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Abstract 

The major histocompatibility complex class I (MHC-I) antigen presentation 

pathway is necessary for the immune system to be able to detect, control, and 

eliminate cancers. MHC-I binds oligopeptides derived from cellular proteins and 

presents them on the cell surface to CD8+ T cells. Consequently, the CD8+ T 

cells can monitor whether any cells are making abnormal proteins and, if so, can 

destroy those cells. Because MHC-I presentation is not essential for cell viability, 

immune selection pressure often leads to cancers that are MHC-I low as they 

can better evade CD8+ T cell recognition. It is, therefore, important to fully 

understand the mechanisms of MHC-I presentation as this will identify new ways 

to target and exploit the pathway for cancer therapeutics. Although several 

components of the MHC-I pathway have already been characterized, some 

knowledge gaps remain. Unbiased forward genetic screens from our lab 

identified some novel gene candidates, such as IRF2, which positively regulate 

MHC-I presentation. In this dissertation, I will reveal which antigen presentation 

pathway genes are transcriptionally controlled by IRF2 and contribute to the 

MHC-I presentation deficiency observed in cells lacking IRF2 and I will also show 

that IRF2 negatively regulates PD-L1 expression. By influencing both MHC-I 

antigen presentation and PD-L1 expression in this manner, cancers lacking IRF2 

(of which there are many) are both harder to see and more difficult to eliminate. 
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Chapter I: Introduction 

Overview of MHC-I presentation 

CD8+ T cells rely on the major histocompatibility complex class I (MHC-I) 

presentation pathway to monitor and maintain the body’s health. This difficult 

task is achievable because all nucleated cells naturally generate and display 

peptides derived from cellular proteins on MHC-I on their cell surface [1]. Under 

normal physiological conditions, all of the peptides presented by a cell’s MHC-I 

are from autologous proteins. In contrast, if a cell is infected with a virus or 

expresses mutant genes (e.g., in cancer), it will display foreign peptides. When 

an activated CD8+ T cell recognizes these foreign peptide-MHC-I complexes, it 

can eliminate the abnormal cell. 

CD8+ T cell activation often requires cross-priming, which can occur thanks to 

some help from professional antigen-presenting cells (APCs), namely dendritic 

cells (DCs) and macrophages [2-4]. These DCs sample the extracellular milieu, 

process antigens, and display peptide fragments on MHC-I in a process called 

“cross-presentation” [5]. This allows the DCs, which do not have to be infected or 

tumorigenic themselves, to initiate an immune response against the transformed 

cells from which the antigens were sampled. When a naïve CD8+ T cell is 

stimulated by peptide-MHC-I (signal 1) and other co-stimulation (signal 2), it will 

become activated [6]. (In contrast, if a naïve CD8+ T cell is only stimulated by 

signal 1 but not signal 2, it may be tolerized instead of activated.) Effector CD8+ T 
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cells then circulate in the periphery until they find their target cells, which express 

peptide-MHC-I through a process called “classical MHC I presentation.” If the T 

cell receptor of the effector CD8+ T cell is specific for the peptide-MHC-I 

presented, it can kill that target cell, primarily by releasing the cytotoxins perforin 

and granzyme onto the target, ultimately leading to cell apoptosis. 

Most of this dissertation will focus on the classical MHC I pathway rather than 

cross-presentation but since there are many similarities between these two 

pathways, it is important to understand how they work. Classical MHC I 

presentation – the MHC-I presentation of peptides derived from endogenously 

synthesized proteins either of self or foreign origin – can occur because 

intracellular proteins do not last forever. When a protein reaches the end of its 

lifetime, it is conjugated with ubiquitin and then sentenced to the proteasome for 

degradation, which cleaves the protein into oligopeptides [7]. Although the 

majority of these oligopeptides are then trimmed by cytosolic peptidases into 

amino acids, a fraction of the oligopeptides are translocated into the endoplasmic 

reticulum (ER) by the transporter associated with antigen processing (TAP), 

which contains two subunits – TAP1 and TAP2 [8]. Some of these peptides 

require further N-terminal trimming by an ER aminopeptidase (ERAP) in order to 

be the right length (usually 8 or 9 amino acids) for loading onto MHC-I [9, 10]. 

After newly synthesized MHC-I heavy chain associates with the chaperone 

calnexin [11], it dimerizes with a β2-microglobulin (β2m) light chain and this 

MHC-I heterodimer then associates with the TAP heterodimer via a 
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transmembrane glycoprotein, tapasin [12]. Other members of the MHC-I peptide 

loading complex (PLC) include the chaperone calreticulin [11], which binds an N-

linked glycan on the MHC-I heavy chain, and the oxidoreductase ERp57, which 

non-covalently associates with calreticulin and links to tapasin through disulfide 

bridges [13, 14]. Studies have shown that cells lacking any one of these PLC 

components experience deficits in MHC-I presentation [15-17]. This is because 

all members of the PLC are necessary to ensure that nascent MHC-I stably bind 

to mature peptides such that the resultant peptide-MHC-I complexes trafficked 

through the secretory pathway to the plasma membrane will have prolonged 

expression on the cell surface.  

The two major mechanisms by which DCs cross-present peptides are the 

phagosome-to-cytosol (P2C) pathway and the vacuolar pathway. Antigens 

internalized by phagocytosis, macropinocytosis, or receptor-mediated 

endocytosis can be cross-presented efficiently, as compared to those taken up 

by fluid-phase pinocytosis [18-21]. In the P2C pathway, these antigens escape 

from the phagosome into the cytosol and then either follow the same 

aforementioned path as the endogenously synthesized antigens in classical 

MHC-I presentation or, after being hydrolyzed by the proteasome, get 

translocated back into the endocytic compartment where they can be trimmed by 

a different aminopeptidase (insulin-regulated aminopeptidase; IRAP) and loaded 

onto open MHC-I molecules which were recruited there from the cell surface or 

ER [22]. In the vacuolar pathway, internalized antigen does not gain access to 



5 
 

the cytosol. Instead, it remains in the endocytic compartment where it is cleaved 

by proteases (primarily cathepsins), further trimmed by IRAP, and then loaded 

onto open MHC-I in the endosome before being presented at the cell surface 

[23]. 

Although many components of these MHC-I pathways have already been 

identified, several unanswered questions remain. These include but are not 

limited to: (1) how the different components of the MHC-I pathway are 

transcriptionally regulated under basal versus inflammatory conditions; and (2) 

how antigen escapes the endocytic compartment in the P2C pathway and the 

involvement of chaperones in this process. In the following two sections, I will 

briefly review what is known about each of these topics and where additional 

research may help to fill some of these knowledge gaps. 

 

Transcriptional control of MHC-I presentation 

While still not well-characterized, most investigation into the transcriptional 

regulation of the MHC-I pathway has been done by looking into the 

transcriptional activation of the MHC-I genes themselves. Several conserved 

regulatory promoter elements have been identified within the MHC-I promoter, 

namely the enhancer A, the interferon-stimulated response element (ISRE), and 

the SXY-module. Enhancer A binding by NF-κB and ISRE binding by interferon 

regulatory factors 1 and 8 (IRF1 and IRF8) induce MHC-I transcription after 

stimulation with TNFα or IFN (type I and type II), respectively [24, 25]. In contrast, 
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NLRC5, which itself does not bind the SXY-module but rather forms an MHC-I 

enhanceosome (together with the RFX complex, NFY complex, and 

ATF1/CREB) at that site, appears to regulate MHC-I transcription under basal 

conditions [26-30]. NLRC5 also targets other MHC-I pathway genes, such as 

β2m, TAP1, and an immunoproteasome subunit LMP2 (Psmb9), and SXY-

modules have been identified in each of these promoters [26, 31]. However, the 

transcriptional control of other MHC-I components, such as TAP2 and tapasin, 

under steady-state conditions has not yet been characterized [32]. Additionally, 

while much of the machinery of the MHC-I pathway is interferon-inducible [33] 

and ISREs have been found within the promoters of many of these genes [34], 

the exact mechanisms by which different IRFs may regulate each of these 

components under basal versus interferon-stimulated conditions has not been 

fully resolved. Furthermore, there exist specific regulatory mechanisms for 

controlling cross-presentation. It was recently shown that the transcription factor 

TFEB acts as a molecular switch to inhibit cross-presentation and enhance MHC-

II presentation [35]. This balance imposed by TFEB appears to be caused by its 

ability to induce phagosomal acidification and increase proteolysis, both of which 

are reduced in efficient cross-presenting cells [23, 36]. Although mRNA 

expression for several cathepsins was strongly upregulated by TFEB expression, 

TAP2 mRNA was unaffected [35]. Thus, this transcription factor also could not 

provide an answer as to what controls TAP2 transcription. As part of my thesis 

research, I investigated the role of another transcription factor, IRF2, on the 
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MHC-I pathway; its involvement in regulating several genes necessary for MHC-I 

presentation, including TAP2, will be discussed in greater depth in Chapter III. 

 

Antigen escape in P2C cross-presentation and roles of chaperones 

It remains unclear how exactly antigen gets transferred from the endocytic 

compartment to the cytosol in P2C cross-presentation. Two ideas which have 

been proposed are phagosomal disruption or an ER-associated degradation 

(ERAD)-like mechanism. In phagosomal disruption, ingested particles destabilize 

the phagosomal membrane, thereby allowing the contents to reach the cytosol 

[37]. This mechanism could explain how ingested enzymes transferred to the 

cytosol remain enzymatically active and how large non-protein molecules, such 

as internalized dextrans, can also access the cytosol [18, 22]. In support of this 

theory, loss of the enzyme NOX2, which creates reactive oxygen species that 

can destabilize the phagosome, impairs cross-presentation [38]. However, it is 

also possible that the loss of NOX2 inhibits cross-presentation by way of 

enhanced phagosome acidification [38]. The ERAD-like mechanism where 

abnormal intraluminal proteins are tagged with ubiquitin and sent back into the 

cytosol for proteasomal degradation is supported by evidence that a number of 

ER proteins are also present in the phagosome [39, 40]. ERAD involves the 

cytosolic p97 ATPase and possibly several translocon channels including Sec61 

and Derlin1 [41-43]. Studies have shown that silencing p97, Sec61, or a 

ubiquitin-conjugating enzyme involved in ERAD decreases cross-presentation 
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[44, 45]. However, inhibiting or reducing the expression of Sec61, which is 

necessary for translocating MHC-I and other important antigen presentation 

molecules into the ER, could simply explain the observed reductions in cross-

presentation; it is therefore unclear whether Sec61 actually serves as a 

retrotranslocon for this pathway. Moreover, another study found that silencing 

Derlin1 did not inhibit cross-presentation [46], further muddying the waters. 

Additionally, heat-shock protein (HSP) chaperones, such as Hsp90, have also 

been implicated in this P2C transfer [47]. More broadly, it has been of interest to 

elucidate the roles of HSPs in antigen presentation given the known critical roles 

of other chaperones (e.g., calnexin, calreticulin) in this pathway. Given the 

numerous roles of Hsp70 in the cell, including regulation of protein folding, 

stabilization, trafficking and degradation, it is likely that Hsp70 influences antigen 

presentation. In fact, Hsp70 has been implicated in cross-presentation of 

antigens derived from infected or cancerous parenchymal cells [48, 49]. Hsp70 is 

released from necrotic (but not apoptotic) cells [50], and uptake of Hsp70-

antigenic peptide complexes by APCs occurs through the CD91 receptor [51-53]. 

After Hsp70-chaperoned peptides are internalized by APCs, peptide processing 

and presentation occur using components of the classical MHC-I pathway [51]. 

Additionally, Hsp70 has also been suggested to play a role in the classical MHC-I 

pathway. Not only does Hsp70 associate with MHC epitope precursors [54, 55], 

but inhibition of Hsp70 has been shown to downregulate MHC-I expression on 

the cell surface [56]. Yet, currently the mechanisms by which Hsp70 and its 
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associated co-chaperones may facilitate classical MHC-I presentation are not 

well understood. For this reason, I decided to investigate the involvement of a 

family of Hsp70 co-factors (DnaJs or Hsp40s) on MHC-I presentation, which will 

be discussed further in Chapter V.  

 

MHC-I and immune evasion 

Given that MHC-I presentation equips the immune system with such a 

robust surveillance power, it is remarkable that some intracellular organisms and 

cancer cells manage to proliferate despite the odds stacked against them. As it 

turns out, many microbes and tumor cells, through a variety of evolutionary and 

immune selection pressures, are able to manipulate components of the MHC-I 

pathway so as to downregulate MHC-I presentation, thereby making it more 

difficult for the CD8+ T cells to see them. 

Viruses have co-evolved with their hosts over time and, along the way, have 

acquired several different escape mechanisms involving the MHC-I pathway. For 

example, Epstein-Barr virus (EBV) encodes for the protein EBNA1, which avoids 

proteasomal processing due to the long repetitive stretches of glycine and 

alanine residues it contains [57]. Mechanistically, it has been suggested that the 

19S regulatory proteasome subunit cannot properly recognize and unfold these 

glycine and alanine repeats [58, 59]. There are also viral proteins which inhibit 

TAP-mediated peptide translocation. These include ICP47 of herpes simplex 

virus, US6 of human cytomegalovirus (HCMV), BNLF2a of EBV, and UL49.5 of 
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bovine herpesvirus [60-63]. This TAP inhibition prevents virus-derived peptides 

from accessing the ER and being loaded onto MHC-I. Other viral proteins, such 

as US3 of HCMV and E3-19K of adenovirus, specifically target tapasin [64, 65]. 

Additionally, some viral proteins (e.g., US2, US11, and mK3) induce ERAD of 

MHC-I by orienting members of the PLC in such a way that the MHC-I tail gets 

polyubiquitylated and retro-translocated into the cytosol where it can then be 

degraded by the proteasome [66-68]. 

Discovering that viruses can manipulate the MHC-I pathway to promote their 

own survival should not make it surprising that tumor cells exposed to immune 

selection pressure can also downregulate MHC-I presentation. In fact, studies 

have shown that after immunoediting, tumors which were predominantly MHC-I 

positive can become MHC-I deficient [69-71]. Furthermore, cancers with 

mutations or decreased expression in β2m, TAP, and other necessary MHC-I 

pathway components have been identified [72-74]. 

One way in which the immune system combats chronic MHC-I 

downregulation in tumors or virus-infected cells is through the activity of natural 

killer (NK) cells. These NK cells preferentially kill cells via “missing-self 

recognition” [75]. The NKG2D ligands, MHC-I-related sequences A and B 

(MICA/B), are typically not expressed on healthy cells [76]. However, in settings 

where surface MHC-I is absent, such as infection or transformation, MICA/B are 

upregulated, sending a “kill me” signal to NK cells through their NKG2D receptor 

[77, 78]. Interestingly, Kaposi’s sarcoma-associated herpesvirus (KSHV) 
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expresses the proteins kK3 and kK5, which can downregulate both MHC-I and 

MICA/B, thus preventing elimination of the infected cell by CD8+ T cells or NK 

cells [79, 80]. 

The fact that so many different mechanisms exist for evading immune 

detection by manipulating the MHC-I pathway and its associated molecules 

should highlight the importance in studying these networks to better understand 

how microbes and cancers escape immune recognition. Accordingly, the 

interplay between host recognition of self vs. non-self will be revisited in a later 

section on immune checkpoint. 

 

Interferon regulatory factor (IRF) family 

Interferons (IFNs) are cytokines released by host cells which trigger anti-viral 

immune responses. There are three main classes of IFNs: type I (e.g., IFNα and 

IFNβ); type II (IFNγ); and type III (IFNλ). Type I and type III IFNs can be 

expressed by a variety of cell types whereas type II IFN is primarily expressed by 

T cells and NK cells [81]. Although these different types of IFNs have diverse 

biological activities, they all bind to receptors on the target cell(s) and initiate anti-

viral responses. When the type I and type II receptors, IFNAR and IFNGR, bind 

their ligands, they activate signal transducer and activator of transcription (Stat) 

complexes, a family of transcription factors [82]. IFNAR signaling starts with 

activation of the tyrosine kinases Tyk2 and Jak1, which then phosphorylate Stat1 

and Stat2, which then both associate with IRF9 to form a heterotrimeric complex 
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called ISGF3, which translocates into the nucleus and transcribes specific target 

genes. IFNGR signaling starts by activating Jak1 and Jak2, which then 

phosphorylate a Stat1 dimer, thereby enabling its translocation to the nucleus to 

activate target genes. 

