MULTIPLE FEATURE-BASED CLASSIFICATIONS ADAPTIVE LOOP FILTER (MCALF)

Johannes Erfurt, W. Lim, H. Schwarz, D. Marpe, T. Wiegand

CONTENT

- Introduction to In-Loop Filtering
- Adaptive Loop Filtering
- ALF and GALF
- Multiple Feature-based Classifications
 - Feature Descriptors
 - Concept of Confidence Level
- Simulation Results
- Conclusion

Introduction to In-Loop Filtering

 In-loop filtering is applied after reconstruction of coding blocks

 Filtered picture is stored in decoded picture buffer and may be used for prediction

DBF = Deblockling Filter

SAO = Sample Adaptive Offset

HEVC Encoder Block Diagram

Adaptive Loop Filtering

X = original samples, **Y** = reconstruced samples

- Each pixel location is classified into one of L classes $C_1, ..., C_L$ based on local features
- Estimate multiple Wiener filters F_l for each \mathcal{C}_l , l=1...L
- F_l minimizes mean square error (MSE) between X and \tilde{X}

$$\tilde{X} = \sum_{\ell=1}^{L} \chi_{\mathcal{C}_{\ell}} \cdot (Y * F_{l}) \text{ with } \chi_{\mathcal{C}_{\ell}}(i, j) = \begin{cases} 1, & \text{if } (i, j) \in \mathcal{C}_{\ell} \\ 0, & \text{otherwise} \end{cases}$$

Adaptive Loop Filtering

X = original samples, **Y** = reconstruced samples

- Each pixel location is classified into one of L classes $C_1, ..., C_L$ based on local features
- Estimate multiple Wiener filters F_l for each C_l , l=1...L
- F_l minimizes mean square error (MSE) between X and \tilde{X}

How do we perform classification into $\mathcal{C}_1,\dots,\mathcal{C}_L$?

ALF and GALF

- ALF was proposed for HEVC standard and further developed resulting in GALF
- Certain coding tools make ALF/GALF very efficient:
 - Classification including directional gradients
 - Adaptively chosen filter support for each frame (5x5, 7x7, 9x9)
 - Block-wise on/off-flag
 - Temporal prediction: Use previously coded filter coefficients
 - Class merging

HEVC Encoder Block Diagram + ALF

Multiple Feature-based Classifications

- MCALF: Multiple Feature-based Classifications ALF
- Test at encoder side M classifiers $Cl_1, ..., Cl_M$
- Each classifier has a certain feature descriptor D to group each pixel location into classes

$$C_{\ell} = \{(i, j) \in I : D(i, j) = \ell\} \text{ for } \ell = 1, \dots, K$$

- Classifier with best RD performance chosen
- Filter index and possible filter information are signaled

- Each classifier is descripted through different feature descriptors D
- Laplacian feature descriptor D_L : includes computation of directional gradients for squared blocks, e.g. in vertical direction:

$$g(i,j) = |2 \cdot Y(i,j) - Y(i-1,j) - Y(i+1,j)|$$

- pixel location of 2x2 block
- pixel used for gradient calculation

Pixel-based feature descriptor D_P :

$$D_P(i,j) = \left\lfloor rac{(K-1)}{2^B} Y(i,j)
ight
floor \; ext{bit depth} \; B \; ext{and} \; K \, ext{classes}$$

Pixel-based feature descriptor D_P :

$$D_P(i,j) = \left\lfloor rac{(K-1)}{2^B} Y(i,j)
ight
floor \ ext{ for bit depth } B ext{ and } K ext{ classes}$$

Ranking-based feature descriptor D_R :

$$D_R(i,j) = \#\{(k_1,k_2) : Y(i,j) \ge Y(k_1,k_2) \text{ for } |k_1-i| \le l, |k_2-j| \le h\} + 1$$

