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Abstract 

Axons are injured after stroke, spinal cord injury, or neurodegenerative 

disease such as ALS. Most axons do not regenerate. A recent report suggests 

that not all neurons are poor regenerators, but rather a small subset can 

regenerate robustly. What intrinsic property of these regenerating neurons allows 

them to regenerate, but not their neighbors, remains a mystery. This subtype-

specific regeneration has also been observed in Drosophila larvae sensory 

neurons. We exploited this powerful genetic system to unravel the intrinsic 

mechanism of subtype-specific neuron regeneration. We found that neuron 

bursting activity after axotomy correlates with regeneration ability. Furthermore, 

neuron bursting activity is necessary for regeneration of a regenerative neuron 

subtype, and sufficient for regeneration of a non-regenerative neuron subtype. 

This optogenetically-induced regeneration is dependent on a bursting pattern, not 

simply overall activity increase. We conclude that neuron bursting activity is an 

intrinsic mechanism of subtype-specific regeneration. We then discovered 

through a reverse genetic screen that an L-type voltage gated calcium channel 

(VGCC) promotes neuron bursting and subsequent regeneration. This VGCC 

has high expression in the regenerative neuron and weak expression in the non-

regenerative neuron. This suggests that VGCC expression level is the molecular 

mechanism of subtype-specific neuron regeneration. Together, our findings 

identify a cellular and molecular intrinsic mechanism of subtype-specific 

regeneration, which is why some neurons are able to regenerate while the 
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majority of neurons do not. Perhaps VGCC activation or neuron activity pattern 

modulation could be used therapeutically for patients with nerve injury. 
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Chapter I 

GENERAL INTRODUCTION 
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1.1 Neural regeneration  

 Complex behaviors, thoughts, and perceptions result from the proper 

development and elaborate networks of the 100 billion neurons inside the human 

brain. Each neuron, or brain cell, contains three components: the dendrite, the 

soma, and the axon. The dendrite receives information from other neurons or 

from the environment, while the axon transmits neuronal signals to effector 

neurons in order to execute commands. Axons often span great distances to 

reach their target, for example the longest axon in the human body sends 

sensory information from your toe to your spinal cord. Their remarkable length 

subjects axons to damage. In fact, axons are often severed as a result of trauma, 

metabolic disease, or neurodegeneration. Some axons can regrow back to their 

original target. This process, known as axon regeneration, is essential to regain 

function of disconnected neurons. Unfortunately, very few axons have the ability 

to regenerate rendering spinal cord injury, painful neuropathies, stroke, and 

neurodegenerative diseases devastating and irreversible. Identifying the 

mechanisms to promote regeneration is crucial for developing novel therapeutic 

strategies for nerve regeneration for patients. Why only a small number of axons 

can regenerate and how we can encourage other severed axons to regenerate 

are currently important questions for neuroscientists and clinicians. While our 

knowledge about neuron regeneration has expanded greatly in recent years, 

many basic biological questions remain unanswered.  
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 Axon regeneration begins with an actin-rich growth cone, which elongates, 

finds its correct target, remyelinates, and ultimately forms a terminal with its 

synaptic partner (Tedeschi and Bradke, 2017). Regeneration can fail at any of 

these steps, but most often fails to even form a growth cone (reviewed in Liu et 

al., 2011). Astonishingly, some studies have found that after overcoming this 

initial barrier to regeneration, some axons can navigate through the complex 

brain milieu to find their proper targets (Steinmetz et al., 2005; Bei et al., 2016). 

Unfortunately, manipulations to overcome this initial barrier only allow 

regeneration in a very small subset of axons and have not resulted in therapy for 

patients with nerve injury. Finding new ways to overcome this critical initial barrier 

to regeneration and more importantly, determining why only a small subset of 

axons are able to regenerate after a given manipulation has the potential to result 

in functional therapeutic regeneration for patients.  

Whether this lack of regeneration is due to extrinsic factors, such as an 

inflammatory growth environment, or reduced intrinsic regeneration ability of 

neurons is hotly debated. Interestingly, while regeneration in the central nervous 

system (CNS) is almost non-existent, regeneration in the peripheral nervous 

system (PNS) is slightly more robust (Ramon y Cajal, 1928). The observation 

that dorsal root ganglion (DRG) neurons, which span from PNS to CNS, can 

regenerate the axon in the PNS but not the axon in the CNS led to much 

speculation that extrinsic inhibitory factors in the CNS prevent regeneration 

(review in (Liu et al., 2011)). In addition, after transplantation studies 
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demonstrated axotomized (severed) CNS neurons could regenerate on growth 

permissive PNS ‘bridges,’ researchers searched for the inhibitory extrinsic factors 

that must be preventing regeneration in the CNS environment (David and 

Aguayo, 1981). Many extrinsic factors hostile to regeneration were identified 

such as glia scarring (Ramon y Cajal, 1928; Windle and Chambers, 1950; 

Pasterkamp et al., 1999; Bundesen et al., 2003), which was later found to be pro-

regenerative (Anderson et al., 2016), myelin associated inhibitors (Schnell and 

Schwab, 1990; McKerracher et al., 1994; Huang et al., 1999; Wang et al., 2002), 

and lack of neurotrophic factors (Lindsay, 1988; Lewin et al., 1997; Sterne et al., 

1997). Unfortunately, removal of these inhibitory factors thus far does not result 

in dramatic or consistent regeneration (Liu et al., 2011). Now the focus has 

shifted towards finding intrinsic factors that might enhance neuron regeneration 

ability. It is likely that a balance between removing extrinsic inhibitory factors and 

promoting intrinsic factors will be necessary for robust functional regeneration in 

many diverse types of neurons. 

 

1.2 Intrinsic mechanisms of regeneration 

There are many animal models for studying regeneration, and these 

models have given us many important insights into the mechanisms of 

regeneration. In mammals, the widely used models include optic nerve injury, 

which is used to study CNS regeneration (McConnell and Berry, 1982; So and 

Yip, 1998; Park et al., 2008; Duan et al., 2015; Lim et al., 2016; S. Li et al., 
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2016), and dorsal root ganglia (DRG) injury (Lindsay, 1988; Cai et al., 1999; X.-J. 

Song et al., 1999; Neumann et al., 2002; Udina et al., 2008), which contains 

axons extending in both the PNS and the CNS. Mammalian models have 

demonstrated that CNS regeneration can be enhanced by ‘priming,’ making a 

prior lesion in the PNS (Mcquarrie and Grafstein, 1973; Richardson and Issa, 

1984; Neumann and Woolf, 1999). The results from priming studies are further 

evidence that a neuron’s intrinsic state is a key determinant for regeneration 

(Neumann and Woolf, 1999). Mammalian models also first identified the 

importance of intrinsic growth signaling pathways such as SOCS3 (suppressor of 

cytokine signaling 3, (Smith et al., 2009)) and PTEN/mTOR (mammalian target of 

rapamyacin, (Park et al., 2008)) in regeneration. Deleting PTEN releases its 

inhibition of mTOR signaling, which is a pro-regenerative intrinsic signal. The 

development-associated transcription factors of the KLF (Krüppel-like factor) 

family have also been shown to regulate intrinsic axon regeneration ability 

(Moore et al., 2009) in mammals. This is just a small fraction of the many genes 

associated with regeneration discovered in mammals. 

There are also invertebrate models for regeneration that have contributed 

significantly to the field. C. elegans neurons exhibit regeneration and forward 

genetic screens have led to the identification of over 100 genes that influence 

axon regeneration, most notably dlk-1 kinase (Hammarlund et al., 2009; Yan et 

al., 2009; He and Jin, 2016). Drosophila sensory neurons C4da (the nociceptor) 

and C1da (a proprioceptor (Hughes and Thomas, 2007)) are used to study axon 
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regeneration and have implicated the Akt pathway, including the mTOR inhibitor 

PTEN and microRNA bantam, the splicing pathway, and microtubules in axon 

regeneration (Stone et al., 2010; Song et al., 2012, 2015). These studies have 

also highlighted remarkable parallels between mammalian and Drosophila neural 

regeneration (He and Jin, 2016). For example, like mammalian DRG neurons, 

Drosophila C4da neurons have axon extending in both the PNS and the CNS. 

The PNS C4da axon can robustly regenerate while the CNS C4da axon cannot 

(Song et al., 2012). Also, a prior ‘priming’ PNS lesion can enhance regeneration 

in the CNS, as is the case in mammals (Song et al., 2012). 

 Recently, neural activity has been identified as an intrinsic mechanism to 

promote axon regeneration (Lim et al., 2016). Neural activity plays essential roles 

in axon growth and guidance during development of the nervous system 

(Reviewed in Spitzer, 2006). Axons do not extend by default, they must fire 

action potential at physiological levels in order to respond to growth factors 

(Goldberg, Espinosa, et al., 2002). Also patterned electrical stimulation promotes 

axon growth preferentially in axons that are exposed to growth factors (Ming et 

al., 2001; Singh and Miller, 2005). Neural activity has also been shown to 

promote axon regeneration after injury. After sciatic nerve lesion, electrical 

stimulation promoted axon outgrowth in mouse (Udina et al., 2008). In a recent 

study, Lim and colleagues (2016) found that increasing neural activity in severed 

retinal ganglion cells (RGCs), either by visual stimulation or chemogenetics, 

promoted limited regeneration in vivo (Lim et al., 2016). Other studies have found 
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that modulating neural activity through G protein-coupled receptor (GPCR) 

signaling can enhance axon regeneration capacity by elevating mammalian 

target of rapamycin (mTOR) signaling (S. Li et al., 2016). To our knowledge, no 

studies have compared in vivo neuronal activity in regenerative and non-

regenerative neurons to determine if neuron activity is the intrinsic mediator of 

subtype-specific neuron regeneration.  

 Decades of research have identified many ways to promote regeneration 

intrinsically: priming, increasing growth signaling/transcription by mTOR, PSOC3, 

and KLF, dlk-1 activation, and neural activity (Park et al., 2008; Udina et al., 

2008; Hammarlund et al., 2009; Moore et al., 2009; Smith et al., 2009; Yan et al., 

2009; Lim et al., 2016; S. Li et al., 2016). Unfortunately, therapeutic functional 

regeneration remains largely unsuccessful (Liu et al., 2011). 

 Stem cell therapies for spinal cord injury is one promising therapeutic 

strategy, although the formation of teratomas can be problematic and human 

trials are therefore limited (reviewed in Ronaghi et al., 2010). PNS nerve 

transplant after spinal cord injury results in some axon regeneration, with no 

functional regeneration detected in non-human primates (Levi et al., 2002). One 

clinical trial in human found PNS transplant to result in some functional 

regeneration, but this study had only one participant (Cheng, Liao and Liao, 

2004). Human trials delivering neurotrophic growth factors to the site of axon 

injury has resulted in serious side effects such as severe pain, fever, numbness, 

and depression (Apfel, 2002). The minimal regeneration we observe after pro-
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regenerative treatments led Duan et al (2016) to ask whether all neurons are 

equal in regeneration, and launched the field of subtype-specific neuron 

regeneration.  

 

1.3 Subtype-specific neuron regeneration 

Most axons cannot regenerate after injury, even in a growth permissive 

environment (Ramon Y Cajal, 1928; Canty et al., 2013). This argues that 

regeneration is an intrinsic ability of only some neurons (Canty et al., 2013), 

reviewed in (He and Jin, 2016). Recently, it was discovered that neurons are not 

uniformly poor regenerators, but rather a small subset of neurons can regenerate 

robustly, this is known as subtype-specific regeneration (Duan et al., 2015).  

Understanding why some neurons can regenerate after manipulation, 

while others cannot is critical for providing therapeutic strategies that promote 

regeneration in the majority of neurons. We can't treat all neurons alike because 

they have intrinsic differences that dictate regeneration ability. To emphasize 

these differences, a recent RNA-seq analysis of DRG neurons observed 

tremendous heterogeneity in response to axotomy among the different subtypes 

of neurons (Hu et al., 2016). We have some hints about subtype-specific 

regeneration: Duan and colleagues (2015) observed that, after artificial mTOR 

activation, only a small subset of RGCs, the alpha-RGCs regenerate robustly 

while most other types of RGCs do not regenerate. They noted that alpha-RGCs 

are also unique in having high mTOR activity, a known regulator of regeneration, 
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and osteopontin (OPN), which activates mTOR (Duan et al., 2015). Alpha-RGCs 

have higher intrinsic levels of activity than other subtypes of RGCs (Krieger et al., 

2017). Interestingly, neural activity is known to promote mTOR activity (Knight et 

al., 2012; S. Li et al., 2016). It is possible that this high activity level in alpha-

RGCs is what allows for selective regeneration of this subtype of neuron. 

Unfortunately, alpha-RGCs only represent about 6% of all RGCs; new strategies 

to promote regeneration in other types of RGCs are essential (Norsworthy et al., 

2017). 

 Drosophila also show subtype-specific neural regeneration. C3da and 

C4da are primary sensory neurons whose dendrites (receives information) tile 

the body wall of Drosophila larvae (Grueber et al., 2003). Their somas (cell 

bodies) are adjacent to one another and they share the same axon bundle 

(sends information to brain) and dendritic fields (Fig. 2.1C). C4da is a nociceptor 

that detects harmful stimuli such as heat, noxious chemicals, and harmful light 

(Tracey et al., 2003; Xiang et al., 2010). C3da is a sensory neuron that detects 

gentle touch (Yan et al., 2013). Song et al. (2012) discovered that upon axon 

cutting (axotomy), C4da regenerates robustly, while C3da does not. The intrinsic 

trait governing this subtype-specific regeneration is unknown, this system 

provides an ideal tool to uncover that trait. 

 

1.4 What remains unknown 
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 The identification of a novel treatment to promote regeneration would be 

extremely beneficial. Equally important is to understand subtype-specific 

regeneration so clinicians know that not every neuron can be regenerated in the 

same manner. Regenerating entire severed axon bundles may require multiple 

simultaneous treatments to ensure the majority of axons regenerate. Already 

combinatorial regeneration treatments have shown enhanced regeneration 

effects compared with single treatments in mouse models (Kadoya et al., 2009; 

Kurimoto et al., 2010; Sun et al., 2011; O’Donovan, 2016). Current human 

therapies for spinal cord injury can only try to save remaining axons from 

degenerating, pro-axon regeneration treatment is limited to physical therapy and 

occasionally experimental stem cell transplants (Case and Tessier-lavigne, 2005; 

Tsintou, Dalamagkas and Seifalian, 2015). The axon regeneration success rate 

is usually low in these treatments and therefore any novel whole axon bundle 

approach to regeneration would greatly benefit patients. 

 To this end, this Thesis aims to answer these important questions: What 

causes subtype-specific regeneration? Is neural activity an intrinsic mediator of 

subtype-specific axon regeneration? If so, what mechanism is regulating neural 

activity during regeneration? If we can answer these questions, we are closer to 

understanding why and how different types of neurons regenerate differently. 

Perhaps we could predict how a neuron will respond to a given treatment based 

on its neural activity. If we know a neuron will have a low regenerative response 
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to a given treatment, perhaps we can manipulate its neural activity to achieve 

better results. 

 We are in a unique position to answer these questions with our single-cell 

2-photon mediated axotomy model for subtype-specific regeneration. We can 

monitor and compare neuron activity in the regenerating C4da neuron and in the 

non-regenerating C3da neuron. We can manipulate neuron activity to promote or 

block regeneration. We can also perform genetic screens searching for the 

molecular mechanisms of subtype-specific regeneration.  

The answers to these questions will provide researchers with a novel 

activity-dependent pathway to promote regeneration in certain cell types, as well 

as identifying the cellular and molecular intrinsic mediator of subtype-specific 

regeneration. Future studies should look for conservation of this phenomenon 

across different cell types. If the discoveries herein are conserved across 

species, they will provide novel therapeutic targets for patients suffering from 

nerve injury.  

 

1.5 Drosophila as a model for subtype-specific regeneration 

Drosophila neuron regeneration is remarkably similar to mammalian 

regeneration (Song et al., 2012; He and Jin, 2016), and has the benefit of over 

100 years of genetic tool building. This is a powerful system to investigate the 

cellular and molecular mechanisms that determine neuronal intrinsic regenerative 

ability. There are many reasons why Drosophila is an excellent model system to 
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study neuron activity and subtype-specific regeneration. Most salient is the 

powerful genetic toolkit generated for Drosophila over the past century. Precise 

spatial and temporal control of gene expression means we can reliably label and 

manipulate C3da and C4da neurons. The transparent cuticle allows for in vivo 

imaging, axotomy, and optogenetics. C3da and C4da are easily accessible for 

electrophysiology recording (Xiang et al., 2010). We also anticipate that findings 

we make may be conserved in mammals because of anatomical similarities, like 

the mammalian DRG, C4da regenerates in the PNS, not the CNS, except with a 

priming cut (Song et al., 2012). There are also molecular similarities, PTEN 

reduction increases mTOR signaling, which promotes regeneration, while 

overexpressing PTEN decreases mTOR signaling, which blocks regeneration 

(Song et al., 2012), as has been observed in mammals (Park et al., 2008). 

Another benefit of using Drosophila to study subtype-specific regeneration is the 

remarkable precision with which we can cut single axons using 2-photon 

microscopy ((Song et al., 2012), described in Chapter II). This high resolution, 

manipulable, and quantifiable system is optimized for identifying the intrinsic 

mechanism of subtype-specific neuron regeneration. 

Identifying the intrinsic mechanism that determines neuronal regenerative 

ability is crucial for developing novel therapeutic strategies for nerve regeneration 

for patients with spinal cord injury, peripheral neuropathies, nerve damage from 

surgery, and even neurodegenerative diseases such as multiple sclerosis and 

Alzheimer’s disease (reviewed by He and Jin, 2016). 
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1.6 Thesis overview 

In this Thesis I will demonstrate in Chapter II that subtype-specific neuron 

regeneration is mediated by neural bursting activities. After axotomy, the 

regenerative C4da neuron shows bursting activities and spontaneous calcium 

spikes while the non-regenerative C3da neuron does not show bursting activities 

or spontaneous calcium spikes. This is the first report that neuron activity is 

different in neurons of differing regenerative capacity.  Blocking neural bursting 

activity in the regenerative C4da neuron blocks regeneration. Conversely, 

promoting neural bursting activity in the non-bursting, non-regenerative C3da 

neuron is sufficient to promote de novo regeneration. We also show for the first 

time that the pattern of bursting is important for optimal regeneration: high 

frequency consolidated bursts promote regeneration better than tonic firing. In 

Chapter III we identify through a reverse-genetic screen the L-type voltage-gated 

calcium channel (VGCC) Ca-α1D as a promoter of neuron bursting after 

axotomy. Knocking down the Ca-α1D channel reduces neuron bursting in C4da, 

this also results in significantly reduced neuron regeneration. Endogenous knock-

in lines reveal Ca-α1D expression is higher in C4da than in C3da. This may 

explain why C4da is able to burst and regenerate upon injury while C3da cannot. 

Together our data identify a cellular and molecular intrinsic mechanism for 

subtype-specific neuron regeneration: neural bursting by Ca-α1D.  
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Chapter II 

Subtype-specific neural regeneration is mediated by neural bursting 

activity 
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ABSTRACT 

 Some subtypes of neurons regenerate robustly, while other subtypes of 

neurons do not. We hypothesized that differences in intrinsic neural activity 

determine the regenerative ability of neurons, and furthermore, that manipulation 

of neural activity can either inhibit or promote regeneration. To test our 

hypothesis, we generated a 2-photon mediated axotomy model for single-cell 

analysis of the physiology of regenerating and non-regenerating neurons, C4da 

and C3da, respectively. We found that after undergoing Wallerian degeneration, 

regenerative C4da neurons alter their firing pattern to strong bursting, while the 

non-regenerative C3da neurons do not alter their firing pattern. This correlation 

between neuron bursting and regeneration is the first evidence of intrinsic activity 

differences between neurons of differing regenerative ability. We next determined 

that neuron bursting is necessary for the regeneration of the regenerative C4da 

neurons. We also found that using optogenetics to force the non-bursting, non-

regenerating C3da neuron to burst was sufficient for de novo regeneration. 

Astonishingly, the pattern of activity we delivered was critical for robust 

regeneration. Strong bursting, but not tonic firing was sufficient to promote 

regeneration. Together, the data suggests that neural bursting activity is a cell 

intrinsic mediator of subtype-specific regeneration.  
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INTRODUCTION 

The recent discovery that certain neuron subtypes can regenerate robustly 

while the majority cannot begs the question of what drives this subtype-specific 

neuron regeneration (Duan et al., 2015). Neuron activity is known to be important 

for axon growth in early development and regeneration (Ming et al., 2001; 

Goldberg, Espinosa, et al., 2002; Singh and Miller, 2005; Udina et al., 2008; Lim 

et al., 2016; S. Li et al., 2016), but to our knowledge, no studies have compared 

the intrinsic activity level of regenerative and non-regenerative neuron subtypes. 

This led to our hypothesis that neuron activity is the intrinsic mediator of subtype-

specific neuron regeneration. To test this hypothesis, we needed a system that 

allowed for precision axotomy of a homogenous cell population for reliable 

neuron activity manipulation and quantification.  

We turned to a model developed by Song and colleagues (2012), the 

peripheral sensory neurons of Drosophila larvae, in particular, C4da, a 

nociceptor, and C3da, a gentle touch sensor (Tracey et al., 2003; Xiang et al., 

2010; Yan et al., 2013). These neurons tile the body wall of Drosophila larvae, 

their dendritic fields overlap, they share the same axon bundle, and even project 

to adjacent interneurons that ultimately act on the same CNS target (Grueber et 

al., 2003; Ohyama et al., 2015). Interestingly, after axotomy and subsequent 

axon degeneration, the C4da neuron regenerates robustly while the C3da neuron 

does not regenerate (Song et al., 2012). Their nearly identical extrinsic 

environment suggests that an intrinsic cue is mediating this subtype-specific 
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regeneration. To determine if neural activity is this intrinsic cue driving subtype-

specific regeneration, we can benefit from Drosophila’s many advantages. Firstly, 

Drosophila larvae are transparent so we can cut axons, quantify regeneration, 

and monitor calcium activity in vivo. These neurons are also accessible for 

electrophysiology recordings (Xiang et al., 2010). The most salient advantage of 

Drosophila is the extensive genetic toolkit developed over the past century. This 

allows us precise spatial and temporal control of gene expression, including 

Kir2.1, and inward rectifying potassium channel that blocks neuron activity, and 

channelrhodopsin (ChR2), a light activated ion channel that results in neuron 

activity upon light illumination (optogenetics). Using these tools, we can measure 

and manipulate neuron activity and monitor subsequent regeneration.  

