular
aspects.

11.1 F R O M S T E L L A R D Y N A M I C S . . .

As I have just explained, in chapter 8 I introduced a new direct-summation
N−body code, GRAVIDY. My code focuses on more familiar computational
environments, like a personal computer or a single cluster node. However,
I have significantly improved the serial performance using both Central Pro-
cessing Units (CPU) and Graphical Processing Units (GPU).
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Figure 58: Two supermassive black holes on their way to the final coalescence
can be tracked for up to years with a space-borne mission like LISA.
Credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

In this first release of GRAVIDY, I have presented a series of classical tests
of the code, as well as a study of the performance of its different “flavours”:
the single CPU, the MPI and the GPU versions. One important question I have
addressed is the role of the “softening” in the global evolution of a system,
as integrated with our code. This softening is a fixed value added to the
denominator in the calculation of the forces to make sure the code does not
diverge numerically when two stars in the system come too close to each other.
This is a very common practice in the field, but I wanted to understand what
does it mean to effectively “switch off” gravity below a determined threshold.
The dynamics is non-linear, and neither the impact of this assumption.

I find that the value of the softening is crucial in determin-
ing the global dynamics, and should not be taken lightly, in
particular if one is interested in studying physical phenomena
for which relaxation is important. Using a softening translates
into a maximum increase of the forces and the a smoothly dec-
lination to zero, which is approximate. To study a dynamical
process, such as e.g. the collision of two clusters, focusing on
the short-term (i.e. for times well below a relaxation time) dy-
namical behaviour of the system, using a softening should be
fine, but the role of the parameter should be assessed carefully
by exploring different values.

The development of my code continues, and it is been adopted by other
researchers who have approached me or simply downloaded the code from
the public web page. The on-going development of GRAVIDY includes a close
encounter solver, with a time-symmetric integration scheme to treat binaries,
such as the one presented in the work of Konstantinidis and Kokkotas [2010].
The next step of this project is to run detailed, dedicated simulations of glob-
ular clusters so as to investigate the features that compact binaries have, as a
way to understand both, sources of GWs and the formation and evolution of
dense stellar systems.

Another immediate goal is to include a central massive particle and the
required corrections to the gravitational forces so as to ensure a good conser-
vation of the energy in the system. This massive particle could be envisaged
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Figure 59: Four snapshots in the evolution of a counter-rotating system as pre-
sented in chapter 9. In this particular case, the secondary suffers a
sudden breaking which leads to a shrinkage of the semi-major axis
of the binary. For each snapshot, I also show a zoom in of the area
of interest.

as a massive black hole in a galactic centre (or a star in a protoplanetary sys-
tem). I also plan on bridging the gap between spherical nucleus models that
focus on collisional effects and simulations of larger structure that are able to
account for complex, more realistic non-spherical geometry. Finally, a future
goal is to include stellar evolution routines, from which the modularity of our
code will provide an easy scenario. One of the candidate modules for this
could be SEVN [Spera et al., 2015].

11.2 . . . T O R E T R O G R A D E A C C R E T I O N D I S C S . . .

When I was developing and testing the dynamics code I got interested by the
general problem of how binaries of massive black holes assemble in galaxies
and, in particular, by the role of gas. I got involved in a research project about
the effect of circumbinary discs on the black hole binary evolution, from two
circumstances regarding the rotation, a co-rotating and a counter-rotating
scenario. The results are presented on chapter 9. For this project, my collabo-
rators and I used two very different hydrodynamical codes. One of them is a
two-dimensional code (Fargo), and a three-dimensional N−body/SPH code
(Gadget). We modified the codes to include different accretion prescriptions
so as to study a possible dependence with the overall evolution of the system.
For the reasons mentioned in the introduction, we focus on an unequal mass
binary to analyse the effects of the secondary black hole revolving in opposite
direction to the gas. The secondary MBH plays a crucial role on the braking
torque that is exerted on the binary. In Fig. 59 I depict an example of the work
we did with Fargo.
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The 2D models are fast and easy to integrate, but needed to be compared
to 3D cases. We observed a very good comparison between the two, which
allowed us to validate the 2D code.