Product of two feature descriptors $D_1:I \to \{1,\ldots,K_1\}$ and $D_2:I \to \{1,\ldots,K_2\}$

$$D(i,j) = (D_1(i,j), D_2(i,j)) \in \{1, ..., K_1\} \times \{1, ..., K_2\}$$

Optimal classes for L=2: $\tilde{\mathcal{C}}_1=\{(i,j)\in I: Y(i,j)\leq \mathbf{X}(i,j)\},$

$$\tilde{\mathcal{C}}_2 = \{(i,j) \in I : Y(i,j) > \mathbf{X}(i,j)\}$$

- Optimal classes for L=2: $\tilde{\mathcal{C}}_1=\{(i,j)\in I: Y(i,j)\leq \mathbf{X}(i,j)\},$ $\tilde{\mathcal{C}}_2=\{(i,j)\in I: Y(i,j)>\mathbf{X}(i,j)\}$
- lacksquare X not available at decoder: Approximate $ilde{\mathcal{C}}_1$ and $ilde{\mathcal{C}}_2$
- Use certain feature descriptor D to receive K pre-classes $\mathcal{C}_1^{pre},\dots,\mathcal{C}_K^{pre}$

- Optimal classes for L=2: $\tilde{\mathcal{C}}_1=\{(i,j)\in I: Y(i,j)\leq \mathbf{X}(i,j)\},$ $\tilde{\mathcal{C}}_2=\{(i,j)\in I: Y(i,j)>\mathbf{X}(i,j)\}$
- lacksquare X not available at decoder: Approximate $ilde{\mathcal{C}}_1$ and $ilde{\mathcal{C}}_2$
- Use certain feature descriptor D to receive K pre-classes $\mathcal{C}_1^{pre},\dots,\mathcal{C}_K^{pre}$

Inner ellipse should be mostly contained in left or right half

- Optimal classes for L=2: $\tilde{\mathcal{C}}_1=\{(i,j)\in I: Y(i,j)\leq \mathbf{X}(i,j)\},$ $\tilde{\mathcal{C}}_2=\{(i,j)\in I: Y(i,j)>\mathbf{X}(i,j)\}$
- lacksquare X not available at decoder: Approximate $ilde{\mathcal{C}}_1$ and $ilde{\mathcal{C}}_2$
- Use certain feature descriptor D to receive K pre-classes $\mathcal{C}_1^{pre},\ldots,\mathcal{C}_K^{pre}$

- Optimal classes for L=2: $\tilde{\mathcal{C}}_1=\{(i,j)\in I: Y(i,j)\leq \mathbf{X}(i,j)\},$ $\tilde{\mathcal{C}}_2=\{(i,j)\in I: Y(i,j)>\mathbf{X}(i,j)\}$
- lacksquare X not available at decoder: Approximate $ilde{\mathcal{C}}_1$ and $ilde{\mathcal{C}}_2$
- Use certain feature descriptor D to receive K pre-classes $\mathcal{C}_1^{pre},\dots,\mathcal{C}_K^{pre}$

- Optimal classes for L=2: $\tilde{\mathcal{C}}_1=\{(i,j)\in I: Y(i,j)\leq \mathbf{X}(i,j)\},$ $\tilde{\mathcal{C}}_2=\{(i,j)\in I: Y(i,j)>\mathbf{X}(i,j)\}$
- lacksquare X not available at decoder: Approximate $ilde{\mathcal{C}}_1$ and $ilde{\mathcal{C}}_2$
- Use certain feature descriptor D to receive K pre-classes $\mathcal{C}_1^{pre},\dots,\mathcal{C}_K^{pre}$

- Optimal classes for L=2: $\tilde{\mathcal{C}}_1=\{(i,j)\in I: Y(i,j)\leq \mathbf{X}(i,j)\},$ $\tilde{\mathcal{C}}_2=\{(i,j)\in I: Y(i,j)>\mathbf{X}(i,j)\}$
- lacksquare X not available at decoder: Approximate $ilde{\mathcal{C}}_1$ and $ilde{\mathcal{C}}_2$
- Use certain feature descriptor D to receive K pre-classes $\mathcal{C}_1^{pre},\dots,\mathcal{C}_K^{pre}$

$$p_{k,1} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_1)}{\#(\mathcal{C}_k^{pre})}, \quad p_{k,2} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_2)}{\#(\mathcal{C}_k^{pre})}$$

$$p_{k,1} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_1)}{\#(\mathcal{C}_k^{pre})}, \quad p_{k,2} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_2)}{\#(\mathcal{C}_k^{pre})}$$