Clinically, promoting CNS regeneration is more important than PNS 

regeneration. In general, while some PNS axons can regenerate, almost no CNS 

axons can regenerate (Ramon y Cajal, 1928). This could be due to suboptimal 

extrinsic factors: lack of proper growth factors (Lindsay, 1988; Lewin et al., 1997; 

Sterne et al., 1997), glia scarring (Ramon y Cajal, 1928; Windle and Chambers, 

1950; Pasterkamp et al., 1999; Bundesen et al., 2003)), and myelin associated 

inhibitors (Schnell and Schwab, 1990; McKerracher et al., 1994; Huang et al., 

1999; Wang et al., 2002). Unfortunately, optimizing the extrinsic environment 

does not result in significant regeneration for the majority of neurons. The results 

from ‘priming’ studies, where a pre-cut to the PNS to allow regeneration in the 

CNS, suggests that intrinsic promoters of regeneration can overcome these 



	 18	

extrinsic barriers (Mcquarrie and Grafstein, 1973; Richardson and Issa, 1984; 

Neumann and Woolf, 1999). Like mammalian DRG neurons, the C4da neuron 

has axon extending in the PNS and the CNS. The PNS regenerates while the 

CNS does not (Song et al., 2012). If our hypothesis that neural activity mediates 

regeneration is supported, then can manipulating neuron activity promote CNS 

regeneration?  

If intrinsic neural activity determines the regenerative ability of a neuron, 

this helps explain why certain subtypes of neurons can regenerate better than 

other subtypes. If neuron activity manipulation can promote regeneration in non-

regenerative neurons, we might be able to manipulate the intrinsic activity level of 

a neuron to promote regeneration therapeutically. This manipulation could prove 

vital for neurons not normally amendable to other regenerative therapies.  

 

RESULTS 

Generation and characterization of 2-photon model for single cell axotomy 

 In order to study the intrinsic effects of severing a single axon, it was 

critical that we established a method for single-axon cutting without damaging 

any of the surrounding axons, wrapping glia, epidermis, etc (Fig. 2.1C). For this 

we turned to a method developed by Song and colleagues (2012) that employs a 

2-photon laser to cut a single axon (Song et al., 2012). The advantage of using a 

2-photon laser in this context is clear when we compare the light path of regular 

confocal microscopy, which illuminates the entire sample but only a single z-
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plane of light is collected, to the light of a 2-photon laser, which illuminates only a 

single z-plane of light and collects all the light. Axotomy with a confocal laser 

would result in a large, dual cone shape of damage to surrounding tissue, while 

axotomy with a 2-photon laser is constrained to a single point (Fig. 2.1C). Using 

the 2-photon laser, we were able to fine-tune the parameters detailed in Song et. 

al 2012 to achieve single-cell axotomy with no detectable damage to surrounding 

glia, epidermis, or axons (Fig. 2.1D, 2.5A), see Materials and Methods for 

parameters).  
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Figure 2.1 Characterization of 2-photon mediated single-cell axotomy. A, 
Schematic of single-cell axotomy of C4da neurons. A single cut axon distally 
degenerates by 24 hours post axotomy (hpa) leaving the proximal stump intact. By 
48 hpa the proximal axon stump begins to regenerate. B, Schematic of single-cell 
axotomy in C4da in Drosophila larva compared to mouse Sciatic Nerve Lesion, note 
different axon polarity. C, Light illumination of confocal versus 2-photon microscope. 
D, Three C4da axons are labeled with GFP>Ppk (left), top panel shows uncut 
control, bottom panel shows single axon cutting specificity at 24hpa, the top axon is 
cut while the bottom two remain intact. E, wt control, Wallerian degeneration Slow 
(WldS) overexpressing, and draper mutant C4da neurons 24hpa. Axon is not 
degenerated in WldS or draper mutant larva, white arrowhead. Scale bar 20µm.   
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We axotomized a single C4da neuron and observed that the distal portion 

of the axon degenerates while proximal axon, soma, and dendrites remain intact 

(Fig. 2.1A, B, E). We noted similarities to a mouse model of axotomy called 

sciatic nerve lesion (SNL, (Kim and Chung, 1992)), this model is widely used to 

study axotomy and it's effect on the neuron in mouse (Fig. 2.1B, right). The distal 

degeneration we observed appeared to be Wallerian degeneration, an active 

process of degeneration (Waller, 1850), but to confirm we expressed inhibitors of 

Wallerian degeneration in C4da to determine if we could block this degeneration. 

We used the binary expression system of Drosophila, which allows us precise 

spatiotemporal control of gene expression. This system is composed of two 

elements: GAL4 is a transcription factor that binds to and activates its target, 

UAS. We can drive expression of GAL4 in specific cell types, for example 

sensory neurons, by using a tissue specific enhancer that is expressed only in 

sensory neurons. UAS is expressed in all cells, but it is only activated in cells that 

express GAL4, in this example, sensory neurons. By fusing UAS with any gene, 

for example green fluorescent protein (GFP), we can use this system to express 

GFP exclusively in sensory neurons.  

We used the GAL4-UAS system to express WldS, a mutant protein that 

prevents Wallerian degeneration (Lunn et al., 1989), in exclusively C4da neurons 

using the specific driver pickpocket. This prevented degeneration, suggesting 

that this process is Wallerian degeneration (Fig. 2.1E). We also confirmed our 

result by knocking out Draper, a gene necessary for the clearance stage of 
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Wallerian degeneration (MacDonald et al., 2006). Degeneration was again 

incomplete, this result was consistent with our previous finding that C4da 

undergoes Wallerian degeneration upon axotomy (Fig. 2.1E). 

 

Subtype-specific neuronal activity correlates with regeneration 

C4da can regenerate, while it’s neighbor, C3da, cannot (Fig. 2.2A-D, 

C4da regeneration index 0.47, C3da index 0.03, and (Song et al., 2012)). The 

regeneration index is calculated by normalizing new axon growth to a fixed point 

in the growing larva (see methods). To understand the intrinsic difference 

between these two neurons that allows only one to regenerate, we performed 

electrophysiology on regenerating neurons (24 hours post axotomy, hpa). 

We recorded from C4da neurons and noted that the baseline firing pattern 

changed to strong bursting upon axotomy (Fig. 2.2E, F). We also observed this 

bursting phenomenon by calcium imaging (Fig. 2.3A, B). Simultaneous recording 

and calcium imaging demonstrated a close correlation between neuron bursting 

and calcium spikes (Fig. 2.4C). We defined an electrophysiology burst as five or 

more action potentials (APs) with an interspike interval of less than 100ms, the 

definition that best distinguishes control from axotomized neurons (Fig. 2.4A), 

then we quantified the number of bursts per minute (Fig. 2.2F, axotomized 4.20 

bursts/minute, control 0 bursts/minute) and the percent of APs found in bursts 

(Fig. 2.4B, axotomized 34.96%, control 0%). Overall baseline firing was also 

slightly increased after axotomy (Fig. 2.2G, axotomized 1.14Hz, control 0.57Hz). 
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We used calcium imaging to determine that exclusively axon cutting resulted in 

this bursting pattern, not dendrite cutting or damaging inflammation via UVC light 

(Babcock, Landry and Galko, 2009) (Fig. 2.3E). Calcium bursts are herein 

referred to as spikes for clarity. Neuron bursting activities can refer to either AP 

bursts or calcium spikes. Calcium spikes were detected using the FindPeaks 

function in Matlab (Fig. 2.4D). The output from this analysis provides values for 

spike prominence, or the intensity (amplitude) of a spike (Fig. 2.4E). This allows 

us to separate high frequency from low frequency spikes (Fig. 2.4F). This 

analysis confirms that while controls like uncut C4da occasionally show spikes, 

these spikes are of a low frequency nature (Fig. 2.4F). Bursting began as early 

as 6 hpa and continued through 24 hpa (Fig. 2.3G). When one single C4da axon 

was cut from within the bundle (Fig. 2.1D), specifically that axon showed the 

spiking activity, other intact axons did not show calcium spiking (Fig. 2.3H, I). 

This suggests that our single-cell axotomy model is not only morphologically 

specific, but functionally specific as well.  

We also recorded from C3da neurons 24 hpa. Their typical firing pattern is 

similar to C4da, but interestingly, C3da neurons do not display burst firing after 

axotomy (Fig. 2.2E, F). We confirmed this with calcium imaging (Fig. 2.3C-F). 

Bursting ability mirrors the regeneration ability of these two neurons; namely, the 

non-bursting C3da neuron is unable to regenerate while the bursting C4da 

neuron regenerates robustly ((Song et al., 2012), Fig. 2.2A-D). The factors that 

dictate this subtype-specific intrinsic regeneration ability remain unknown. 
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Subtype-specific neural regeneration correlates with neural activity. A, 
Example image of C4da neurons at 24 and 48 hpa with regeneration. Example 
C3da image at 24 and 48 hpa with no notable regeneration. Red circle indicates 
cut site, red arrowheads indicate regrowth, yellow arrowhead marks soma(s), 
orange arrowhead marks hemocyte debris. Scale bar 20µm. B-D, Regeneration 
quantification including percentage of larvae regenerated (B), regeneration 
length (C), and regeneration length normalized to growing larvae, termed the 
regeneration index (D) n=25, 12 for B-D. E, Example recordings showing 
baseline firing from C4da and C3da control and axotomized neurons scale bar 
5s, red box is zoomed in on first two C4da axotomy bursts, red scale bar 100ms. 
F-G, E-phys quantification of neuron bursting (F) and baseline firing (G) n=17, 
19, 10, 7.  Fishers Exact Test (B), Student’s t-test (C, D), one-way ANOVA with 
multiple comparisons and Bonferroni Correction (F, G). *p<.05, **p<.01, 
***p<.001. Error bars represent SEM. 
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Figure 2.3 Subtype-specific neural regeneration correlates with neuronal 
calcium spikes.  A-D, Example calcium imaging traces of C4da control (A) and 
axotomized (B) neurons and C3da control (C) and axotomized (D) neurons. 
Images are still frames at time point indicated by red arrow. Red arrowhead 
indicates axon of C4da or C3da. Red circle indicates cut site.  Scale bar, 20µm. 
E-F, Summary of calcium imaging data measuring number of calcium spikes per 
minute,  For C4da neuron, spikes were measured after axotomy, dendrite cut, 
and inflammation-inducing UVC treatment. C4da n=11, 26, 10, 10. C3da n=7, 7. 
G, Time course of C4da spontaneous calcium spikes, n=11, 9, 15, 22, 27, 12. H, 
Schematic of specific axotomy on ventral C4da axon (from axons in Fig2.1D). 
Left panel: Each hemi-segment possesses three C4da: ddaC (dorsal C4da) , 
v’ada (lateral C4da) and vdaB (ventral C4da). Dashed box represents body 
segment outline. Oval ball represents soma and curve line represents projecting 
axon. Three axons merge together to VNC. Red circle represents cut site on 
ventral C4da axon. D, dorsal. V, ventral. A, anterior. P, posterior.  Right panel: 
24h after ventral C4da axotomy, distal axon is degenerated while lateral and 
dorsal C4da axons are intact.  I, Example GCaMP calcium imaging traces from 
three C4da in the same hemi-segment at 120h AEL.  Among three C4da, only 
vdaB is axotomized at 96h AEL as H illustrates and only vdaB shows 
spontaneous calcium spikes.  
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Figure 2.4 Defining a burst and spike. A, The average number of bursts per 
minute of a given burst size (# of APs), left. Right, the percent of C3da and C4da 
axotomized and control cells that show bursts (<100ms ISI) of a given AP 
number. 5 spike bursts was chosen as the minimum number to define a burst. 
n=17, 19, 10, 7. B, Percent of AP that are within bursts. One-way ANOVA with 
multiple comparisons and Bonferroni correction. **p<.01, n=17, 19, 10, 7. C, 
Simultaneous GCaMP imaging and recording show strong correlation between 
AP bursts and calcium spikes. D, Example GCaMP6 calcium imaging trace from 
Fig. 2.3B after findpeaks function with matlab.  Blue curve is normalized 
GCaMP6 signal. Red triangle marks the spike peak position. Vertical straight line 
indicates spike prominence (amplitude) based on program calculation. See 
methods for details. E. Distribution of spike prominences of spontaneous calcium 
spikes 24h after C4da axotomy at 96h AEL. n=11. F. C4da spontaneous spikes 
from Fig. 2.3E. are divided to into low and high prominence  with an artificial 
cutoff of 25%.  Only the axotomy group shows spikes with high prominence of 
more than 25%. n=11, 26, 10, 10. One-way ANOVA with Bonferroni Correction 
(B, F), ***p<.001, ****p<.0001. Error bars indicate SEM. One way ANOVA with 
Bonferroni Correction. 
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The order of events after C4da axotomy: degeneration, bursting, 

regeneration, hints that neuron bursting might be important for regeneration. It is 

unclear if bursting continues after the axon has regenerated, as third instar larvae 

usually pupate by this time point. One simple way of blocking regeneration in 

C4da is to sever the entire axon bundle including glia wrapping, as opposed to 

severing a single axon (Song et al., 2012). We performed bundle cutting and 

recorded from C4da neurons (Fig. 2.5A). C4da neurons with complete bundle 

cutting no longer show bursting by electrophysiology, further supporting a 

correlation between neuron bursting after axotomy and regeneration (Fig. 2.3B). 

 

 

 

 

Figure 2.5. Integrity of glia sheath is necessary for C4da spontaneous 
bursting. A, Single C4da axon labeled with GFP>Ppk and glia wrapping labeled 
with TdTomato>Repo. Top, uncut control. Middle, single-cell C4da axotomy with 
glia intact. Bottom, large damage are with entire bundle severed including 
wrapping glia. Red circle represents area of laser illumination. Scale bar 20µm. 
B, Quantification of spontaneous bursting in control, C4da axotomy, and bundle 
cut neurons. One way ANOVA with Bonferroni Correction *p<.05. 
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Neuron activity is necessary and sufficient for regeneration 

The correlation between bursting and regeneration begs the question of 

whether bursting is necessary for regeneration. We reduced neuron bursting by 

overexpressing the inward rectifying potassium channel (Kir2.1) in C4da neurons 

(Fig. 2.7D). Preventing neuron bursting reduces regeneration (Fig. 2.7A-C, 

control index 0.18, Kir2.1 index -0.04). Neuron bursting is necessary for 

regeneration. 

We next tested whether neuron bursting is sufficient for regeneration. The 

average burst characteristics of C4da were determined (~4 bursts per minute, 7 

APs per burst, ISI=41 ms, Fig. 2.6A). By expressing the light activated ion 

channel, channelrhodopsin (ChR2) in non-bursting, non-regenerative C3da 

neurons, we were able to use blue light pulses to mimic C4da bursting (Fig. 

2.6B, C, (Zhang et al., 2007)). We found that C3da neurons forced to burst fire 

regenerated nearly as well as the intrinsically regenerative C4da neurons (Fig. 

2.7H-J C3da>ChR2 index 0.28, C4da index 0.47 from Fig. 2.2). Control neurons 

lacking any part of the optogenetic system (ChR2, retinol, light) did not 

regenerate (Fig. 2.7I, J, index: 0.06, 0.06, 0.05).  

Neuron activity has been shown to promote regeneration (Udina et al., 

2008; Lim et al., 2016; S. Li et al., 2016). Because promoting bursting in C3da 

increases overall activity of the neuron, we asked if neuron bursting or just 

overall activity increase was responsible for promoting regeneration. To 

distinguish these possibilities, we used a series of ChR2 induced firing patterns 
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in C3da: the original burst firing protocol, a semi-tonic protocol, and a tonic 

protocol (Fig. 2.7G). The semi-tonic firing pattern resulted in the same overall 

number of APs per minute (~25 APs/min, Fig. 2.7G) but the pattern was spread 

out resulting in smaller bursts than the original burst protocol (~2.5 vs ~6.5 

APs/burst, Fig. 2.7F). For the tonic light protocol, AP was spread out even 

further, resulting in 1.4 APs/burst every 2 seconds (Fig. 2.7F). This led to 

significantly higher number of AP/minute compared to burst and semi-tonic light 

protocols (42 vs 25 APs/min, Fig. 2.7G). If only overall activity increase was 

promoting regeneration, we would expect the tonic firing protocol to have even 

more robust regeneration than the burst firing protocol. This is not what we 

observed, instead we found that tonic firing does not result in significant 

regeneration, only burst firing had a significant regenerative effect for both the 

regeneration index and percentage (Fig 2.7I, J). There is a trend towards higher 

regeneration, so we cannot exclude the possibility that general activity increase 

slightly promotes regeneration, but the effect is clearly not as robust as the burst 

firing. The semi-tonic light pattern resulted in significant regeneration based on 

the regeneration index, but not the regeneration percentage (Fig. 2.7I, J). Again 

we do see a trend towards even higher regeneration with the semi-tonic light 

protocol. We delivered the tonic, semi-tonic, and burst light pattern while 

recording the neuron’s calcium response and found that the burst light pattern 

triggered a strong calcium spike, the tonic and semi-tonic light pattern did not 

result in as significant a change in calcium levels (Fig. 2.6D-F). These results 
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together suggest that neuron bursting is sufficient to promote neuron 

regeneration. 
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Figure 2.6. Optogenetics methods for inducing burst, semi-tonic, and tonic 
firing. A, C4da detailed burst analysis to identify average interspike interval (ISI), 
frequency of firing within a burst and the number of AP in a burst, n=26. B, A blue 
light intensity/duration that activates C3da>ChR2 to match the ISI, frequency, 
and AP number in C4da, n=26, 6. C, Schematic of ChR2 light delivery set up, 
briefly, we use a computer to set up the BasicStamp 2.0 microcontroller to deliver 
specific light pulses from a 470nm LED onto our larvae in a grape agar plate. D-
F, GCaMP influx while delivering tonic (D), semi-tonic (E), and burst light patterns 
(F) n=8, 8, 8. Quantified in G. Student’s t-test (B). 
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Figure 2.7. Neural burst activity pattern is necessary and sufficient for 
regeneration. A, Sample C4da regeneration images for wt control and Kir2.1 
larvae with quantification (B, C). Red circle indicates cut site, red arrowhead 
shows axon regeneration. n=25, 16. D, Calcium imaging spikes per minute 
quantification for wt larvae and larvae overexpressing Kir2.1 under control and 
axotomy condition. n=10, 11, 10, 10. E, Representative electrophysiological 
recordings for burst, semi-tonic, and tonic light pattern. Blue lines represent light 
delivery, lines not to scale. F, number of AP triggered by each light pulse (burst). 
G, Total number of AP per minute for each of the three light patterns n=11, 7, 7. 
H, Sample regeneration images for C3da neurons bearing ChR2 with burst light 
stimulation, scale bar 20µm. I-J, regeneration quantification for ChR2 
experiments including 3 controls (no retinal n=22, no ChR2 n=14, no light n=56) 
and 3 light patterns (tonic n=37, semi-tonic n=99, burst n=115).  Fishers Exact 
Test (C), Student’s t-test (B), one-way ANOVA with multiple comparisons and 
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Bonferroni Correction (D, I). Chi-squared test with post hoc pairwise comparison 
via Fisher’s Exact test (J). *p<.05, **p<.01, ***p<.001. Error bars indicate SEM.  
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Neuron activity has been shown to promote regeneration (Udina et al., 2008; Lim 

et al., 2016; S. Li et al., 2016). This is the first study to show intrinsic differences 

in neuronal activity between regenerative and non-regenerative neuron subtypes 

and to furthermore show that neuronal activity is both necessary and sufficient for 

regeneration. This is also the first report that not just overall neuronal activity, but 

activity pattern is critical for regeneration. Neuronal activity pattern mediates 

subtype-specific neuron regeneration. 

 

Neural activity and regeneration in the CNS 

 New treatments for regeneration in the CNS are just as therapeutically 

important as treatments for regeneration in the PNS. For this reason, we looked 

closer at the distal portion of the C4da axon that lies in the CNS. Excitingly, while 

C4da axon regenerates in the PNS, C4da does not regenerate in the CNS (Song 

et al., 2012). This Drosophila model mimics what is observed in mammalian DRG 

neurons. We cut C4da axon in the CNS (Fig. 2.8A) and recorded from the somas 

24 hpa. We did not observe bursting by electrophysiology (Fig. 2.8B, C). The 

correlation between neuron bursting and regeneration led to our hypothesis that 

perhaps optogenetics-induced busting would result in CNS regeneration, as it led 

to C3da regeneration.  

 We cut axons within the CNS as previously published (Song et al., 2012). 

We expressed ChR2 in C4da neurons and identified a light pattern that resulted 

in bursting comparable to C4da PNS axotomy conditions (Fig. 2.8B, D). Upon 
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CNS axotomy, we delivered this light pattern to the larvae for 48 hours but did 

not observe significant regeneration (Fig. 2.8E). This result does not support our 

hypothesis that neuron bursting can promote regeneration in the CNS. 

 

 

 

 

Figure 2.8 Neuron bursting is not sufficient to promote CNS regeneration in 
C4da. A, C4da neurons labeled with GFP>ppk at their nerve terminals in the 
CNS. B, Ephys recording shows no bursting after CNS axotomy, top. Bottom, 
recording of axotomized C4da neurons expressing ChR2 forced to burst by blue 
light pulses (blue line). C, Quantification of C4da bursting in intact, PNS axotomy, 
and CNS axotomy conditions. D, Detailed burst analysis of C4da with PNS 
axotomy (black) and CNS axotomy with ChR2 (blue) showing interspike interval, 
burst frequency, and the number of AP per burst. E, CNS axotomy (red 
circle=damage area) does not show regeneration by 48 hpa.  
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DISCUSSION 

We have identified neural bursting activities as an intrinsic mediator of 

subtype-specific neural regeneration. We cannot conclude whether it is AP 

bursting or calcium spikes driving this regeneration. The two are difficult to 

untangle. It could be that AP bursting alone is sufficient to promote regeneration, 

or it could be that AP bursting is just a means of inducing calcium spikes and if 

we could drive calcium spikes alone, this might be sufficient for regeneration. To 

determine which is true, one could use a sodium channel blocker that blocks AP 

but not calcium spikes. Alternatively, a calcium sponge such as parvalbumin 

might block calcium spikes but not AP bursting (Weavers et al., 2016). 

C4da burst firing not only occurs after axotomy, but also in response to 

noxious high temperatures. At 44ºC C4da neurons display strong burst firing 

(Terada et al., 2016). Since burst firing is both a normal physiological response of 

the C4da neuron and is also necessary for regeneration of the C4da neuron, it is 

possible that the firing pattern of C3da during a normal physiological response 

might promote C3da axon regeneration more robustly than mimicking the C4da 

bursting. C3da detects gentle touch and displays a strong “on” response and 

weak “off” response upon prolonged mechanical stimulation by dendrite 

displacement (Yan et al., 2013). Using ChR2 to mimic this endogenous C3da 

firing pattern in axotomized C3da neurons might result in more robust axon 

regeneration. This would suggest that physiological levels of neuron activity are 
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optimal for maximizing axon regeneration, more so than neural bursting, which is 

a pattern intrinsic to C4da.  