In order for these interferons to be useful to the host, they should be turned 

on when necessary and turned off in an unstimulated state. Therefore, interferon 

production requires regulation. The interferon-regulatory factor (IRF) family 

member, IRF1, was first identified as an activator of IFNβ expression [83]. Since 

then, a total of nine IRFs have been identified, which each have unique 

responsibilities within the cell. Here, I will briefly review the various functions of 

these IRFs, focusing primarily on IRF1 and IRF2, which were closely examined in 

the context of my thesis research. 

After finding that IRF1 positively regulates IFNβ expression, another 

structurally similar transcription factor, IRF2, was identified and found to repress 

IRF1-induced activation of IFNβ [84]. Site-directed mutagenesis revealed the 

conserved IRF DNA-binding domain (DBD) as a ~120 amino acid region 

containing five tryptophan repeats within the N-terminus, which forms a helix-

turn-helix domain and recognizes a DNA consensus sequence termed the 

interferon-stimulated response element (ISRE; 𝐴 𝐺⁄ 𝑁𝐺𝐴𝐴𝐴𝑁𝑁𝐺𝐴𝐴𝐴𝐶𝑇) [82, 85]. 

Outside of the amino terminus, IRF1 and IRF2 only share about 25% homology 

and the C-termini of these two transcription factors differ significantly, with IRF1’s 

being predominantly acidic and serine-threonine residues and IRF2’s being rich 
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in basic residues [84]. Because the unique C-terminus of IRF1 includes its 

transcriptional activation domain, it is not surprising that IRF1 and IRF2 can have 

different effects on their target genes. However, despite the early IRF literature 

which favored an antagonistic relationship between IRF1 and IRF2 wherein the 

IRF1 activator would always compete with the IRF2 repressor for the same ISRE, 

more recent discoveries have revealed that IRF2 can also act as an activator. Its 

ability to activate some genes, such as VCAM-1, histone H4, and TLR3 [86-88], 

appears to be due to proteolytic cleavage of the IRF2 C-terminus (which contains 

a repression domain) following infection, which consequently converts IRF2 into 

either a strong repressor or an activator [89-92]. IRF1 and IRF2 can also be post-

translationally serine-phosphorylated by protein kinase A, protein kinase C, and 

casein kinase II [93]. 

IRF1 and IRF2 have some shared and some different effects on cell function, 

development, and growth. Among the genes activated by IRF1 are those 

important for anti-viral (IFNβ, guanylate-binding proteins/GBPs) and anti-bacterial 

(iNOS) responses, apoptosis (caspase 1), and MHC antigen presentation (class 

II trans-activator/CIITA, TAP1, LMP2) [85]. The genes targeted by IRF2 are not 

as well defined, but IRF2 is generally thought to reduce type I IFN responses by 

competing with IRF1 and IRF9 [85]. Both IRF1 and IRF2 are required for NK cell 

development and for promoting Th1 differentiation and suppressing Th2 

differentiation [94-97]. Additionally, IRF1 is necessary for CD8+ T cell 

differentiation whereas IRF2 helps differentiate CD4+ DCs [98, 99]. In addition to 
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its pro-apoptotic role via caspase 1 activation, IRF1 can arrest cell growth after 

DNA damage [100, 101]. These functions, plus its ability to suppress lysyl 

oxidase [102], which is often upregulated in hypoxic tumors, has caused some to 

ascribe a tumor suppressor-like role to IRF1. In contrast, one report found that 

IRF2 overexpression causes oncogenic transformation in vitro (which could be 

reverted by IRF1 overexpression) [103], although the mechanisms by which this 

occurred are unknown and these findings have not been reproduced. On the 

other end of the spectrum, IRF1 appears to promote autoimmunity as mice 

lacking IRF1 show a lower incidence of collagen-induced arthritis and 

experimental allergic encephalomyelitis whereas a loss of IRF2 results in a CD8+ 

T cell-mediated, psoriasis-like skin disease [104, 105]. 

The other human IRFs, IRF3-9, contribute to host immunity in many ways. 

For example, IRF3 and IRF7 cooperate to induce type I IFN upon virus infection 

or TLR stimulation in the early and late stages, respectively [106-108]. IRF4, 

which is regulated by T cell receptor (TCR) signal strength, is important for CD8+ 

T cell responses to acute viral infections and T helper cell fate determination 

[109, 110]. IRF5 positively regulates TLR-induced pro-inflammatory cytokine 

expression [111]. IRF6, which is constitutively expressed in the skin, helps 

differentiate keratinocytes [112]. IRF8 is important for CD8α+ DC differentiation 

and also binds the ISRE in the enhancer of MHC-I genes [113-115]. IRF9, as 

mentioned above, forms part of the heterotrimeric ISGF3 complex and activates 

type I IFN-induced genes [116]. 
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Immune checkpoint 

As mentioned earlier, the quality of the T cell priming response is dependent 

on signal 1 (TCR-MHC interaction) and signal 2 (co-stimulation). Although TCR 

recognition of peptide-MHC initiates a T cell response, the co-stimulatory and 

inhibitory molecules (i.e., immune checkpoints) present on the APC and T cell 

regulate this response so as to maintain self-tolerance. In addition to modulating 

MHC-I presentation, tumor cells can better escape elimination from the immune 

system by enhancing immune checkpoint, thereby allowing “tumor tolerance.” 

Cancer immunotherapies designed to relieve inhibition imposed on the T cell 

(i.e., checkpoint blockade) have been focused primarily on cytotoxic T-

lymphocyte-associated antigen 4 (CTLA-4) and the interaction between 

programmed death protein 1 and its ligand (PD-1/PD-L1) [117]. Such antibodies 

targeting CTLA-4 and the PD-1/PD-L1 axis have demonstrated clinical efficacy in 

a variety of cancer types, including but not limited to melanoma, non-small cell 

lung cancer (NSCLC), colorectal carcinoma, lymphoma, and renal cell carcinoma 

[118]. 

CTLA-4 is expressed exclusively on T cells and counteracts CD28-mediated 

co-stimulation [117]. Because CTLA-4 and CD28 share the same ligands – CD80 

and CD86 – but CTLA-4 has a higher affinity for them, it is thought that CTLA-4 

outcompetes CD28 for ligand binding [119]. Interestingly, CTLA-4 can also 

remove these ligands from the APC surface through trans-endocytosis [120]. In 

addition, CTLA-4 prevents T cell activation via signaling pathways involving the 
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phosphatases SHP-2 and PP2A, which counteract the kinase activity 

downstream of TCR and CD28 [121, 122]. Although tumors do not preferentially 

express or inhibit CTLA-4, anti-CTLA-4 therapeutics (e.g., ipilimumab for 

metastatic melanoma) can elicit potent anti-tumor responses [123, 124]. 

In contrast with CTLA-4 which is important at the T cell priming stage, the PD-

1/PD-L1 axis plays a greater role in the periphery where the activated T cells 

interact with normal cells and tumor cells. When T cells expressing PD-1 interact 

with their ligand (PD-L1), T cell activity is reduced (also thought to be SHP-2-

mediated) [125]. This is a normal physiological response in tissues to prevent 

excess collateral damage in areas undergoing T cell attack. However, tumors 

can manipulate this response by upregulating PD-L1, which is strongly induced 

by IFNγ, to suppress T cell-mediated elimination. Interestingly, PD-1 is not only 

expressed on T cells, but also on NK cells and B cells [126, 127], which is 

significant because tumor cells expressing low surface MHC-I and high PD-L1 

could potentially avoid both T cell and NK cell-mediated elimination. So far, anti-

PD-1 therapeutics (e.g., pembrolizumab for melanoma and NSCLC) have also 

experienced some clinical success [128]. However, not all patients are sensitive 

to checkpoint blockade. Because checkpoint blockade is extremely expensive 

and can have serious side effects, there is a need for good biomarkers to identify 

those patients that would be more likely to benefit from this type of therapy. 

Currently, tumors are screened for PD-L1 status as high PD-L1 expression is 

correlated with better responses to anti-PD-1 treatment [129, 130] but this is still 
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far from perfect since PD-L1 positivity neither guarantees nor excludes a clinical 

response to anti-PD-1 [131]. Some patients possessing tumors with microsatellite 

instability or a high mutational burden can also benefit from checkpoint blockade 

[132]. However, due to the evolving mutational landscape of such tumors, some 

tumors acquire resistance to checkpoint inhibitors by downregulating MHC-I 

presentation machinery [133-135]. 

 

Scope of thesis 

The primary objective of my thesis was to identify and characterize a novel 

component of the MHC-I pathway. Through an unbiased forward-genetic screen 

in HeLa H1 cells, I identified several interesting gene “hits” that could positively 

regulate classical MHC-I presentation. From this list, I dedicated most of my time 

to studying an interferon regulatory factor, IRF2, that had not been previously 

recognized to positively regulate this pathway. In chapters III and IV, I will 

describe our results showing that IRF2 both transcriptionally activates key 

components of the MHC-I pathway and represses PD-L1 expression. I will also 

highlight how a loss of IRF2 leads to immune evasion and the implications of our 

findings for cancer progression and immunotherapy. Additionally, I spent time 

investigating genes from our lab’s cross-presentation screen. In chapter V, I will 

document my preliminary studies on a couple co-chaperones identified in this 

screen and their effects on MHC-I presentation. 
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Chapter II: Materials and Methods 

Cells 

DC3.2 is a J2 virus-immortalized dendritic cell line [4]. A particular DC3.2 

clone (with Renilla luciferase) was used for all experiments as this clone has very 

strong cross-presentation and MHC class II presentation, as compared to other 

clones. RF33.70 is a T cell hybridoma that recognizes the ovalbumin (OVA) 

peptide OVA257-264 in the context of H2-Kb [136]. MF2.2D9 is a T cell hybridoma 

that recognizes OVA258-276 in the context of I-Ab [4]. RF33.70 and MF2.2D9 were 

transduced with lentivirus containing NFAT-luciferase by Freidrich Cruz. NIH-3T3 

cells were stably transfected with the mouse H2-Kb molecule. HeLa H1 were 

kindly provided by Abraham Brass (UMass), A549 and MCF7 were kindly 

provided by Leslie Shaw (UMass), and the D53m and H50m mouse MCA-

induced sarcoma lines were kindly provided by Robert Schreiber (Wash U, St. 

Louis). Dnajc10 MEFs [137] were kindly provided by Takao Iwawaki. The MCA-

induced sarcoma lines were grown in R10 media and all other cell lines were 

grown in “HCM”: RPMI 1640 (Gibco) supplemented with 10% FBS (Hyclone), 1% 

NEAA (Gibco), 1% HEPES (Gibco), 1% Antibiotic-Antimycotic (Gibco), and 5 x 

10-5 M 2-ME (Sigma). The MCF7 growth media was also supplemented with 

10µg/mL insulin. Antibiotic selection for CRISPR-Cas9 knockout cells was done 

for two weeks in media containing 5µg/mL blasticidin (Invivogen). All cells were 

grown in a 10% CO2 atmosphere at 37°C. 



20 
 

Plasmids 

The LentiCRISPRv2 plus blasticidin selection plasmid [138, 139] was 

acquired from Addgene (83480) and, unmodified, is the same as the “no sgRNA” 

plasmid. The plasmids used to target mouse β2m, TAP1, TAP2, ERAP1, IRF2, 

IRF1 or to target human IRF2 were constructed by inserting the following sgRNA 

sequences, respectively, into the LentiCRISPRv2 plasmid as described below: 

Mouse β2m: 5’-AGTATACTCACGCCACCCAC-3’; 

Mouse TAP1: 5’-ACTAATGGACTCGCACACGT-3’;  

Mouse TAP2: 5’-ATTACACGACCCGAATAGCG-3’;  

Mouse ERAP1: 5’-TGCAGCATCCAGAGCATAAT-3’;  

Mouse IRF2: 5’-TCCGAACGACCTTCCAAGAA-3’;  

Mouse IRF1: 5’-CTCATCCGCATTCGAGTGAT-3’;  

Human IRF2: 5’-TGCATGCGGCTAGACATGGG-3’. 

Primer sets for cloning the sgRNAs above into the LentiCRISPRv2 plasmid are 

shown in Table 2.1. Construct cloning was done as follows: 100µM 

oligonucleotides from the primer sets were annealed and then diluted 1:50. 3µg 

of LentiCRISPRv2 plasmid was digested for 3hrs at 55°C with BsmBI (NEB) and 

removal of the 2kb filler sequence was confirmed by gel electrophoresis. The 

larger molecular weight band was gel extracted and quick ligated with the diluted 

annealed oligos according to the manufacturer’s instructions (NEB). Stable 

competent E. coli (NEB) were then transformed with 2µL of the quick ligation 

product according to the manufacturer’s instructions and grown overnight at 30°C 
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on LB+Ampicillin (100µg/mL) plates. Plasmids were isolated (Clontech) from 

individual colonies and sequenced (Genewiz) using the primer hU6-F: 5’-

GAGGGCCTATTTCCCATGATT-3’ to confirm proper insertion of the sgRNA into 

LentiCRISPRv2. In addition, sgRNAs were checked for high indel efficiencies in 

transduced cells by TIDE analysis [140].  

Rescue plasmids used in Chapters III and IV were constructed by inserting 

mouse IRF2, TAP2, or ERAP1 cDNA or human IRF2 cDNA into the constitutive 

expression vector, pCDH-CMV (Addgene), with a modified multiple cloning site. 

Overlapping PCRs were run using the primers in Table 2.2 on either mouse 

cDNA from DC3.2 cells or human cDNA from HeLa H1 cells to create IRF2 cDNA 

sequences containing 6 synonymous mutations within the IRF2 sgRNA target 

site. The mouse IRF2 K78R sequence was constructed by further mutating A to 

G at nucleotide 233. The wild-type TAP2 and ERAP1 cDNA sequences were of 

C57BL/6 origin. All plasmids were sequenced to confirm correct sequences and 

reading frames. 
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Table 2.1. Primer sets for cloning LentiCRISPRv2 sgRNA constructs 

 

 

  

  Forward Reverse 

Mouse 
β2m 

5’-CACCGAGTATACTCACGCCACCCAC-3’ 5’-AAACGTGGGTGGCGTGAGTATACTC-3’ 

Mouse 
TAP1 

5’-CACCGACTAATGGACTCGCACACGT-3’ 5’-AAACACGTGTGCGAGTCCATTAGTC-3’ 

Mouse 
TAP2 

5’-CACCGATTACACGACCCGAATAGCG-3’ 5’-AAACCGCTATTCGGGTCGTGTAATC-3’ 

Mouse 
ERAP1 

5’-CACCGTGCAGCATCCAGAGCATAAT-3’ 5’-AAACATTATGCTCTGGATGCTGCAC-3’ 

Mouse 
IRF2 

5’-CACCGTCCGAACGACCTTCCAAGAA-3’ 5’-AAACTTCTTGGAAGGTCGTTCGGAC-3’ 

Mouse 
IRF1 

5’-CACCGCTCATCCGCATTCGAGTGAT-3’ 5’-AAACATCACTCGAATGCGGATGAGC-3’ 

Human 
IRF2 

5’-CACCGTGCATGCGGCTAGACATGGG-3’ 5’-AAACCCCATGTCTAGCCGCATGCAC-3’ 
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Table 2.2. Primer sets for cloning IRF2 rescue/overexpression constructs 

Primer 
name 

Sequence 

Human 
IRF2 AgeI 
fwd 

5’-GACTACCGGTATGCCGGTGGAAAGGATGCGCATG-3’ 

Human 
IRF2 
sgRNA 
mut rev 

5’-GCCGTGCCTCGCTGCGTGCATCCAGGGGATCTGAAAAATCTTCTTTTCCTTG-3’ 

Human 
IRF2 
sgRNA 
mut fwd 

5’-
GATGCACGCAGCGAGGCACGGCTGGGATGTGGAAAAAGATGCACCACTCTTTAGAAA-
3’ 

Human 
IRF2 MluI 
rev 

5’-GATCACGCGTTTAACAGCTCTTGACGCGGGCCTGG-3’ 

Mouse 
IRF2 AgeI 
fwd 

5’-GATCACCGGTATGCCGGTGGAACGGATGCGAATG-3’ 

Mouse 
IRF2 
sgRNA 
mut rev 

5’-CCTTTTTTCGAGGGGCGCTCTGATAAGGGCAGCATCCGGTAGACTCTGAAGGCG-3’ 

Mouse 
IRF2 
sgRNA 
mut fwd 

5’-
CTTATCAGAGCGCCCCTCGAAAAAAGGAAAGAAACCAAAGACAGAAAAAGAAGAGAG-
3’ 

Mouse 
IRF2 MluI 
rev 

5’-GATCACGCGTTTAACAGCTCTTGACACGGGCCTGG-3’ 
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HeLa H1 CRISPR-Cas9 screen 

HeLa H1 cells stably expressing Cas9 were transduced with lentiviral libraries 

that express short guide RNAs (sgRNAs) targeting 19,052 human genes, with six 

barcoded sgRNAs per gene. After four rounds of magnetic sorting on low MHC-I 

cells using the pan-HLA-A/B/C antibody W6/32, the sgRNA sequences from the 

surviving cells were identified via next generation sequencing (NGS). Gene 

candidates were ranked based on the number of unique gene candidates versus 

NGS reads. 