Our study confirms a strong dependence on the accretion
prescription for the evolution of the binary of SMBHs. Overesti-
mating the accretion radius in the counter-rotating case leads
to a fast, spurious evolution of the binary. In the quasi-circular
case it is fine to assume that accretion only happens for bound
gas, but this approach breaks when we have eccentric systems,
and leads to wrong results. My description of accretion based
on bound gas inside the Roche Lobe, should be used for these
cases to ensure correct results.

11.3 . . . A N D T H E F O R M AT I O N O F G A S E O U S S T R U C T U R E S . . .

As I have explained in the introduction of this thesis, and in chapter 10, one
of the most interesting questions I tackled during the work that I presented
in chapter 9 was about the formation of these gaseous structures. It is of-
ten assumed that, in theory, gas should be distributed in the shape of a disc
around the binary of the two SMBHs, but I wondered whether other architec-
tures were also possible. Also, the episodic nature and life duration of these
structures was very important for me to address. The disc is crucial in the evo-
lution of the binary because of the interplay between the two, as presented in
chapter 10. If we want to study the evolution of the disc, we need to study
the evolution of the binary, and its impact on to the disc, and vice-versa.

If the disc is so important for the binary, and the binary for the disc, is it
correct to assume that we have both? The existence of binaries of SMBHs is
still a subject of debate, as explained in chapter 9 and 10, and my approach in
this regard was to assume that they do exist and inhabit the nuclei of galaxies.
But what about the discs? I felt that it is relevant and important, as well
as timely, to address this question, and I led an effort that got us important
results.

I organised and led the development of an important amount of smooth
particle hydrodynamical simulations to get a general idea of how these struc-
tures form. We investigated the possibility that gaseous discs should form
from many discrete, incoherent accretion events. The main focus is twofold,
because besides studying the formation, evolution and endurance of gaseous
structures around binaries of SMBHs, I also wanted to understand what the
impact on the evolution of the binary itself would be. In particular I was inter-
ested in knowing whether the semi-major axis would shrink in a short enough
time so as to ensure its observation via the detection of the emission of the
GWs.

I focused on different configurations, co-rotating, isotropic, and counter-
rotating infalls of the gaseous clouds in terms of the angular momentum di-
rection. Each case was complemented by a different distribution of pericentre
passage of each cloud, and a different arrival time. This numerical effort led
to interesting findings.

Circumbinary structures form in most of the cases. The for-
mation of a disc structure, however, is challenging and strongly
depends on the characteristics of the host galaxy and time in-
terval for cloud infall. Besides the extended disc, I find that
smaller, detached discs form around the individual SMBHs in
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Figure 60: A moment in the evolution of a binary of two SMBHs with a
gaseous structure forming around them upon the infall of various
clouds. We can see clumps of gas forming because of the squeez-
ing of gas around the binary. These gaseous lumps can be tidally
disrupted by the binary. This snapshot corresponds to RunA, F = 0,
as described in chapter 9.

the co-rotating scenarios only, with a tendency of discs align-
ment after a few orbital periods. In the case of counter-rotating
infalling clouds, we observe gaseous clumps forming as in Fig. 60,
which strongly interact with the binary and are tidally dis-
rupted. The interaction between the material of each cloud is
a key element on the global evolution of our systems, and can
not be described as the sum of single cloud infall events.

11.4 . . . T O S T U D Y B L A C K H O L E B I N A RY S Y S T E M S

In this PhD I have addressed the formation of black hole binary systems, for
two particular regimes: dense stellar systems, where we expect binaries to
form among stellar-mass black holes, and the nuclei of galaxies, where super-
massive black holes are very likely lurking.