It is interesting that only axon cutting, but not dendrite cutting results in 

neuron bursting. This could be explained by the observation that axon cutting, 

but not dendrite cutting, dramatically upregulates the number of growing 

microtubules (Stone et al., 2010). Axons and dendrites also have subtly different 

expression profiles (Kunimoto, 1995; Sheehan et al., 1996; Wilson et al., 2000). 

This result shows that the neuron bursting phenotype we observe in C4da is very 

specific to axotomy conditions, and not to general injury conditions as observed 

by the lack of bursting after dendrite cutting or UVC-induced inflammation. The 

time delay between axotomy and initial bursting (~6-12 hpa) suggests a 

transcriptional mechanism may play a role in bursting. 

The dramatic effect of entire bundle cut, including glia wrapping, which 

prevents both neural bursting activity and regeneration in C4da, begs the 

question of whether we could induce bursting after bundle cutting to promote 

regeneration. This experiment would tell us if neuron bursting activity can 

overcome even structural challenges, such as lack of glia tract as guide and 

trophic support, to navigate a new terrain and promote regeneration. The answer 

may provide clues about what we can expect to observe in mice and humans, 

where it is unlikely that one single axon only is cut. In fact, it is usually an entire 

bundle of axons and glia that are injured in mouse models and human disease.  
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There are many potential reasons why we couldn’t see regeneration in the 

CNS after inducing bursting. Primarily, that bursting activity is not sufficient to 

drive regeneration in the CNS of C4da. It is also possible, however, that our 

method for inducing bursting was not strong enough to drive regeneration. Action 

potential propagation may be weakened after traveling from the soma all though 

to the distal part of the axon in the CNS. Especially given the axon was 

damaged, transport and glia buffering might not be functioning at normal levels. 

To determine if weak AP propagation is the reason for no regeneration, future 

experiments should determine if there is calcium burst activity in the CNS during 

ChR2 stimulation using GCaMP imaging. It is possible that the bursts need to be 

stronger (higher intensity light delivery) to reach the CNS or that we should use a 

drug, 4-AP (voltage gated potassium channel blocker, 4-aminopyridine), shown 

to promote faithful action potential propagation in a regenerating neuron with 

damaged glia (Bei et al., 2016). Alternatively, if there were no problem with AP 

propagation, it would be interesting to combine neuron activity promotion with a 

genetic approach to ‘sensitize’ the neuron to regeneration. Perhaps combining 

PTEN deletion or priming cut, which have been shown to promote CNS 

regeneration in Drosophila, with ChR2-induced bursting would drive stronger 

regeneration than either treatment alone (Song et al., 2012). 

In addition to the above CNS regeneration experiments, future studies 

should look for conservation of this phenomenon in other types of neurons. As 

neural activity has already been implicated in regeneration in mammals (Udina et 
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al., 2008; Lim et al., 2016; S. Li et al., 2016), it is possible that more examples of 

intrinsic neural activity regulating neuron regeneration ability will be discovered. It 

would be especially intriguing to measure the bursting activity of α-RGCs 

compared to other non-regenerative RGC types in the study performed by Duan 

et al 2015. A study has shown that α-RGCs in fact have higher basal activity 

levels as compared with other types of RGCs (Krieger et al., 2017). This 

difference in activity level also explains the high mTOR levels observed in α-

RGCs, as neural activity promotes mTOR activity (S. Li et al., 2016). Assuming 

conservation of this correlation between neural activity and regeneration, efforts 

should be targeted towards manipulating neural activity with optogenetics to test 

the effect of different light patterns on regeneration in non-regenerative neurons. 

Even assuming our hypothesis is true and conserved in other neuron 

subtypes, there are still several not so trivial obstacles to overcome for functional 

regeneration. Neural activity promotes axon extension after axotomy, but that is 

just the first step in the complex process of regeneration (Tedeschi and Bradke, 

2017). The elongating axon must find its synaptic partner(s), likely receiving 

directional cues from neurotrophins, as in early axon development (O’Donovan, 

2016). Once the axon has reached its target, the motile growth cone must 

differentiate into a presynaptic terminal capable of releasing neurotransmitters 

onto its target for neuron communication to occur (Tedeschi and Bradke, 2017). 

Finally, for fast transmission, the newly formed axon must remyelinate, this does 

not always occur naturally after regeneration, as was observed by Bei et al 2016. 
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Regenerated RGC axons were not functional until they used a drug 4-AP to 

artificially promote conduction in the place of myelin (Bei et al., 2016). In our 

model, we are only concerned with overcoming this first barrier to regeneration, 

promoting axon elongation, but whether these other steps will naturally follow or 

require human intervention remains to be seen. 

 

MATERIALS AND METHODS 

Axotomy 

Axotomy was performed 80-85h AEL (after egg laying) unless otherwise stated. 

We followed the protocol in Song et. al 2012 with several modifications. Briefly, a 

larva was anesthetized with Sevofluorane for 3 minutes and mounted dorsal side 

up (for PNS) or ventral side up (for CNS). The bleaching function of a Zeiss 2-

photon laser damaged a small circle on the axon with an ROI of ~1.5µm. We 

found 910nm worked well for this. PNS axons were cut three quarters of the way 

to the bipolar dendrite, while CNS axons were cut as in Song et al 2012. 

Following axotomy, larva recovered on a damp Kim Wipe and then were 

transferred to recovery vials containing regular brown food or white grape juice 

agar plates (for following optogenetic stimulation).  

 

Optogenetics stimulation 

Larvae were grown in regular brown food containing 400µM all trans retinal 

(ATR, sigma #R2500) at 25°C in constant dark condition. On 80h-85h AEL, early 
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3rd instar larvae were transferred from food, rinsed with water and anesthetized 

with sevoflurane vapor for axotomy injury. They recovered in regular brown ATR 

food for 6h in darkness. Next, we put them on a 35mm petri dish with 1mL white 

grape juice agar plates (made 1-2 days before) covered in dark condition for 

optogenetic stimulation thereafter. At 24 and 48 hours after axotomy, axon 

regeneration was measured by confocal microscopy.  

 

470nm blue LED (LUXEON Rebel LED, mounted on a 10mm square coolbase 

and 50mm square and 25mm high alpha heat sink) was set over the grape-agar 

plate for ChR2 activation. Light pattern was programmed with BASIC Stamp 2.0 

microcontroller and buckpuck DC driver (LUXEON, 700mA, externally 

dimmable).   

 

Electrophysiology 

Extracellular recording of C4da neuronal activity was performed as described 

previously (Xiang et al., 2010). Axotomy was performed ~80h AEL. ~104 h AEL 

third instar larvae were dissected to make fillet preparations. Fillets were 

prepared in external saline solution composed of (in mM): NaCl 120, KCl 3, 

MgCl2 4, CaCl2 1.5, NaHCO3 10, trehalose 10, glucose 10, TES 5, sucrose 10, 

HEPES 10. The Osmolality was 305 mOsm kg−1 and the pH was 7.25. GFP-

positive (C4da) neurons were located under a Zeiss D1 microscope with a 

40X/1.0 NA water immersion objective lens. Gentle negative pressure was 
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applied to the C4da neuron to trap the soma in a recording pipette (5 µm tip 

opening; 1.5–2.0 MΩ resistance) filled with external saline solution. Recordings 

were performed with a 700A amplifier (Molecular Devices, Sunnyvale, CA), and 

the data were acquired with Digidata 1440A (Molecular Devices) and Clampex 

10.6 software (Molecular Devices). Extracellular recordings of action potentials 

were obtained in voltage clamp mode with a holding potential of 0 mV, a 2 kHz 

low-pass filter and a sampling frequency of 20 kHz.  

 

Burst analysis 

For the purposes of data analysis, a burst was defined as 5 or more APs each 

having an interspike interval of less than 100ms. This definition clearly 

differentiated axotomized from control neurons (Figure S1). The ‘Burst Analysis’ 

function on Clampfit 10.6 was used to detect bursts. 

 

Calcium Imaging 

GCaMP calcium imaging of C4da neuronal activity was performed as described 

previously (Xiang et al., 2010). For in vitro calcium imaging, axotomy was 

performed at 96h AEL and 120h AEL 3rd instar larvae were pinned ventral side up 

on silicone elastomer plates and dissected in the same external saline solution 

as electrophysiology. The internal organs were removed with fine forceps and the 

body wall was stretched with insect pins after opening body wall. Time-lapse 

imaging was performed under water objective lens (W Plan-Apochromat 20x/1.0 
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DIC CG=0.17 M27 75mm) by Zeiss LSM 700 confocal microscope. Frame rate is 

0.97Hz. All soma ROIs were corrected for horizontal drifting with ImageJ slice 

alignment.  Uncut C4da neurons from the same 3rd instar larvae were used as 

negative controls. 

 

For UVC treated larvae, as an inflammatory nociception model (Babcock, Landry 

and Galko, 2009), larvae at 96h AEL were mounted dorsal side up with double-

sided tape on microscope slides and placed in Spectrolinker XL-1000 ultraviolet 

crosslinker (Spectronics Corporation) with 20mJ/cm2 254nm UV exposure. After 

treatment, larvae were recovered in regular food and imaged at 120h AEL. 

 

Calcium imaging analysis 

Each C4da or C3da neuron was imaged for 5 minutes as one sample unless 

otherwise stated.  Original fluorescence signal (F) was firstly normalized to 

average intensity (F0) of each sample by using following formula: 

F’=(F-F0)/F0 

After normalization, we utilized the findpeaks (to find local maxima) function in 

Matlab (MathsWorks incorporation) to extract and quantify calcium spike peaks 

from noisy background. Fluorescence signals in uncut C4da neurons also show 

some weak and irregular calcium spikes with minor prominence (small 

fluorescence amplitude). To rule out these weak spikes and render strong spikes 

to stand out (see simultaneous recording and calcium imaging figure), we first 
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calculate the standard deviation (σ) of time-lapse fluorescence signal in each 

uncut C4da neurons from 120h AEL larvae, then calculate the mean value of σ 

(𝜎, n=11). We artificially set the three fold of 𝜎 (3𝜎, here is 0.148) as minimum 

peak prominence (amplitude) parameter in findpeaks function.  

 

After we get the position, quantity and prominence of each spike in one sample, 

we divide the quantity of spikes by recording duration (5 minutes, unless 

otherwise stated) as spike frequency and calculate the mean value of 

prominence from each spike as spike amplitude. 

 

Regeneration analyses 

We performed quantitative analysis in accordance with (Song et al., 2012) with 

some modifications. Briefly, we took two images for each neuron at 24hpa (L1) 

and 48 hpa (L2). All axon growth that occurred in this time frame was counted as 

regeneration. We calculated Regeneration Length as L2-L1. The larvae are 

growing during this time period, so the Regeneration Index normalizes 

Regeneration Length to a fixed length in the larvae, namely, the length from the 

C3/4da soma to the bipolar dendrite (BD): L1/BD1 - L2/BD2. We also quantified 

the Regeneration Percentage as the percentage of larvae with a Regeneration 

Index ≥0.07.  

 

Regeneration Imaging 
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We anesthetized larvae 24hpa using Sevoflurane and flattened larvae between a 

slide and coverglass with a thin bumper around the edge to maximize flatness 

without lethality. We always cut dorsal axon on the right side of the larva so we 

could easily identify the axotomized neuron. We took a z-stack image through the 

dendrites, soma, and axon of the axotomized neuron using a Zeiss D1 Confocal 

Microscope with a 20X water objective. We then recovered larvae on a wet kim 

wipe and transferred them to recovery vials/ grape agar plates depending on the 

experiment (see optogenetics Methods). At 48 hpa we again anesthetized the 

larvae and identified the same neuron by morphology of its dendrites and took a 

second image using the same parameters. 

 

Fly Genotypes 

note: X chromosome is w1118 unless otherwise noted. Chromosome IV has 

been omitted for simplicity. 

 

Figure 2.1-2 

PpkCD4TdGFP/+;UAS-WldS/+ 

PpkCD4TdGFP/+; + 

Repo-Gal80/UAS-YFP; 19-12-Gal4/+ 

 

Figure 2.3 

;;ppk-LexA,LexAop-myr:GCaMP6s/+    (C4da imaging) 
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;;NoMPC-LexA/LexAop-myr:GCaMP6s   (C3da imaging) 

 

Figure 2.4 

PpkCD4TdGFP/+; + 

Repo-Gal80/UAS-YFP; 19-12-Gal4/+ 

;;ppk-LexA,LexAop-myr:GCaMP6s/+    (C4da imaging) 

;;NoMPC-LexA/LexAop-myr:GCaMP6s   (C3da imaging) 

 

Figure 2.5 

PpkCD4TdGFP ; repo-Gal4, UAS-tdTomato 

 

Figure 2.6-7 

Kir regeneration 

PpkCD4TdGFP/UAS-Kir2.1; Ppk-Gal4 

PpkCD4TdGFP/UAS-Kir2.1; + 

 (Kir2.1 overexpression)  

ppk-Gal4/UAS-Kir2.1; ppk-LexA,LexAop-myr:GCaMP6s /+ 

ppk-Gal4/+; ppk-LexA,LexAop-myr:GCaMP6s /+ 

Optogenetic experiments 

Repo-Gal80/UAS-ChR2-YFP; 19-12-Gal4/+ 

Repo-Gal80/UAS-YFP; 19-12-Gal4/+ 
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Figure 2.8 

PpkCD4TdGFP/+ 
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Chapter III 

An L-type voltage gated calcium channel promotes neural bursting 

activities and subsequent regeneration of C4da 
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ABSTRACT 

To determine the molecular mechanism promoting the neural bursting that 

leads to subtype-specific regeneration in Chapter II, we performed a candidate-

based reverse genetic screen for ion channels that affect neuron bursting after 

axotomy. We discovered that an L-type voltage gated calcium channel (VGCC) 

promotes neuron bursting and subsequent regeneration. This VGCC, Ca-α1D, 

has high expression in the regenerative neuron and weak expression in the non-

regenerative neuron. This may explain why the regenerative neuron can burst 

and regenerate, while the non-regenerative neuron cannot. Together, our 

findings suggest that Ca-α1D could be the molecular mechanism driving subtype-

specific regeneration, that is, why certain subtypes neurons are able to 

regenerate while other neurons cannot.  
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INTRODUCTION 

 Our discovery that neural bursting activity mediates subtype-specific 

neuron regeneration (detailed in Chapter II, summarized below) aroused 

questions about the molecular origin of this neural burst activity after axotomy. 

Discerning how some subtypes of neurons are able to burst and subsequently 

regenerate, while other subtypes of neurons can neither burst nor regenerate 

would offer researchers and clinicians a molecular handle with which to predict, 

monitor, and manipulate regeneration.  

 In Chapter II we learned that after injury, not all neurons have the same 

intrinsic regenerative ability. Some neurons, for example Class IV dendritic 

arborization (C4da) neuron, regenerates robustly while other neurons, for 

example Class III dendritic arborization (C3da) neuron, does not regenerate 

(Song et al., 2012). This general phenomenon is called subtype-specific neuron 

regeneration (Duan et al., 2015; Norsworthy et al., 2017; Nieuwenhuis et al., 

2018). Studies to elucidate the intrinsic mechanism mediating subtype-specific 

regeneration are ongoing (reviewed in Liu et al., 2011). We show in Chapter II 

that upon axotomy, C4da shows strong neuron bursting activity by 

electrophysiology and calcium imaging. This bursting activity is necessary for 

axon regeneration. We also show that C3da does not alter its firing pattern upon 

axotomy, and it subsequently does not regenerate. Excitingly, use of 

optogenetics to induce neuron bursting in C3da is sufficient to promote de novo 

regeneration. Furthermore, the pattern of neural activity is critical for robust axon 
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regeneration: strong consolidated bursting regenerates better than a tonic 

increase in firing. We conclude that neural bursting activity is the intrinsic 

mediator of subtype-specific neuron regeneration. This novel report 

demonstrates why some neurons can regenerate while others cannot. It also 

provides an innovative therapeutic target for clinicians working to treat nerve 

injury from stroke, spinal cord injury, and neurodegenerative diseases. The work 

in this Chapter aims to go one step deeper into our understanding of subtype-

specific neuron regeneration in C3da and C4da. We identified neural activity as 

the cellular mechanism of subtype-specific regeneration, but now we ask, what is 

the molecular mechanism? We know that differing levels of neuron activity 

dictate differing regeneration rates, but we do not have any hints as to why some 

neurons might have intrinsically higher levels of neural bursting activity. In this 

Chapter we ask the following: Why do some neurons have high neural bursting 

activity that allows them to regenerate while other neurons are unable to burst? 

What is the molecular mechanism driving this differential neural bursting 

response after axotomy? The answers to these questions will confer insight into 

the molecular mechanism of neural activity as a mediator of subtype-specific 

regeneration. It is also likely that any molecules we identify could be considered 

as therapeutic targets for nerve regeneration after injury. Manipulating neuron 

activity therapeutically could prove challenging in certain situations, but using an 

agonist to activate a specific molecule might be more feasible in those situations. 



	 56	

A burst is defined as a group of action potentials (APs) in rapid succession 

followed by a pause (Zeldenrust, Wadman and Englitz, 2018). Bursting in 

neurons is usually a sign that the cell is hyperexcitable (Skinner et al., 1999). If 

neuronal activity is important for regeneration, it follows that ion channels play a 

salient role in mediating regeneration, as ion channels regulate neuronal 

excitability (Bernstein, 1902; Simms and Zamponi, 2014). Based on this fact, we 

performed a candidate-based reverse genetic screen to identify ion channels 

important for neural bursting in C4da. From this screen we identified two ion 

channels that regulate neural bursting in C4da: BK (big conductance potassium 

channel) and Ca-α1D (an L-type voltage gated calcium channel).  

BK channels are expressed in nearly every cell where they play myriad 

roles in vascular tone regulation, bladder tone regulation, urinary K+ excretion, 

and retinal circulation (reviewed in Vetri et al., 2014). They are better known for 

their role in neurons, where they are involved in neuronal excitability and 

neurotransmitter release ((Wang et al., 2001; Chen, Cai and Pan, 2009; Cao et 

al., 2012). BK channels have also been implicated in brain ischemia (Liao et al., 

2010). 

The mammalian homologue of Ca-α1D is Cav1.3 (cacna1d, 62% similarity 

51% identity). Cav1.3 has low threshold activation, fast activation, and slow 

inactivation (Calin-Jageman and Lee, 2008). These features enable Cav1.3 to 

promote spontaneous and burst firing (Calin-Jageman and Lee, 2008). Cav1.3 

promotes spontaneous firing (Cooper and White, 2000; C. Savio Chan et al., 
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2007). Cav1.3 is also involved in fear conditioning, depressive-like behavior, 

Parkinson’s disease, and sounds transduction in the inner ear (Platzer et al., 

2000; Sinnegger-Brauns et al., 2004; Day et al., 2006; Mckinney and Murphy, 

2006). Cav1.3 is present in RGCs, although, whether it is expressed more 

strongly in αRGCs is unknown (Shi et al., 2017). Ca-α1D in Drosophila is 

required for the high frequency bursting of C4da when exposed to a noxious 

temperature (Terada et al., 2016). 

VGCCs are important for regulating axon growth during development 

(Tang, Dent and Kalil, 2003). There are few studies looking at the role of L-type 

VGCCs in regeneration. Inhibition of L-type VGCC egl-19 in C.elegans (Ca-α1D 

homologue) reduces axon regeneration (Ghosh-Roy et al., 2010). Enes et al. 

(2010) found that knocking out Cav1.2 actually enhances axon regeneration, but 

this study had several caveats (see General Discussion). No studies to date have 

suggested that any VGCC might mediate subtype-specific neuron regeneration.  

In this Chapter, we perform a screen to identify ion channels that regulate 

C4da neural bursting after axotomy. We identify BK and Ca-α1D as important for 

neural bursting. Ca-α1D, but not BK, is required for C4da axon regeneration. This 

suggests Ca-α1D promotes C4da regeneration by promoting neural bursting 

activities. Reporter lines for Ca-α1D reveal high Ca-α1D expression levels in 

C4da, but weak expression levels in C3da. This may explain why C4da can burst 

and regenerate while C3da cannot. This suggests Ca-α1D might be the 
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molecular mechanism behind the subtype-specific neuron regeneration we 

observe in C3da and C4da.  

 

RESULTS 

Reverse-genetic screen identifies ion channels that regulate C4da neural 

bursting 

Ion channels regulate neuron excitability (Bernstein, 1902), so we 

performed a candidate-based reverse genetic screen looking for ion channels 

that regulate C4da bursting. For the screen, we used RNAi to knock down ion 

channel candidates specifically in C4da and looked for an effect on neural 

bursting. When a neuron fires a single action potential, there are three phases: 

depolarization (open Na+ channels), repolarization (open K+ channels), and 

hyperpolarization (K+ channels remain open). Therefore, knocking down a Na+ 

channel would reduce neuron excitability while knocking down a K+ channel 

would increase neuron excitability. To ensure our screen captured both of these 

possibilities, we knocked down Na+ channels and assayed for bursting via 

calcium imaging 24 hours after axotomy and we knocked down K+ channels and 

assayed for bursting in uncut (non-axotomized) neurons. Knocking down a K+ 

channel increases excitability of the neuron and could therefore lead to neural 

bursting, even in the absence of axotomy. We also knocked down Ca+ channels 

and looked for reduced bursting after axotomy. We used at least 2 RNAi lines to 

verify the results of our screen. Using this approach, we identified two ion 
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channels that regulate C4da bursting: BK (big conductance potassium channel) 

and Ca-α1D (an L-type voltage gated calcium channel).  

 

The BK channel weakly promotes bursting in uncut C4da neurons but does 

not enhance regeneration 

 The first hit from our genetic screen was the BK channel, called slo in 

Drosophila. Since the slo channel is a K+ channel, we observed increased 

bursting in uncut control neurons when we reduced slo using RNAi (Fig. 3.1A). 