 

Cell surface staining 

Where indicated, mouse cells were blocked with 2.4G2 and stained for 

surface MHC class I levels with anti-Kb-APC (eBioscience, AF6-88.5.5.3), MHC 

class II levels with anti-IA/IE-PECy7 (BioLegend, M5/114.15.2), PD-L1 levels with 

anti-PD-L1-PE (BioLegend, 10F.9G2), or with isotype controls (eBioscience 

mouse IgG2a-APC eBM2a, eBioscience rat IgG2b κ-PE eB149) at 1:200 

dilutions. Where indicated, human cells were stained for surface MHC class I 

levels with W6/32. W6/32 staining was performed either by two-step labeling with 

W6/32 hybridoma supernatant followed by 1:500 donkey-anti-mouse Alexa 647 

(Life Technologies) or by one-step labeling with 1:200 FITC-conjugated W6/32 

(eBioscience). Where indicated, human cells were stained for surface PD-L1 

levels with 1:200 rabbit anti-PD-L1 (Abcam, 28-8), followed by 1:500 donkey-anti-

rabbit Alexa 647 (Life Technologies). Normalized MFI was computed by dividing 
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the geometric MFI of each knockout cell line by the geometric MFI of the WT (no 

sgRNA) cell line. 

 

T cell hybridoma Ag presentation 

Cross-presentation and MHC class II presentation were measured by co-

culturing DC3.2 lines in flat-bottom 96-well plates in the presence of the indicated 

concentrations of OVA-coated iron-oxide beads (Polysciences) and 5 x 104 

RF33.70-Luc CD8+ T cells or MF2.2D9-Luc CD4+ T cells per well, respectively, 

for 16-18 hours. Then, One-Glo luciferase substrate (Promega) was added and 

luciferase activity quantified by an EnVision plate reader (Perkin Elmer). Rescue 

experiments were performed by adding the OVA-beads and RF33.70-Luc cells 

48hrs post-transduction of the DC3.2 lines. Normalized CD8+ T cell activation 

was calculated for rescue experiments by dividing the CD8+ T cell activation 

(RLU of luciferase) at each point by the CD8+ T cell activation of the DC3.2 no 

sgRNA line transduced with EV (no sgRNA, EV). Mapping experiments were 

done using DC3.2 and 3T3-Kb lines stably transduced with doxycycline-inducible 

non-secretable OVA or ubiquitin-SIINFEKL and adding the indicated 

concentrations of doxycycline to the cells for 2 hours prior to co-culturing them 

with the RF33.70-Luc CD8+ T cells. 
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siRNA transfections 

104 HEK293T or HeLa H1 cells were transfected with 10nM Silencer Select 

siRNA (Invitrogen) and 0.3µL Lipofectamine RNAiMAX (Invitrogen) per well in 

flat-bottom 96-well plates. Individual siRNAs used were negative control #1 

(4390843) human β2m (s1854), human TAP1 (s13778), human IRF2 #1 (s7506), 

and human IRF2 #2 (s7504). After 72 hours, adherent cells were trypsinized, 

washed in PBS supplemented with 2% FBS, and stained with the surface MHC I 

pan-HLA-A/B/C antibody, W6/32. Normalized MFI was computed by dividing the 

geometric MFI of each experimental siRNA by the geometric MFI of the negative 

control siRNA. For experiments in Chapter V, 2 x 104 DC3.2 cells were 

transfected for 48 hours with 50nM siRNA pools or individual siRNAs 

(Dharmacon) targeting either mouse Dnajb4 or Dnajc10 or targeting β2m or I-Ab 

as controls. In some experiments, a non-targeting siRNA was also used as a 

negative control. 

 

Minigene transfections 

104 3T3-Kb cells were transfected with 100ng of various pTracer-CMV2 

plasmids (Invitrogen) containing SIINFEKL precursors[141] and 0.4uL 

Lipofectamine 2000 (Invitrogen) in flat-bottom 96-well plates. After 72 hours, cells 

were stained with 25-D1.16 (specific for the combination of SIINFEKL and H-2Kb) 

[142], followed by donkey-anti-mouse Alexa 647 (Life Technologies) and 

analyzed by flow cytometry. Transfected cells were identified by GFP expression 
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and the MFI of 25-D1.16 staining was measured on the gated transfected cells. 

Transfection efficiency, based on GFP expression, ranged from 5-20%, 

depending on the vector. The normalized MFI for each experiment (with technical 

duplicates) was calculated by dividing the MFI of each knockout line by the MFI 

of the wild-type (“no sgRNA”) line. 

 

RNA-Seq 

RNA was extracted using the RNeasy kit (Qiagen) after 2 hours of stimulating 

the DC3.2 lines with 5,000U/mL mouse IFNα, 2ng/mL mouse IFNγ, or media 

alone. A standard library preparation protocol was used with 50ng of total RNA 

as starting material. Libraries were checked for appropriate fragment size traces 

by Bioanalyzer (Agilent) and concentrations were determined to achieve similar 

sequencing depth per library. Libraries were run on NextSeq 500/550 high-output 

and mid-output kits (Illumina) and all libraries had at least 107 reads with single 

index paired-end sequencing. Trimmomatic-0.32 [143] was used to remove 5’ or 

3’ stretches of bases having an average quality of less than 20 in a window size 

of 10. Only reads longer than 36 bases were kept for further analysis. RSEM 

v1.2.28 [144] was used to estimate gene expression, with parameters -p 4 --

bowtie-e 70 --bowtie-chunkmbs 100 --strand-specific. Gene quantification was 

run on the transcriptome (RefSeq v69 downloaded from UCSC Table Browser 

[145]. Genes with more than 15 TPM in any time point were considered 

expressed, and genes that did not achieve this threshold were removed from 
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further analysis. Batch effects were observed between samples from different 

replicates. We used the log transformed TPM normalized expression values as 

input to ComBat (package sva version 3.18.0) [146, 147] with default parameters 

and a model that specified different replicates as batches. Corrected TPM values 

were transformed back to read counts using the expected size of each transcript 

informed by RSEM. We only considered genes with at least 15 TPMs in at least 

one replicate at any time point. The expressed gene list was filtered to include 

only genes with homologs as defined by the previous step. We used the batch 

corrected counts per gene to identify differentially expressed genes by at least 2 

fold between unstimulated cells (time 0) and 2 hours following stimulation with 

IFNα or IFNγ and whose change in expression was significant (p-adjusted < 

0.05) according to the package DESeq2 (v1.10.1) [148] in R (v3.5.1). Due to the 

large transcriptional changes observed in this system, we turned off the fold 

change shrinkage in DESeq2 with betaPrior=FALSE and we added a 

pseudocount of 32 to all timepoints to avoid spurious large fold change estimates 

from lowly abundant genes. 

 

Human lung specimens 

27 non-small cell lung cancers were acquired from UMass Pathology archive 

of formalin-fixed and paraffin-embedded patient samples. PD-L1 expression was 

determined at the time of diagnosis by immunohistochemistry by a surgical 
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pathologist. RNA was extracted from the archival material and analyzed by qPCR 

(see below). 

 

qPCR 

RNA was extracted from cell lines using the RNeasy kit (Qiagen) or from 

formalin-fixed paraffin-embedded non-small cell lung cancers using the RNeasy 

FFPE kit (Qiagen) and reverse transcribed to cDNA using EcoDry pre-mix 

random hexamers (Clontech). 50ng cDNA were used per well (done in triplicate) 

with indicated TaqMan probes (Applied Biosystems), according to the 

manufacturer’s instructions. The TaqMan probes used are listed in Table 2.3. 

mRNA expression levels in the IRF2-knockout DC3.2 were compared to those in 

the wild-type DC3.2 by first normalizing to the mRNA expression of β-actin 

(mouse) in each sample (2^-ΔΔCt). Statistical analysis was done using two-tailed 

unpaired t-tests from ≥ 3 independent experiments, comparing the expression of 

a given gene to that of H2-Ab1. Relative mRNA expression levels in each human 

lung tumor were measured by first normalizing to the mRNA expression of 

GAPDH (human) in each specimen (2^-ΔCt). Results are displayed after further 

normalization to one of the tumors. DC3.2 and 3T3-Kb lines knocked down for 

Dnajb4 or Dnajc10 were routinely screened for efficient knockdown in parallel to 

the described functional assays. For each gene examined, its relative mRNA 

expression in the knockdown cells was compared to that in negative control 
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siRNA-treated cells by first normalizing to the mRNA expression of β-actin 

(mouse) in each sample (2^-ΔΔCt). 
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Table 2.3. TaqMan probes for qPCR 

Gene Probe ID # 

Mouse β-actin 4352933 

Mouse β2m Mm00437762_m1 

Mouse H2-K1 Mm01612247_m1 

Mouse H2-Ab1 Mm00439216_m1 

Mouse Tap1 Mm00443188_m1 

Mouse Tap2 Mm01277033_m1 

Mouse Erap1 Mm00472842_m1 

Mouse ERp57 Mm00433130_m1 

Mouse Tapasin Mm00493417_m1 

Mouse Canx Mm00500330_m1 

Mouse Calr Mm00482936_m1 

Mouse Tapbpr Mm00520408_m1 

Mouse Irap Mm00555903_m1 

Mouse Psme1 Mm00650858_g1 

Mouse Psme2 Mm01702833_g1 

Mouse Psmb8 Mm00440207_m1 

Mouse Psmb9 Mm00479004_m1 

Mouse Psmb10 Mm00479052_g1 

Mouse PD-L1 Mm03048248_m1 

Human GAPDH Hs02758991_g1 

Human IRF2 Hs01082884_m1 

Human TAP2 Hs00241060_m1 

Human ERAP1 Hs00429970_m1 

Mouse Dnajb4 Mm00508908_m1 

Mouse Dnajc10 Mm00546461_m1 
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Chromatin immunoprecipitations 

Chromatin immunoprecipitation (ChIP) generally followed the Thermo Fisher 

ChIP protocol. In short, 107 DC3.2-no sgRNA cells were stimulated for 2hrs with 

2ng/mL IFNγ or media alone, harvested and fixed with 1% formaldehyde, 

quenched with glycine, and washed in cell lysis buffer then nuclear lysis buffer. 

Chromatin was sheared by sonication for 20min and fragment size (~300bp) was 

determined by gel electrophoresis. Immunoprecipitations of the sheared 

chromatin were done using 2µg of primary antibody – normal rabbit IgG (Santa 

Cruz sc-2027), rabbit anti-IRF1 (Abcam ab186384), or rabbit anti-IRF2 

(Invitrogen B-80 H53L46) – by incubating for 1hr at RT then overnight at 4°C. 

The next day, 25uL of pre-washed Protein A/G beads (Pierce) were added to 

each of the samples and incubated at RT for 30min then 90min at 4°C. After 

washing sequentially with low-salt buffer, high-salt buffer, LiCl buffer, and TE 

buffer, the DNA was eluted from the beads. All immunoprecipitated samples 

were treated with RNase A (Qiagen) and Proteinase K (Qiagen) and then column 

purified (Clontech). ChIP-qPCR was performed in triplicate wells using SYBR 

Green (Bio Rad) and unique primer sets (Table 2.4) flanking the IRF1/2-binding 

site within the gene’s promoter [34, 149, 150], according to the manufacturer’s 

instructions. Data shown as mean + SEM of fold enrichment (2^-ΔCt) over the 

normal rabbit IgG control IP (N=2). Statistical analysis was done using ratio 

paired t-tests. 
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Table 2.4. Primer sets for ChIP-qPCR 

Gene Forward primer Reverse primer 

Mouse 
TAP2 

5’-CAAATTGACAGGCGCCATCT-3’ 5’-GCTTCTTCTCAAACTGGATCTCC-3’ 

Mouse 
ERAP1 

5’-CTTAGGCTTGCTCTCTTTTAGCG-3’ 5’-GACTCCTGCTCCCGATCCTC-3’ 

Mouse 
PD-L1 

5’-CAAGAAAGCTAATGCAGGTTTCAC-3’ 5’-CCTGCGGATGACTTTAGAGTC-3’ 
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Western blotting 

For IRF2 experiments (Chapters III and IV), whole cell lysates were prepared 

in RIPA buffer with protease inhibitor (Pierce), protein concentrations were 

determined by BCA assay (Pierce), and 10µg of denatured samples were run on 

10% reducing gels (Genscript). After transfer, PVDF membranes (Millipore) were 

blocked with TBS-Tween 1x + 5% milk and then blotted with rabbit anti-IRF2 

(Abcam ab124744) or rabbit anti-IRF1 (Abcam ab186384) in TBS-Tween 1x + 

2% milk overnight at 4°C. The following day, membranes were washed 3x with 

TBS-Tween 1x, goat-anti-rabbit HRP (Millipore) was added for 1hr at RT, 

membranes were washed 3x, and HRP substrate (Millipore) was added. 

Following exposure, membranes were stripped (Millipore), blocked, and re-

blotted with mouse anti-β-actin (Santa Cruz sc-47778) in TBS-Tween 1x + 2% 

milk overnight at 4°C. The following day, membranes were prepared as above 

except anti-mouse HRP (Pierce) was used instead. 

For Dnajc10 experiments (Chapter V), the same protocol was used as above 

but with the following antibodies: mouse anti-Dnajc10 (Santa Cruz sc-100713), 

rabbit anti-BiP (Cell Signaling C50B12 and Abcam ab21685), mouse anti-β-actin 

(Santa Cruz sc-47778), rabbit anti-β2m (Abcam ab75853), rabbit anti-ERp57 

(Cell Signaling G117), mouse anti-H2-Kb exon 8 (Spring Valley), rabbit anti-

TAP1, and rabbit anti-calreticulin (Abcam ab2907). 
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In vitro cytotoxicity assays 

OT-I CD8+ T cells were pre-activated by co-culturing them for 4-5 days with 

irradiated, SIINFEKL-pulsed wild-type B-blasts in T cell media containing 

30ng/mL IL-2. After this time, OT-I were checked for CD8 expression and 

upregulation of CD27 and CD44. WT or IRF2-null RMA cells were counted, sub-

divided into respective tubes, SIINFEKL-pulsed at the indicated concentrations or 

kept un-pulsed, and CFSE-labeled as high (1µM) for cells pulsed with SIINFEKL 

and CFSE-labeled as low (0.1µM) for un-pulsed cells. Pulsed and un-pulsed cells 

were re-counted, mixed 1:1, and 105 cells total were plated per well in U-bottom 

96-well plates. 5 x 104 OT-I were added to the respective wells and incubated at 

37°C for 4hrs. Live RMA cells were gated by flow cytometry and CFSE levels 

analyzed. Specific killing was determined for each RMA line by calculating 

100 × [1 −
(

% 𝑇𝑎𝑟𝑔𝑒𝑡𝑠

% 𝐵𝑦𝑠𝑡𝑎𝑛𝑑𝑒𝑟𝑠
)

% 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑇𝑎𝑟𝑔𝑒𝑡𝑠

% 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐵𝑦𝑠𝑡𝑎𝑛𝑑𝑒𝑟𝑠

]. 