The first part of this thesis is devoted to the presentation of a new direct-
summation N−body code which I have written totally from scratch, along
with a suit of very-well known tests in the community of stellar dynamics,
which the code successfully passed. The code is a Swiss army knife that can
be used to investigate many different problems, although the prime goal was
the formation of binaries of black holes. This is the reason why I included a
relativistic treatment for the evolution of orbits of black holes when they reach
relativistic speeds. My immediate future goal is to start doing realistic simu-
lations of clusters to follow the formation and evolution of such binaries, as a
way to understand what the orbital parameters of black holes are when they
are on their way to coalesce. The code is public and it has been downloaded
by many people which have contacted me to get involved in their research.

The second part deals with massive black holes and accretion discs. In
particular, I was interested in understanding the interplay between such mas-
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sive binaries and the gas which might be surrounding it. The first important
aspect I investigated was the assumption made by many different groups as
regards the amount of gas accreted by counter-rotating binaries of massive
black holes, and I have shown that the way gas is usually assumed to be ac-
creted leads to wrong results. In my study I derive a prescription that should
be adopted for a correct evolution of the system.

As I am interested in understanding the very fundamental questions in
which we base our progress for the problem of binaries, I questioned the
formation of disc-like structures around these binaries of massive black holes,
and the evolution of the binary itself in a more realistic scenario, such as galac-
tic centres. What I found is that the formation of disc-like structures around
the binary seems to be a particular, episodic event in a much more complex
situation. Various structures form, and they have different impacts on to the
evolution of the binary itself.

I envisage the research I present in this PhD as not complete and just a first
step towards the understanding of how binaries of stellar-mass- or supermas-
sive black holes form. Luckily, we live a very vibrant time in this field, which
will lead to the answers of many questions and, undoubtedly, to many more
new questions.
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S. Doğan, C. Nixon, A. King, and D. J. Price. Tearing up a misaligned accretion
disc with a binary companion. MNRAS, 449:1251–1258, May 2015. doi:
10.1093/mnras/stv347.

A. Dressler and D. O. Richstone. Stellar dynamics in the nuclei of M31 and
M32 - Evidence for massive black holes? ApJ, 324:701–713, January 1988.
doi: 10.1086/165930.

C. MAUREIRA-FREDES 136

http://stacks.iop.org/0004-637X/811/i=1/a=59
http://stacks.iop.org/0004-637X/811/i=1/a=59


BLACK HOLE BINARY SYSTEMS: FROM DYNAMICS TO ACCRETION

A. C. Dunhill, R. D. Alexander, C. J. Nixon, and A. R. King. Misaligned ac-
cretion on to supermassive black hole binaries. MNRAS, 445:2285–2296,
December 2014. doi: 10.1093/mnras/stu1914.

P. P. Eggleton. Approximations to the radii of Roche lobes. ApJ, 268:368, May
1983. doi: 10.1086/160960.

M. Eracleous, T. A. Boroson, J. P. Halpern, and J. Liu. A Large Systematic
Search for Close Supermassive Binary and Rapidly Recoiling Black Holes.
201:23, August 2012. doi: 10.1088/0067-0049/201/2/23.

A. Escala, R. B. Larson, P. S. Coppi, and D. Mardones. The Role of Gas in the
Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging
in a Spherical Gas Cloud. apj, 607:765–777, June 2004. doi: 10.1086/
386278.

A. Escala, R. B. Larson, P. S. Coppi, and D. Mardones. The Role of Gas in the
Merging of Massive Black Holes in Galactic Nuclei. II. Black Hole Merging
in a Nuclear Gas Disk. ApJ, 630:152–166, September 2005. doi: 10.1086/
431747.

B. D. Farris, Y. T. Liu, and S. L. Shapiro. Binary black hole mergers in gaseous
disks: Simulations in general relativity. Ph.Rv. D, 84(2):024024, July 2011.
doi: 10.1103/PhysRevD.84.024024.

B. D. Farris, P. Duffell, A. I. MacFadyen, and Z. Haiman. Binary Black Hole Ac-
cretion from a Circumbinary Disk: Gas Dynamics inside the Central Cavity.
ApJ, 783:134, March 2014. doi: 10.1088/0004-637X/783/2/134.