We confirmed the results of the RNAi with slo mutant (slo-/-). We also observed a 

mild bursting phenotype in the uncut slo-/- neurons (Fig. 3.1B, C). This phenotype 

was not as strong as we observed in normal C4da axotomized neurons (~4 

bursts/minute versus ~1 burst/minute, Fig. 3.1C). We manually isolated C4da 

neurons (Fig. 3.1D) and performed RT-PCR to demonstrate that slo is expressed 

in C4da neurons along with ppk, a positive control (Fig. 3.1E). To determine if slo 

is the molecular mechanism promoting bursting and subsequent regeneration in 

C4da, we looked at the regeneration phenotype of slo-/- larvae. We did not 

observe enhanced baseline regeneration in the PNS of C4da neurons in pilot 

studies. In Chapter II we showed that while C4da bursts and regenerated when 

cut in the peripheral nervous system (PNS), C4da neither bursts nor regenerates 

when cut in the central nervous system (CNS). We therefore looked at C4da 

CNS regeneration in slo-/- larvae. We expected that knocking out slo in C4da 
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would result in bursting and subsequent CNS regeneration. Inconsistent with our 

hypothesis, pilot studies of slo-/- C4da neurons did not show CNS regeneration. 

 

Figure 3.1. slo modulates neuron bursting. A, GCaMP6S fluorescence in 
intact (uncut) C4da neurons with slo and control (luciferase) RNAi. B, Recording 
of slo mutant C4da shows modest bursting compared to wt control, quantification 
in C **p<0.01 unpaired student’s t-test with unequal variance. Red insert shows 
example burst with higher resolution. D, High purity of manually isolated C4da 
neurons labeled with GFP. E, RT-PCR of slo and ppk expression. 
 

 

 

Calcium channels regulate neuronal excitability and regeneration 

We identified through our screen an L-type voltage gated calcium channel 

(VGCC) as an important mediator of neural hyperactivity after C4da neuron 

axotomy. Drosophila L-type VGCC has three distinct subunits: α1, β and α2δ 

(each encoded by Ca-α1D, Ca-beta, and stj respectively). α1 is the pore-forming 

subunit while β and α2δ are auxiliary subunits. This L-type VGCC is broadly 
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expressed in central and peripheral nervous systems as well as muscles. It 

mediates inward calcium influx from extracellular space upon membrane 

depolarization and further modulates the depolarization phase of action potential 

firing. RNAi knockdown of either the α1, β or α2δ subunit in C4da neurons 

specifically decreases the frequency and amplitude of spontaneous calcium 

spikes at 24hpa (Fig. 3.3B, C). Moreover, the pore-forming Ca-α1D hypomorphic 

mutant (AR66, (Eberl et al., 1998)) also decreases the amplitude and frequency 

of spontaneous calcium spikes in C4da neurons at 24 hpa, corroborating the 

RNAi knockdown results (Fig. 3.2A-D, Fig. 3.3A, B). We did not observe 

differences in the kinetics of axon, soma, or dendrite calcium influx, due to our 

slow variant of GcaMP (GcaMP6S). In addition, nimodipine is a selective 

antagonist of L-type VGCCs and has been shown to reduce temperature-induced 

Ca-1D calcium transients in C4da neurons (Terada et al., 2016). Acute 

application of 10 µM nimodipine in recording chamber blocks the spontaneous 

calcium spikes (Fig. 3.2E). Thus, both the genetic and pharmacological evidence 

indicates that L-type VGCC mediates neural bursting activity after C4da axotomy. 

Next, we asked whether L-type VGCC also regulates regeneration. 

Excitingly, Ca-α1D mutants show reduced regeneration in C4da neurons (Fig. 

3.2F, G). In addition, RNAi knockdown of any of the α1, β or α2δ subunits in C4da 

neurons also reduces C4da regeneration (Fig. 3.3F, G). In summary, L-type 

VGCC mediates both neuronal bursting activities and regeneration in C4da after 
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axotomy, which is consistent with our hypothesis that neuronal excitability 

governs cell type-specific regeneration through the L-type VGCC Ca-1D.  
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Figure 3.2. The L-type VGGC Ca-α1D regulates bursting and regeneration. 
A-C, Example calcium imaging trace of control (A), Ca-α1DX7/Ca-α1DAR66 (B) 
and Ca-α1DX10/Ca-α1DAR66(C) mutant 24 hours post axotomy. Images are still 
frames at time points indicated by red arrow.  Red arrowhead indicates axon. 
Red circle indicates cut site. Scale bar, 20µm.  D, Quantification of calcium 
spikes per minute in w1118, Ca-α1DX7/Ca-α1DAR66  and Ca-α1DX10/Ca-α1DAR66  
mutants under control and axotomy conditions, n=12, 8, 8, 12, 9, 9. E, Calcium 
spikes per minute before and after application of nimodipine (10µM, n=13, 13). F-
G, Sample regeneration images for control and Ca-α1DX7/Ca-α1DAR66  mutant (F) 
with quantification (G) n=34, 41, 32. Student’s paired t-test (E), one-way ANOVA 
with multiple comparisons and Bonferroni Correction (C, D, G left). Chi-squared 
test with post hoc pairwise comparisons via Fisher’s Exact Test (G right). *p<.05, 
**p<.01, ***p<.001, ****p<.0001. Error bars indicate SEM. 
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Figure 3.3. Ca-1D regulates bursting and regeneration, extended data sets. 
A, Example calcium imaging traces of uncut Ca-α1DX7/Ca-α1DAR66 and Ca-
α1DX10/Ca-α1DAR66 with axotomized Ca-α1DX10/Caα-1DAR66. Images are still 
frames from video at time indicated by red arrow, red circle shows laser cut site. 
B, Ca-1D mutant quantification of calcium spikes per minute for uncut control and 
axotomized neurons with genotype indicated, n=12, 8, 8, 12, 9, 9. C, 
Quantification of Ca-1D RNAi against alpha and beta subunits, and control 
(luciferase), n=11, 10, 10, 12, 11. D, Quantification of Ca-1D RNAi against [T and 
C], and control (luciferase), n=12, 10, 13, 12, 10. E, high amplitude spiking in 
control and mutants. F-G, Regeneration quantification for Ca-1D mutants, RNAi, 
and control neurons, showing Regeneration Index (F) and Regeneration Percent 
(G), n=34, 41, 32, 18, 38, 27, 25, 25, 26.  One-Way ANOVA with multiple 
comparisons against control with Bonferroni Correction (B, C, D, E, F). Fisher’s 
Exact Test (G). *p<.05, **p<.01, ***p<.001, ****p<.0001. Error bars indicate SEM. 
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C4da expresses Ca-α1D strongly while C3da has weaker expression  

To characterize Ca-α1D expression in C4da and C3da neurons in vivo, we 

constructed two endogenous knock-in lines by CRISPR-Cas9: Ca-α1D-T2A-

Gal4 and Ca-α1D-eGFP. (Fig. 3.4A, see methods). T2A-Gal4 and eGFP tags are 

linked to the intracellular C-terminal of Ca-α1D membrane ion channel. T2A- 

Gal4 is co-expressed in the same peptide with Ca-α1D. Gal4 protein is released 

to cytoplasm upon self-cleavage of T2A sequence in recombinant proteins, then 

Gal4 protein can drive downstream UAS-reporter gene expression in target cells. 

Indeed, when using Ca-α1D-T2A-Gal4 to drive UAS-mCherry-NLS (showing 

nucleus, Fig. 3.4B, C) and UAS-CD4-TdTomato (showing plasma membrane, 

Fig 3.4D), C4da shows relatively strong Ca-α1D expression while C3da 

shows weaker Ca-α1D expression based on fluorescence intensity (Fig. 

3.4E).  Moreover, immunostaining of eGFP tag in homozygous Ca-α1D-eGFP 

line independently confirms that C4da expresses more Ca-α1D than C3da (Fig. 

3.4F-H). We observed clear soma and axon expression of Ca-α1D in C4da while 

dendrite expression is relatively weak and barely detected. 

 

Ca-α1D expression levels do not change upon axotomy in C3da or C4da 

 We hypothesized that upon axotomy of C4da, the expression of Ca-α1D 

would increase, leading to neuron bursting. Upon axotomy of C3da, we expected 

to see no change in the expression level of Ca-α1D. Contrary to our hypothesis, 



	 68	

pilot studies did not reveal a change in expression level of Ca-α1D in either C3da 

or C4da upon axotomy.  
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Figure 3.4. Ca-α1D is expressed strongly in C4da and weakly in C3da 
neurons. A, Genetic strategy for using CRISPR-Cas9 to produce T2A-Gal4- or 
eGFP-tagged Ca-α1D line, see Methods. B, ppkeGFP labels dorsal C4da (ddaC, 
indicated by yellow arrowhead). Ca-α1D-T2A-Gal4>UAS-CD4-TdTomato labels 
cells expressing Ca-α1D. The white arrowhead here indicates one of dorsal C3da 
neurons (ddaF). C, ppkeGFP labels dorsal C4da (ddaC, indicated by yellow 
arrowhead). Ca-α1D-T2A-Gal4>UAS-mCherry-NLS labels the nucleus of cells 
expressing Ca-α1D. Merge shows overlap. Other yet unidentified sensory 
neurons can be seen with this marker. D, NoMPC-LexA>LexAop2-myr-
GCaMP6s labels two dorsal C3da neurons (top, ddaF; bottom, ddaA. Indicated 
by white arrowhead).Ca-α1D-T2A-Gal4>UAS-mCherry-NLS labels the nucleus of 
cells expressing Ca-α1D. Merge shows overlap. E, Summary of nuclear 
mCherry-NLS fluorescence from C4da and C3da soma regions of Ca-T2A-
Gal4>mCherry-NLS larvae.  n=17, 17.  F-G, Red HRP signal labels all neuron 
cells, while green eGFP immunostaining signal labels C4da (ddaC, soma 
indicated by yellow arrowhead) and C3da (ddaF, soma indicated by white 
arrowhead). Merge shows overlap. F. Three panels are from w1118 negative 
control line. Scale bar, 20µm.  G. Three panels are from homozygous Ca-α1D-
eGFP line. Scale bar, 20µm. H, Summary of eGFP immunostaining fluorescence 
from C4da and C3da soma regions of Ca-α1D-eGFP larvae.  n=8, 8. Student’s t-
test (E and H). **p<.01, ****p<.0001. Error bars indicate SEM. 
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DISCUSSION 

 In this Chapter we show that Ca-α1D is the molecular mediator of neural 

bursting in C4da. Ca-α1D is required for neural bursting in C4da after axotomy 

and for subsequent regeneration. C4da has high Ca-α1D expression levels 

whereas C3da has relatively low Ca-α1D expression levels. We hypothesize that 

C4da is able to burst and then regenerate because it expresses high Ca-α1D 

while C3da cannot burst because it expresses low Ca-α1D, therefore C3da does 

not regenerate. This suggests that Ca-α1D is the molecular mediator of subtype-

specific neuron regeneration. This demonstrates that L-type VGCCs could be 

used to promote regeneration therapeutically. Also, it suggests that perhaps 

neuron subtypes that are unable to regenerate have low expression of L-type 

VGCCs. In Chapter II we showed that neural activity is a cellular mechanism of 

subtype-specific regeneration, here we suggest that Ca-α1D is the molecular 

mechanism driving those changes in neural activity level that we observe in C3da 

and C4da. 

 VGCCs play a role in diseases including pain, epilepsy, migraine, ataxia, 

Huntington’s disease and cancer (Simms and Zamponi, 2014; Chen et al., 2018; 

Maklad, Sharma and Azimi, 2019). As a result, there are many therapies to 

manipulate VGCCs in human (reviewed in Belardetti and Zamponi, 2012). 

Cilnipidine is used to treat hypertension by blocking N-type VGCCs (Takahara, 

2009). Verapamil and diltiazem have been used to treat hypertension, angina, 

and arrhythmia in humans for decades, these drugs work by blocking L-type 
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VGCCs (Ritz et al., 2010). Recently, a study found that people taking these L-

type VGCC blockers actually have a reduced incidence of Parkinson’s disease 

(Ritz et al., 2010). L-type VGCC blockers are also used to treat hyperinsulinemia 

(reviewed in Arnoux et al., 2010). The abundance of safe and proven 

therapeutics to manipulate L-type VGCCs like Cav1.3 (Ca-α1D) means that 

increasing Cav1.3 to promote regeneration in mouse models and humans after 

nerve injury should be safe and relatively straightforward. Our extensive 

knowledge base about VGCCs function, localization, expression, isoforms, etc. 

will prove invaluable as we learn more about L-type VGCCs role in subtype-

specific regeneration (reviewed in Simms and Zamponi, 2014).  

We did not observe a change in Ca-α1D expression level after axotomy. 

This could indicate that a more subtle change, such as phosphorylation or protein 

translocation to/from the membrane might be taking place. This could increase 

the activity of Ca-α1D after axotomy in C4da, thereby leading to increased 

bursting compared to before the cut. It is also possible that no change in Ca-α1D 

activity is necessary for this bursting to occur. The burst activity could be 

regulated through a parallel pathway and only require high Ca-α1D expression to 

be present for robust bursting after axotomy. 

Upon reduction of the BK channel, slo, we observed weak bursting in 

uncut C4da neurons but no effect on regeneration. We likely observed weak 

bursting because slo is not the molecular mechanism behind C4da bursting after 

axotomy. To strengthen this conclusion, future studies might look for expression 
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level changes or protein translocation of slo upon axotomy. If slo 

expression/availability is not reduced upon axotomy, this would support the 

hypothesis that slo is not the mechanism behind C4da bursting after axotomy. It 

is also possible that slo is playing a role together with Ca-α1D. Cav1.3 and BK 

channels cluster and are functionally coupled to promote BK channel activation 

at much lower voltages (Vivas et al., 2017). It is conceivable that both slo and 

Ca- α1D manipulation will work synergistically to promote stronger bursting and 

potentially even regeneration.  

We did not observe increased regeneration in slo-/- C4da neurons in the 

PNS or the CNS. This is likely due to the fact that the bursting phenotype of slo-/- 

is one quarter as strong as we observe in normal axotomized C4da neurons (1 

burst/minute versus 4 bursts/minute). In C. elegans, SLO-1 reduction resulted in 

enhanced axon outgrowth (Chen et al., 2011). However, in mammals it has been 

shown that BK reduction increases neural activity in intact neurons, but has no 

effect on axotomized neurons (Cao et al., 2012). This effect could also explain 

why we did not observe a regeneration phenotype, because neuron activity was 

not increased after axotomy. Future studies should measure neural activity in 

axotomized slo-/- neurons. 

The bursting we observe in C4da after axotomy is reminiscent of burst 

pause firing in purkinje cells. AP can be generated in axon, but subsequent 

bursting AP are actually generated in dendrite (Davie, Clark and Häusser, 2008). 

Neurons with elaborate dendrites (like purkinje cells and C4da) can have bursting 
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originate from the dendrites leading to a qualitatively different mechanism of 

bursting (Krahe and Gabbiani, 2004). In addition to after axotomy, C4da also 

shows burst pause firing at high temperatures (Xiang et al., 2010; Terada et al., 

2016). This thermally-induced burst firing requires TrpA1 and Ca-α1D (Terada et 

al., 2016). TrpA1 is expressed in C4da dendrites (Xiang et al., 2010). 

Interestingly, Cav1.3 has been shown in mammals to localize to dendrites 

(Simms and Zamponi, 2014), but our endogenous reporter lines only weakly 

detected Ca-α1D expression on the C4da dendrites. It is possible that, like 

purkinje cells, C4da bursting could originate from the dendrites. Burst firing is 

present in many neurons, but never before has it been linked to regeneration. 

Burst firing is particularly prevalent in sensory systems (reviewed in Krahe and 

Gabbiani, 2004).  

 

MATERIALS AND METHODS 

Axotomy 

Axotomy was performed 80-85h AEL (after egg laying) unless otherwise stated. 

We followed the protocol in Song et. al 2012 with several modifications. Briefly, a 

larva was anesthetized with Sevofluorane for 3 minutes and mounted dorsal side 

up (for PNS) or ventral side up (for CNS). The bleaching function of a Zeiss 2-

photon laser damaged a small circle on the axon with an ROI of ~1.5µm. We 

found 910nm worked well for this. PNS axons were cut three quarters of the way 

to the bipolar dendrite, while CNS axons were cut as in Song et al 2012. 



	 74	

Following axotomy, larva recovered on a damp Kim Wipe and then were 

transferred to recovery vials containing regular brown food or white grape juice 

agar plates (for following optogenetic stimulation).  

 

Electrophysiology 

Extracellular recording of C4da neuronal activity was performed as described 

previously (Xiang et al., 2010). Axotomy was performed ~80h AEL. ~104 h AEL 

third instar larvae were dissected to make fillet preparations. Fillets were 

prepared in external saline solution composed of (in mM): NaCl 120, KCl 3, 

MgCl2 4, CaCl2 1.5, NaHCO3 10, trehalose 10, glucose 10, TES 5, sucrose 10, 

HEPES 10. The Osmolality was 305 mOsm kg−1 and the pH was 7.25. GFP-

positive (C4da) neurons were located under a Zeiss D1 microscope with a 

40X/1.0 NA water immersion objective lens. Gentle negative pressure was 

applied to the C4da neuron to trap the soma in a recording pipette (5 µm tip 

opening; 1.5–2.0 MΩ resistance) filled with external saline solution. Recordings 

were performed with a 700A amplifier (Molecular Devices, Sunnyvale, CA), and 

the data were acquired with Digidata 1440A (Molecular Devices) and Clampex 

10.6 software (Molecular Devices). Extracellular recordings of action potentials 

were obtained in voltage clamp mode with a holding potential of 0 mV, a 2 kHz 

low-pass filter and a sampling frequency of 20 kHz.  

 

Burst analysis 
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For the purposes of data analysis, a burst was defined as 5 or more APs each 

having an interspike interval of less than 100ms. This definition clearly 

differentiated axotomized from control neurons (Figure S1). The ‘Burst Analysis’ 

function on Clampfit 10.6 was used to detect bursts. 

 

Calcium Imaging 

GCaMP calcium imaging of C4da neuronal activity was performed as described 

previously (Xiang et al., 2010). For in vitro calcium imaging, axotomy was 

performed at 96h AEL and 120h AEL 3rd instar larvae were pinned ventral side up 

on silicone elastomer plates and dissected in the same external saline solution 

as electrophysiology. The internal organs were removed with fine forceps and the 

body wall was stretched with insect pins after opening body wall. Time-lapse 

imaging was performed under water objective lens (W Plan-Apochromat 20x/1.0 

DIC CG=0.17 M27 75mm) by Zeiss LSM 700 confocal microscope. Frame rate is 

0.97Hz. All soma ROIs were corrected for horizontal drifting with ImageJ slice 

alignment.  Uncut C4da neurons from the same 3rd instar larvae were used as 

negative controls. 

 For UVC treated larvae, as an inflammatory nociception model (Babcock, Landry 

and Galko, 2009), larvae at 96h AEL were mounted dorsal side up with double-

sided tape on microscope slides and placed in Spectrolinker XL-1000 ultraviolet 

crosslinker (Spectronics Corporation) with 20mJ/cm2 254nm UV exposure. After 

treatment, larvae were recovered in regular food and imaged at 120h AEL. 
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Calcium imaging analysis 

Each C4da or C3da neuron was imaged for 5 minutes as one sample unless 

otherwise stated.  Original fluorescence signal (F) was firstly normalized to 

average intensity (F0) of each sample by using following formula: 

F’=(F-F0)/F0 

After normalization, we utilized the findpeaks (to find local maxima) function in 

Matlab (MathsWorks incorporation) to extract and quantify calcium spike peaks 

from noisy background. Fluorescence signals in uncut C4da neurons also show 

some weak and irregular calcium spikes with minor prominence (small 

fluorescence amplitude). To rule out these weak spikes and render strong spikes 

to stand out (see simultaneous recording and calcium imaging figure), we first 

calculate the standard deviation (σ) of time-lapse fluorescence signal in each 

uncut C4da neurons from 120h AEL larvae, then calculate the mean value of σ 

(𝜎, n=11). We artificially set the three fold of 𝜎 (3𝜎, here is 0.148) as minimum 

peak prominence (amplitude) parameter in findpeaks function.  

 

After we have the position, quantity and prominence of each spike in one sample, 

we divide the quantity of spikes by recording duration (5 minutes, unless 

otherwise stated) as spike frequency and calculate the mean value of 

prominence from each spike as spike amplitude. 
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Regeneration analyses 

We performed quantitative analysis in accordance with (Song et al., 2012) with 

some modifications. Briefly, we took two images for each neuron at 24hpa (L1) 

and 48 hpa (L2). All axon growth that occurred in this time frame was counted as 

regeneration. We calculated Regeneration Length as L2-L1. The larvae are 

growing during this time period, so the Regeneration Index normalizes 

Regeneration Length to a fixed length in the larvae, namely, the length from the 

C3/4da soma to the bipolar dendrite (BD): L1/BD1 - L2/BD2. We also quantified 

the Regeneration Percentage as the percentage of larvae with a Regeneration 

Index ≥0.07.  

 

Regeneration Imaging 

We anesthetized larvae 24hpa using Sevoflurane and flattened larvae between a 

slide and coverglass with a thin bumper around the edge to maximize flatness 

without lethality. We always cut dorsal axon on the right side of the larva so we 

could easily identify the axotomized neuron. We took a z-stack image through the 

dendrites, soma, and axon of the axotomized neuron using a Zeiss D1 Confocal 

Microscope with a 20X water objective. We then recovered larvae on a wet kim 

wipe and transferred them to recovery vials/ grape agar plates depending on the 

experiment (see optogenetics Methods). At 48 hpa we again anesthetized the 

larvae and identified the same neuron by morphology of its dendrites and took a 

second image using the same parameters. 
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Crispr/Cas-9 endogenous knock in generation 

Alternative splicing produces 10 different CDS (coding sequence) of Ca-α1D 

annotated by Flybase (www.flybase.org). 8 of them (Ca-α1D-PE, PB, PA, PC, PJ, 

PH, PF and PI) share same C-termini sequence, thus we chose to link T2A-Gal4 

and eGFP tag after this C-termini, respectively.  CRISPR target sequence, 5’-

ACAATCGCCGCTAAGAGGAC-3’, is assumed to introduce double strand DNA 

cut at around 20 bp upstream of Ca-α1D stop codon TAG. Rescue template 

plasmid includes 2000 bp 5’homology and 2000 bp 3’ homology sequence 

flanking the stop codon TAG to assist homology-directed recombination (Fig. 5A).  

Plasmid injection and fly transformant selection were performed by BestGene 

Inc.. All genome-editing fly lines are confirmed by sequencing.    