 

Dnajc10 construct cloning 

To build the Dnajc10 constructs, Dnajc10 cDNA (as described below) was 

inserted into the doxycycline-inducible (pTRIPZ) or constitutive (pCDH) 

expression vectors. As controls, some experiments used empty vectors without a 

cDNA insert (EV) and others used vectors where enhanced green fluorescent 

protein cDNA had been inserted (EGFP). All Dnajc10 cDNA sequences were of 

C57BL/6 origin and contained 6 synonymous mutations within the Dnajc10 
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siRNA target site and an HA tag, which was inserted just upstream to the C-

terminal KDEL motif because putting a tag downstream of KDEL causes the 

protein to be secreted rather than retained in the ER [151]. A point mutation at 

residue 63 (H63Q) of the J domain was created using a site-directed 

mutagenesis kit (Agilent). Point mutations within the thioredoxin-like motifs were 

generated either by site-directed mutagenesis or overlapping PCR. All plasmids 

were sequenced to confirm correct sequences and reading frames. 

 

Immunoprecipitations 

Dnajc10 was immunoprecipitated using Protein G Dynabeads (Life 

Technologies) that were BS3-cross-linked (Pierce) to either mouse anti-Dnajc10 

(Santa Cruz sc66.7) or rabbit anti-HA (Cell Signaling C29F4), according to the 

manufacturer’s instructions. As control, beads were cross-linked to mouse or 

rabbit normal immune IgG (Santa Cruz), respectively. Cells were lysed in 1% 

digitonin, 20mM N-ethylmaleimide, and protease inhibitor (Pierce). Lysates were 

pre-cleared on normal immune IgG beads and some was stored as the “pre-

clear” fraction. Then, lysates were divided onto the anti-Dnajc10 or normal 

immune IgG beads and incubated at RT for 20 minutes, after which time a “flow-

through” fraction was collected. Bead-antibody-antigen complexes were then 

washed 3 times in PBS with 0.2% digitonin and a “wash 3” fraction was collected. 

Finally, protein “eluate” was captured from the beads using 50mM glycine, pH 
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2.8. All protein fractions were then denatured and run on reducing gels as above 

(Western blotting section) and blotted for the proteins of interest. 

 

Dnajc10 ex vivo studies 

Dnajc10+/+ (WT) or Dnajc10-/- (KO) mice were acquired [137] and bred on a 

C57BL/6 background. Bone marrow and spleens were collected from male, 6-8-

week-old WT and KO mice using a standard protocol. To generate bone marrow-

derived dendritic cells (BMDCs), the bone marrow was cultured on tissue 

cultured-treated petri dishes for 7 days prior to harvesting the non-adherent 

differentiated BMDCs. During this time, the culture media (HCM) was 

supplemented with the cytokines GM-CSF and IL-4 on days 0, 1, and 4. BMDCs 

were confirmed to be >95% CD11b+/CD11c+ by flow cytometry. For antigen 

presentation assays, 105 BMDCs were plated per well in flat-bottom 96-well 

plates and then OVA-beads and T cells were added, as described above. For 

flow cytometry analysis of MHC levels on BMDCs or splenocytes, cells were 

surface stained as described above.  
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Chapter III: IRF2 regulation of MHC-I presentation 

Introduction 

The importance of adaptive immunity in preventing cancer was revealed 

through studies in which immunodeficient animals, such as those lacking IFNγ, 

perforin, or RAG-2, were found to have a marked increase in spontaneous and 

mutagen-induced tumors [152-154]. In addition, tumors derived from such 

immunodeficient animals grew when transplanted into other immunodeficient 

hosts but were rejected when placed into immunocompetent hosts [154-156], 

providing further evidence that the immune system recognized such tumors and 

could reject them. In contrast, many tumors arising in immunocompetent animals 

grew after being transplanted into immunocompetent hosts [154-156], thereby 

showing that cancers that arise and successfully progress in the face of the 

immune system have undergone immunoediting to escape from immune control. 

This immunoediting process is thought to be why many cancers express low 

levels of MHC-I [157]. The underlying molecular mechanisms responsible for 

these changes are poorly understood but have obvious potential impact on tumor 

progression and immunotherapy [135, 158]. 

As mentioned in Chapter I, the MHC-I presentation pathway is critical for 

immune recognition and elimination of tumors by CD8+ T cells. In this process, a 

fraction of peptides that are generated by proteasomal degradation of cellular 

proteins are transported by the TAP transporter into the endoplasmic reticulum 



41 
 

(ER), wherein they can be further trimmed by the aminopeptidase, ERAP1 [8-10]. 

Subsequently, peptides of the correct length and sequence bind to MHC-I 

molecules and these complexes are then transported to the cell surface for 

display to CD8+ T cells. This allows activated CD8+ T cells to identify and kill cells 

that are presenting tumor-specific peptides (e.g., from mutant proteins) on their 

MHC-I [159].  

We performed an unbiased, forward-genetic screen in human cervical 

carcinoma HeLa H1 cells to identify genes whose loss downregulated the MHC-I 

pathway. In this screen, the second strongest hit, second only to β2-

microglobulin (the MHC-I light chain), was IRF2, an interferon regulatory 

transcription factor that had not been previously recognized to positively regulate 

this pathway. Here, I will describe the screen, the studies validating IRF2 as a 

positive regulator of MHC-I presentation in a variety of cell types, and the 

mechanisms by which IRF2 affects this pathway. 

 

Results 

HeLa H1 screen for novel regulators of classical MHC-I presentation 

To identify genes positively regulating the classical MHC-I pathway, we 

performed a CRISPR-Cas9 screen in HeLa H1 cells. A lentiviral library 

expressing six barcoded sgRNAs targeting each gene of the human genome 

(~19,000 genes) was transduced at a low multiplicity of infection and then cells 

were immunoselected for MHC-I low variants. The rationale for this was that cells 
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will lose surface MHC-I levels if they have lesions anywhere in the MHC-I 

pathway, which includes the steps required for proteasomal processing and 

those involved in peptide transport, trimming, and loading onto MHC-I [15-17]. In 

this HeLa H1 screen, several known components of the MHC-I presentation 

pathway came up as very strong hits, including β2M, TAP1, TAP2, TAPBP 

(Tapasin), PDIA3 (ERp57), and the three RFX proteins that make up part of the 

enhanceosome complex with NLRC5 [32], RFXANK, RFXAP, and RFX5 (Fig. 

3.1). Additionally, the second-most targeted gene was IRF2, with six out of six 

independent IRF2 sgRNAs hitting (Fig. 3.1), and this gene had not been 

previously recognized to positively regulate MHC-I presentation under basal 

conditions. As a result, we decided this gene warranted further investigation. 
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Figure 3.1. HeLa H1 CRISPR-Cas9 screen. 

Scatterplot of top gene “hits” from the HeLa H1 CRISPR-Cas9 screen. Each 

gene was targeted by six independent sgRNAs. MHC-I low variants were 

immunoselected and barcoded sgRNAs were identified from this MHC-I low 

population. Gene candidates were ranked by their abundance in this MHC-I low 

population as shown by the number of independent guides targeting a given 

gene versus the number of total reads for all guides targeting that gene.  
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IRF2 positively regulates the MHC-I presentation pathway 

To validate this hit, we tested whether IRF2 affects surface MHC-I levels in 

human cells by knocking out IRF2. HeLa H1 cells and HEK293T kidney cells 

were transduced with vectors expressing either Cas9 and a sgRNA targeting 

human IRF2 or Cas9 alone and surface MHC-I levels were checked by flow 

cytometry (Fig. 3.2a). The IRF2-knockout (IRF2-KO) HeLa H1 and HEK293T had 

significantly lower surface MHC-I levels than their wild-type (WT) controls (Fig. 

3.2b). To further validate this finding with an independent technique, we silenced 

IRF2 expression with siRNAs and found that this also decreased surface MHC-I 

levels in HeLa H1 and HEK293T (Fig. 3.2c), confirming the phenotype. The 

magnitude of the decrease in MHC-I was similar to that observed when the 

expression of the TAP transporter was silenced. To determine whether IRF2 also 

affects surface MHC-I levels in mouse cells, we transduced NIH-3T3 fibroblasts 

stably transfected with H2-Kb (3T3-Kb) and DC3.2 dendritic cells [4] with vectors 

expressing either Cas9 and a sgRNA targeting mouse IRF2 or Cas9 alone. The 

IRF2-KO mouse fibroblasts and DC cells also had significantly reduced surface 

MHC-I levels (Fig. 3.2d). Loss of IRF2 expression was confirmed by western blot 

(Fig. 3.2e). DC3.2 cells also express MHC-II molecules and we found no change 

in surface MHC-II levels in the IRF2-KO cells (Fig. 3.2d), which demonstrates 

that IRF2 is selectively affecting the MHC-I pathway; further evidence supporting 

this conclusion will be described below. 
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To investigate the functional consequence of this reduction in MHC-I levels, 

we evaluated the importance of IRF2 for MHC-I cross-presentation (i.e., the 

presentation of peptides derived from exogenous antigen on MHC-I). The IRF2-

KO DCs cross-presented more poorly than their WT controls (Fig. 3.2f), 

demonstrating that IRF2 positively regulates MHC-I antigen presentation. In the 

same experiments, MHC-II presentation was unaffected, again showing 

selectivity in IRF2 effects (Fig. 3.2g). Lastly, to confirm that IRF2 is responsible 

for these differences, we overexpressed IRF2 in the IRF2-KO DC3.2 line and 

found that it completely restored surface MHC-I levels (Fig. 3.2h) and the ability 

of these cells to cross-present antigen (Fig. 3.2i). Evidence that loss of IRF2 also 

compromises the presentation of endogenous cellular antigens will be described 

below. 

To determine whether IRF2 was exerting its function as a transcription factor, 

we introduced a lysine to arginine point mutation at position 78 which prevents 

acetylation at this site and thereby prevents IRF2 from binding its DNA target 

sequences [160]. Overexpressing this mutant IRF2 did not restore function in the 

IRF2-KO DC3.2 cells (Fig. 3.2i). Therefore, IRF2 is necessary for optimal 

transcriptional regulation of MHC-I antigen presentation pathways. 

 



46 
 

  

  

Figure 3.2. IRF2 positively regulates MHC-I presentation under basal conditions 
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Figure 3.2. IRF2 positively regulates MHC-I presentation under basal conditions 

 

(a) Representative histograms of surface MHC I levels by W6/32 staining in HeLa 

H1 lines stably transduced with the LentiCRISPRv2 constructs; “IRF2 KO” (IRF2 

sgRNA) or “WT” control (no sgRNA). Background is with secondary antibody 

staining only; (b) Normalized MFI of surface MHC I levels on HeLa H1 (left) or 

HEK293T (right) stable knockout lines; (c) normalized MFI of surface MHC I 

levels on HeLa H1 (left) or HEK293T (right) cells after 72hrs silencing with 10nM 

indicated siRNA; (d) Normalized MFI of surface MHC I levels by AF6 staining on 

3T3-Kb stable knockout lines (left), surface MHC I levels on DC3.2 stable 

knockout lines (middle), or surface MHC II levels on DC3.2 stable knockout lines 

(right); (e) Representative Western blot in DC3.2 lines “IRF2 KO” (IRF2 sgRNA) 

or “WT” control (no sgRNA) for protein expression of IRF2 or β-actin as control; 

(f) Representative cross-presentation experiment of OVA-beads by DC3.2 lines 

to RF33.70-Luc CD8+ T cell hybridoma; (g) Representative MHC-II presentation 

experiment of OVA-beads by DC3.2 lines to MF2.2D9-Luc CD4+ T cell 

hybridoma; (h) Normalized MFI of surface MHC I levels on DC3.2 lines after 

transducing with pCDH expressing empty vector (EV) or wild-type IRF2 

containing six synonymous mutations within the IRF2 sgRNA target site (IRF2); 

(i) Cross-presentation after transducing the DC3.2 lines with pCDH expressing 

empty vector (EV), wild-type IRF2 containing six synonymous mutations within 

the IRF2 sgRNA target site (IRF2 WT), or mutant IRF2 (IRF2 K78R) which also 

contains the same six synonymous mutations as IRF2 WT. (b, c, d, h, i) Bars 

represent mean + SEM (N≥3). Statistical analysis by two-tailed ratio paired t-

tests; (f, g) Points represent mean ± SD of technical duplicates. *p<0.05, 

**p<0.01, ***p<0.001, ns=not significant 
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How does IRF2 regulate the MHC-I pathway? 

Since IRF2 is functioning as a transcription factor, we next sought to 

determine what genes are regulated by IRF2 and could be responsible for 

producing the low MHC-I phenotype observed in the IRF2-KO cells. RNA-seq 

was performed on the wild-type and IRF2-KO DC3.2 lines (Fig. 3.3a, Table 3.1). 

Surprisingly, relatively few genes were differentially expressed by >2-fold (19 

decreased and 33 increased). Of these 52 differentially expressed genes, we 

identified TAP2, ERAP1, and the immunoproteasome subunit PSME1 as 

potential contributors to the decreased MHC-I levels. To further confirm this 

result, we performed qPCR in these cell lines to check expression of all MHC-I 

pathway genes (Fig. 3.3b), which showed that the mRNA levels of TAP2, 

ERAP1, and PSME9 (another immunoproteasome subunit) were significantly 

downregulated in the IRF2-KO DC3.2; PSME1 levels were reduced but this 

decrease did not achieve statistical significance. Interestingly, the mRNA levels 

of the MHC heavy chain (H2-K1) and MHC light chain (β2m) were unaffected 

(Fig. 3.3b), indicating that IRF2 is not required for synthesis of the MHC-I 

heterodimer. ChIP-qPCR experiments confirmed that IRF2 regulates TAP2 and 

ERAP1 mRNA expression by directly binding to their promoters (Fig. 3.3c). To 

test whether functional IRF2 is needed for TAP2 and ERAP1 mRNA expression, 

we overexpressed wild-type IRF2 or the IRF2-K78R mutant in the DC3.2 IRF2-

KO cells and found that the TAP2 and ERAP1 mRNA levels were increased in 

the cells expressing wild-type but not mutant IRF2 (Fig. 3.3d). 
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Figure 3.3. IRF2 transcriptionally regulates components of the MHC-I pathway 
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Figure 3.3. IRF2 transcriptionally regulates components of the MHC-I pathway 
 

(a) Heatmap of genes (52) differentially expressed by >2-fold between the DC3.2 

no sgRNA (“WT”) and IRF2 sgRNA (“IRF2 KO”) lines. Columns represent 

independent duplicate RNA-seq runs in these two lines. Red → blue indicates 

high → low expression for a given row (gene). For clarity, only three of the 

downregulated genes in the KO line (Psme1, Tap2, and Erap1) are shown here 

and all are listed in Table 3.1; (b) mRNA expression levels by qPCR in DC3.2 

IRF2 KO relative to those in DC3.2 WT; normalized to the mRNA expression of 

mouse β-actin in each sample (2^-ΔΔCt). Values >1 indicate higher expression in 

DC3.2 IRF2 KO and values<1 indicate lower expression in the DC3.2 IRF2 KO. 

Bars represent mean + SEM mRNA expression (N≥3). Statistical analysis by two-

tailed unpaired t-tests by comparing the expression of a given gene to that of H2-

Ab1 (control); (c) ChIP-qPCR in DC3.2 WT for TAP2 (left) or ERAP1 (right) DNA 

with rabbit anti-IRF2 IgG or normal rabbit IgG (control). Bars represent mean + 

SEM fold enrichment (2^-ΔCt) over the normal rabbit IgG control IP (N=2). 

Statistical analysis by two-tailed ratio paired t-tests; (d) mRNA expression levels 

by qPCR in DC3.2 IRF2 KO 24hrs after overexpressing pCDH wild-type IRF2 

(IRF2 WT) or mutant IRF2 (IRF2 K78R) relative to overexpressing pCDH empty 

vector; normalized to the mRNA expression of mouse β-actin in each sample (2^-

ΔΔCt). Values >1 indicate higher expression than overexpressing empty vector 

and values<1 indicate lower expression than overexpressing empty vector. 