L. Ferrarese and D. Merritt. A Fundamental Relation between Supermassive
Black Holes and Their Host Galaxies. ApJ Lett., 539:L9–L12, August 2000.
doi: 10.1086/312838.

D. Fiacconi, L. Mayer, R. Roškar, and M. Colpi. Massive Black Hole Pairs
in Clumpy, Self-gravitating Circumnuclear Disks: Stochastic Orbital Decay.
ApJ Lett., 777:L14, November 2013. doi: 10.1088/2041-8205/777/1/L14.

J. Frank and M. J. Rees. Effects of massive central black holes on dense stellar
systems. mnras, 176:633–647, September 1976. doi: 10.1093/mnras/176.
3.633.

T. Fukushige, J. Makino, and A. Kawai. GRAPE-6A: A Single-Card GRAPE-6
for Parallel PC-GRAPE Cluster Systems. PASJ, 57:1009–1021, December
2005.

E. Gaburov, S. Harfst, and S. P. Zwart. SAPPORO: A way to turn your graphics
cards into a GRAPE-6. New Astronomy, 14:630–637, October 2009. doi:
10.1016/j.newast.2009.03.002.

E. Gallego-Cano, R. Schödel, H. Dong, F. Nogueras-Lara, A. T. Gallego-
Calvente, P. Amaro-Seoane, and H. Baumgardt. The distribution of stars
around the Milky Way’s central black hole. I. Deep star counts. A&A, 609:
A26, January 2018. doi: 10.1051/0004-6361/201730451.

M. Gaspari, M. Ruszkowski, and S. P. Oh. Chaotic cold accretion on to black
holes. MNRAS, 432:3401–3422, July 2013. doi: 10.1093/mnras/stt692.

M. Gaspari, F. Brighenti, and P. Temi. Chaotic cold accretion on to black
holes in rotating atmospheres. A&A, 579:A62, July 2015. doi: 10.1051/
0004-6361/201526151.

137



M. Gaspari, P. Temi, and F. Brighenti. Raining on black holes and massive
galaxies: the top-down multiphase condensation model. MNRAS, 466:677–
704, April 2017. doi: 10.1093/mnras/stw3108.

K. Gebhardt, D. Richstone, J. Kormendy, T. R. Lauer, E. A. Ajhar, R. Bender,
A. Dressler, S. M. Faber, C. Grillmair, J. Magorrian, and S. Tremaine. Ax-
isymmetric, Three-Integral Models of Galaxies: A Massive Black Hole in
NGC 3379. The Astronomical Journal, 119:1157–1171, March 2000. doi:
10.1086/301240.

R. Genzel and C. H. Townes. Physical conditions, dynamics, and mass dis-
tribution in the center of the Galaxy. ARA&A, 25:377–423, 1987. doi:
10.1146/annurev.aa.25.090187.002113.

R. Genzel, D. Hollenbach, and C. H. Townes. The nucleus of our Galaxy.
Reports on Progress in Physics, 57:417–479, May 1994. doi: 10.1088/
0034-4885/57/5/001.

R. Genzel, A. Eckart, T. Ott, and F. Eisenhauer. On the nature of the dark
mass in the centre of the Milky Way. MNRAS, 291:219–234, October 1997.
doi: 10.1093/mnras/291.1.219.

R. Genzel, C. Pichon, A. Eckart, O. E. Gerhard, and T. Ott. Stellar dynamics in
the Galactic Centre: proper motions and anisotropy. MNRAS, 317:348–374,
September 2000. doi: 10.1046/j.1365-8711.2000.03582.x.

R. Genzel, F. Eisenhauer, and S. Gillessen. The Galactic Center massive black
hole and nuclear star cluster. Reviews of Modern Physics, 82:3121–3195,
October 2010. doi: 10.1103/RevModPhys.82.3121.