 

Immunostaining  

We used TSA Plus Cyanine 5 (Cy5) detection kit (PerkinElmer, NEL745001KT) 

to boost the immunostaining signals. 120h AEL 3rd larvae were dissected out in 

the HL3 solution that was pre-cold on ice. HL3 solution formula: 70 mM NaCl, 5 

mM KCl, 20 mM MgCl2, 10 mM NaHCO3, 5 mM trehalose, 115 mM sucrose, and 

5 mM HEPES (final pH 7.2). We used fine glass microelectrode (pulled by P-97 

microelectrode puller, Sutter Instrument Co.) to gently remove the muscle 

segments covering the target C4da and C3da, since muscle cells show strong 

Ca-α1D expression. 
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During each step of changing solutions, fillets are washed with washing buffer 

(0.3% Triton X-100 in PBS) for 4 times of 15min. Larvae fillets were first fixed in 4% 

paraformaldehyde for 30 min at RT and then incubated in 3% H2O2 solution to 

quench endogenous peroxidase. Fillets were blocked in blocking buffer (0.3% 

Triton X-100, 5% donkey serum (Sigma, D9663) and 0.1% bovine serum albumin 

(Sigma) in PBS) for 1h at RT, incubated in anti-GFP first antibody (Thermo 

Fisher, A-11122, 1:1500 in blocking buffer) for 40h at 4°C, and in anti-rabbit 

HRP-conjugated second antibody (GE Healthcare, NA9340, 1:100 in blocking 

buffer) for 2h at RT. Fillets were then incubated in TSA working solution 

(PerkinElmer, NEL745001KT) for 3min at RT and in anti-HRP antibody (Jackson 

immunoresearch, 123-545-021, 1:200 in blocking buffer) for 2h at RT. Fillets 

were finally mounted with anti-fade mountant (Thermo Fisher, P36961) for 12h at 

RT for following confocal imaging.    

 

fly genotypes 

slo-/-/slo-/-: ppkeGFP/+ 

slo-/-/slo-/-: ppk-LexA,LexAop-myr:GCaMP6s /+ 

CaX10/CaAR66; ppk-LexA,LexAop-myr:GCaMP6s /+ 

CaX7/CaAR66; ppk-LexA,LexAop-myr:GCaMP6s /+ 

B25830 

;ppkGal4, UAS-Dicer 2.0/+; Caalpha-1D RNAi/ ppk-LexA,LexAop-

myr:GCaMP6s 
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B33413 

;ppkGal4, UAS-Dicer 2.0/+; Caalpha-1D RNAi/ ppk-LexA,LexAop-

myr:GCaMP6s 

B29575 

;ppkGal4, UAS-Dicer 2.0/+; Ca-beta RNAi/ ppk-LexA,LexAop-

myr:GCaMP6s 

B43292 

;ppkGal4, UAS-Dicer 2.0/Caalpha-1D RNAi; ppk-LexA,LexAop-

myr:GCaMP6s/+ 

 

B. Ca-T2A-Gal4/+;ppkeGFP/UAS-CD4-TdTomato 

C. Ca-T2A-Gal4/+;ppkeGFP/UAS-mCherry-NLS 

Ca-α1D-T2A-eGFP 

W1118 
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Chapter IV 

GENERAL DISCUSSION 
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Part I: Subtype-specific neural regeneration is mediated by neuron activity 

 Most neurons cannot regenerate (Ramon y Cajal, 1928). However, recent 

work has shown that not all neurons are uniformly poor regenerators, instead a 

small subset can regenerate robustly (Duan et al., 2015). The mechanism 

underlying this subtype-specific regeneration remains unknown. Mounting 

evidence points to an intrinsic mechanism driving regeneration (Mcquarrie and 

Grafstein, 1973; Richardson and Issa, 1984; Neumann and Woolf, 1999; Liu et 

al., 2011). We hypothesized that neural activity is the intrinsic mechanism driving 

subtype-specific regeneration. 

 Drosophila larvae also show subtype-specific neuron regeneration, C4da 

regenerates robustly while neighboring C3da does not regenerate. (Song et al., 

2012). This is a well-defined system to investigate the intrinsic mechanism 

underlying subtype-specific regeneration. These neurons are easy to cut, image, 

activate with optogenetics in vivo, and record, as they lie under a transparent 

cuticle. Genetic manipulation of C4da and C3da is powerful using the GAL4-UAS 

system with highly specific C4da and C3da drivers. It is also possible to cut a 

single axon from within the sensory neuron bundle using a 2-photon laser (Song 

et al., 2012). In this Thesis we sought the factors that dictate subtype-specific 

neuron regeneration in Drosophila. 

 We have shown that the regenerative C4da neuron shows burst activities 

upon axotomy, while the non-regenerative C3da neuron does not alter its firing 

pattern upon axotomy. This is the first report of an intrinsic difference in neural 
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activity in regenerative and non-regenerative neuron subtypes. Since subtype-

specific regeneration correlates with subtype-specific neuron burst activities, we 

hypothesized that neuron burst activity is the intrinsic mediator of subtype-

specific neuron regeneration. Indeed, we found that reducing neuron bursting 

reduces C4da regeneration. Conversely, promoting bursting in non-bursting, non-

regenerating C3da via optogenetics was sufficient to drive robust regeneration. 

Interestingly, a burst action potential pattern was more efficient at promoting 

regeneration than a tonic action potential pattern in C3da. This is the first report 

of neural activity pattern being critical for robust regeneration. Promoting neuron 

bursting after CNS axotomy was not sufficient to promote CNS regeneration.  

 Together, our data identify neural bursting activity as an intrinsic mediator 

of subtype-specific regeneration. Our work not only supports the role of neural 

activity as a pro-regenerative signal (Udina et al., 2008; Lim et al., 2016; S. Li et 

al., 2016), but also shows that neural activity is necessary and sufficient for 

regeneration, and furthermore, that a specific physiological pattern of activity is 

important for robust regeneration. This gives researchers clues about why some 

neurons do not regenerate when exposed to non-physiological levels of activity 

(Enes et al., 2010). It also demonstrates that the pro-regenerative effect of neural 

activity observed in many systems is not an artificial condition, but a deliberate 

mechanism of the regeneration system. It also suggests that neural activity could 

be manipulated to regenerate non-regenerative neurons. Armed with the 

knowledge that some neuron subtypes may have intrinsically high neural activity 
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leading to regeneration while other neuron subtypes have low activity and 

therefore can not regenerate, scientists and clinicians will have a tool to predict, 

monitor, and manipulate axon regeneration. 

 

Neuron activity as an intrinsic mechanism of subtype-specific regeneration  

 Many mechanisms of regeneration have been identified, both inhibitory 

extrinsic mechanisms such as glia scarring (Ramon y Cajal, 1928; Windle and 

Chambers, 1950; Pasterkamp et al., 1999; Bundesen et al., 2003), myelin 

associated inhibitors (Schnell and Schwab, 1990; McKerracher et al., 1994; 

Huang et al., 1999; Wang et al., 2002), and absence of growth factors (Lindsay, 

1988; Lewin et al., 1997; Sterne et al., 1997), as well as pro-regenerative intrinsic 

mechanisms such as mTOR (Park et al., 2008), dlk-1 (Hammarlund et al., 2009), 

and even neuron activity (Lim et al., 2016; S. Li et al., 2016) among others. 

Unfortunately, even armed with this knowledge, we still cannot achieve 

therapeutically significant regeneration (Liu et al., 2011; Norsworthy et al., 2017). 

This is the reason the concept of subtype-specific regeneration is so exciting, it 

suggests the possibility that not every neuron can be regenerated in the same 

way. In Duan et al.’s pivotal subtype-specific regeneration study, all neurons 

were exposed to pro-regenerative mTOR signaling, but only the α-RGCs were 

able to respond and regenerate (Duan et al., 2015). α-RGCs have intrinsically 

high mTOR levels as well as high levels of growth factor receptor (IGF-1). These 

neurons also show increased neural activity relative to other RGCs (Krieger et 
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al., 2017). This makes sense, as neural activity promotes mTOR activity in 

mouse brain (S. Li et al., 2016). I would predict that reducing α-RGC activity 

would block axon regeneration, as would reducing α-RGCs Cav1.3 expression. It 

is known that during neural development, neurons exposed to growth factor 

(NGF) respond to neural activity by extending their axons, neurons not exposed 

to growth factor inhibit axon extension upon neural activity stimulation (Singh and 

Miller, 2005). Perhaps the higher α-RGC activity upon axotomy leads to mTOR 

signaling and subsequent regeneration, but perhaps without high growth factor 

levels (IGF) reported in Duan et al., 2015, the α-RGCs would instead be inhibited 

by axotomy-induced burst activities. Future studies should focus on these 

hypotheses in order to gain a deeper understanding of subtype-specific 

regeneration.  

 There are other studies suggesting that subtype-specific neuron 

regeneration may result from other mechanisms such as integrin expression 

(reviewed in Nieuwenhuis et al., 2018). It is notable that integrins regulate neural 

activity in wound healing and they also regulate calcium activities through L-type 

VGCCs in neural development (Davis et al., 2002; Gui et al., 2006; Wu and 

Samba Reddy, 2012). Intriguingly, while α-RGCs are selectively regenerated 

upon PTEN deletion (Duan et al., 2015), Sox11 expression kills α-RGCs while 

allowing other subtypes of RGC to regenerate (Norsworthy et al., 2017). This is 

further evidence that not all neurons have equal regenerative capacity, different 

subtypes of neurons respond to pro-regenerative treatments differently. Could 



	 88	

neuron activity be related to this finding? It seems plausible, as Sox11 is a 

transcription factor that inhibits dendrite morphogenesis (Hoshiba et al., 2016). 

Coincidentally, increased spontaneous neural activity leads to the opposite 

phenotype, premature dendrite branching (Bando et al., 2016). This has led 

some to speculate that perhaps Sox11 supresses dendrite morphogenesis by 

inhibiting neural activity (Hoshiba et al., 2016). Consistent with this idea, Sox11 

expression has also been shown to down-regulate genes involved in synaptic 

transmission (Goldberg, Klassen, et al., 2002; Norsworthy et al., 2017). Here is 

one hypothetical explanation: it is possible that all RGCs have moderate to high 

activity levels, as these experiments were performed in light, which activates 

RGCs, but only α-RGCs express the correct set of growth factors to result in 

axon growth in the presence of neural activity. Perhaps all other RGCs express a 

different set of growth factors receptors whose axon growth is inhibited by neural 

activity. Then when Sox11 is expressed, perhaps neural activity is supressed and 

now α-RGCs axon growth is inhibited while other RGCs can now regenerate, 

oweing to their set of growth factors, which promote axon growth only with lower 

levels of neural activity. Future studies on subtype-specific regeneration should 

focus on neural activity levels to determine if activity plays a role in which pro-

regenerative treatment will work best for that neuron subtype. 

 

Mechanisms downstream of activity leading to axon regeneration 
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 There are a growing number of studies that have identified neuron activity 

as a pro-regenerative signal (Ming et al., 2001; Udina et al., 2008; Lim et al., 

2016; S. Li et al., 2016). However, not all studies agree that neuron activity is 

pro-regenerative. One study examining the effect of neuron activity on 

regeneration concluded that neuron activity is reduced upon priming (pre-cut in 

periphery) and inhibitory to axon growth (Enes et al., 2010). There are several 

reasons why different neuron types might regenerate best with different levels of 

neuron activity. First, In a neural development study, neural activity strongly 

promotes axon extension in the presence of the growth factor NGF, but in the 

absence of NGF neural activity actually has an inhibitory effect on axon 

extension (Singh and Miller, 2005). It is possible that not all neurons are exposed 

to the same growth factors and perhaps our finding that neural activity mediates 

axon regeneration will not be true in neurons not exposed to the correct growth 

factors. If this is true, maybe a combinatory approach of providing neural activity 

together with growth factors will prove a winning therapeutic strategy. There were 

also several caveats to the study by Enes et al. 2010, they show that sensory 

evoked response activity was significantly reduced, but this is expected as they 

are cutting the dendrites (sense environment) and then measuring the response 

to pinch, brush, etc. If they have severed the receptive field they should expect to 

see reduced sensory responses. Enes et al. do not observe significantly 

decreased baseline neural activity upon priming. Other studies have shown 

increased baseline firing in the DRG after axotomy (Govrin and Lippmann, 1978; 
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Abdulla and Smith, 2000; Michaelis, Liu and Janig, 2000). The authors next show 

that electrical activity by chronic K+ depolarization inhibits axon growth. It is 

unsurprising that axons couldn’t grow during the 3 day K+ culture with membrane 

potentials around -17mV, this is not a physiological level of activity. They next 

use 60V field electrical stimulation, much stronger than other studies (Hamid and 

Hayek, 2008; Udina et al., 2008), but instead of measuring axon growth after a 

day or several, they measure real time growth, in just one hour. The work in my 

Thesis suggests that neuron activity promotes regeneration after transcriptional 

changes have occurred (starting 6-30 hours post axotomy). One hour of 

activation and axon measurement might not capture the dynamic processes that 

actually happen after axon injury. They also show that axon regeneration is 

inhibited when the cell is exposed to caffeine, which is also a very strong 

stimulation likely leading to non-physiological levels of Ca2+ and cytotoxicity 

based on their cellular morphology. Also, most of these experiments were done 

in ‘bald’ neurons after isolation, which means they lose all dendrites which leads 

to structural and functional changes (Enes et al., 2010). They should do at least 

one regeneration experiment in vivo. The main drawback of the Enes et al. study 

is that they used non-physiological electrical stimulation to strongly stimulate 

non-physiological neurons (bald). Other studies have shown that neuron 

activation (via VGCC agonist) can be pro-regenerative at one dose, but inhibitory 

at higher doses (Unlu et al., 2002; Nehrt et al., 2007). Due to these limitations, it 
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is not surprising that Enes et al (2010) drew the opposite conclusions from our 

study. 

 L-type VGCCs translate synaptic activity into changes in gene expression 

(Olson et al., 2005). Neuron activity regulates transcription factors like cAMP 

response element-binding protein (CREB) (Murphy, Worley and Baraban, 1991; 

Bading, Ginty and Greenberg, 1993). In our system, both Caα-1D and neural 

activity have the potential to induce transcriptional changes in C4da to promote 

axon regeneration upon axotomy. The strong influx of Ca2+ into the soma upon 

bursting suggests this could have a strong transcriptional response. Optogenetic 

stimulation to induce bursting in C3da also likely results in changes in 

transcription that promote axon regeneration. The different patterns of neural 

activity induced in C3da produce dramatically different levels of regeneration. 

These different patterns also result in different levels calcium signaling based on 

calcium imaging, calcium likely acts as a second messenger. This explains how 

the different patterns of activity in C3da might produce different calcium 

responses and therefore differentially affect gene expression and ultimately 

regeneration. 

 Upon axotomy, there is an immediate strong influx of calcium into the 

neuron that is necessary for regeneration (Ziv and Spira, 1995; MANDOLESI et 

al., 2004; Ghosh-Roy et al., 2010). We also observed this initial calcium wave at 

the time of axotomy in C3da and C4da (not shown). Increased Ca2+ raises the 

levels of Ca2+-dependent enzymes such as adenyl cyclase (AC) and cAMP for 
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several hours, which is thought to be the rate limiting step in axon regeneration 

(Appenzeller and Palmer, 1972; Carlsen, 1982). In fact, cAMP injeciton is 

sufficient to reproduce the regenerative effects seen in priming studies 

(Neumann et al., 2002). These calcium waves are critical for axon-soma 

communication, the injured axon must send a retrograde signal to the soma so 

the neuron knows it has been injured (reviewed in Rishal and Fainzilber, 2013). 

In our study we did not investigate this early Ca2+ response, only the calcium 

spiking activity we observed ~6-48 hours post axotomy. It would be worthwhile to 

investigate whether we also see increased AC and PKA in C4da after axotomy, 

and whether expression of AC/PKA was different in the non-regenerative C3da 

neuron. Similarly, we could look for differences in the level of Ca2+ signaling upon 

axotomy between our two neuron subtypes. Perhaps C3da does not have as 

robust of a Ca2+ response, as C3da does not express as much Caα-1D as C4da. 

Caα-1D homologue EGL-19 was shown to be necessary for this initial Ca2+ wave 

of activity in C. elegans (Ghosh-Roy et al., 2010). It is also possible that the 

reduced regeneration phenotype we see in C4da neurons lacking Caα-1D is at 

least partly due to a reduced initial Ca2+ wave upon axotomy.  

 A transient increase in intracellular calcium can lead to remodeling of the 

axon cytoskeleton (Spira et al., 2002; reviewed in Gomez and Zheng, 2006). In 

particular, Ca2+ regulates the movement of actin filaments, filament turnover, as 

well as protein synthesis and degradation, which can occur locally in growth 

cones (Campbell and Holt, 2001; Spira et al., 2002; reviewed in Gomez and 
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Zheng, 2006). Ca2+ exerts these effects through calcium-binding proteins such as 

CaMKII, calcium dependent proteases, and PKA (Spira et al., 2002; Fink et al., 

2003; Wayman et al., 2004; Wen et al., 2004). It is likely that upon axotomy, the 

bursting we observe is required for calcium-induced changes in growth cone 

dynamics through these calcium-binding proteins. Further investigation into 

growth cone dynamics in our system is essential gain a complete picture of the 

process of bursting-induced axon regeneration. In addition to whole-neuron 

calcium transients, local calcium signals have been observed in axon growth 

cones (Zheng et al., 1994; Gomez et al., 2001). Our data from calcium imaging 

reveals increased calcium activity localized to the axon distal tip upon axotomy. 

Whether this is an artifact of axon injury (we do observe axon swelling) or a 

process to regulate growth cone dynamics remains to be determined. Live 

imaging of the growth cone dynamics, together with calcium imaging would 

clarify this point. Notably, L-type VGCCs are required for the Ca2+ elevations 

induced by neurotrophic growth factor netrin-1 in growth cones (Hong et al., 

2000). 

 

Bursting, but not tonic, activity pattern promotes regeneration 

The work in my Thesis is the first study to demonstrate that the pattern of 

neural activity is important for robust regeneration. Although we delivered the 

same total number of AP with each pattern, we altered the pattern to make 

consolidated bursts resembling C4da after axotomy, a tonic pattern with frequent 
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singlet AP, and a semi-tonic pattern that was somewhere in between. Tonic 

activation of C3da did not result in significant regeneration while burst activation 

resulted in regeneration comparable to C4da. Semi-tonic activation resulted in 

weaker regeneration. Although we cannot conclude that increased AP alone has 

no effect on regeneration, as there is a slight trend towards higher regeneration 

in both the tonic and semi-tonic patterns, but we can conclude that its effect is 

not nearly as robust as what we observed after the burst activation. We can 

safely draw the conclusion that neural burst activity promotes robust 

regeneration. This difference in regeneration ability of the three activity patterns 

can be explained by the differing downstream calcium signaling that we observed 

upon C3da activation. Ca2+ acts as a second messenger to regulate 

regeneration, the tonic activity protocol did not result in observable calcium 

signaling while the burst activity protocol resulted in strong calcium signaling. 

This is likely why burst, but not tonic, activity can promote regeneration. 

Neuronal activity can lead to long-term changes via these second 

messenger pathways: calcium, cAMP, cGNP, DAG and IP3 (Reviewed in West, 

Griffith and Greenberg, 2002). This short list of possible messengers for so many 

various cellular changes means that it is not likely the concentration of second 

messenger but rather their spatial localization and dynamic properties (Dunn et 

al., 2006). Indeed, spontaneous oscillations in cAMP/PKA activity correlate with 

neural activity in the developing mouse retina (Dunn et al., 2006). This further 
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supports our hypothesis that the burst pattern of neural activity is physiologically 

distinct from tonic activation.  

The enhanced regeneration we observe by promoting bursting instead of 

tonic neural activity also contributes to the ‘coding debate’ (reviewed in 

Eyherabide et al., 2009; Zeldenrust, Wadman and Englitz, 2018), does neural 

bursting contain information in the number or firing rate of APs within a burst? 

Does the AP pattern carry information or is it all just binary information? Our data 

suggests that the bursting pattern of AP is indeed different information than tonic 

AP firing. 

 

Why can PNS, not CNS axons regenerate with induced bursting? 

 To understand why our C4da induced bursting in the CNS did not promote 

regeneration, we need to first think about our experimental limitations. 

Simultaneous ChR2 stimulation and soma recording suggested that we were 

inducing strong bursts comparable to axotomized C4da, but we are limited by 

only recording in the soma. The CNS is millimeters away and whether the signal 

can propagate faithfully, especially through a damaged axon, is unknown. As 

discussed in Chapter II, future studies should use GCaMP imaging of the CNS to 

confirm bursting fully propagates distally. We could also try the drug 4-AP, which 

promotes faithful AP propagation in injured axons (Bei et al., 2016). 

Assuming the burst signal is reaching the CNS, there are still many well-

studied inhibitory factors thought to prevent axon regeneration in the CNS: glia 
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scarring (Ramon y Cajal, 1928; Windle and Chambers, 1950; Pasterkamp et al., 

1999; Bundesen et al., 2003), myelin associated inhibitors (Schnell and Schwab, 

1990; McKerracher et al., 1994; Huang et al., 1999; Wang et al., 2002), and lack 

of neurotrophic factors (Lindsay, 1988; Lewin et al., 1997; Sterne et al., 1997). 

While any of these factors certainly could prevent C4da CNS bursting-induced 

regeneration, recent evidence, including priming studies (a pre-cut to the PNS 

allows regeneration in the CNS), suggests that intrinsic promoters of 

regeneration can overcome these extrinsic barriers (Mcquarrie and Grafstein, 

1973; Richardson and Issa, 1984; Neumann and Woolf, 1999). Even work in 

Drosophila has shown that neuron priming can result in C4da CNS regeneration, 

overcoming any extrinsic inhibitors (Song et al., 2012). Therefore the first 

hypothesis, that our bursting was not strong enough in the CNS, is likely correct. 

 

Limitations of our study 

 Currently, we cannot make any overarching statements about neuron 

bursting mediating regeneration in this Thesis simply because we only examined 

two neurons, C3da and C4da. Future studies should look for more correlations 

between neuron activity and regeneration in other cells types. We are also only 

looking at one of many possible mechanisms for promoting regeneration. Future 

studies should try to get a bigger picture of neuron activity together with growth 

factor availability, mTOR activity, etc. This multidisciplinary approach will likely be 

the winning strategy for promoting therapeutically significant regeneration.  
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Another reasonable criticism of our single-axon axotomy model is that 

Drosophila larvae are developing systems. Upon hatching they go through three 

larval stages: first instar, second instar, and third instar. We do our bursting and 

regeneration assays during this third instar larval period, and immediately after, 

the larvae pupate and later hatch into adult flies. Many gene programs are 

changing as the larvae increase drastically in size and prepare for pupation. It is 

reasonable to question how these changes might affect axon regeneration and 

neuron bursting in an adult system. Is neuron bursting and regeneration an 

artifact of pupation? Although this is unlikely, as we can still observe bursting and 

regeneration in the earlier developmental stage (second instar, not shown), it is 

still worth asking if we can see neuron bursting and regeneration after axotomy in 

the adult fly. This experiment would be challenging in C4da/C3da because the 

neurons in the adult fly are protected by thick, opaque cuticle. Future studies 

should focus on accessible sensory neurons, such as those found in the adult 

wing or leg, to investigate the relationship between neuron bursting after axotomy 

and regeneration (Soares, Parisi and Bonini, 2014). 