Representative experiment shown; bars represent mean + SD of mRNA 

expression of duplicate technical replicates. *p<0.05, **p<0.01, ***p<0.001, 

ns=not significant 
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Table 3.1. RNA-Seq differentially expressed genes in DC3.2 WT vs. IRF2-KO 

under basal conditions. Genes listed below in the order shown in the heatmap.  

Cluster 1 (blue bar) Cluster 2 (red bar) 

Isg20 Socs1 

Arg1 Ifit1 

Acadl H2-T22 

Ddx58 Hck 

Thbs1 Igtp 

C1qa Flt1 

Psme1 Mx2 

Fabp7 Tnfsf13b 

Nmi H2-T9 

Arg2 Ly6a 

Epsti1 Scimp 

Mov10 Tmem140 

Il15ra Cmpk2 

Casp7 Gbp5 

Gsdmd Rsad2 

Parp14 Gbp2 

Ifi27 Gbp6 

Tap2 Cd40 

Erap1 Gbp11 

 Trafd1 

 Psmb8 

 Irg1 

 Cst7 

 Tspan13 

 Gbp3 

 Ifi47 

 Gbp8 

 Irgm2 

 Fgl2 

 Tgtp2 

 Gbp9 

 Gbp4 

 Gbp7 
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To more closely examine the functional effects of IRF2 on peptide transport 

and trimming, 3T3-Kb IRF2-KO cells were transfected with various pTracer 

plasmids, each of which contained a GFP reporter and a minigene encoding a 

peptide that could be processed down to the mature epitope (i.e., 

SIINFEKL/S8L). The cells were surface stained with the antibody 25-D1.16, 

which recognizes H2-Kb-S8L complexes [142], and transfected cells (GFP-

positive) were analyzed. IRF2-KO cells presented fewer H2-Kb-S8L complexes 

than wild-type cells when given the TAP-dependent, ERAP1-dependent antigens 

CD16-OVA (full-length ovalbumin protein) [161], N25-S8L (a S8L precursor 

extended by 25 amino acids on the N-terminus), or N5-S8L (a S8L precursor 

extended by 5 amino acids on the N-terminus) (Fig. 3.4a). We also tested the 

presentation of a version of the precursor peptide with 5 extra N-terminal 

residues that was targeted into the ER by a co-linear signal sequence (ss-N5-

S8L). Since the signal sequence allows this peptide to enter the ER through 

SEC61 instead of TAP, its presentation is TAP-independent but still dependent 

on ERAP1 to remove the extra N-terminal residues. IRF2-KO cells also 

presented fewer H2-Kb-S8L complexes than wild-type cells when transfected with 

ss-N5-S8L (Fig. 3.4b). However, IRF2-deficient cells were equally capable of 

presenting H2-Kb-S8L complexes when given a TAP-independent, ERAP1-

independent peptide (S8L with no extra N-terminal residues that was targeted 

into the ER via a co-linear signal sequence; ss-S8L) (Fig 3.4c), demonstrating 
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that while IRF2 affects the transport and processing of MHC-I epitopes, it does 

not affect the ability of such peptides to be loaded onto MHC-I. 

We also assessed the functional significance of IRF2-mediated changes in 

TAP2 and ERAP1 expression by measuring the extent to which TAP2 and 

ERAP1 contribute to the low surface MHC-I phenotype observed in the IRF2-KO 

cells. The magnitude of the reduction in MHC-I levels on IRF2-KO cells was in 

between that of the TAP2- and ERAP1-knockout cells (Fig. 3.4d), which is 

consistent with our findings that IRF2 positively regulates TAP2 and ERAP1 but 

their expression is not entirely lost in IRF2-KO cells. Lastly, we performed rescue 

experiments wherein we overexpressed TAP2 and/or ERAP1 in the IRF2-

knockout DC3.2 and checked surface MHC-I levels two days after transduction 

(Fig. 3.4e). Although the double-rescue partially restored MHC-I levels, it was not 

complete, suggesting that other genes regulated by IRF2 also contribute to 

surface MHC-I expression. 
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Figure 3.4. IRF2 affects antigen transport and processing 

(a-c) H-2Kb presentation of SIINFEKL derived from (a) the TAP-dependent, 
ERAP1-dependent antigens CD16-OVA (left), N25-S8L (middle), or N5-S8L 
(right); (b) the TAP-independent, ERAP1-dependent antigen ss-N5-S8L; and (c) 
the TAP-independent, ERAP1-independent antigen ss-S8L on 3T3-Kb knockout 
lines. 25-D1.16 staining analyzed on transfected (GFP+) cells; (d) Normalized 
MFI of surface MHC I levels on 3T3-Kb (left) or DC3.2 (right) knockout lines; (e) 
Normalized MFI of surface MHC I levels on DC3.2 lines 48hrs after transduction 
with pCDH expression vectors containing empty vector (EV), IRF2, TAP2, 
ERAP1, or dual transduction of TAP2 and ERAP1. (a-e) Bars represent the mean 
+ SEM of the normalized MFI from independent experiments (N≥3). Statistical 
analysis by two-tailed ratio paired t-tests. *p<0.05, ***p<0.001, ns=not significant 
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Summary 

Through a CRISPR-Cas9 screen, we identified IRF2 as a novel positive 

regulator of MHC-I antigen presentation. Moreover, we found that, under basal 

conditions, IRF2 is important for both classical MHC-I presentation and cross-

presentation. This was demonstrated in a number of human and mouse cell 

types including both professional and non-professional APCs. IRF2 binds the 

promoters of TAP2 and ERAP1 and transcriptionally activates their expression. 

In the absence of IRF2, cells express less TAP2 and ERAP1 and, due to the 

consequent defects in antigen transport and processing, present fewer peptide-

MHC-I complexes at the cell surface. Additionally, IRF2 regulates the expression 

of other genes, such as immunoproteasome subunits, which likely also influence 

the MHC-I presentation in IRF2-deficient cells. Given that MHC-I presentation is 

essential for immune recognition and elimination of tumors by CD8+ T cells and 

that a loss of IRF2 dramatically reduces MHC-I presentation, we decided to 

investigate whether some cancers may downregulate IRF2, thereby facilitating 

their escape from the immune system (Chapter IV). 
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Chapter IV: IRF2, immune checkpoint, and cancer 
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Chapter IV: IRF2, immune checkpoint, and cancer 

Introduction 

Based on our findings that IRF2-deficient cells have significantly lower MHC-I 

presentation than IRF2-sufficient cells (Chapter III), we were interested in 

determining whether IRF2 expression is downregulated in cancers. In addition to 

the aforementioned effects of immunoediting on MHC-I levels, inhibitory immune 

checkpoint molecules (e.g., PD-L1) are often upregulated on tumor cells, which 

facilitate their escape from the immune system. Fortuitously, as we were mining 

our RNA-seq results for antigen presentation genes, we noticed that the IRF2-KO 

dendritic cells also had higher expression of PD-L1 than the WT controls and this 

was of obvious interest to explore further. Additionally, because IRF2 is an 

interferon regulatory factor and interferon is known to upregulate both MHC-I 

presentation and PD-L1 expression, we wanted to investigate the effects of 

interferon stimulation on cells lacking IRF2. Below, we address each of these 

topics and show that IRF2 downregulation leads to immune evasion.  

Results 

IRF2 represses PD-L1 expression 

One of the upregulated genes in the IRF2-KO RNA-seq dataset was Cd274 

(Fig. 4.1), also known as programmed death-ligand 1 (PD-L1), which is often 

upregulated in certain cancers (e.g., non-small cell lung cancer) and functions as  
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Figure 4.1. PD-L1 (Cd274) mRNA expression in RNA-seq replicates 

PD-L1 mRNA expression in the DC3.2 no sgRNA (“WT”) and IRF2 sgRNA (“IRF2 

KO”) lines. Bars show TPM from 3 independent RNA-seq replicates. 
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a checkpoint inhibitor to suppress antigen-specific CD8+ T cell effector function 

[162, 163]. To validate our RNA-seq finding with an independent technique, we 

performed qPCR on the IRF2-KO and wild-type DC3.2 lines and found that the 

IRF2-KO cells expressed approximately twice as much PD-L1 mRNA as the wild-

type controls (Fig. 4.2a). Additionally, ChIP-qPCR revealed that IRF2 regulates 

PD-L1 mRNA expression by directly binding the PD-L1 promoter (Fig. 4.2b). 

Therefore, IRF2 acts as a transcriptional repressor of PD-L1 in these cells. To 

evaluate the extent to which a roughly 2-fold increase in PD-L1 mRNA translates 

to surface PD-L1 expression, we analyzed these cells by flow cytometry (Fig. 

4.2c). Interestingly, the surface PD-L1 levels increased by roughly 50% in the 

IRF2-KO cells (Fig. 4.2d). Taken together, these results demonstrate that IRF2 

plays a role in repressing PD-L1 expression under basal conditions. 
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Figure 4.2. IRF2 represses PD-L1 expression under basal conditions 

(a) H2-Ab1 and PD-L1 mRNA expression levels by qPCR in DC3.2 IRF2 KO 

relative to those in DC3.2 WT; normalized to the mRNA expression of mouse β-

actin in each sample (2^-ΔΔCt). Values >1 indicate higher expression in DC3.2 

IRF2-KO. Bars represent mean + SEM mRNA expression (N=3). Statistical 

analysis by two-tailed unpaired t-test by comparing the expression of PD-L1 to 

that of H2-Ab1; (b) ChIP-qPCR of DC3.2 WT for PD-L1 DNA with rabbit anti-IRF2 

IgG or normal rabbit IgG (control); bars represent mean + SEM fold enrichment 

(2^-ΔCt) over the normal rabbit IgG control IP (N=2). Statistical analysis by two-

tailed ratio paired t-test; (c) Representative histograms of surface PD-L1 levels 

by 10F.9G2 staining in DC3.2 lines stably transduced with the LentiCRISPRv2 

constructs; IRF2-KO (“IRF2 sgRNA”) or WT control (“No sgRNA”). Background = 

isotype control staining; (d) Normalized MFI of surface PD-L1 levels on DC3.2 

lines; bars represent mean + SEM (N=6). Statistical analysis by two-tailed ratio 

paired t-test. *p<0.05, **p<0.01 
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Contributions of IRF1 vs. IRF2 

Because IRF2 is an interferon regulatory transcription factor, we wanted to 

see how interferon induction would affect IRF2’s regulation of the MHC-I pathway 

and PD-L1 expression. Interestingly, stimulation with either IFNγ or IFNα restored 

the surface MHC-I expression in the IRF2-KO DC3.2 (Fig. 4.3). This is an 

important finding because it indicates that impairment of the MHC-I pathway from 

loss of IRF2 is reversible. IRF1 and IRF2 recognize the same IFN-stimulated 

response element (ISRE) [82, 84, 164] and, whereas IRF2 is constitutively 

expressed and minimally affected by interferon induction, IRF1 is significantly 

upregulated in response to interferon (Fig. 4.3) [88, 165, 166]. Consistent with 

the literature that IRF1 positively regulates both MHC-I and PD-L1 expression 

under IFN-stimulated conditions [167-169], we found that knocking out IRF1 

decreased both surface MHC-I and PD-L1 levels after IFNγ stimulation (Fig. 4.3). 

Interestingly, when we examined the dual effects of IRF1 and IRF2 on surface 

MHC-I and PD-L1 levels using single or double knockout DC3.2 lines (Fig. 4.3), 

we found that: (1) IRF1/2 double knockouts have a larger reduction in surface 

MHC-I than is observed in either single knockout; and (2) IRF2-knockouts have a 

larger effect than the IRF1-knockouts on both MHC-I and PD-L1 expression 

under basal conditions. This suggested that, although these two IRFs recognize 

the same ISRE, the subset of genes they each primarily regulate differs and that 

a cell’s dependence on IRF2 vs. IRF1 for any given gene may vary depending on 

the cues (e.g., interferon) which that cell receives from its environment. 
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Figure 4.3. Contributions of IRF1 and IRF2 in the presence or absence of IFN 

(a-c) Normalized MFI of surface MHC I and PD-L1 levels on DC3.2 stable lines 

after overnight incubation with (a) media alone, (b) 2ng/mL IFNγ, or (c) 5,000 

U/mL IFNα; bars represent mean + SEM (N≥3). Statistical analysis by two-tailed 

ratio paired t-tests. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns=not 

significant. (d) Western blots of IRF1 and IRF2 (and β-actin as loading control) in 

DC3.2 lines in the absence or presence of 2ng/mL IFNγ (top) or 5,000U/mL IFNα 

(bottom) for the durations indicated.  
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To test this, we stimulated the DC3.2 with IFNγ and checked IRF1 and IRF2 

binding to the TAP2, ERAP1, and PD-L1 promoters. We found that IFNγ induces 

IRF1 expression, which causes IRF1 to compete with IRF2 for these promoters, 

ultimately displacing it from them (Fig. 4.4a). To better characterize the IRF1 vs. 

IRF2 regulated expression changes more globally, we performed RNA-seq on 

the single and double knockout DC3.2 lines under basal conditions (Fig. 4.4b, 

Table 4.1) or after adding IFNγ (Fig. 4.4c, Table 4.2). From this analysis, several 

genes known to be important for antigen presentation and immune cell function 

were identified (Tables 4.1 and 4.2). Furthermore, this analysis showed that 

genes influenced by IRF1 and IRF2 could be grouped into multiple classes. 

Under basal conditions, there was a subset of antigen presentation-related genes 

whose expression was activated by IRF2 (e.g., TAP2, ERAP1), others that were 

repressed by IRF2 and remained so in the double knockouts (e.g., H2-T9), and 

yet others that were repressed by IRF2 but did not remain so in the double 

knockouts (e.g., PSMB8, PSMB10) (Fig. 4.4b). After stimulating with IFNγ, some 

genes were primarily activated by IRF1 (e.g., PSME1, PSME2, PSMB9), others 

were primarily repressed by IRF2 (e.g., PD-L1), and yet others were activated by 

both IRF1 and IRF2 (e.g., TAP2, ERAP1) (Fig. 4.4c). Collectively, these studies 

demonstrate that while some genes are acted on antagonistically by IRF1 and 

IRF2, other genes are regulated synergistically by these two transcription factors 

and that the relative contributions of IRF1 vs. IRF2 in mediating these expression 

changes varies depending on the inflammatory state of the cell.  
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Figure 4.4. IRF1/IRF2-mediated gene regulation in DC3.2  

(a) ChIP-qPCR of DC3.2 WT cells stimulated with ± 2ng/mL IFNγ for 2hrs for 

TAP2 (top), ERAP1 (middle), or PD-L1 (bottom) DNA with rabbit anti-IRF2 IgG, 

rabbit anti-IRF1 IgG, or normal rabbit IgG (control). Bars represent mean + SEM 

fold enrichment (2^-ΔCt) over the normal rabbit IgG control IP (N=2). (b, c) 

Heatmap of genes differentially expressed between the DC lines (b) at baseline 

or (c) after stimulation with ± 2ng/mL IFNγ for 2hrs. For clarity, only a few genes 

are shown, and all are listed in Tables 4.1 and 4.2.  
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Table 4.1. RNA-Seq differentially expressed genes in DC3.2 WT, IRF1 KO, IRF2 

KO, and double KO under basal conditions. Genes listed below in the order 

shown in the heatmap in Figure 4.4b. 

 

Cluster 1 (Blue) Cluster 2 (Grey) Cluster 3 (Red) 

Psmb10 Lepre1 C1qa 

Tspan13 Cry1 Arg1 

Ly6a Gmcl1 Arg2 

H2−T22 Lrp10 Parp14 

Gbp11 Tm6sf1 Casp7 

Irg1 Glipr2 Nmi 

Gbp6 mmu−mir−155* Ddx58 

Mx2 Socs1 Tap2 

Rsad2 Scimp Epsti1 

Ifi47 Tnfsf13b Acadl 

Irgm2 Entpd1 Gsdmd 

Trafd1 Tmem140 Thbs1 

Tgtp2 Gbp4 Isg20 

Ifit1 Cd40 Trim30a 

Cmpk2 Gbp5 Isg15 

Igtp Gbp2 Il15ra 

Psmb8 Cst7 Ifitm3 

 Hck Psmb9 

 Fgl2 Sp110 

 Gbp8 Psme2 

 H2−T9 Cox6a2 

 Flt1 Psme1 

 Gbp3 mKIAA1554 

 Gbp9 Pla2g2d 

 Gbp7 Fabp7 

  Ube2l6 

  Ifi27 

  Mov10 

  Erap1 

 

  



67 
 

Table 4.2. RNA-Seq differentially expressed genes in DC3.2 WT, IRF1 KO, IRF2 

KO, and double KO after ± IFNγ stimulation. Genes listed below in the order 

shown in the heatmap in Figure 4.4c. 