Calculate for each class \mathcal{C}_k^{pre} confidence level $p_{k,1}$ and $p_{k,2}$ of D

$$p_{k,1} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_1)}{\#(\mathcal{C}_k^{pre})}, \quad p_{k,2} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_2)}{\#(\mathcal{C}_k^{pre})}$$

$$p_{k,1} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_1)}{\#(\mathcal{C}_k^{pre})}, \quad p_{k,2} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_2)}{\#(\mathcal{C}_k^{pre})}$$

- $\mathcal{C}_{\ell}^e = \{(i,j) \in I : P_D(D(i,j)) = \ell\}$ for $\ell = 1,2$ high confidence classes

$$p_{k,1} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_1)}{\#(\mathcal{C}_k^{pre})}, \quad p_{k,2} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_2)}{\#(\mathcal{C}_k^{pre})}$$

- $\mathcal{C}_{\ell}^e = \{(i,j) \in I : P_D(D(i,j)) = \ell\} \text{ for } \ell = 1,2 \text{ high confidence classes}$

$$\begin{bmatrix} 1 & p_{k,1} > p \end{bmatrix}$$

$$p_{k,1} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_1)}{\#(\mathcal{C}_k^{pre})}, \quad p_{k,2} = \frac{\#(\mathcal{C}_k^{pre} \cap \tilde{\mathcal{C}}_2)}{\#(\mathcal{C}_k^{pre})}$$

- $\mathcal{C}^e_\ell = \{(i,j) \in I : P_D(D(i,j)) = \ell\}$ for $\ell = 1,2$ high confidence classes
- $\mathcal{C}_{\ell} = \{(i,j) \notin \mathcal{C}_1^e \cup \mathcal{C}_2^e : \tilde{D}(i,j) = \ell\}$ for $\ell = 1, \dots, \tilde{K}$ classes for remaining pixel locations

- $\mathcal{C}_{\ell}^e = \{(i,j) \in I : P_D(D(i,j)) = \ell\}$ for $\ell = 1,2$ high confidence classes
- $\mathcal{C}_{\ell} = \{(i,j) \notin \mathcal{C}_1^e \cup \mathcal{C}_2^e : \tilde{D}(i,j) = \ell\}$ for $\ell = 1, \dots, \tilde{K}$ classes for remaining pixel locations
- This gives $ilde{K}+2$ classes $\mathcal{C}_1^e,\mathcal{C}_2^e,\mathcal{C}_1,\ldots,\mathcal{C}_{ ilde{K}}$

Simulation Results

- Test conditions:
 - JEM-7.0 with QP points: 27, 32, 37, 42
 - Random Access Main 10 (RA)
- 5 Classifiers for MCALF:

$$D_P(K=27)$$

- Product of D_R and $D_P(K=27)$
- \Box $D_L (K=25)$
- $D_R \text{ for } \mathcal{C}_1^e, \mathcal{C}_2^e \ (p=0.63, K=9)$ and $D_L \ (\tilde{K}=25)$

Test Sequence	BD Rate (Y) RA
BQTerrace 1920 x 1080	-1.34%
MarketPlace 1920 x 1080	-0.90%
Rollercoaster 3840 x 2160	-2.33%
Encoder run-time	107%
Decoder run-time	100%

Coding gains of MCALF (5 classifiers) with reference GALF (1 classifier D_L)

Conclusion

- Performance of adaptive loop filter highly depends on classification
- Multiple classifications can better adapt to local features in video sequence
- Classification is performed through feature descriptors such as D_L , D_P or D_R and classification with confidence level

We can get more than 2% coding gain on top of GALF with no increase of decoder runtime and only small increase of encoder runtime

Thank you!

More Results

Test Sequence	BD Rate (Y) RA
BQTerrace 1920 x 1080	-5.85%
MarketPlace 1920 x 1080	-3.35%
Rollercoaster 3840 x 2160	-6.31%

Coding gains of MCALF (5 classifiers) with reference JEM-7.0 - GALF