A. M. Ghez, B. L. Klein, M. Morris, and E. E. Becklin. High Proper-Motion
Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black
Hole at the Center of Our Galaxy. ApJ, 509:678–686, December 1998. doi:
10.1086/306528.

A. M. Ghez, S. Salim, S. D. Hornstein, A. Tanner, J. R. Lu, M. Morris, E. E.
Becklin, and G. Duchêne. Stellar Orbits around the Galactic Center Black
Hole. ApJ, 620:744–757, February 2005. doi: 10.1086/427175.

M. Giersz and R. Spurzem. Comparing direct N-body integration with
anisotropic gaseous models of star clusters. MNRAS, 269:241, July 1994.

F. G. Goicovic, J. Cuadra, A. Sesana, F. Stasyszyn, P. Amaro-Seoane, and T. L.
Tanaka. Infalling clouds on to supermassive black hole binaries - I. Forma-
tion of discs, accretion and gas dynamics. MNRAS, 455:1989–2003, January
2016. doi: 10.1093/mnras/stv2470.

F. G. Goicovic, A. Sesana, J. Cuadra, and F. Stasyszyn. Infalling clouds on to
supermassive black hole binaries - II. Binary evolution and the final parsec
problem. MNRAS, 472:514–531, November 2017. doi: 10.1093/mnras/
stx1996.

F. G. Goicovic, C. Maureira-Fredes, A. Sesana, P. Amaro-Seoane, and
J. Cuadra. Accretion of clumpy cold gas onto massive black hole binaries:
a possible fast route to binary coalescence. ArXiv e-prints, January 2018.

P. Goldreich and S. Tremaine. Disk-satellite interactions. ApJ, 241:425–441,
October 1980. doi: 10.1086/158356.

C. MAUREIRA-FREDES 138



BLACK HOLE BINARY SYSTEMS: FROM DYNAMICS TO ACCRETION

J. A. González, U. Sperhake, B. Brügmann, M. Hannam, and S. Husa. Max-
imum Kick from Nonspinning Black-Hole Binary Inspiral. Physical Review
Letters, 98(9):091101, March 2007. doi: 10.1103/PhysRevLett.98.091101.

A. Gould and H.-W. Rix. Binary Black Hole Mergers from Planet-like Migra-
tions. ApJ Lett., 532:L29–L32, March 2000. doi: 10.1086/312562.

F. Governato, M. Colpi, and L. Maraschi. The fate of central black holes in
merging galaxies. MNRAS, 271, November 1994. doi: 10.1093/mnras/271.
2.317.

Leslie Greendard. The rapid evaluation of potential fields in particles systems.
PhD thesis, Yale University, New Haven, CT, 1987.

A. Gualandris and D. Merritt. Ejection of Supermassive Black Holes from
Galaxy Cores. ApJ, 678:780-797, May 2008. doi: 10.1086/586877.

A. Gualandris and D. Merritt. Long-term Evolution of Massive Black Hole
Binaries. IV. Mergers of Galaxies with Collisionally Relaxed Nuclei. ApJ,
744:74, January 2012. doi: 10.1088/0004-637X/744/1/74.

Z. Haiman, B. Kocsis, and K. Menou. The Population of Viscosity- and
Gravitational Wave-driven Supermassive Black Hole Binaries Among Lu-
minous Active Galactic Nuclei. ApJ, 700:1952–1969, August 2009. doi:
10.1088/0004-637X/700/2/1952.

T. Hamada and T. Iitaka. The Chamomile Scheme: An Optimized Algorithm
for N-body simulations on Programmable Graphics Processing Units. New
Astronomy, March 2007.

S. Harfst, A. Gualandris, D. Merritt, and S. Mikkola. A hybrid N-body code in-
corporating algorithmic regularization and post-Newtonian forces. MNRAS,
389:2–12, September 2008. doi: 10.1111/j.1365-2966.2008.13557.x.