 

Cluster 1 (Dark blue) Cluster 2 (Light blue) Cluster 3 (Light red) Section 4 (Dark red) 

C1qb Egr2 Mx1 Dusp1 

Trim30a Lpin1 Phf11b Flrt3 

Rab19 Isg20 Usp18 Adora2b 

Il15ra AI427809 Psmb10 Rhof 

Sp110 Arg2 Ifi203 Rab15 

Psme1 Arg1 Dtx3l Scimp 

Psme2 Acadl Gbp11 Sla2 

Oasl2 Epsti1 Tgtp1 Tuba1a 

Parp14 Nmi Ifi47 Trem1 

Samd9l Mov10 Tgtp2 H2−T9 

Ube2l6 Ifi27 Igtp Cst7 

Isg15 Gsdmd Ifit3 Flt1 

Psmb9 Casp7 Ifit1 H2−T22 

Mndal mKIAA1554 Gm14446 Tmem140 

Fam26f Ddx58 Gbp6 Herc6 

Gm12250 Tap2 I830012O16Rik Slc15a3 

Iigp1 Slfn9 Cmpk2 Lysmd2 

Mnda Pla2g2d Rsad2 Lrp10 

Gm12185 Erap1 Mx2 Gmcl1 

Parp9  Irg1 Tm6sf1 

  Nos2 2810408M09Rik 

  Gbp5 Lepre1 

  Cd40 Cry1 

  Gbp4 Pithd1 

  Gbp8 Rab22a 

  Cd274 Hdac2 

  Gbp2 Traf1 

   Ptgs2 

   Vegfa 

   Nfkbie 

   Smim3 

   Adam8 

   Ets2 

   mmu−mir−155* 

   Tnfsf13b 

   Gbp3 

   Il1r2 

   Gbp9 

   Gbp7 
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IRF2 in cancer 

 Given that experimentally-induced loss of IRF2 both compromises MHC-I 

presentation and increases PD-L1 expression, it was of interest to see how often 

IRF2 is downregulated in primary cancers. We used the TIMER bioinformatics 

tool [170] to mine publicly available databases for IRF2 expression in primary 

human cancers. Remarkably, IRF2 was downregulated in several kinds of human 

cancers and the overall reductions were highly statistically significant (Fig. 4.5). 

For each of the IRF2-low cancers, which included invasive breast carcinoma, 

cholangiocarcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, lung 

adenocarcinoma and squamous cell carcinoma (non-small cell lung cancers; 

NSCLCs), prostate, rectum and stomach adenocarcinomas, and uterine corpus 

endometrial carcinoma, a subset of patients had very low levels of IRF2. 
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Figure 4.5. IRF2 expression in human tumors vs. normal tissues 

Differential IRF2 expression in tumor and normal tissue from patients with the 

indicated cancer types (TCGA abbreviations), as queried from TIMER [170]. 
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We chose one of the IRF2-low cancers, NSCLC, to determine whether IRF2 

levels were functionally limiting in primary cancers. At our institution, NSCLCs 

are screened for PD-L1 expression by immunohistochemistry (IHC) at the time of 

diagnosis, which enabled us to randomly select tumors spanning a spectrum of 

PD-L1 expression.  We extracted RNA from archival patient biopsy material and 

quantified expression of IRF2, TAP2, and ERAP1 by qPCR. In these lung 

cancers, IRF2 mRNA levels and PD-L1 IHC status were significantly inversely 

correlated (Fig. 4.6a). Additionally, consistent with our cell line findings, TAP2 

and ERAP1 mRNA levels positively and significantly correlated with IRF2 mRNA 

levels (Fig. 4.6b). To formally test cause and effect for these correlations, we 

analyzed a human NSCLC cell line, A549, that is IRF2-low relative to other 

NSCLCs tested in the NCI-60 panel [171]. A549 cells are also MHC-I-low and 

PD-L1-positive [172, 173]. Eliminating the residual IRF2 in A549 cells by 

CRISPR-Cas9-mediated knockout further decreased surface MHC-I but did not 

further increase surface PD-L1 (Fig. 4.7a). In contrast, restoring IRF2 by 

transfection repressed surface PD-L1 expression and increased surface MHC-I 

expression (Fig. 4.7a). Stimulation of A549 with IFNγ augments both surface 

MHC-I and PD-L1 expression, as expected, but transfection of IRF2 still has the 

same pattern of effects as without IFN (repressing PD-L1 and further increasing 

MHC-I expression) (Fig. 4.7b). To further generalize these findings, we analyzed 

two human breast cancers, two mouse sarcomas, and a mouse lymphoma and 

found similar results (Fig. 4.8). 
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Figure 4.6. IRF2 in human NSCLC biopsies 

(a) IRF2 mRNA expression in patient NSCLC specimens scored as PD-L1 low 

(1-50%) or high (>50%) by immunohistochemistry. IRF2 mRNA expression was 

normalized to GAPDH mRNA expression in each lung specimen and then IRF2 

expression across specimens was compared by calculating fold changes over 

the lowest IRF2-expressing specimen, which was set as equal to 1. Statistical 

analysis by Mann-Whitney U test, **p<0.01; (b) TAP2 (top) and ERAP1 (bottom) 

mRNA correlations with IRF2 mRNA in NSCLC specimens. Linear regression 

models shown with R2 for goodness of fit. 
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Figure 4.7. Surface MHC-I and PD-L1 expression on A549 lines 

(a, b) Geometric MFI of surface MHC I (left) and PD-L1 (right) on (a) 

unstimulated or (b) overnight IFNγ-stimulated A549 lines knocked out for IRF2 

(“IRF2 KO”) or control (“WT”) or overexpressing IRF2 or empty vector (EV) as 

control. Bars represent mean + SEM (N=3). Statistical analysis by two-tailed ratio 

paired t-tests. *p<0.05, **p<0.01, ***p<0.001  
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Figure 4.8. Surface MHC-I and PD-L1 

expression on human breast carcinomas, 

mouse sarcomas, and a mouse lymphoma 
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Figure 4.8. Surface MHC-I and PD-L1 expression on human breast carcinomas, 

mouse sarcomas, and a mouse lymphoma 

 

(a-e) Geometric MFI of (a) surface MHC-I on unstimulated or overnight IFNγ-

stimulated human breast carcinoma (BT20 and MCF7) lines knocked out for 

IRF2 (“IRF2 KO”) or control (“WT”); (b) surface PD-L1 on IFNγ-stimulated BT20 

and MCF7 knockout lines; (c) surface MHC-I (left) or surface PD-L1 (right) on 

unstimulated RMA lymphoma knockout lines; (d) surface MHC-I on (left) 

unstimulated BT20 and MCF7 lines or (right) unstimulated D53m and H50m 

mouse sarcoma lines overexpressing IRF2 (pCDH IRF2) or empty vector control 

(pCDH EV); and (e) surface PD-L1 on IFNγ-stimulated D53m and H50m 

overexpression lines. Representative experiments shown, error bars represent 

staining of technical replicates.  
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The effects of IRF2 loss on antigen presentation and checkpoint inhibition are 

predicted to make it harder for CD8+ T cells to kill IRF2-low cells. To test this and 

quantify the magnitude of the effect, we analyzed mouse wild-type vs. IRF2-KO 

lymphoma (RMA) cell lines. RMA cells were chosen because they are known to 

be very good targets for cytotoxic T cell killing assays (and are, therefore, a 

stringent test) and express H2-Kb, which allows the use of potent CD8+ T cell 

effectors from the H2-Kb-S8L-specific TCR transgenic OT-I model. Pre-activated 

OT-I effectors were cultured with pairs of wild-type or IRF2-KO cells that were 

S8L-pulsed or not and labeled with different amounts of the dye CFSE. After 4 

hours, specific killing was quantified by flow cytometry and was found to be 

significantly lower in the IRF2-KO RMA, as compared to the wild-type RMA (Fig. 

4.9), demonstrating that tumor cells lacking IRF2 are harder for CD8+ T cells to 

eliminate. Taken together, these findings show that IRF2 downregulation leads to 

immune evasion and that there are several types of human cancers which may 

use this escape mechanism. 
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Figure 4.9. OT-I in vitro killing of RMA lines 

Pre-activated OT-I effectors were cultured with pairs of wild-type (“WT RMA”) or 

IRF2 KO (“IRF2 KO RMA”) cells that were S8L-pulsed or not and labeled with 

different amounts of the dye CFSE. After 4 hours, specific killing was quantified 

by flow cytometry. (Left) % specific killing dose-titration curve for one 

representative experiment using an effector to target ratio of 1:2 and [S8L] 

indicated, points show mean ± SD of technical triplicates; (Right) % specific 

killing of IRF2 KO RMA relative to that of WT RMA at 10pM S8L; bars show 

mean + SEM (N=4). Statistical analysis by two-tailed ratio paired t-test, *p<0.05. 
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Summary 

Here, we found that many cancers of diverse origins (NSCLC, breast, 

colorectal, liver, stomach, prostate, uterine) downregulate IRF2 expression, 

which is not essential for viability in fully differentiated cells. As a result of losing 

IRF2, tumor cells not only decrease their surface MHC-I expression, but also 

increase their surface PD-L1 expression. Thus, loss of a single gene can 

generate a “double whammy” for the immune system as it enables tumor cells 

lacking IRF2 to become both harder to identify (loss of MHC-I antigen 

presentation) and better able to suppress T cell-mediated elimination (increased 

checkpoint inhibition). As shown in our in vitro cytotoxicity assay, the loss of IRF2 

renders such tumor cells more difficult for CD8+ T cells to kill. These findings 

have implications for cancer progression and immunotherapy, which will be 

discussed further in Chapter VI. 
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Chapter V: Other novel genes from MHC-I screens 
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Chapter V: Other novel genes from MHC-I screens 

Introduction 

Prior to my time in the Rock Lab, a forward-genetic screen was conducted in 

mouse dendritic cells to identify novel genes affecting cross-presentation [174]. 

As detailed above, cross-presentation and classical MHC-I presentation share 

much of the same machinery, particularly if antigen is processed via the 

phagosome-to-cytosol pathway. Because I was interested in identifying new 

genes important for both cross-presentation and classical MHC-I presentation, I 

analyzed the results of this screen to select genes that, based on their 

expression in various tissues and what was already known in the literature about 

their subcellular localizations and functions, might also impact the classical MHC-

I pathway. Among these genes were a couple co-chaperones that were of 

particular interest to me because of the unresolved role of chaperones in 

classical MHC-I presentation. 

As mentioned in Chapter I, the heat-shock protein (HSP) chaperone Hsp70 

has been reported to affect cross-presentation but the mechanisms by which it 

may facilitate classical MHC-I presentation are not well understood. Hsp70 never 

works alone – its ability to bind and release client proteins is regulated by two 

groups of co-factors, J proteins (co-chaperones also known as DnaJs or Hsp40s) 

and nucleotide exchange factors (NEFs) [175-177]. J proteins stimulate Hsp70’s 

ATPase activity, thereby promoting client capture; NEFs stimulate dissociation of 
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ADP, thereby facilitating client release from Hsp70 [178]. J proteins are widely 

believed to drive the multi-functionality of Hsp70, in part because of the large 

structural diversity among J proteins [178]. Humans have 41 different J proteins, 

but outside of the J domain (the part of the J protein that interacts with Hsp70), 

any two randomly selected J proteins may be quite dissimilar. Historically, the J 

proteins have been divided into three classes – A, B, and C [179, 180]. Class A 

proteins have an N-terminal J domain, a glycine/phenylalanine-rich region, a zinc 

finger-like region (ZFLR), and a C-terminal extension that can bind client proteins 

[181]. The major distinctions among the classes are that class B proteins lack the 

ZFLR found in class A and that class C proteins do not fit into either class A or 

class B. Despite this classification, J proteins within each class have tremendous 

diversity in both structure and function, including their ability (or lack thereof) to 

bind client proteins. It is possible, therefore, that Hsp70’s function in antigen 

presentation may be driven, in part, by one or more J proteins. It is also possible 

that, since some J proteins have functions that are Hsp70-independent [182], the 

J proteins identified in this cross-presentation screen may exert their functions in 

an Hsp70-independent manner. 

 For the cytosolic co-chaperone “hit,” Dnajb4, we were interested in 

addressing the question of whether chaperones preferentially protect 

proteasome-generated peptides containing MHC-I epitopes. The majority of 

peptides made by the proteasome are rapidly destroyed by cytosolic peptidases 

[183] yet some peptides manage to avoid the peptidases and translocate into the 



82 
 

ER via TAP. It is unknown whether this “survival” is a selective process whereby 

chaperones protect peptides and shuttle them to TAP or whether it is purely 

stochastic. For the ER-localized co-chaperone “hit,” Dnajc10, which is known to 

play a role in ER-associated degradation (ERAD) [184], we wondered whether it 

may translocate peptide precursors through the ERAD pathway and/or whether it 

may be involved in folding members of the peptide-loading complex. Below, I will 

document our preliminary findings on these two J proteins. 

 

Results 

J proteins and MHC-I antigen presentation 

In our lab’s genome-wide DC3.2 cross-presentation screen [174], each 

mouse gene was silenced for 48 hours with a pool of four mouse siRNAs. After 

silencing, the cells were incubated with OVA-coated iron-oxide beads and OVA-

peptide-specific CD8+ T cells or CD4+ T cells overnight to assess cross-

presentation or MHC-II presentation, respectively. siRNAs targeting β2m or I-Ab 

were used as positive or negative controls of cross-presentation, respectively, 

and as negative or positive controls of MHC-II presentation, respectively. This 

setup allowed us to identify genes which uniquely regulate the MHC-I pathway 

(and not those which are simply necessary for cell viability). In the screen, 

silencing Dnajb4 or Dnajc10 decreased cross-presentation by 77% or 55%, 

respectively (and did not decrease MHC-II presentation). To validate these 

results, we repeated the DC3.2 cross-presentation assay and found similar 
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results (Fig. 5.1a). Additionally, when we tested each of the four siRNAs from the 

siRNA pools individually, we found that multiple independent siRNAs targeting 

Dnajb4 (Fig. 5.1b) or Dnajc10 (Fig. 5.1c) produced the same effects. 
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Figure 5.1. Knockdown of Dnajb4 or Dnajc10 reduces cross-presentation 
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Figure 5.1. Knockdown of Dnajb4 or Dnajc10 reduces cross-presentation 

(a) CD8+ T cell activation (relative luciferase units; RLUs) following addition of 

OVA-beads at the indicated concentrations and CD8+ T cells to the DC3.2 

silenced for 48 hours with siRNA pools targeting Dnajb4, Dnajc10, β2m (positive 

control) or I-Ab (negative control); (b-c) T cell activation (RLUs) following the 

addition of 20µg/mL OVA-beads and CD8+ T cells (left) or 2µg/mL OVA-beads 

and CD4+ T cells (right) to the DC3.2 silenced for 48 hours with individual siRNAs 

targeting β2m or I-Ab (controls) or (b) Dnajb4 or (c) Dnajc10. Representative 

experiments shown, error bars represent SD of technical replicates. 
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Next, we wanted to examine whether Dnajb4 or Dnajc10 could also affect 

classical MHC-I presentation. To test whether these J proteins act downstream of 

phagosome-to-cytosol antigen translocation, we used DC3.2 cells that express 

non-secretable OVA (NS-OVA) under a doxycycline-inducible promoter, which 

allows the OVA antigen to be made in the cytosol instead of requiring the 

internalization step necessary for the OVA-beads. As expected given the 

subcellular localizations of these J proteins, siRNA targeting either Dnajb4 or 

Dnajc10 reduced SIINFEKL-H2-Kb presentation on these cells (Fig. 5.2a). Next, 

to test whether Dnajb4 and Dnajc10 act upstream or downstream of the 

proteasome, we used a DC3.2 line that expresses ubiquitin-SIINFEKL (Ub-S8L) 

in the cytosol upon doxycycline induction. Unlike ovalbumin, Ub-S8L does not 

require any proteasomal processing; ubiquitin cleavage by a deubiquitinating 

enzyme can generate the mature MHC-I epitope. In these cells, silencing Dnajb4 

or Dnajc10 reduced SIINFEKL-H2-Kb presentation (Fig. 5.2b), indicating that 

both J proteins act on the MHC-I pathway downstream of the proteasome. 