Our conclusions are also limited by our uncertainly about the high 

selectivity of our so-called single-cell axotomy. Although fluorescent markers 

suggest that at least the glia and neighboring C4da axons remain intact, and 

brightfield microscopy reveals no epidermal or muscle damage (not shown), 

without electron microscopy (EM) with a C4da marker we cannot be sure that we 
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are in fact cutting only one single axon. EM images showing the selectivity of our 

axotomy would strengthen our claims of single-cell axotomy. 

Our combination of calcium imaging and/or electrophysiology recording for 

analysis of bursting as a mediator of axon regeneration leaves some uncertainty 

about what is actually regulating the axon regeneration phenotype, calcium 

spikes or neuron AP bursting. In particular, our Ca-α1D mutant analysis relies on 

calcium imaging to look at a calcium mutant, it is unclear whether this mutant has 

a phenotype in AP bursting. Our conclusions could be strengthen by use of a 

more sensitive assay than calcium imaging, for example a genetically encoded 

voltage indicator (Jin et al., 2012; St-Pierre et al., 2014). This would allow us 

higher resolution of neural activities. In addition, we could use this tool to 

measure the resting membrane potential of axotomized C4da and C3da neurons 

to determine if they are more excitable than uncut control neurons. 

 

Linking neuron bursting to known regenerative pathways 

 We now know that axotomy leads to bursting through L-type VGCCs, but 

how neuron bursting can then translate into regeneration remains unknown. One 

likely candidate is Protein Kinase A (PKA). Increased PKA has been shown to 

promote regeneration in many systems including C. elegans, mammalian DRG, 

and Drosophila (Cai et al., 1999; Ghosh-Roy et al., 2010; C. L. Li et al., 2016). 

Neuron activity leads to increased PKA activity (Dunn et al., 2006; Knight et al., 

2012). PKA promotes regeneration by directly activating DLK-1 (Ghosh-Roy et 
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al., 2010; C. L. Li et al., 2016). It is possible that C4da neuron bursting also leads 

to increased PKA signaling, which in turn activates DLK-1 to promote 

regeneration. PKA activity is dependent on cyclic AMP (cAMP) levels. 

Interestingly, priming studies show that cAMP levels more than double in 24 

hours after the peripheral cut; cAMP elevation alone is sufficient to reproduce the 

effects of peripheral priming cut (Neumann et al., 2002; Qiu et al., 2002). This is 

notable because high neural activity is correlated with increased cAMP. Perhaps 

priming studies are also increasing neural activity, which leads to more 

cAMP/PKA. 

 If PKA is not involved in C4da burst-induced regeneration, another likely 

candidate is CAMKII. Ca2+ oscillations drive CaMKII activity, the amplitude and 

duration of calcium spikes are decoded into distinct amounts of CaMKII activity 

(Koninck and Schulman, 1998). In addition, a neural development study revealed 

that patterned electrical stimulation, in the presence of growth factors, promotes 

axon extension by activating the CamKII/MEK pathway (Singh and Miller, 2005). 

This suggests that CaMKII has the potential to decode C4da neural burst 

activities into pro-regenerative signals.  

 Understanding how neural bursting fits together with other known 

regenerative pathways is crucial for having a complete picture of the 

regeneration process. This could also be valuable information clinically, as it is 

possible that one could bypass promoting neural bursting and instead activate 

PKA/CaMKII directly to achieve similar regeneration. Finding the link between 
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bursting and regeneration is also critical for understand subtype-specific 

regeneration. Perhaps neuron bursting leads to higher levels of PKA and 

neurons that have higher levels of PKA might be the subtypes that are more 

amendable to regeneration. Perhaps manipulating PKA levels could also turn a 

non-regenerative neuron, like C3da, into a regenerative neuron. 

 Finding new targets to modulate neuron regeneration is the goal 

therapeutically, especially because other mediators of regeneration, like the 

PTEN/mTOR pathway, is actually a tumor suppressor, manipulating this may 

have serious side effects (Li et al., 1997). There are already therapeutic protocols 

being developed for optogenetics use to treat epilepsy (Paz et al., 2013) and 

restore vision (Doroudchi et al., 2011). It is likely that optogenetics will be a 

routine therapeutic in humans soon, so using neuron activation to promote 

regeneration should be viable. Current therapies after nerve injury can only try to 

save remaining axons from degenerating, pro-axon regeneration treatment is 

limited to physical therapy and occasionally experimental stem cell transplants 

(Case and Tessier-lavigne, 2005; Tsintou, Dalamagkas and Seifalian, 2015). 

Physical therapy has been shown to have some benefits, and this is likely due to 

increased neural activity. 

 

Future Studies 

 Our data suggests that neuron bursting is necessary for regeneration in 

C4da and sufficient for regeneration in C3da. In our ChR2 experiments in C3da, 
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we delivered the burst light pattern from 6-48 hpa, based on the time course of 

bursting in axotomized C4da neurons. It would be informative to know the 

minimum light delivery time required for robust regeneration. For example, is 

there just a short critical period where the neuron needs to be bursting for 

regeneration to occur? Or is there a linear relationship, the longer the light 

delivery, the more robust the regeneration? This is important therapeutically and 

experimentally. For patients with nerve lesion, it is impractical to activate their 

neurons for days as a therapy for regeneration if this is not necessary. For 

scientists, future experiments promoting regeneration with activity would be 

simpler with the minimum required neuron-activating period. Drosophila C3/4da 

neurons are easy to activate with ChR2 in their transparent body, they can be 

freely moving and feeding. Mouse neurons are more challenging to activate with 

ChR2, as they often require optical cables being inserted into their brains. This 

can limit natural movement and feeding. Some neurons might also become 

habituated to 48 hours of ChR2 activation. C3/4da neurons still responded 

robustly after 48 hours of stimulation (not shown), but neurons in other systems 

might not have such robust firing. Limited light stimulation during a critical period 

would be ideal for future experiments and future therapeutics based on this work. 

 Another interesting question regarding neuron activation timing is, what 

happens if we ‘pre-treat’ the neurons with bursting before we perform axotomy? 

In priming studies it has been shown that a pre-cut to DRG neurons in the PNS 

enhances their regenerative capacity in the CNS (Mcquarrie and Grafstein, 1973; 
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Richardson and Issa, 1984; Neumann and Woolf, 1999). Could we observe C4da 

CNS regeneration after pre-treating C4da neurons by optogenetics-induced 

bursting before axotomy? Song et al. (2012) observed C4da CNS regeneration 

after making a priming cut in the PNS. We did not observe C4da CNS 

regeneration with optogenetic bursting, but perhaps if we began the optogenetic 

treatment even before axotomy, as a pre-treatment, we could observe CNS 

regeneration. It would also be informative to determine if bursting pre-treatment 

could enhance the regeneration phenotype in non-regenerative C3da neurons.  

Our study did not delve into growth cone dynamics, but certainly formation 

of a functional growth cone is the important first step in regeneration (Tedeschi 

and Bradke, 2017). In fact, electrical activity can steer the growth cone (Rajnicek, 

Foubister and McCaig, 2006). L-type VGCCs promote bursting that regulates 

growth cone (Tang, Dent and Kalil, 2003). Ca2+ spikes have a profound effect on 

growth cone motility (reviewed in Gomez and Zheng, 2006). It is plausible that 

the calcium spikes and neuron bursting we see after axotomy has some effect on 

growth cone formation and guidance during axon regeneration. It is sensible for 

future studies to test this hypothesis. 

 

Part II: L-type VGCC Ca-α1D promotes neuron bursting and subsequent 

regeneration after axotomy 

 We performed a candidate-based RNAi reverse-genetic screen to identify 

ion channels that affect neuron bursting in C4da. Of the channels screened, we 
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saw a phenotype on bursting for just 2 channels: Ca-α1D and BK. RNAi against 

Ca-α1D reduced bursting in axotomized C4da neurons, while RNAi against BK 

resulted in de novo bursting in intact C4da neurons. After confirming the RNAi 

results with several mutants we looked to see if these channels, when mutated, 

had an effect on C4da regeneration. We predicted mutant BK might enhance 

regeneration in C4da or C3da, or even in the CNS of C4da. However, BK 

mutation had no effect on regeneration.  Hypomorphic Ca-α1D mutants had 

significantly reduced C4da regeneration, suggesting that Ca-α1D is necessary for 

both C4da neural bursting activities and the regeneration that follows. We next 

generated a Crispr-mediated endogenous knock-in line to examine Ca-α1D 

expression level. Interestingly, the non-bursting, non-regenerative C3da neuron 

showed low Ca-α1D expression whereas the bursting and regenerative C4da 

neuron showed strong Ca-α1D expression. This correlation between Ca-α1D 

level and bursting ability suggests that Ca-α1D expression is what allows some 

neuron subtypes to burst but not other subtypes. Taken together, our data 

suggests that Ca-α1D is the intrinsic molecular mechanism of subtype-specific 

neuron regeneration. 

 

L-type VGCCs in regeneration 

L-type voltage gated calcium channels (VGCCs) have a Long-lasting 

length of activation, hence their name. These channels are sensitive to a class of 

drugs called dihydropyridines (DHPs) including nimodipine. Cav1-mediated 
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calcium signals activate intracellular pathways controlling gene transcription in 

the brain (Murphy, Worley and Baraban, 1991; Bading, Ginty and Greenberg, 

1993). Cav1.3 activates quickly and at a more negative membrane potential 

allowing for spontaneous activity in dopaminergic neurons of the substantia nigra 

(Olson et al., 2005). Cav1.3 is expressed in soma, axon, and dendrites. Cav1.3 

has been implicated in fear conditioning, depressive-like behavior, and sound 

transduction in the inner ear (Platzer et al., 2000; Sinnegger-Brauns et al., 2004; 

Mckinney and Murphy, 2006). Mouse models lacking Cav1.3 are in fact 

congenitally deaf (Platzer et al., 2000). Recently, a role for Cav1.3 pacemaking 

activity in neurons susceptible to the effects of Parkinson’s disease has been 

discovered (C Savio Chan et al., 2007; Branch, Sharma and Beckstead, 2014). 

α-RGCs are known to express Cav1.3, but unfortunately RNA-seq to determine 

the expression profile of individual subtypes of RGCs has been largely 

unsuccessful, likely because RGCs are a rare cell type (<1% of cells in retina) 

(Macosko et al., 2015; Poulin et al., 2016; Shi et al., 2017). 

VGCCs have been implicated in regulating axon growth during 

development (Tang, Dent and Kalil, 2003; Sann et al., 2008). In mammals, an L-

type VGCC agonist has been shown to promote CNS regeneration (Unlu et al., 

2002; Nehrt et al., 2007). In C. elegans, the L-type VGCC, called EGL-19, is 

required for regeneration, however, the authors hypothesize that EGL-19 plays 

an essential role in the immediate calcium transient that is observed upon 

axotomy (Chung et al., 2016). This immediate calcium response is required for 
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regeneration (Ghosh-Roy et al., 2010). It is possible that the Ca-α1D mutant in 

our system also has a reduced immediate calcium response upon axotomy. This 

regeneration-reducing effect could work in the same or a parallel pathway to 

neural bursting activities. In the same pathway, Ca-α1D could inhibit the 

immediate calcium response, which would directly inhibit neural bursting. In a 

parallel pathway, Ca-α1D might inhibit the immediate calcium response and 

neural bursting independently. These possibilities could be distinguished by 

manipulating either the immediate calcium response via the temporally 

controllable calcium sponge parvalbumin (Weavers et al., 2016) or neural 

bursting activity via the optogenetic inhibitor halorhodopsin (Zhang et al., 2007). 

The effect on regeneration of each treatment independently versus the 

cumulative effects of both treatments simultaneously could be compared. In the 

same pathway, cumulative effects would not be enhanced; in a parallel pathway, 

cumulative effects would be enhanced. Alternatively, temporal knock down of Ca-

α1D starting after the immediate calcium response, but before neuron bursting, 

could distinguish these effects.  

 

Limitations 

In Chapter II we demonstrated that neural bursting activity mediates 

subtype-specific regeneration. In Chapter III we cannot make such bold 

statements about Ca-α1D. We showed that Ca-α1D is required for bursting and 

subsequent regeneration in C4da. We also showed that C3da has weak Ca-α1D 
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expression and we suggest that this could be the reason that C3da is unable to 

burst and regenerate, while C4da has strong Ca-α1D expression and can 

therefore burst and regenerate robustly. To strengthen our hypothesis, we need 

to test the role of Ca-α1D in bursting and regeneration as rigorously as we tested 

the role of neural activity in regeneration. Mainly, we should test whether 

overexpressing Ca-α1D in C3da can promote bursting and regeneration. With 

this information, we can say that Ca-α1D is both necessary and sufficient for 

regeneration, allowing us to make bolder claims such as: Ca-α1D mediates 

subtype-specific neural bursting and regeneration. Without this last piece of the 

puzzle we can only say our data suggests that Ca-α1D mediates subtype-specific 

bursting and regeneration. 

 Our superficial characterization of BK also limits the conclusions we can 

draw from this study. Contrary to what we observed, a recent study found that 

blocking BK channels reduces hyperexcitability and mechanical sensitization in 

axotomized axons (Chen, Cai and Pan, 2009). However, in another study it was 

shown that blocking BK channel does increase the excitability of intact neurons, 

but has the opposite effect in axotomized neurons (Cao et al., 2012). This effect 

is mediated by the growth factor BDNF, axotomized neurons have high BDNF 

concentrations that blocked BK current (Cao et al., 2012). In our study we only 

looked at the effect of BK reduction on intact neurons, future studies should look 

at the effect of BK reduction on axotomized neurons. If the effect is reduced, this 
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suggests that what we observe in Drosophila is in parallel with what has been 

observed in mammals. 

 

Therapeutic implications 

The work in Chapter III suggests that the L-type VGCC is an important 

molecular mediator of subtype-specific neuron regeneration. Ca-α1D is highly 

expressed in C4da where it promotes neural bursting activities and regeneration. 

Neurons with low Ca-α1D expression do not burst or regenerate. This means that 

one potential strategy for promoting regeneration in non-regenerative subtypes of 

neurons is to promote L-type VGCC activity/expression. This will conceivably 

result in increased neural activities and subsequent regeneration of that neuron. 

Luckily, there are many drugs that block VGCCs that have been used in patients 

for decades, especially for hypertension and hyperinsulinemia (Takahara, 2009; 

Arnoux et al., 2010; Ritz et al., 2010). This means that future studies using 

pharmacology to promote L-type VGCC activity, and thereby regeneration, will 

have an established platform with known targets, agonists/antagonists, and 

assays for toxicity and efficacy. These drugs are likely to be safe and effective.  

 

Future Studies 

 We have shown that Ca-α1D knock out results in reduced C4da bursting 

and regeneration. There are several important remaining questions: Does 

overexpression of Ca-α1D in C4da cause neuron bursting, even without 
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axotomy, like the BK mutant? Does this overexpression lead to more robust 

regeneration in C4da PNS or CNS? Many studies have shown that only specific 

doses of VGCC activity and neural activity is required for regeneration, excess 

may actually inhibit regeneration (Unlu et al., 2002; Nehrt et al., 2007; Enes et 

al., 2010). Therefore it is possible that Ca-α1D overexpression in C4da may 

actually inhibit regeneration.  

 Future studies should also examine the relationship between Ca-α1D and 

C3da. We don’t know if ChR2 burst-induced C3da neurons require Ca-α1D for 

strong regeneration. Alternatively, induced bursts may bypass the need for Ca-

α1D activity in C3da. Does overexpression of Ca-α1D in C3da also promote 

bursting and regeneration? Do C3da and C4da share the same downstream 

molecular pathway for burst-induced regeneration? Or is Ca-α1D only required in 

C4da to promote bursting, but not necessary in C3da? Knowing more information 

about the differences between C3da and C4da will help us to better understand 

subtype-specific regeneration. 

Future studies should place emphasis on connecting this new knowledge 

of VGCCs role in regeneration with known regeneration pathways. L-type 

VGCCs have been tightly linked to BDNF expression (Tabuchi et al., 2000; 

Zheng et al., 2011; Danesi et al., 2018; Yu et al., 2018). During axon 

development, BDNF application results in VGCC-dependent calcium spikes 

(Lang et al., 2007). The role of nerve growth factors in axon regeneration has 

been well characterized (reviewed in Terenghi, 1999). BDNF has been 
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demonstrated to promote axon regeneration (Lindsay, 1988; Xu et al., 1995; Liu 

et al., 1999). It is plausible that Ca-α1D regulates BDNF expression, which 

regulates axon regeneration. Furthermore, neural activity has been extensively 

shown to promote BDNF expression, in a calcium dependent manner (Tao et al., 

2002; Palomer et al., 2016). Perhaps high L-type VGCC expression in C4da 

leads to increased neural bursting activity, which leads to increased BDNF 

expression, which is what ultimately leads to regeneration. If this hypothesis is 

true, we would expect high levels of BDNF in the regenerating C4da neuron, but 

low levels in the non-regenerating C3da neuron, which has low VGCC 

expression and low neural activity.  

Alternatively, neural bursting activity through Ca-α1D could recruit growth 

factor receptors, such as TrkB, to the plasma membrane by stimulating 

exocytosis (Meyer-Franke et al., 1998). PKA also appears to regulate VGCCs 

(Wang and Sieburth, 2013; Sang, Dick and Yue, 2016). PKA promotes 

regeneration (Cai et al., 1999; Ghosh-Roy et al., 2010; C. L. Li et al., 2016) by 

directly activating DLK-1 (Ghosh-Roy et al., 2010; C. L. Li et al., 2016). There are 

many potential regeneration pathways to test for interaction. 

 

Concluding remarks 

 Neuron regeneration is a complex process; there are many factors that 

inhibit regeneration, but very few factors that can promote regeneration reliably 

across different neuron subtypes. The identification of new pro-regenerative 
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factors that promote regeneration across subtypes is crucial for developing novel 

and effective therapeutics. My Thesis work reveals neural bursting activity as a 

mediator of subtype-specific neural regeneration. We have shown that neuron 

bursting activity is necessary for regeneration of a regenerative neuron subtype 

and sufficient for regeneration of a non-regenerative neuron subtype. We have 

also demonstrated that a particular neuron activity pattern, bursting, is better at 

promoting regeneration than a tonic neuron activity pattern. We identified Ca-α1D 

as necessary for C4da neuron bursting and regeneration. High Ca-α1D 

expression in the bursting and regenerative C4da neuron and low Ca-α1D 

expression in the non-bursting and non-regenerative C3da neuron suggest that 

Ca-α1D expression levels dictate subtype-specific neuron regeneration. 

Our main contributions to the field include identification of neuron activity by an L-

type VGCC as an intrinsic mechanism of subtype-specific regeneration, and the 

concept that not just neuron activity, but activity pattern, is important for optimal 

regeneration. Together, this study sheds light on the cellular and molecular 

intrinsic mechanism of subtype-specific neuron regeneration. 
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Appendix I 

Additional physiological changes to the regenerating neuron: neuropathic 

pain 
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ABSTRACT 

Chronic pain is a major burden. The current opioid crisis highlights the 

need for safer drugs to relieve pain. There are 2 types of chronic pain: 

inflammatory and neuropathic. Neuropathic pain arises after nerve injury, the 

mechanisms are poorly understood. Nerve injury in regeneration models, 

including sciatic nerve lesion (SNL) show spontaneous bursting and mechanical 

hypersensitivity, key symptoms of neuropathic pain. The regenerative Class IV 

dendritic arborization neuron (C4da) from Chapters II & III also showed 

spontaneous bursting, which lead to regeneration. We wondered if there were 

any other physiological changes to this regenerating neuron. We found that C4da 

also becomes mechanically hypersensitive after axotomy. These changes have 

remarkable parallels to mammalian SNL in models of neuropathic pain. 

 

INTRODUCTION 

Regenerating neurons undergo massive transcriptional changes, both pro-

regenerative pathways and the injury response are initiated. Do these changes 

have any physiological effects on the neuron’s normal function as a nociceptor? 

In mammals, when sensory neurons are cut, they show a variety of phenotypes 

including hypersensitization and spontaneous bursting (X. J. Song et al., 1999; 

Chuang et al., 2018). The sciatic nerve lesion (SNL) model was in fact first 

created to study neuropathic pain, and then later adopted by the regeneration 

field (Kim and Chung, 1992).  
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100 Million Americans suffer from chronic pain, that’s more than diabetes, 

heart disease, and cancer combined (Julius 2013). The economic impact is 

staggering. A recent report estimates that chronic pain costs the nation around 

$635 billion each year in medical treatments and lost productivity (Gaskin 2012). 

Unfortunately, these medical treatments are often ineffective and can have 

serious side effects. The identification of potent and specific therapeutic 

strategies to treat chronic pain would alleviate this financial and emotional 

burden. Mammalian models of chronic pain have identified molecules required 

for inflammatory and neuropathic pain (reviewed in Basbaum et al., 2009; Julius, 

2013). Variability and low resolution of these models have prevented deeper 

understanding of the cellular and molecular mechanisms of pain sensitization.  

There are two types of chronic pain: inflammatory and neuropathic. 

Neuropathic pain is debilitating, and difficult to treat (Costigan, Scholz and Woolf, 

2009). 7% of people are currently experiencing neuropathic pain (Bouhassira et 

al., 2008), which is caused by nerve damage via mechanical trauma, metabolic 

diseases, neurotoxic chemicals, tumors and infection (reviewed in Costigan, 

Scholz and Woolf, 2009). Neuropathic pain can originate in the CNS (central 

sensitization, (Latremoliere and Woolf, 2009)) or in the PNS (peripheral 

sensitization, reviewed in (James N. Campbell and Meyer, 2006), this Chapter 

will focus on peripheral sensitization. 

 Neuropathic pain often manifests as spontaneous pain arising without an 

identifiable stimulus (Costigan, Scholz and Woolf, 2009). This is thought to be 
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due to ectopic generation of action potentials of the injured neuron (X. J. Song et 

al., 1999). In addition to experiencing spontaneous pain, patients with 

neuropathic pain often complain of mechanical allodynia, or a reduced threshold 

for mechanical pain, and less commonly, thermal allodynia, or a reduced 

threshold for thermal pain (hot or cold) (Costigan, Scholz and Woolf, 2009). 

Mechanical allodynia can be so severe that even putting on clothes can cause 

excruciating pain (Costigan, Scholz and Woolf, 2009). Mouse models such as 

chronic compression of DRG have been able to recapitulate spontaneous 

bursting, mechanical allodynia, and thermal allodynia, allowing us some insight 

into the molecular underpinnings of allodynia (X. J. Song et al., 1999). 