N. Häring and H.-W. Rix. On the Black Hole Mass-Bulge Mass Relation. ApJ
Lett., 604:L89–L92, April 2004. doi: 10.1086/383567.

K. Hayasaki. A New Mechanism for Massive Binary Black-Hole Evolution.
PASJ, 61:65–74, February 2009. doi: 10.1093/pasj/61.1.65.

K. Hayasaki, S. Mineshige, and H. Sudou. Binary Black Hole Accretion Flows
in Merged Galactic Nuclei. PASJ, 59:427–441, April 2007.

D. Heggie and P. Hut. The Gravitational Million-Body Problem: A Multidis-
ciplinary Approach to Star Cluster Dynamics. Cambridge University Press
(1886), February 2003.

D. C. Heggie and R. D. Mathieu. Standardised Units and Time Scales. In
P. Hut and S. L. W. McMillan, editors, The Use of Supercomputers in Stellar
Dynamics, volume 267 of Lecture Notes in Physics, Berlin Springer Verlag,
page 233, 1986. doi: 10.1007/BFb0116419.

M. H. Hénon. The Monte Carlo Method (Papers appear in the Proceedings of
IAU Colloquium No. 10 Gravitational N-Body Problem (ed. by Myron Lecar),
R. Reidel Publ. Co. , Dordrecht-Holland.). A&AS, 14:151–167, November
1971. doi: 10.1007/BF00649201.

L. Hernquist. An analytical model for spherical galaxies and bulges. ApJ, 356:
359–364, June 1990. doi: 10.1086/168845.

139



A. Hobbs, S. Nayakshin, C. Power, and A. King. Feeding supermassive black
holes through supersonic turbulence and ballistic accretion. MNRAS, 413:
2633–2650, June 2011. doi: 10.1111/j.1365-2966.2011.18333.x.

G. Hobbs, A. Archibald, Z. Arzoumanian, D. Backer, M. Bailes, N. D. R. Bhat,
M. Burgay, S. Burke-Spolaor, D. Champion, I. Cognard, W. Coles, J. Cordes,
P. Demorest, G. Desvignes, R. D. Ferdman, L. Finn, P. Freire, M. Gon-
zalez, J. Hessels, A. Hotan, G. Janssen, F. Jenet, A. Jessner, C. Jordan,
V. Kaspi, M. Kramer, V. Kondratiev, J. Lazio, K. Lazaridis, K. J. Lee, Y. Levin,
A. Lommen, D. Lorimer, R. Lynch, A. Lyne, R. Manchester, M. McLaugh-
lin, D. Nice, S. Oslowski, M. Pilia, A. Possenti, M. Purver, S. Ransom,
J. Reynolds, S. Sanidas, J. Sarkissian, A. Sesana, R. Shannon, X. Siemens,
I. Stairs, B. Stappers, D. Stinebring, G. Theureau, R. van Haasteren, W. van
Straten, J. P. W. Verbiest, D. R. B. Yardley, and X. P. You. The Interna-
tional Pulsar Timing Array project: using pulsars as a gravitational wave
detector. Classical and Quantum Gravity, 27(8):084013, April 2010. doi:
10.1088/0264-9381/27/8/084013.

E. Holmberg. On the Clustering Tendencies among the Nebulae. II. a Study
of Encounters Between Laboratory Models of Stellar Systems by a New In-
tegration Procedure. ApJ, 94:385, November 1941. doi: 10.1086/144344.

P. F. Hopkins and E. Quataert. How do massive black holes get their gas? MN-
RAS, 407:1529–1564, September 2010. doi: 10.1111/j.1365-2966.2010.
17064.x.

P. F. Hopkins, L. Hernquist, C. C. Hayward, and D. Narayanan. Why are active
galactic nuclei and host galaxies misaligned? MNRAS, 425:1121–1128,
September 2012. doi: 10.1111/j.1365-2966.2012.21449.x.