To further evaluate the contributions of these genes to the classical MHC-I 

pathway, we checked surface MHC-I levels on DC3.2 (Fig. 5.2c) and 3T3-Kb 

fibroblasts (Fig. 5.2d) after siRNA treatment. Knocking down Dnajb4 or Dnajc10 

decreased surface MHC-I levels but did not decrease surface expression of 

MHC-II (Fig. 5.2c) or CD71 (Fig. 5.2d), again showing selectivity in the effects of 

these J proteins. We also tested the effects of silencing Dnajb4 or Dnajc10 on 

3T3-Kb presentation of SIINFEKL-H2-Kb complexes following transient OVA 
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transfection (Fig. 5.2e), constitutive NS-OVA expression (Fig. 5.2f), or induced 

expression of Ub-S8L (Fig. 5.2g). As opposed to dendritic cells, these fibroblasts 

are not professional APCs but still require and perform classical MHC-I 

presentation. Surprisingly, although silencing Dnajc10 strongly reduced MHC-I 

presentation in all three systems, silencing Dnajb4 only minimally affected it (Fig. 

5.2e-g), suggesting that the requirement of Dnajb4 for controlling MHC-I 

presentation may be cell-type dependent. 

We also acquired Dnajc10-knockout mouse embryonic fibroblasts (MEFs) 

(Fig. 5.2h) [185] and found that they too have impaired surface MHC-I expression 

(Fig. 5.2i) and MHC-I presentation of cytosolic OVA (Fig. 5.2j) as compared to 

the control MEFs, thus confirming the Dnajc10 phenotype observed in the siRNA 

studies. Overall, our results demonstrated that Dnajb4 and Dnajc10 affect both 

cross-presentation and classical MHC-I presentation. However, because the 

Dnajc10 findings were more robust, we decided to focus our additional 

characterization studies solely on Dnajc10. 
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Figure 5.2. Dnajb4 and Dnajc10 affect classical MHC-I presentation 
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Figure 5.2. Dnajb4 and Dnajc10 affect classical MHC-I presentation 

(a-b) CD8+ T cell activation (relative luciferase units; RLUs) following 

endogenous expression (via 2 hours of doxycycline induction) of (a) non-

secretable OVA (NS-OVA) or (b) ubiquitin-SIINFEKL (Ub-S8L) in DC3.2 cells 

after 48 hour siRNA knockdown of Dnajb4, Dnajc10, β2m (positive control) or I-

Ab (negative control); (c) Geometric MFI of surface MHC-I (left) or MHC-II (right) 

on DC3.2 cells 48 hours after siRNA knockdown; (d) Geometric MFI of surface 

MHC-I (left) or CD71 (right) on 3T3-Kb after siRNA knockdown; (e-g) CD8+ T cell 

activation (RLUs) following (e) 24 hour transient transfection of CD16-OVA in 

3T3-Kb cells silenced for 48 hours, (f) 48 hour siRNA knockdowns in a stable 

3T3-Kb line constitutively expressing non-secretable OVA, or (g) endogenous 

expression (via 2 hours of doxycycline induction) of Ub-S8L in 3T3-Kb cells after 

48 hour siRNA knockdowns; (h) Western blot of Dnajc10 or β-actin (as loading 

control) in the mouse embryonic fibroblasts (MEFs) derived from Dnajc10 

heterozygous (HET) or knockout (KO) mice; (i) Geometric MFI of surface MHC-I 

on Dnajc10 HET or KO MEFs; and (j) CD8+ T cell activation (RLUs) following 

cytosolic loading of the indicated concentrations of OVA (using PULSin [186]) 

into Dnajc10 HET or KO MEFs. (a-j) Representative experiments are shown. 
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Dnajc10 and its binding partners 

Given the pronounced phenotype observed in the Dnajc10-deficient cells, we 

wanted to examine this ER-resident co-chaperone further and identify how and to 

which client proteins it binds. The Dnajc10 protein sequence encodes for an N-

terminal ER signal peptide followed by a J domain, four thioredoxin-like (Trx) 

motifs, and a C-terminal ER-retention (KDEL) motif. Within the J domain lies a 

histidine-proline-aspartic acid (HPD) motif which is essential for functional 

interaction between the J protein and Hsp70 [187]. To test whether Dnajc10 

exerts its effects in an Hsp70-dependent manner, we created a mutant Dnajc10 

construct which possesses a histidine to glutamine point mutation at its 63rd 

residue (H63Q), thereby abrogating its interaction with the ER-resident Hsp70, 

BiP [185, 187]. When we induced the expression of either wild-type (WT) 

Dnajc10 or the H63Q Dnajc10 mutant in Dnajc10-KO MEFs (Fig. 5.3a), surface 

MHC-I levels increased (Fig. 5.3b), indicating that Dnajc10 can affect surface 

MHC-I expression in a BiP-independent manner. 

To determine whether Dnajc10 affects MHC-I presentation by reducing 

another protein in the ER, we mutated its Trx motifs. Each of these Trx motifs (C-

XX-C) contains an N-terminal cysteine which forms a mixed disulfide with its 

substrate and a C-terminal cysteine which releases the substrate by attacking the 

intermolecular disulfide bond [188]. To this end, we created two new Dnajc10 

constructs, one where all four Trx motifs were changed from C-XX-C to A-XX-A 

(4X-AA), thereby preventing Dnajc10 from reducing its substrate, and one where 
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all four Trx motifs were changed from C-XX-C to C-XX-A (4X-CA), thereby 

keeping Dnajc10 bound to its substrate [185]. Overexpression of the 4X-AA 

construct only slightly increased surface MHC-I levels, as compared to 

overexpression of the 4X-CA construct (Fig. 5.3c), suggesting that Dnajc10 

mediates its effects on MHC-I presentation by reducing another protein in the 

ER. We also made a number of other Dnajc10 constructs (Table 5.1) to pinpoint 

which specific Trx motif(s) were responsible for binding client proteins in the 

context of MHC-I presentation, in the hopes that we could then use these 

constructs to identify Dnajc10’s redox partners. Unfortunately, despite several 

approaches to increase the signal to noise ratio of our assay (e.g., acid-stripping, 

± IFNγ, time/dose titrations of doxycycline-induction, switching constructs to 

constitutive expression vectors, changing cell lines, and examining SIINFEKL-

H2-Kb rather than all H2-Kb), we were unable to get sufficient resolution to be 

able to draw conclusions about which Dnajc10 Trx motifs are contributory to 

MHC-I presentation. 

In order to probe whether Dnajc10 physically interacts with known members 

of the MHC-I peptide-loading complex, we overexpressed Dnajc10 in the 

Dnajc10-KO MEFs. We then immunoprecipitated Dnajc10 and blotted for some 

known MHC-I pathway components. Blotting for Dnajc10 and BiP (positive 

controls) revealed that both were present in the immunoprecipitated eluate 

whereas β-actin (negative control) did not associate with the ER-resident 

Dnajc10 (Fig. 5.3d). One limitation of these studies was the quality of antibodies 
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at our disposal, but we could clearly see that β2m does not associate with 

Dnajc10 (Fig. 5.3d). Of the other proteins tested (MHC-I heavy chain, TAP1, 

ERp57, and calreticulin), we did not observe any apparent interactions with 

Dnajc10.  
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Table 5.1. Dnajc10 constructs 

Name HPD Trx1 Trx2 Trx3 Trx4 

WT HPD CXXC CXXC CXXC CXXC 

H63Q QPD CXXC CXXC CXXC CXXC 

4X-CA HPD CXXA CXXA CXXA CXXA 

4X-AA HPD AXXA AXXA AXXA AXXA 

AA1 HPD AXXA CXXC CXXC CXXC 

AA2 HPD CXXC AXXA CXXC CXXC 

AA3 HPD CXXC CXXC AXXA CXXC 

AA4 HPD CXXC CXXC CXXC AXXA 

CA1 HPD CXXA AXXA AXXA AXXA 

CA2 HPD AXXA CXXA AXXA AXXA 

CA3 HPD AXXA AXXA CXXA AXXA 

CA4 HPD AXXA AXXA AXXA CXXA 

CC1 HPD CXXC AXXA AXXA AXXA 

CC2 HPD AXXA CXXC AXXA AXXA 

CC3 HPD AXXA AXXA CXXC AXXA 

CC4 HPD AXXA AXXA AXXA CXXC 

The HPD motif is part of Dnajc10’s J domain and is necessary for functional 

Hsp70-Dnajc10 interaction. The four thioredoxin-like (Trx) motifs consist of two 

cysteines (C) flanking two other amino acids (X). When both cysteines are 

mutated to alanines (A), the Trx motif cannot reduce its substrate. When only the 

second cysteine is mutated to alanine, the client protein remains trapped by a 

disulfide linkage to Dnajc10 at that Trx motif. 
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Figure 5.3. Dnajc10’s thioredoxin-like motifs mediate its effects on MHC-I 

presentation 
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Figure 5.3. Dnajc10’s thioredoxin-like motifs mediate its effects on MHC-I 

presentation 

(a) Western blot of Dnajc10 KO MEFs ± doxycycline (DOX)-inducible 

overexpression of Dnajc10 WT, Dnajc10 H63Q, or EGFP for Dnajc10 protein 

expression and β-actin as control. Untransduced Dnajc10 heterozygous (HET) 

and knockout (KO) MEFs were run in parallel as controls; (b-c) Normalized MFI 

of surface MHC-I on Dnajc10 KO MEFs ± DOX-inducible overexpression of (b) 

Dnajc10 WT, Dnajc10 H63Q, or EGFP, or (c) Dnajc10 4X-CA, Dnajc10 4X-AA, or 

EGFP; (d) Immunoprecipitation of HA-tagged Dnajc10 by anti-HA or normal 

immune IgG followed by blotting with anti-Dnajc10, anti-β-actin, anti-β2m, or anti-

BiP. Representative experiments are shown. 
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Dnajc10 in primary cells 

We also acquired Dnajc10-knockout mice [137] in order to evaluate the 

biological significance of this co-chaperone on MHC-I presentation in primary 

cells. Surprisingly, despite our cell line data showing a low MHC-I phenotype in 

both Dnajc10-knockdown and knockout cells and a high MHC-I phenotype upon 

Dnajc10 overexpression, we did not observe any MHC-I deficits in the mice 

constitutively lacking Dnajc10. We examined surface MHC-I and MHC-II 

expression (Fig. 5.4a) and cross-presentation (Fig. 5.4b) on bone marrow-

derived dendritic cells as well as surface MHC-I and MHC-II expression on 

splenocytes (Fig. 5.4c) and found no significant differences between the 

Dnajc10-knockouts and the wild-type controls. Because Dnajc10 does not 

appear to have a significant effect on MHC-I presentation in primary cells, we 

were swayed from pursuing this gene any further. 
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Figure 5.4. Dnajc10 ex vivo studies 
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Figure 5.4. Dnajc10 ex vivo studies 

(a) Geometric MFI of surface MHC-I (left) or surface MHC-II (right) on wild-type 

(WT) or Dnajc10 knockout (KO) bone marrow-derived dendritic cells (BMDCs); 

(b) CD8+ T cell activation (RLUs) following addition of OVA-beads at the 

indicated concentrations and CD8+ T cells to WT or KO BMDCs. Lines represent 

independent mice; (c) Geometric MFI of surface MHC-I (top) or surface MHC-II 

(bottom) on wild-type (WT) or Dnajc10 knockout (KO) splenocytes. (a-c) Dots 

represent independent mice, statistical analysis by two-sided unpaired t-tests. 
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Summary 

From our lab’s forward-genetic screen, we identified two co-chaperones, 

Dnajb4 and Dnajc10, that strongly affect cross-presentation and classical MHC-I 

presentation, but not MHC-II presentation, in mouse dendritic cells. The effects of 

Dnajc10 on classical MHC-I presentation also extended to non-professional 

APCs (e.g., fibroblasts). Dnajc10’s thioredoxin-like motifs mediate its effects on 

surface MHC-I levels by reducing a yet unidentified substrate. Moreover, in the 

absence of any functional interaction with BiP, Dnajc10 can still regulate MHC-I 

presentation. Where examined, primary cells lacking Dnajc10 do not have as 

strong of an MHC-I phenotype as was observed in the siRNA-treated cell lines; 

this will be discussed in greater detail in Chapter VI. 
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Chapter VI: Discussion 
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Chapter VI: Discussion 

Transcriptional control of MHC-I presentation and PD-L1 expression by IRF2 

The transcriptional control of many MHC-I pathway components, particularly 

under basal conditions, has not been well defined. In Chapter III, we identified 

IRF2 as a novel positive regulator of MHC-I antigen presentation and found that, 

under basal conditions, it is important for both classical MHC-I presentation and 

cross-presentation. Mechanistically, this is achieved by IRF2 binding the 

promoters of TAP2 and ERAP1 and transcriptionally activating their expression. 

In the absence of IRF2, cells express less TAP2 and ERAP1 and, due to the 

consequent defects in antigen transport and processing, present fewer peptide-

MHC-I complexes at the cell surface. Additionally, IRF2 regulates the expression 

of other genes, such as immunoproteasome subunits, which likely also influence 

the MHC-I presentation in IRF2-deficient cells [189]. 

Analysis of IRF2-knockout cells also revealed that PD-L1 was highly 

upregulated under basal conditions. It is well-established that IRF1 can promote 

IFNγ-inducible activation of PD-L1 [168, 169] but the role of IRF2 on PD-L1 

expression had not been thoroughly explored. Recently, Dorand et al. found that 

hyperphosphorylation of IRF2BP2 (an IRF2-binding protein) could lead to 

decreased PD-L1 expression after IFNγ stimulation [190]. Additionally, Wu et al. 

recently discovered that a loss of IRF2BP2 can lead to enhanced IRF2 binding to 

the PD-L1 promoter and that IFNγ stimulation releases IRF2 from the PD-L1 
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promoter [191]. In accordance with these findings, our ChIP-qPCR data shows 

that IFNγ stimulation leads to both increased IRF1 binding and decreased IRF2 

binding to the PD-L1 promoter. Moreover, we found for the first time that in IFNγ-

stimulated tumor cells, overexpression of IRF2 decreases surface PD-L1 levels. 

In addition, we discovered that under basal conditions, a loss of IRF2 significantly 

increases PD-L1 mRNA and surface expression and IRF2 overexpression 

produces the opposite effects. Collectively, these results establish the repressive 

role of IRF2 on PD-L1 expression in the absence and presence of IFNγ and 

reveal that unstimulated cells can upregulate PD-L1 expression if upstream 

regulatory factors, such as IRF2, are defective/absent. 