These models have allowed identification of myriad molecules/processes 

thought to be associated with neuropathic pain, unfortunately, our limited insights 

into the molecular mechanisms of neuropathic pain hasn’t resulted in effective 

and specific therapeutics (Basbaum et al., 2009). The current opioid crisis is 

certainly evidence of that. To better understand the mechanism of neuropathic 

pain, we should critically examine the limitations of our current mouse models. 

Firstly, SNL and/or DRG crush sever tens of thousands of diverse sensory and 

motor neurons. Second, the heterogeneity of mammalian nociceptors at the 

cellular, biochemical, and molecular levels prevent precise identification, 

quantification, and manipulation of nociceptors at high resolution (Gold and 

Gebhart, 2010; C. L. Li et al., 2016). Taken together, this means that researchers 

often do not know the identity of the cell they are recording, the nature of the 
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injury to that particular neuron (severed, crushed, or intact), or whether 

behavioral phenotypes are the result of injured sensory neurons or injured motor 

neurons being unable to perform that particular behavior (usually paw 

withdrawal). 

Excitingly, our single-cell axotomy model in Drosophila larvae can 

overcome many of these barriers. C4da is relatively homogenous cellularly, 

biochemically, and molecularly and between different animals. C4da is easily 

accessible for imaging, 2-photon cutting, and recording under the transparent 

cuticle and is easy to genetically manipulate with precise spatial and temporal 

control. This represents the first single-cell model for neuropathic pain. We can 

finally learn what is happening to a single cell after axotomy.  

C4da shows strong neural bursting after axotomy using both 

electrophysiology and calcium imaging (Chapter II). In addition to spontaneous 

pain, patients with neuropathic pain can also have sensitization to mechanical 

stimuli so intense that even putting clothes on can cause excruciating pain 

(Ochoa 1993). Very little is known about mechanical hypersensitivity and 

treatment options are limited. Mouse models show mechanical sensitization upon 

SNL (Chuang 2018). We found that after axotomy, C4da shows de novo 

mechanical sensitization. We hope to use this model in the future to uncover the 

molecular underpinnings of mechanical sensitization after axon injury and 

hopefully illuminate new therapeutic targets.  
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Our axotomy model displays both regeneration and neuropathic pain-like 

phenotypes simultaneously. This puts us in a unique position to draw parallels 

between the processes of regeneration and pain. Perhaps researchers from the 

two fields of regeneration and neuropathic pain should look to each other’s work 

for inspiration, they might have a lot to learn from each other. 

 

RESULTS 

The regenerating C4da neuron shows mechanical allodynia 

 We recorded from axotomized C4da neurons and measured their 

response to saline perfusion, a gentle mechanical force. We noted that while 

control, uncut, neurons had no increase in firing rate upon perfusion stimulation, 

axotomized neurons had a strong response to perfusion (Fig. A1.1A, B). This 

saline perfusion response might mimic the flow of hemolymph within the body 

wall of Drosophila, which C4da dendrites are directly exposed to. We confirmed 

these results with GCaMP imaging by delivering a mechanical stimulation, either 

perpendicular touch with an electrode or mild stretching of the epidermis with an 

electrode, and found that exclusively axotomized neurons, not intact neurons, 

respond to this mechanical stimulation (Fig. A1.1C, D). To confirm we were not 

seeing a damage response, multiple stimulations were performed on the same 

cell, which was able to recover between stimulations and have multiple 

mechanical responses. This suggests that the calcium influx we see if not due to 
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cell death. We also tried cutting the dendrite instead of the axon, but this didn’t 

elicit any mechanical response (Fig. A1.1D).  

 

 

 

 

Figure A1.1. C4da shows de novo mechanosensitization after axotomy. 
A, Electrophysiology trace recordings from control and axotomized C4da 
neurons. Onset of perfusion results in a strong, transient response from 
axotomized, but not control neurons. B, Quantification of maximum firing 
frequency (in Hertz) during perfusion response in axotomized and control 
neurons. Student’s t-test *p<.05, error bars represent SEM. C, Bottom, 
calcium imaging trace during mechanical stimulation. Each stimulation is 
represented by green arrow, stimulation intensity range from 10-60 µm cuticle 
deformation with an interval of 10 µm. Top, insets of pseudocolored GCaMP 
to distinguish fluorescence levels at times indicated by orange arrows. Touch 
electrode outlined in red. D, Quantification of GCaMP responses after touch 
and stretch electrode stimulation in axotomized and control neurons. Fishers 
exact test *p<.05, error bars represent SEM. Right, axon cutting but not 
dendrite cutting results in mechanosensitization. One-way ANOVA followed 
by Bonferroni correction *p<.05, error bars represent SEM. 
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To determine the molecular mechanism of this mechanical sensitization, 

we looked at known mechanically activated ion channels. There is a short list of 

known mechanosensitive ion channels in Drosophila: Piezo (a transmembrane 

protein, (Coste et al., 2011; Kim et al., 2012)), Ppk (a DEG/ENaC channel, 

(Zhong, Hwang and Tracey, 2010)), and NompC (a TRP channel, (Walker, 

Willingham and Zuker, 2000)). We examined the mechanical sensitization 

response after axotomy in larvae mutant for Piezo, Ppk, or NompC. We observed 

no decrease in the mechanical response in any of the mutants, suggesting that 

this de novo mechanosensitization occurs through a yet unidentified channel or 

perhaps a combination of channels (pilot studies). Identification of this channel 

and conservation studies in mammals will determine if this novel mechosensitive 

ion channel will be a useful therapeutic target for patients with mechanical 

hypersensitivity.  

 

DISCUSSION 

Upon axotomy, the nociceptor C4da displays burst firing. This is 

reminiscent of mouse models for neuropathic pain (X. J. Song et al., 1999). In the 

mouse, sciatic nerve lesion (SNL) involves severing the sciatic nerve (massive 

axotomy), which leads to spontaneous bursting and mechanical sensitization. We 

observe parallel effects in our single-cell C4da axotomy model. We believe that 

our model for single axon cutting is a simpler and more genetically powerful 

model to investigate these physiological changes to the regenerating neuron. 
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Identification of mechanosensitive ion channel 

 Only a handful of mechanosensitive ion channels have been discovered, 

mainly belonging to these three conserved superfamilies: TRP channels, PIEZO 

channels, and DEG/ENaC channels (ppk) (Terada et al., 2016). In Drosophila 

piezo and ppk are the known mechanosensitive ion channels (Zhong, Hwang 

and Tracey, 2010; Kim et al., 2012). Pilot studies suggest that neither is required 

for de novo mechanosensation of C4da after axotomy. This suggests that a novel 

mechanosensitive ion channel is mediating this phenotype. 

 

A new model for screening for new molecules involved in neuropathic pain 

2-photon mediated axotomy represents a powerful new single-cell model 

for fast screening of molecules involved in neuropathic pain. We have already 

identified the highly conserved ion channels BK and Ca-α1D as mediators of 

ectopic bursting. These channels have also been implicated in neuropathic pain 

(Chen, Cai and Pan, 2009; Perret and Luo, 2009; Park and Luo, 2010). We are in 

a unique position, with our single-cell model for ectopic bursting and 

genetic/optogenetic tools to modify and observe these ion channels, we can 

search for the network of genes leading to spontaneous pain, and hopefully 

provide novel therapeutic targets.  

Perhaps some of our other findings about regeneration will also give us 

new insights into neuropathic pain. Is ectopic bursting, and therefore 
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spontaneous pain, just the result of a neuron trying to regenerate? If so, can we 

identify a ‘regeneration-complete’ signal that can stop neural bursting for patients 

experiencing spontaneous neuropathic pain? 

 

Linking regeneration and neuropathic pain 

It is clear that the two fields of regeneration and neuropathic pain have 

much in common, but their relationship is poorly understood and warrants further 

investigation, the delivery of axon growth factors to enhance axon regeneration 

has been explored as a potential therapy for neuropathic pain (Landowski et al., 

2016). There are just a handful of studies starting to connect the dots between 

regeneration and neuropathic pain (Xie, Strong and Zhang, 2017; Chuang et al., 

2018). There is mounting evidence of the extensive overlap of ion channels, 

growth factors, neurotransmitters and cytoskeletal components in neuron 

regeneration and neuropathic pain (Navarro, Vivo and Valero-Cabre, 2007; 

Chuang et al., 2018). 

 In Chapter III we found that reducing the BK channel led to increased 

neural bursting in intact neurons. In fact, mammalian models have identified that 

calcium-gated BK channels are important for the regulation of neural excitability 

and play a role in neuropathic pain (Chen, Cai and Pan, 2009; Cao et al., 2012). 

An interesting new hypothesis based off research in C. elegans is that electrical 

activity regulated by mechanosensory channels could promote axon regeneration 

(Chen et al., 2011). This hypothesis neatly ties together all of our findings. 
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Limitations of our study 

The main drawback of our single-cell model for neuropathic pain is the 

relatively inverted nature of our C4da neuron compared to mouse DRG neurons. 

In the bipolar mouse neuron, the soma resides in the DRG and upon sciatic 

nerve lesion, all axon distal to the cut site degenerates leaving the soma and the 

other axon tract to the CNS intact. In the multipolar C4da neuron, the soma 

resides far in the periphery, on the end of the single axon. Upon axotomy, all 

axon distal to the cut site degenerates, including the entire axon tract to the CNS. 

This leaves C4da as an independent and disconnected soma and dendrites. (Fig 

2.1B). This means that we cannot easily observe behavioral phenotypes after 

axotomy. Our model has strong potential to uncover changes to the nociceptor 

upon axotomy, but this model does not have a behavioral correlate, as mouse 

studies do (X. J. Song et al., 1999) because we sever the connection to the CNS 

with axotomy. We are developing alternative behavioral paradigms for 

neuropathic pain in Drosophila. We know that reduction of the BK channel 

promotes bursting in an intact neuron (discussed in Chapter III) and can exploit 

that to develop a behavioral assay for genetic sensitization.  

C4da allows larva to sense noxious mechanical stimulation (Kim et al., 

2012). There are behavioral paradigms for measuring mechanical avoidance in 

Drosophila larvae, this involves poking a free moving larva on the epidermis and 

quantifying the rolling avoidance response (Kim et al., 2012). Pilot studies in our 
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lab have not demonstrated significant behavioral sensitization upon axotomy. 

This may be due to two reasons, first, the minimal number of activated C4da 

neurons required for a behavioral response is unknown. It may be that we must 

axotomize at least several C4da axons before we can see a behavioral 

response. Secondly, upon axotomy, the connection between the C4da soma and 

CNS has been severed. It is possible that other neurons, like C3da, are co-

activated during this response and augment the behavior, especially since C4da 

and C3da synapse into the same neuron in the CNS (Ohyama et al., 2015). If 

this is true, we might be able to observe behavioral sensitization of the mechano-

nociceptive response. If C4da is working completely autonomously, it is unlikely 

that we will observe this behavioral sensitization in our paradigm. 

Without a behavioral paradigm, this model still provides valuable 

information about what is happening to the nociceptor itself with single-cell 

resolution. This model is not yet useful in the investigation of central 

sensitization.  

 

MATERIALS AND METHODS 

Axotomy 

Axotomy was performed 80-85h AEL (after egg laying) unless otherwise stated. 

We followed the protocol in Song et. al 2012 with several modifications. Briefly, a 

larva was anesthetized with Sevofluorane for 3 minutes and mounted dorsal side 

up (for PNS) or ventral side up (for CNS). The bleaching function of a Zeiss 2-
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photon laser damaged a small circle on the axon with an ROI of ~1.5µm. We 

found 910nm worked well for this. PNS axons were cut three quarters of the way 

to the bipolar dendrite, while CNS axons were cut as in Song et al 2012. 

Following axotomy, larva recovered on a damp Kim Wipe (BRAND) and then 

were transferred to recovery vials containing regular brown food or white grape 

juice agar plates (for following optogenetic stimulation).  

 

Mechanical stimulation 

For electrophysiology, a saline perfusion system was switched on at indicated 

time point perfusing about 3 mL per minute. For calcium imaging, a wide 

diameter pipette was fire-polished in a microforge until the end sealed forming a 

smooth ball. The pipette touch the epidermis in an area apparently clear of 

dendrites and moved laterally (stretch) or vertically (touch). 

 

Electrophysiology 

Extracellular recording of C4da neuronal activity was performed as described 

previously (Xiang et al., 2010). Axotomy was performed ~80h AEL. ~104 h AEL 

third instar larvae were dissected to make fillet preparations. Fillets were 

prepared in external saline solution composed of (in mM): NaCl 120, KCl 3, 

MgCl2 4, CaCl2 1.5, NaHCO3 10, trehalose 10, glucose 10, TES 5, sucrose 10, 

HEPES 10. The Osmolality was 305 mOsm kg−1 and the pH was 7.25. GFP-

positive (C4da) neurons were located under a Zeiss D1 microscope with a 
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40X/1.0 NA water immersion objective lens. Gentle negative pressure was 

applied to the C4da neuron to trap the soma in a recording pipette (5 µm tip 

opening; 1.5–2.0 MΩ resistance) filled with external saline solution. Recordings 

were performed with a 700A amplifier (Molecular Devices, Sunnyvale, CA), and 

the data were acquired with Digidata 1440A (Molecular Devices) and Clampex 

10.6 software (Molecular Devices). Extracellular recordings of action potentials 

were obtained in voltage clamp mode with a holding potential of 0 mV, a 2 kHz 

low-pass filter and a sampling frequency of 20 kHz.  

 

Calcium Imaging 

GCaMP calcium imaging of C4da neuronal activity was performed as described 

previously (Xiang et al., 2010). For in vitro calcium imaging, axotomy was 

performed at 96h AEL and 120h AEL 3rd instar larvae were pinned ventral side up 

on silicone elastomer plates and dissected in the same external saline solution 

as electrophysiology. The internal organs were removed with fine forceps and the 

body wall was stretched with insect pins after opening body wall. Time-lapse 

imaging was performed under water objective lens (W Plan-Apochromat 20x/1.0 

DIC CG=0.17 M27 75mm) by Zeiss LSM 700 confocal microscope. Frame rate is 

0.97Hz. All soma ROIs were corrected for horizontal drifting with ImageJ slice 

alignment.  Uncut C4da neurons from the same 3rd instar larvae were used as 

negative controls. 
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Abstract 

Near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) 

can broaden the absorption range and boost upconversion efficiency of UCNPs. 

Here, we achieved significantly enhanced upconversion luminescence in dye-

sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb3+) in the 

UCNP shell, which bridged the energy transfer from the dye to the UCNP core. 

As a result, we synergized the two most practical upconversion booster effectors 

(dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. 

We demonstrated two biomedical applications using these UCNPs. By using dye-

sensitized core/ active shell UCNP embedded poly(methyl methacrylate) polymer 

implantable systems, we successfully shifted the optogenetic neuron excitation 

window to a biocompatible and deep tissue penetrable 800 nm wavelength. 

Furthermore, UCNPs were water-solubilized with Pluronic F127 with high 

upconversion efficiency and can be imaged in a mouse model. 

 

Introduction 

Optogenetic techniques have been developed to control the activities and 

functions of neurons and to probe the interconnection of neural activities.(1, 

2) When neural cells are excited by a specific wavelength of light, ion channels 

that are expressed with microbial opsins after viral transduction or transgenesis 

can activate or silence neuronal activity.(3) The high spatiotemporal resolution of 

optogenetic tools has enabled researchers to identify causal relationships 
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between brain activity and behavior. These studies may lead to new therapies for 

neuropsychiatric diseases. Currently, optogenetic tools rely on visible light that 

has a shallow depth of tissue penetration, such as ∼470 nm for 

channelrhodopsin-2(3) and ∼530 nm for halorhodopsin.(2) In order to deliver 

visible light into organs and tissues,(4, 5) optogenetic protocols typically require 

the permanent insertion of fiber-optic probes. However, this approach has 

limitations for chronic stimulation in animals because of potential tissue infections 

and constraint of the animal with fiber-optic tethers. To address this issue, micro 

light-emitting diodes (µ-LEDs) have been implanted inside the mouse brain; 

however, this approach is largely limited by the working distance, replacement, 

and renewability needs of the energy power source.(6, 7) These problems with 

optogenetics can be addressed by shifting the excitation wavelength to a region 

with a greater tissue penetration depth and less tissue scattering and blood 

absorption. For instance, a red-shifted variant of channelrhodopsin (ReaChR) 

was recently developed that can be excited from 470 to 630 nm.(8) Despite this 

advance, shifting the optogenetic operation window to the near-infrared (NIR) 

range (∼700–1000 nm) is desirable to allow a deeper light penetration than red 

light.(9, 10) 

With recent advances in nanotechnology, lanthanide-doped upconverting 

nanoparticles (UCNPs) have been developed that can be excited by NIR light 

and have emissions in the visible spectrum that can overlap with opsin’s 

activation wavelengths.(11-13) UCNPs are currently used for in vivodeep tissue 
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imaging,(14-16) drug delivery,(17, 18) photodynamic therapy,(10, 19, 

20)immunotherapy,(21) photoactivation,(22-24) and solar cell 

development.(25) NIR light at ∼800 nm can penetrate transcranially to a depth of 

at least 4 cm through the human skull, meninges, scalp, and brain.(26) We thus 

envision the development of UCNPs in an optogenetic application to enhance the 

penetration of light for activation of neurons. 

Despite the considerable potential of UCNPs for diverse applications, 

there is a need to increase the intensity of upconverting luminescence, as the 

quantum efficiency of these probes is still suboptimal.(27-29) The following are 

arguably the two most practical and effective ways to improve UC efficiency. 

First, utilization of shell growth can synthetically block the surface quenchers to 

the UCNP core layer.(27, 30, 31) Second, use of an organic NIR dye can 

alleviate inherently weak and narrow near-infrared absorption of the lanthanide 

ions (e.g., Yb3+ or Nd3+).(16, 32-35) Here, we combine these two strategies to 

overcome the low quantum efficiency of UCNPs and report the development of 

dye-sensitized core/active shell upconversion nanoparticles with significantly 

enhanced upconversion luminescence and a broadened absorption range. 

Specifically, we doped ytterbium ions into the UCNP shells. As a result, the 

energy of NIR excitation light peaked at the 800 nm that was absorbed by IR-806 

dyes was able to be effectively transferred to the UCNP core via doped ytterbium 

ions in the shells. Further, we demonstrate the proof-of-concept that neurons can 

be activated by such dye-sensitized core/active shell UCNP embedded 
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poly(methyl methacrylate) (PMMA) matrix when excited at 800 nm. Moreover, 

these UCNPs were water-solubilized with Pluronic F127 and can be further 

imaged in a mouse model. 

 

Results 

We initially synthesized dye-sensitized core/shell UCNPs using β-

NaYF4 shell layers. More specifically, NaYF4:20%Yb, 2%Er core (∼20 nm) was 

used for the epitaxial growth of β-NaYF4shells with varied thickness (i.e., 2.5, 5, 

7.5, 10, and 12.5 nm, respectively) (Figure S1) using a previously reported 

method.(36) Afterward, we explored the optimal ratio of IR-806 

dyes versusUCNP cores using a modified method from the literature,(35) and in 

our study the optimal ratio was determined to be ∼60:1 (6 µmol/L:0.1 µmol/L) 

(Figure S8). We then examined the upconversion emission for the core only and 

the core/shell UCNPs with IR-806 dye sensitizing under 800 nm continuous wave 

(CW) laser excitation. As can be seen in Figure 1, the results show that as the 

thickness of the NaYF4 shell increased, such dye-sensitized core/shell UCNPs 

decreased in regard to luminescence intensity, reaching nearly its lowest point at 

a shell thickness of 7.5 nm. This result clearly suggests that a thicker β-

NaYF4 shell has an adverse effect on dye-sensitized upconversion emission and 

that the energy transfer from the IR dye to these UCNPs was blocked due to the 

increased shell thickness of β-NaYF4. Thus, dye sensitization enhancement 
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could not be extended into core/shell UCNPs with commonly used inert 

hexagonal-phased β-NaYF4 shells. 

 

 

Figure A2.1. (a) Emission spectra of IR-806-dye-senstized UCNPs exhibiting 

various β-NaYF4 shell thickness (i.e., 0, 2.5, 5, 7.5, 10, and 12.5 nm, 

respectively) upon 800 nm CW laser excitation. (b) The integrated emission peak 

area (from 500 to 700 nm) of those dye-sensitized UCNPs decreases as the shell 

thickness increases. Note: In order to guide the eye, the data points are 

connected by lines. 

 

Next, we examined the doping of Yb3+ ions in the shell. Yb3+ ions can relay 

energy from dyes to the emitters in a core-only UCNP.(35) In addition, in 

core/active shell UCNP system, Yb3+ in the shell can absorb and transfer NIR 

light (e.g., 980 nm) energy into a UCNP’s inner core.(37, 38)Here, we envisioned 

that by doping Yb3+ ions in the shell the excitation energy absorbed by the dyes 
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can be transferred to the shell and then transferred from the shell Yb3+ into the 

core. In this regard, we chose to dope Yb3+ into the shell of core/shell UCNPs 

that had a 7.5 nm thick shell. In doing so, we found that such IR-806 dye-

sensitized core/Yb3+ active shell nanoparticles (10% Yb3+ in the shell layer, i.e., 

β-NaYF4:20%Yb3+, 2%Er@β-NaYF4:10% Yb3+ UCNP) (Figures S3, S13, and 

S14) exhibited an enhanced upconversion emission under 800 nm excitation. 

When comparing the integrated upconversion emission area (from 450 to 700 

nm), it showed 8 times enhancement in comparison to dye-sensitized core 

UCNPs (β-NaYF4:20%Yb3+, 2%Er3+) and 70 times greater than the same sized 

dye-sensitized core/NaYF4 shell UCNP (β-NaYF4:20%Yb3+, 2%Er3+@β-NaYF4) 

(Figure 2b). Note that IR dyes per UCNP were ∼60:1 in the above experiments. 

In this study, we also varied the Yb3+ content (10% Yb3+, 30% Yb3+, and 50% 

Yb3+) in the shell layer (Figures S3 and S4) and found not only that 10% Yb3+ is 

the optimal doping concentration but that the further increase of 

Yb3+ concentration causes the upconversion intensity to decrease (Figure S11). 