F. Hoyle and W. A. Fowler. On the nature of strong radio sources. MNRAS,
125:169–+, 1963.

P. Hut. The Starlab Environment for Dense Stellar Systems. In J. Makino
and P. Hut, editors, Astrophysical Supercomputing using Particle Simulations,
volume 208 of IAU Symposium, page 331, 2003.

S. Inagaki and P. Wiyanto. On equipartition of kinetic energies in two-
component star clusters. PASJ, 36:391–402, 1984.

P. B. Ivanov, J. C. B. Papaloizou, and A. G. Polnarev. The evolution of a
supermassive binary caused by an accretion disc. MNRAS, 307:79–90, July
1999. doi: 10.1046/j.1365-8711.1999.02623.x.

S. Kazantzidis, L. Mayer, M. Colpi, P. Madau, V. P. Debattista, J. Wadsley,
J. Stadel, T. Quinn, and B. Moore. The Fate of Supermassive Black Holes
and the Evolution of the MBH-σ Relation in Merging Galaxies: The Effect
of Gaseous Dissipation. ApJ Lett., 623:L67–L70, April 2005. doi: 10.1086/
430139.

F. M. Khan, A. Just, and D. Merritt. Efficient Merger of Binary Supermassive
Black Holes in Merging Galaxies. ApJ, 732:89, May 2011. doi: 10.1088/
0004-637X/732/2/89.

F. M. Khan, I. Berentzen, P. Berczik, A. Just, L. Mayer, K. Nitadori, and S. Cal-
legari. Formation and Hardening of Supermassive Black Hole Binaries
in Minor Mergers of Disk Galaxies. ApJ, 756:30, September 2012. doi:
10.1088/0004-637X/756/1/30.

C. MAUREIRA-FREDES 140



BLACK HOLE BINARY SYSTEMS: FROM DYNAMICS TO ACCRETION

F. M. Khan, K. Holley-Bockelmann, P. Berczik, and A. Just. Supermassive Black
Hole Binary Evolution in Axisymmetric Galaxies: The Final Parsec Problem
is Not a Problem. ApJ, 773:100, August 2013. doi: 10.1088/0004-637X/
773/2/100.

S. S. Kim and H. M. Lee. Core-collapse times of two-component star clusters.
Journal of Korean Astronomical Society, 30:115–122, October 1997.

S. S. Kim, H. M. Lee, and J. Goodman. Two-Component Fokker-Planck Models
for the Evolution of Isolated Globular Clusters. ApJ, 495:786–+, March
1998.

A. R. King and J. E. Pringle. Growing supermassive black holes by chaotic
accretion. MNRAS, 373:L90–L92, November 2006. doi: 10.1111/j.
1745-3933.2006.00249.x.

A. R. King, S. H. Lubow, G. I. Ogilvie, and J. E. Pringle. Aligning spinning
black holes and accretion discs. MNRAS, 363:49–56, October 2005. doi:
10.1111/j.1365-2966.2005.09378.x.

W. Kley. Mass flow and accretion through gaps in accretion discs. MNRAS,
303:696–710, March 1999. doi: 10.1046/j.1365-8711.1999.02198.x.

B. Kocsis, Z. Haiman, and A. Loeb. Gas pile-up, gap overflow and Type 1.5 mi-
gration in circumbinary discs: application to supermassive black hole bina-
ries. MNRAS, 427:2680–2700, December 2012. doi: 10.1111/j.1365-2966.
2012.22118.x.

S. Konstantinidis and K. D. Kokkotas. MYRIAD: a new N-body code for sim-
ulations of star clusters. A&A, 522:A70, November 2010. doi: 10.1051/
0004-6361/200913890.

J. Kormendy. Evidence for a supermassive black hole in the nucleus of M31.
ApJ, 325:128–141, February 1988. doi: 10.1086/165988.

J. Kormendy. The Stellar-Dynamical Search for Supermassive Black Holes in
Galactic Nuclei. In L. Ho, editor, “Coevolution of Black Holes and Galaxies”,
Carnegie Observatories, Pasadena, 2003. astro-ph/0306353.