 

IRF2 and immune evasion 

Our findings that IRF2 both positively regulates the MHC class I pathway and 

negatively regulates PD-L1 expression have implications for cancer progression 

and immunotherapy. Cancers need to evade the immune system and, if they are 

immunogenic, require editing to escape and progress [157]. One of the ways that 

murine tumors can evade immune elimination is by downregulating the MHC-I 

pathway [154]. Similar immunoediting of this pathway occurs in humans as it has 

been found that tumors, which were predominantly MHC-I positive at early 

stages, subsequently become homogeneously MHC-I deficient [69, 72] and 

progressing cancers are frequently MHC-I deficient [192, 193]. Another way in 

which tumors can evade immune elimination is by expressing inhibitory 
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checkpoint molecules. Indeed, many human cancers upregulate PD-L1 and 

those that do tend to be more aggressive and have fewer T cells present in the 

tumor [194]. Blocking PD-L1 or its receptor (PD-1) can lead to tumor rejection in 

both mice and humans, proving that this is an important immune evasion 

mechanism [117, 195]. The molecular mechanisms whereby cancers exploit 

these immune evasion strategies are incompletely understood but are important 

to know for understanding pathogenesis, how they affect prognosis and 

immunotherapy, and how they might be reversed to improve therapy. Our studies 

revealed that the loss of a single gene, IRF2, can generate a “double whammy” 

for the immune system as it enables tumor cells lacking IRF2 to become both 

harder to identify (through a loss of MHC-I antigen presentation) and better able 

to suppress T cell-mediated elimination (through increased checkpoint inhibition) 

(Figure 6.1). As shown in our in vitro cytotoxicity assay, this makes IRF2-deficient 

tumor cells more difficult to kill. 
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Figure 6.1. Model of cancer immune evasion by loss of IRF2 

Under basal conditions, IRF2 acts as a transcriptional activator of both TAP2 and 

ERAP1 and as a transcriptional repressor of PD-L1. When IRF2 expression is 

downregulated (e.g., in cancers), TAP2 and ERAP1 expression are decreased 

thereby resulting in MHC-I presentation defects and PD-L1 expression is 

increased thereby resulting in increased suppression of T cell effector function. 

The reduction in TAP2 expression has a profound effect on surface MHC-I levels 

as the inability to transport peptides into the ER reduces the availability of 

peptides to bind MHC-I in the ER, thus preventing MHC-I egress. The reduction 

in ERAP1 expression does not have as large of an effect on surface MHC-I 

levels but significantly alters the antigenic peptide repertoire presented on MHC-I 

[196].  
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IRF2-IRF1 interplay 

In the DC line where we focused most of our studies and in other cell lines 

described in the literature, IRF2 is constitutively expressed, relatively stable with 

a half-life of 8 hours, and minimally affected by IFN [88, 165, 166]. However, in 

these same sets of cells, IRF1 is minimally expressed under basal conditions but 

strongly induced in the presence of IFN and more short-lived than IRF2, with a 

half-life of only 0.5 hours [165]. Due to these differences between IRF2 and IRF1, 

even though they both recognize and bind to the same ISRE [82, 84, 164], we 

hypothesized that the relative contributions of IRF2 and IRF1 to certain signaling 

pathways varies depending on the inflammatory state of the cell. Although IRF1 

and IRF2 were originally characterized as an activator and repressor of IFN-α/β 

expression, respectively [84], several reports since then have highlighted that 

IRF1 and IRF2 do not always act as such [86-88]. Yet, there have been no global 

differential expression analyses in IRF1- and/or IRF2-lacking cells of the same 

cell type to better understand the synergistic vs. antagonistic roles these 

transcription factors perform. Consequently, we conducted RNA-seq on IRF1- 

and/or IRF2-knockout DCs in the absence or presence of IFN to help fill this void. 

Globally, we found that the expression profile of the double knockout DCs 

differed from that of either IRF single knockout and that the relative contributions 

of IRF1 vs. IRF2, in terms of their ability to positively or negatively regulate 

certain genes, varied depending on the inflammatory state of the cell. Not only do 

these studies provide insight into the contributions of IRF1 and IRF2 on antigen 
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presentation and immune function, but they also firmly establish that, although 

IRF2 may compete with IRF1 for a given DNA binding site, it does not 

necessarily antagonize the transcriptional effects mediated by IRF1. 

Additionally, our RNA-seq analysis revealed a number of differentially 

expressed genes in the IRF2-knockout DCs that may also contribute to the 

immune evasion phenotype proposed for IRF2-low cancers. These include Arg1, 

Arg2, Casp7, and Gsdmd, which were all downregulated and H2-T9, H2-T22, 

and Fgl2, which were all upregulated in the IRF2-knockout DCs under basal 

conditions. Arg1 and Arg2 are involved in establishing macrophage polarization 

(M1 vs. M2) [197] and an imbalance of these two arginases likely affects the 

tumor microenvironment. Casp7 induces apoptosis [198] and reduced expression 

of this caspase would, therefore, likely result in increased cell survival. Gsdmd 

controls pyroptosis and it was recently shown that downregulation of gasdermin 

D can promote gastric cancer proliferation [199]. The upregulation of non-

classical MHC-I proteins by IRF2-low cells, which are deficient in their surface 

expression of classical MHC-I proteins, may serve to inhibit NK cell-mediated 

killing. Lastly, secreted Fgl2 negatively regulates the immune response [200] and 

this may also promote the growth of IRF2-deficient cells, which have high Fgl2 

expression. 

It is worth stating that the transcriptional control of genes can be highly cell-

type dependent and therefore, it is possible that in other cells, the contribution of 

IRF2 on surface MHC-I and PD-L1 expression may vary. However, our 
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concordant observations in multiple mouse and human cell lines and primary 

tumors suggest that the number of cell types in which IRF2 regulates these 

genes in this manner is quite large. 

 

IRF2 as a potential cancer biomarker and/or therapeutic target 

Immune evasion due to tumor PD-L1 upregulation can be reversed by 

blocking the PD-L1/PD-1 interaction, which is the basis of targeted checkpoint 

blockade immunotherapy. However, any natural or invigorated (from checkpoint 

blockade) CD8+ T cell response to kill tumors that have downregulated their 

MHC-I expression will continue to be impaired. In this context, it is of 

considerable interest and potential importance that the downregulation of the 

MHC-I pathway from the loss of IRF2 is reversible. When IRF2-deficient cells 

were treated with IFN, MHC-I levels were restored, likely because of induction of 

IRF1 and possibly some other transcriptional activators. These findings suggest 

that interferons (which are FDA-approved for other indications) or interferon-

inducing agents could be used to restore MHC-I antigen presentation in IRF2-low 

tumors. This would be predicted to enhance the effects of immunotherapies, 

such as checkpoint blockade, that are ultimately dependent on T cell receptor 

recognition of tumor MHC-I presentation. Currently, checkpoint therapy is 

effective in only some patients [201, 202] and, based on the mechanisms we 

have uncovered, it is conceivable that reversing the IRF2 defects might increase 

the number of patients that can benefit. In addition, because checkpoint blockade 
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is an extremely expensive therapy and one that can have serious side effects, 

there is a need for good biomarkers to identify those patients that would be more 

likely to benefit from this type of therapy. Therefore, it will be of interest to 

examine in future studies whether expression of IRF2 and its downstream target 

genes (e.g., TAP2 and ERAP1) could be used as biomarkers to help identify 

checkpoint blockade-responsive patients. 

 

Future studies examining the role of IRF2 on cancer immunosurveillance 

Given our findings that several cancer types downregulate IRF2 expression 

and that IRF2-deficient tumor cells are more difficult to kill in vitro, we are 

interested in determining whether a loss of IRF2 impairs cancer 

immunosurveillance in vivo. To examine this, we plan to try a couple different 

approaches, which I will briefly describe below. 

First, we will test cancer growth and immune evasion using the 

methylcholanthrene (MCA)-induced tumor model established by Bob Schreiber’s 

group [152]. Classical experiments carried out in this model revealed the 

importance of adaptive immunity in preventing cancer as immunodeficient 

animals, such as those lacking IFNγ, perforin, or RAG-2, were found to have a 

higher rate of mutagen-induced tumors [152-154]. For this reason, we 

hypothesize that if we use MCA to induce sarcomas in WT or IRF2-knockout 

mice, the IRF2-knockout animals will develop tumors at a greater frequency. 

Additionally, similar to other experiments performed by Schreiber’s group 
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wherein MCA-induced sarcomas derived from immunodeficient animals were 

found to progress when transplanted into other immunodeficient hosts but were 

rejected when placed into immunocompetent hosts (in contrast to the findings 

that tumors arising in immunocompetent animals progressed when transplanted 

into other immunocompetent hosts) [154-156], we plan to transplant tumors 

derived from IRF2-knockout mice into other mice. We hypothesize that tumors 

originating in an IRF2-knockout mouse will possess an intrinsic advantage in 

terms of their ability to escape immune elimination and should, therefore, grow 

when transplanted into either immunodeficient or immunocompetent mice. If we 

were to transfect IRF2 into the IRF2-knockout tumor, we would expect that the 

IRF2-reconstituted tumors would be rejected or grow more slowly in the 

immunocompetent hosts, as compared to the growth rates of the IRF2-deficient 

tumors. 

Second, we will test the growth of human cancers in vivo which differ in their 

IRF2 status. To do this, we will transplant either an IRF2-knockout or an IRF2-

transfected human cancer of the same origin (lung, breast, etc.) into highly 

immunodeficient mice (non-obese diabetic-scid Il2rg-/- (NSG)), a model system in 

which human cancers have been shown to grow [203]. Given that we observed 

very strong effects on MHC-I and PD-L1 levels in the human NSCLC line, A549, 

as well as in the human breast cancers, BT20 (triple negative for estrogen, 

progesterone, and HER-2 receptors) and MCF7 (estrogen receptor-positive), we 

will start off by testing these tumors. Importantly, we will also evaluate tumor 
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growth in NSG mice reconstituted with human hematopoietic stem cells wherein 

the consequences of immunoediting resulting in the loss of IRF2 can be directly 

probed. Additionally, because some patient NSCLCs can be treated with anti-PD-

1 (pembrolizumab) immunotherapy [128], we will also perform some studies in 

the presence or absence of pembrolizumab administration, which has been 

shown to inhibit tumor growth in the humanized mice [204]. 

 

MHC-I presentation and the roles of co-chaperones 

The role of chaperones in MHC-I antigen presentation has been a topic of 

interest for a quite some time. Beyond the requirements of the ER-resident co-

chaperones calnexin and calreticulin in preserving the stability of newly 

synthesized MHC-I and the integrity of the peptide-loading complex [11, 12], HSP 

family members have also been reported to regulate a number of steps in the 

MHC-I pathway [47, 48]. We hoped to advance our knowledge in this field by 

studying two co-chaperones, Dnajb4 (cytosolic) and Dnajc10 (ER-localized), that 

were identified through a forward-genetic screen in dendritic cells [174]. We 

found that transiently knocking down either J protein with siRNA reduces cross-

presentation and classical MHC-I presentation in mouse dendritic cells. The 

effects of Dnajc10 on classical MHC-I presentation were more robust as deficits 

were also observed in mouse fibroblasts lacking Dnajc10. 

Mechanistically, we determined that Dnajc10 mediates its effects on the 

MHC-I pathway likely through its ability to reduce client proteins via its Trx motifs. 
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To better discern how Dnajc10 acts on the MHC-I pathway, we wished to identify 

the proteins to which Dnajc10 binds in this context. Unfortunately, due to the 

technical limitations of our main functional assay (checking for surface MHC-I 

expression) where the low signal-to-noise ratio could not be overcome, we were 

unable to identify which of Dnajc10’s four Trx motifs mediate these effects, which 

would have been helpful for subsequent experiments in order to trap only the 

relevant substrates. As an alternate technique, we tried to identify which known 

members of the MHC-I pathway physically associate with Dnajc10 by 

immunoprecipitating HA-tagged Dnajc10. Unfortunately, in this assay, we did not 

identify Dnajc10-specific interactions with any of the ER-resident proteins we 

selected other than BiP, the ER-localized Hsp70 to which Dnajc10 is known to 

interact [185]. One caveat of these results is that some of the antibodies used 

were of poor quality and perhaps, with better reagents and a broader array of 

possible substrate targets, one could identify which protein clients are bound by 

Dnajc10 in the context of MHC-I presentation. An alternative approach would be 

to perform mass spectrometry on all Dnajc10-immunoprecipitated proteins. The 

downside of this is that the list of proteins bound to Dnajc10 may be quite 

extensive as it is known to recognize aggregation-prone sequences [205]. 

However, one could design immunoprecipitation-mass spectrometry studies in 

which the Dnajc10 Trx mutants (4X-CA and 4X-AA) are utilized with the hopes 

that this could filter out proteins that are not specific for the MHC-I pathway (i.e., 

those which bind the 4X-AA mutant). 
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We were surprised by the findings that primary BMDCs and splenocytes 

constitutively lacking Dnajc10 do not display significant deficits in MHC-I 

presentation as this conflicted with our cell line data, which strongly supports a 

role for Dnajc10 in this pathway. However, there are some caveats between 

these two systems which I would like to briefly discuss. 

First, as opposed to siRNA studies which transiently knock down a gene’s 

mRNA expression, a knockout animal constitutively lacks the gene of interest. In 

order to develop and carry out cellular functions properly, the knockout animal 

may acquire compensatory mechanisms to minimize the loss of that gene, 

especially in instances where there is functional redundancy. There are multiple 

ER J proteins [205] and it is possible that, if given enough time, cells may 

acclimate to the loss of Dnajc10 by having a different ER J protein take over 

Dnajc10’s responsibilities. Moreover, if compensatory mechanisms do exist for 

Dnajc10 and its effects on MHC-I presentation, then in short-term studies where 

cells do not have time to adapt to the loss of Dnajc10, such as those where 

Dnajc10 is transiently knocked down by siRNA, the cells will display a 

pronounced MHC-I phenotype. 

Second, despite the aforementioned benefit of using siRNA to query a gene’s 

role in a pathway, there are limitations to siRNA studies, one of which is off-target 

effects. Although it is fairly straightforward to assess the knockdown efficiency of 

a given gene after siRNA treatment (by qPCR and/or western blot), it is not as 

easy to determine whether the siRNA is also targeting other genes. One can 
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search whether the siRNA sequence being used is homologous or nearly 

identical to other regions of the transcriptome but this, on its own, will not confirm 

which off-target gene(s) are actually affected and what types of effects they may 

have on a given assay. Furthermore, we and others have found that some 

siRNAs induce a strong type I IFN response [206], which could confound results 

probing the MHC-I pathway as IFN upregulates surface MHC-I expression. It is 

therefore important to conduct rescue experiments, such as those described in 

Chapter III, in which cells lacking a gene are reconstituted with that gene. In the 

event that reconstitution completely restores the phenotype (as in Fig. 3.2), one 

can infer that the observed effects are due to the gene being targeted. However, 

if the levels are not completely restored, one may question whether other off-

target genes are contributory. Although we were able to increase surface MHC-I 

expression by overexpressing Dnajc10 in the Dnajc10-knockout MEFs, thus 

reversing the phenotype caused by loss of Dnajc10, the degree to which MHC-I 

levels were upregulated upon Dnajc10 overexpression was not as large as the 

degree to which MHC-I levels were downregulated by Dnajc10 knockdown. Not 

only did this limit our ability to obtain useful data in the Trx binding partner 

studies, but it also made us question whether the siRNA used to target Dnajc10 

was having undesirable off-target effects. 

We tried to address this issue by reconstituting Dnajc10 expression in 

Dnajc10-knockdown cells either by (1) creating stable cell lines in which Dnajc10 

(harboring six synonymous mutations in the siRNA target site) expression could 
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be induced by doxycycline before or after siRNA knockdown, or (2) transiently 

overexpressing Dnajc10 (harboring six synonymous mutations in the siRNA 

target site) in cells post-siRNA treatment. In both approaches, the phenotype was 

not restored upon Dnajc10 overexpression; however, when we tried the same 

things with β2m siRNA and β2m overexpression, we were also unable to rescue 

the phenotype. This was particularly disconcerting because β2m has a well-

established role in the MHC-I pathway and, if our positive control cannot rescue 

the phenotype, there is little expectation that other genes would be able to do so. 

Therefore, it is worth noting that, at least for some studies examining the MHC-I 

pathway, phenotypes observed upon siRNA knockdown cannot be totally 

restored upon overexpression of that gene. 

 

Concluding remarks 

Upon joining the Rock Lab, I decided to devote my thesis research to 

investigating novel genes in the MHC-I antigen presentation pathway. From the 

screens conducted by myself and others in the lab, I selected over two dozen 

gene candidates. After working up these hits and deciding which ones were most 

appealing, I focused most of my efforts on IRF2, Dnajb4, and Dnajc10, as 

described in this dissertation. The IRF2 studies, which ended up being 

particularly fruitful, reinforce the need for these types of screens in identifying 

novel yet highly important components of the MHC-I pathway. Our findings not 

only contribute to our understanding of the transcriptional machinery involved in 
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antigen presentation and cancer immune evasion, but they also have substantial 

implications for cancer immunotherapy. 
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