This decrease is presumably caused by Yb3+ cross-relaxation quenching.(37) A 

controlled experiment of ∼20 nm core only β-NaYF4:30%Yb, 2%Er (Figures S5 

and S6) was also carried out (i.e., with the same total combined 

Yb3+ concentration as the core/Yb3+-doped shell nanoparticles). The resulting 

upconversion emission intensity of IR-806-sensitized NaYF4:30%Yb3+, 

2%Er3+ under 800 nm excitation was also much lower than that of the 

core/Yb3+ shell nanoparticles (Figure S9). 
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Further, the absolute quantum yield (QY) of our dye-sensitized 

core/Yb3+ shell UCNPs (IR-806-β-NaYF4:20%Yb3+, 2% Er3+@β-NaYF4:10%Yb) in 

DMF was measured to be ∼5% at 2 W/cm2 of 800 nm. Compared to the current 

highest value (0.18% at 31 W/cm2)(39) reported for existing 800 nm excitable 

UCNPs, our result yields a higher QY at a lower power density. 

 

 

Figure A2.2 (a) Schematic showing the proposed energy transfer mechanism for 

core/shell UCNPs without (top) and with (bottom) Yb3+ doping. (b) Emission 

spectra of IR-806-sensitized core only (β-NaYF4:20%Yb3+, 2%Er3+), 

core/NaYF4shell (β-NaYF4:20%Yb3+, 2%Er3+@β-NaYF4), core/Yb3+ shell (β-

NaYF4:20%Yb3+, 2%Er3+@β-NaYF4:10%Yb3+). Note: The shell exhibited a 

controlled thickness of ∼7.5 nm for core/NaYF4 shell and core/Yb3+ shell UCNPs. 

The measurements were performed under 800 nm continuous wave laser 

excitation (2 W/cm2), with a UCNP concentration of 0.1 µmol/L (ET: energy 

transfer). 
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Moreover, we found that the dye-sensitized core/Yb3+-doped active shell 

UCNPs have a broadened absorption range. Utilizing this method, the integrated 

spectral response of the dye-sensitized core/Yb3+ shell UCNPs in the wavelength 

range 720–1000 nm is enhanced ∼20-fold when compared to the same UCNPs 

without dye sensitizing (Figure 3). When compared at a single wavelength of 800 

nm, the IR-806-sensitized core/Yb3+-doped active shell shows ∼1000 times 

upconversion luminescence enhancement. Further, when comparing an IR-806-

sensitized core/Yb3+ active shell UCNP excited at 800 nm to a core-Yb3+ active 

shell UCNP without dye modification that is excited at its optimal wavelength of 

980 nm, the IR-806 sensitizion also shows a 7 times enhancement 

(Figures 3 and S12). This result shows that the upconversion luminescence of 

UCNPs can be effectively enhanced by using organic dye molecules as the 

sensitizer in a core/active shell structure. 
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Figure A2.3 Excitation spectrum of β-NaYF4:20%Yb3+, 2%Er3+@β-

NaYF4:10%Yb3+(core/Yb3+ active shell) nanoparticle with (black squares) and 

without (red circles) IR-806 dye sensitization. 

 

Since we are now able to combine the two best strategies to significantly 

improve upconversion efficiency, we envision that these dye-sensitized 

core/Yb3+ active shell UCNPs can address the limitation of poor tissue 

penetration depth of current optogenetic tools. As an initial proof-of-principle, we 

set out to develop an implantable device to test whether our UCNP systems can 

function as a relay for NIR light in regard to the activation of optogenetic 
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constructs in neuronal cells. We encapsulated our dye-sensitized 

core/Yb3+ active shell UCNPs into PMMA polymers so as to fabricate a thin film. 

We found that this film is resistant to water quenching in PBS buffer (Figure S17). 

This film was then placed directly beneath a glass coverslip containing cultured 

hippocampal neurons. Red light activatable channelrhodopsin revealed 

consistent depolarization and the act of potential firing in response to the light 

whose wavelength overlaps with the emission of dye-sensitized core/Yb3+ shell 

UCNPs(8) (Figure S15). Notably, in our study, when 800 nm NIR light was 

delivered in order to stimulate neurons, we observed robust neuronal activation 

in a light intensity-dependent manner (Figure 4). Neuronal depolarization 

depends on the intensity of the NIR (Figure 4c), and the threshold intensities for 

significant depolarization and the act of potential firing are 0.117 and 1.5 W/mm2, 

respectively (Figure 4c and d). These power densities are about two to three 

magnitudes lower than what is currently used in two-photon technology for 

neuron cell activation (e.g., 1 × 105 W/cm2 (40) or 4.5 × 104 W/cm2 (41)). 

Importantly, the UCNP system allows for precise temporal control of neuronal 

activation, as neuronal action potential was able to follow patterns of light pulses 

(e.g., 100 ms, 500 ms, 2 s) in a time-locked fashion (Figure 4b). Next, to control 

for possible thermal and other potential side effects that are associated with NIR 

light delivery, we tested cultured hippocampal neurons in the following ways: 

without the UCNPs, without the ReaChR transfection, or with core/Yb3+ active 

shell UCNPs in absence of core Er3+ion doping (∼35 nm β-NaYF4:20%Yb3+ @β-
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NaYF4, 10%Yb3+) (Figure S7) where NIR absorption does not generate the 

emission of visible light under 800 nm excitation (Figure S10). In all three sets of 

control experiments, we found a great deal of reduced neuronal depolarization 

and the act of potential firing compared to the conditions that included opsin and 

our dye-sensitized core/Yb3+active shell UCNPs (Figure 4c). It is noteworthy that 

we noticed that NIR light at high intensities (i.e., 4.29 W/mm2) does, in rare 

cases, activate the neuron (Figure 4d). Our results clearly demonstrate that NIR 

light at 800 nm is able to activate optogenetic constructs in order to manipulate 

neuronal activities. Moreover, optogenetic applications rely on pulsed light 

delivery compared to long exposure times with other application realms using 

upconversion nanoparticles (for example, photouncage(23)). We have observed 

that quite a short duration laser exposure (i.e., 100 ms) can trigger neuron cell 

action potential firing. 
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Figure A2.4. Near infrared light activation of ReaChR in cultured hippocampal 

neurons. Examples of the act of potential firing in response to (a) prolonged (4 s) 

and (b) pulsed (100 ms, 500 ms, 2 s) delivery of 800 nm NIR light (2.34 W/mm2). 

(c) Neuronal depolarization and (d) firing triggered by 800 nm NIR light at 

different intensities for a duration of 4 s. Note that there can be depolarization 

and neuronal activation even in some control cases. **, p < 0.01, ****, p < 0.0001. 

One-way ANOVA with Bonferroni correction. The four color squares in (c) are 

annotations for (a)–(d). 
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Furthermore, we also water-solubilized our dye-sensitized core/active 

shell UCNPs (IR806-β-NaYF4:20%Yb3+, 2%Er3+@β-NaYF4, 10%Yb3+) for 

bioimaging applications. Hydrophobic dye-sensitized core/Yb3+ active shell 

UCNPs were rendered water-soluble via wrapping them in the amphiphilic 

triblock copolymer Pluronic F127.(42, 43) The resultant triblock copolymer 

micelle possessed a hydrophobic core to encapsulate the hydrophobic oleic acid 

ligand coated UCNPs through van der Waal’s force. It also has a hydrophilic 

shell, offering it aqueous stability (Figure 5). The as-synthesized micelles were 

able to disperse in aqueous solution with an average hydrodynamic size of ∼110 

nm in water. In PBS, the resulting micelle encapsulation has an average particle 

size that is similar to that in pure water (Figure S19). After micelle encapsulation, 

the luminescence of these UCNPs can be visualized by the naked eye (Figure 5b 

inset). Its upconversion luminescence remained above 30% under 2 W/cm2 of 

800 nm laser (Figure 5b). It is noteworthy that we noticed that there was a certain 

luminescence decrease over 10 min (Figure S16). The in vivo animal imaging 

study of such micelle-encapsulated dye-sensitized UCNPs was evaluated via the 

use of a Maestro EX small-animal optical imaging system. Following 

subcutaneous administration of micelle-encapsulated dye-sensitized 

core/Yb3+ shell UCNPs, we observed clear UCNP characteristic luminescent 

signals in vivo under 800 nm excitation (Figure S20). This suggests the feasibility 

of biophotonic application for dye-sensitized core/Yb3+ active shell UCNPs. 
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Figure A2.5 (a) Schematic of the phase transfer procedure using Pluronic F-127 

as encapsulation material. (b) Emission spectra of dye-sensitized core/Yb3+ shell 

UCNPs (1 mg/mL) before micelle encapsulation in DMF (black curve) and after 

encapsulation in PBS (red curve), acquired upon 800 nm CW laser excitation (2 

W/cm2). The inset displays photographs of micelle-encapsulated dye-sensitized 

core/Yb3+ shell UCNPs dispersed in PBS with and without 800 nm CW laser 

excitation obtained by an Apple iphone 5S camera. 
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Discussion 

In conclusion, we synergized two state-of-the-art approaches for the 

enhancement of upconversion efficiency and were able to demonstrate dye-

sensitized core/Yb3+ active shell UCNPs with broadened absorption and elevated 

upconversion efficiency. We doped Yb3+ ions in the shell in order to bridge the 

energy transfer from the NIR dye to UCNP core, the latter of which is otherwise 

blocked by the commonly used core/NaYF4 shell UCNPs. These dye-sensitized 

UCNPs were further applied for optogenetic analysis in the NIR tissue optical 

window for potential use in controlling neuronal activity. We further water-

solubilized these UCNPs and demonstrated their use for bioimaging applications. 

We offer an interesting strategy to improve the upconversion efficiency of 

UCNPs, which will pave the way for new biological and medical applications. 

 

Materials and Methods 

General Chemicals 

IR-780 iodide (99%), 4-mercaptobenzoic acid (99%), Y2O3 (99.9%), 

Yb2O3 (99.9%), Er2O3(99.9%), CF3COONa (99.9%), CF3COOH, 1-octadecene 

(90%), oleic acid (90%), oleylamine (90%), N,N-dimethylformamide (DMF, 

anhydrous, 99.8%), and dichloromethane (DCM, AR grade) were all purchased 

from Sigma-Aldrich and used without further purification. The lanthanide (Ln) 

trifluoroacetates, Ln(CF3COO)3, were prepared as described in the literature.(10) 
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Instrumentation 

1H NMR spectra were recorded on a Varian AMX400 (400 MHz) using d6-DMSO 

as solvent at room temperature. Transmission electron microscopy (TEM) was 

performed on a Philips CM10 transmission electron microscope operating at an 

accelerating voltage of 100 kV. Images were recorded on a Gatan slow-scan 

CCD camera. The powder X-ray diffraction (XRD) patterns were recorded by a 

Vantec-500 area detector using Co Kα radiation (1.79 Å). The 2θ angle of the 

XRD spectra was recorded at a scanning rate of 5 deg/min and then was 

converted to Cu Kα radiation values by Bragg’s law. The size distribution of the 

samples was determined by dynamic light scattering (DLS) equipped with a 

Zetasizer Nano-ZS (He–Ne laser wavelength at 633 nm) and an autotitrator 

(Malvern Instruments, Malvern, UK). The upconversion photoluminescence 

emission spectrum was measured using a fluorospectrophotometer (Fluorolog-3, 

HORIBA, USA). The samples were excited by either a 980 or 800 nm continuous 

wave laser under the power density of 2 W/cm2 (Hi-Tech Optoelectronics Co., 

Ltd., China). BALB/c mice (female, 4–8 weeks, from Jackson Laboratory) were 

used for the imaging experiment. Hair on the back of the mice was shaved, and 

the mice were anesthetized using iv-injected ketamine/xylazine during imaging 

(Maestro EX system). Micelle-encapsulated dye-sensitized UCNPs (200 µL, 10 

mg/mL) were injected subcutaneously 10 min before imaging (800 nm CW laser 

excitation, 1 W/cm2, 1 s exposure time). The animal procedures were approved 

by the University of Massachusetts Medical School Institutional Animal Care and 
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Use Committee. The NIR photoluminescence emission spectrum of IR-806 dye 

was measured with excitation at 750 nm and emission measured from 775 to 

1200 nm using a Horiba Nanolog spectrofluorometer with a 5509 PMT detector 

and 450 W xenon lamp. For the upconversion excitation spectrum 

measurements, the Ti:sapphire laser was switched to continuous-wave mode, 

and the absence of mode-locking was confirmed by monitoring the laser output 

using a 400 MHz oscilloscope and fast photodiode. The detection utilized a 

bandpass filter (FF01-524/24-25, Semrock, Rochester, NY, USA) and a 

PMH100-6 photomultiplier tube module from Becker-Hickl. A pulse generator 

provided a 5 MHz sync signal to the TCSPC electronics, and the photons over 

the time-to-amplitude converter range were integrated to provide the total signal 

for each excitation wavelength. In order to use a constant excitation intensity (2 

mW) at each wavelength, a 1 mm thick quartz plate was used to pick off part of 

the excitation beam and direct it to a calibrated power meter (corrected for the 

excitation wavelengths, Newport 1830-C with 818 series detector). 

 

Synthetic Procedures 

The synthesis of IR-806 

The IR-806 was synthesized the same as the method described in the literature. 

 

Synthesis of β-NaYF4:20%Yb, 2%Er Core UCNPs, β-NaYF4:20%Yb Core 

UCNPs, and β-NaYF4:30%Yb, 2%Er UCNPs 
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Synthesis of β-NaYF4:Ln core UCNPs: The β-NaYF4:Ln core UCNPs were 

prepared by a two-step thermolysis method. In the first step, CF3COONa (0.5 

mmol) and proper Ln(CF3COO)3((Y+Yb+Er) 0.5 mmol in total; for β-

NaYF4:20%Yb, 2%Er, Y:Yb:Er = 78%:20%:2%; for β-NaYF4:20%Yb, Y:Yb = 

80%:20%; for β-NaYF4:30%Yb, 2%Er, Y:Yb:Er = 68%:30%:2%) precursors were 

mixed with oleic acid (5 mmol), oleyamine (5 mmol), and 1-octadecene (10 

mmol) in a two-neck reaction flask. The slurry mixture was heated to 110 °C to 

form a transparent solution followed by 10 min of degassing. Then the flask was 

heated to 300 °C at a rate of 15 °C/min under dry argon flow, and it was 

maintained at 300 °C for 30 min. The α-NaYF4:Ln intermediate UCNPs were 

gathered from the cooled reaction solution by centrifugal washing with excessive 

ethanol (7500g, 30 min). In the second step, the α-NaYF4:Ln intermediate 

UCNPs were redispersed into oleic acid (10 mmol) and 1-octadecene (10 mmol) 

together with CF3COONa (0.5 mmol) in a new two-neck flask. After degassing at 

110 °C for 10 min, this flask was heated to 325 °C at a rate of 15 °C/min under 

dry argon flow, and it remained at 325 °C for 30 min. Then, β-NaYF4:Ln UCNPs 

were centrifugally separated from the cooled reaction media and preserved in 

hexane (10 mL) as stock solution. 

 

Synthesis of Core/NaYF4 Shell and Core/Yb3+-Doped Shell UCNPs 

In this thermolysis reaction, as-synthesized 20 nm β-NaYF4:20%Yb, 2%Er 

UCNPs or β-NaYF4:20%Yb (for the synthesis of ∼35 nm β-NaYF4:20%Yb/β-
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NaYF4:10%Yb control core/shell) served as cores for the epitaxial growth of 

undoped β-NaYF4 shells and Yb3+-doped shells. Typically, a stock solution of β-

NaYF4:20%Yb, 2%Er UCNPs (5 mL, ca. 1 µmol/L core UCNPs) was transferred 

into a two-neck flask, and hexane was sequentially removed by heating. To 

prepare core/NaYF4 shell β-NaYF4:20%Yb, 2%Er/β-NaYF4 UCNPs with 

increased shell thickness, increasing amounts of CF3COONa (0.1, 0.25, 0.5, 

0.75, and 1 mmol) and Y(CF3COO)3(0.1, 0.25, 0.5, 0.75, and 1 mmol) were used, 

respectively. To prepare ∼35 nm core/Yb3+ shell UCNPs, CF3COONa (0.5 mmol) 

and Ln(Y+Yb) (CF3COO)3 (0.5 mmol) were used, The mole percentages of 

Y(CF3COO)3 of 90%, 70%, and 50% and Yb(CF3COO)3 of 10%, 30%, and 50% 

were used. In these reactions, the above-mentioned precursors were introduced 

as UCNP shell precursors with oleic acid (10 mmol) and 1-octadecene (10 

mmol). After 10 min of degassing at 110 °C, the flask was heated to 325 °C at a 

rate of 15 °C/min under dry argon flow and was kept at 325 °C for 30 min. The 

products were precipitated by adding 20 mL of ethanol to the cooled reaction 

flask. After centrifugal washing with hexane/ethanol (7500g, 30 min), the 

core/shell UCNPs were redispersed in 10 mL of hexane. 

 

Dye-Sensitized Upconversion Nanoparticle Preparation 

IR-806 dye-sensitized UCNPs were prepared based on a modified literature 

method. More specifically, they were prepared by mixing different amounts of IR-

806 into UCNPs in DCM/hexane (v/v 1:10). The final concentrations of UCNPs 
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are 0.1 µmol/L; the final concentrations of IR-806 are 0, 2, 4, 6, 25, 50, and 100 

µmol/L. All the solutions mentioned above stood for 1 h at room temperature 

before measurements. The dye-conjugated core/shell UCNPs can be isolated by 

centrifugation (12000g, 30 min) and can be redissolved in DMF. 

 

Fabrication of UCNP-Encapsulated PMMA Film 

IR-806 and 35 nm β-NaYF4:20%Yb, 2% Er/β-NaYF4:10%Yb core/Yb active shell 

UCNPs (0.06 mmol:1 µmol) were first mixed in DCM/hexane (1 mL, 1:10, v/v). 

After 1 h of continuous stirring, the dye-conjugated core/shell UCNPs were 

isolated by centrifugation. The dye-coated nanoparticles were redissolved in a 

small amount of DMF. Meanwhile, 200 mg of PMMA was dissolved in 1 mL of 

DMF at 100 °C. This was then cooled to room temperature. Then a dye-

conjugated UCNP DMF solution was blended with the above prepared PMMA. 

The resulting mixture was pasted onto a cover glass and remained overnight at 

room temperature to obtain a transparent PMMA thin film that includes dye-

sensitized core/Yb3+ active shell UCNPs. Control samples were prepared using 

the same amount of reagents with IR dye only or with dye-modified ∼35 nm (20 

nm core and 7.5 nm shell) β-NaYF4:20%Yb/β-NaYF4, 10%Yb UCNPs (i.e., in the 

absence of Er3+ emitters). 

 

Micelle Encapsulation 
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A 2 mg amount of dye-coated core/Yb3+ shell UCNPs in 0.2 mL of hexane/DCM 

(10:1, v/v) was slowly added into 2 mL of a Pluronic F-127 aqueous solution 

(0.5%, w/v). Under vigorous stirring conditions, the organic solvent was allowed 

to slowly evaporate at room temperature for 4 h. Micelle-encapsulated dye-

sensitized UCNPs were collected via centrifugation at 12000g at a temperature 

below 4 °C for 30 min. 

 

Electrophysiology 

Whole-cell patch clamp recordings of the neurons virally infected with red 

activatable channelrhodopsin and red fluorescent protein (RFP) were performed 

2–3 weeks after plating on an upright microscope with a 40× (NA 1.0) water 

immersion lens. The 800 nm CW laser was delivered at increasing intensities 

through the objective. Neurons growing on glass coverslips were removed from 

the culture dish and placed in external saline solution composed of (in mM) NaCl 

125, KCl 2.5, NaH2PO4 1.25, MgCl2 1, CaCl2 2, NaHCO3 26, glucose 20. The 

osmolality was 312 mOsm kg–1, and the pH was 7.3. RFP-positive neurons were 

located under a Zeiss D1 microscope with a 40×/1.0 NA water immersion 

objective lens. Neurons were recorded with a recording pipet (5 µm tip opening) 

filled with internal saline solution composed of (in mM) potassium gluconate 120, 

KCl 10, HEPES 10, MgATP 4, NaGTP 0.3, Na phosphocreatine·H2O 5, EGTA 

0.2, pH 7.3, OSM 290 mM. Recordings were performed with a 700B amplifier 

(Molecular Devices), and the data were acquired with Digidata 1440A (Molecular 
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Devices) and Clampex 10.6 software (Molecular Devices). Electrophysiological 

recordings of action potentials were obtained in current clamp mode with current 

injection to sustain −65 mV at rest. A 2 kHz low-pass filter and a sampling 

frequency of 20 kHz were used. Only excitable cells with a membrane resistance 

of >200 MΩ and with action potential firing upon green light exposure (except for 

nontransfected controls) were analyzed. After each recording sweep, we injected 

a hyperpolarizing current to measure passive membrane properties. Any cell with 

>10% change during the recording was discarded. 

 

Neuronal Culture 

All experiments were approved by the local Animal Welfare Committee. 

Embryonic day 17 hippocampi from Sprague-Drawley rats were dissected in 

Hank’s balanced salt solution (Invitrogen) containing MgCl2 and Hepes (Sigma) 

and digested with papain (Worthington). Papain was inactivated by ovomucoid 

(Worthington), and the tissue was dissociated in culture medium [neurobasal 

medium containing B27 supplement, penicillin, streptomycin, and glutamine 

(Invitrogen)]. Cells were infected with a self-inactivating lentiviral vector in which 

the RSV promoter drives expression of ReacHR fused to the red fluorescent 

protein mcherry. The lentiviral vector was prepared, concentrated, and titrated. 

Dissociated neurons were incubated for 1 h at 37 °C in suspension with the 

lentiviral vector at a multiplicity of infection of 1:1 (1 viral particle per 1 neuron) 

and plated at a density of 150 000 cells per milliliter of medium on coverslips 
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coated with poly-D-lysine (Sigma) and laminin (Invitrogen). Culture medium was 

exchanged after 24 h and subsequently changed twice a week. Neurons were 

recorded after 14 days in vitro. 

 

Absolute Quantum Yield Measurement 

This testing was done at the Molecular Foundry, a User Facility of the U.S. 

Department of Energy. A cylindrical quartz cuvette was loaded with 500 µL of a 

freshly prepared solution of dye-conjugated nanoparticles (0.01 µmol/L). The 

cuvette was placed in a calibrated integrating sphere coupled with fiber-optics to 

a Horiba Jobin Yvon Fluorolog-3 spectrometer. Samples were excited with an 

800 nm laser (2 W/cm2, Hi-Tech Optoelectronics), and emission spectra (450–

720 nm) and spectra of scattered excitation light (797–804 nm) of the samples 

and the solvent blank were recorded. All spectra were corrected for the 

wavelength-dependent sensitivity of the apparatus. The absolute quantum yield 

of each sample was determined according to the equation QY = (Iem,sample –

 Iem,blank)/(Iex,blank – Iex,sample). Here, Ix is the integrated intensity of the emission 

(em) or scattering (ex) spectrum for the sample or blank (x). 
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