J. Kormendy and L. C. Ho. Coevolution (Or Not) of Supermassive Black
Holes and Host Galaxies. araa, 51:511–653, August 2013. doi: 10.1146/
annurev-astro-082708-101811.

J. Kormendy and D. Richstone. Evidence for a supermassive black hole in
NGC 3115. ApJ, 393:559–578, July 1992. doi: 10.1086/171528.

J. Kormendy and D. Richstone. Inward Bound—The Search For Supermassive
Black Holes In Galactic Nuclei. ARA&A, 33:581–+, 1995.

J. Kormendy, R. Bender, A. S. Evans, and D. Richstone. The Mass Distribution
in the Elliptical Galaxy NGC 3377: Evidence for a 2× 108M� Black Hole.
AJ, 115:1823–1839, May 1998. doi: 10.1086/300313.

P. Kroupa. On the variation of the initial mass function. MNRAS, 322:231–246,
April 2001.

G. Kupi, P. Amaro-Seoane, and R. Spurzem. Dynamics of compact object
clusters: a post-Newtonian study. MNRAS, 371:L45–L49, September 2006.
doi: 10.1111/j.1745-3933.2006.00205.x.

141



A. H. W. Küpper, T. Maschberger, P. Kroupa, and H. Baumgardt. Mass segre-
gation and fractal substructure in young massive clusters - I. The McLuster
code and method calibration. MNRAS, 417:2300–2317, November 2011.
doi: 10.1111/j.1365-2966.2011.19412.x.

P. E. Kustaanheimo and E. L. Stiefel. Perturbation theory of Kepler motion
based on spinor regularization. J. Reine Angew. Math., 218:204–219, 1965.

R. B. Larson. Turbulence and star formation in molecular clouds. MNRAS,
194:809–826, March 1981. doi: 10.1093/mnras/194.4.809.

S. L. Liebling and C. Palenzuela. Dynamical Boson Stars. Living Reviews in
Relativity, 15:6, May 2012. doi: 10.12942/lrr-2012-6.

D. N. C. Lin and J. Papaloizou. On the tidal interaction between protoplanets
and the primordial solar nebula. II - Self-consistent nonlinear interaction.
ApJ, 307:395–409, August 1986. doi: 10.1086/164426.

G. Lodato, S. Nayakshin, A. R. King, and J. E. Pringle. Black hole mergers:
can gas discs solve the ‘final parsec’ problem? MNRAS, 398:1392–1402,
September 2009. doi: 10.1111/j.1365-2966.2009.15179.x.

A. Lupi, F. Haardt, and M. Dotti. Massive black hole and gas dynamics in
galaxy nuclei mergers - I. Numerical implementation. MNRAS, 446:1765–
1774, January 2015a. doi: 10.1093/mnras/stu2223.

A. Lupi, F. Haardt, M. Dotti, and M. Colpi. Massive black hole and gas
dynamics in mergers of galaxy nuclei - II. Black hole sinking in star-
forming nuclear discs. MNRAS, 453:3437–3446, November 2015b. doi:
10.1093/mnras/stv1920.

D. Lynden-Bell. Galactic Nuclei as Collapsed Old Quasars. Nat, 223:690–+,
1969.

D. Lynden-Bell. Gravity power. Physica Scripta, 17:185–191, March 1978.
doi: 10.1088/0031-8949/17/3/009.

D. Lynden-Bell and M. J. Rees. On quasars, dust and the galactic centre.
MNRAS, 152:461–+, 1971.

D. Lynden-Bell and R. Wood. The gravo-thermal catastrophe in isothermal
spheres and the onset of red-giant structure for stellar systems. MNRAS,
138:495, 1968. doi: 10.1093/mnras/138.4.495.

F. M. Maccagni, R. Morganti, T. A. Oosterloo, J. B. R. Oonk, and B. H. C.
Emonts. ALMA observations of AGN fuelling: the case of PKS B1718-649.
ArXiv e-prints, January 2018.
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