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RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting.

Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce com-

putational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-

sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by

the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3′-isoforms that was not

evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA

libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types,
and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally

applicable computational pipeline for either bulk or single-cell RNA end-sequencing.

[Supplemental material is available for this article.]

Since it became possible to build and sequence cDNA libraries,
RNA-seq has become the most widely used method for genome-
wide transcriptome analysis. RNA-seq can be used for many differ-
ent purposes, from transcriptome quantification to annotation
and, most recently, measurement of translational or transcription-
al rates (Ingolia 2010; Garber et al. 2011; Rabani et al. 2014).
Measuring gene expression fromRNA-seq data is complex and pre-
sents computational challenges that are unique to RNA-seq: (1)
When RNA from a cell population is sequenced, only relative
gene or isoform expression can be determined, and (2) statistical
models to estimate transcript abundance are confounded by am-
biguously mapped reads, uneven transcript coverage, uneven am-
plification during library construction, low library complexity
when initial input is limiting, and many other variables (Bullard
et al. 2010; Roberts et al. 2011; Kawaji et al. 2014).

Libraries that generate one tag per transcript give a digital gene
expression (DGE) measurement. Such libraries target transcript ter-
mini rather than the full transcript, and theywere introduced soon
after full-length RNA-seq library construction methods were first
developed (Asmann et al. 2009; Matsumura et al. 2010). DGE li-

braries have obvious advantages over full-length RNA-seq libraries:
They work well for low-quality RNA; PCR duplicates arising during
amplification are easily detected by using molecular indices; and
since each mRNAmolecule is represented by a single tag, quantifi-
cation is greatly simplified (Asmann et al. 2009; Matsumura et al.
2010; Shiroguchi et al. 2012; Kawaji et al. 2014). While the simple
library construction by poly(A) selection or priming has made se-
quencing the 3′ end of transcripts the most common approach
for DGE, 5′ sequencing is also a viable strategy for DGE, and several
methods exist that take advantage of the 5′ cap that protects eu-
karyotic mRNAs to build libraries that target the start of transcripts
rather than their ends (Gu et al. 2012; Takahashi et al. 2012).

Until very recently genome-wide transcriptional profiling
was relegated to RNA from bulk populations. Many studies of sin-
gle cells showed critical differences between single cells that are
masked in bulk cell data (Apostolou and Thanos 2008; Janes
et al. 2010; Zhao et al. 2012; Bajikar et al. 2014). Single-cell RNA-
seq techniques have enabled single-cell transcriptomics, and we
find that the properties of end-sequencing have made DGE the
basis for many single-cell sequencing protocols (Hashimshony
et al. 2012; Jaitin et al. 2014; Soumillon et al. 2014; Klein et al.
2015; Macosko et al. 2015).
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Here we describe and apply an End Sequence Analysis Toolkit
(ESAT) designed for the analysis of short reads obtained from end-
sequence RNA-seq. In this context, we refer to both 3′ and 5′ selec-
tive methods as end-sequencing and will mostly treat them as simi-
lar for all computational matters. ESAT addresses misannotated or
sample-specific transcript boundaries by providing a search step in
which it identifies possible unannotated ends de novo. It provides
a robust handling of multimapped reads, which is critical in 3′

DGE analysis. ESAT provides a module specifically designed for al-
ternative start or 3′ UTR (untranslated region) differential isoform
expression. It also includes a set of features specifically designed for
the analysis of single-cell RNA-seq data.

As a test case for the utility of ESAT, we first analyzed end-se-
quence data from both bulk cells and single cells. We generated 5′

and 3′ end-sequence data for mouse bone marrow–derived den-
dritic cells (mBMDCs) stimulated with LPS, and compared these
data to our previously generated full-length RNA-seq data
(Garber et al. 2012). We also applied ESAT to single-cell RNA-seq
from approximately 1000 rat pancreatic islet cells using a new
droplet barcoding method for single-cell transcriptomics (Klein
et al. 2015).

Results

Accurate mapping of end-sequence libraries presents unique

computational challenges

The use of RNA-seq libraries constructed from transcript termini
has increased steadily since these powerful methods were first de-
scribed (Asmann et al. 2009;Matsumura et al. 2010). However, cur-
rent computational methods for gene quantification are not
ideally suited to such end-sequence data. For example, these ana-
lytical methods assume that reads originate uniform coverage
along the length of the transcript (Li and Dewey 2011; Trapnell
et al. 2012; Roberts and Pachter 2013). In spite of the wide adop-
tion of these transcript-end libraries, there has been no concerted
effort to evaluate the computational methods that specifically an-
alyze end-sequence data.

To evaluate and test the best approaches for end-sequence
data analysis, we generated separate 5′ and 3′ DGE libraries
(Methods) (Fig. 1A) using mBMDCs. RNA was isolated after the
LPS-stimulation time course. This is a well-studied transcriptional
responsemodel forwhich there is awealth of expression data avail-
able (Garber et al. 2012; Rabani et al. 2014; Jovanovic et al. 2015). It
is therefore an optimal experimental system to evaluate computa-
tional approaches for gene expression analysis of end-sequence
data.

5′ and 3′ end libraries were sequenced to an average depth of
16 million and 19 million reads, respectively, of which 92.1% (5′

libraries) and 88.6% (3′ libraries) aligned to the genome after
low-quality reads were filtered out (Supplemental Table S1).
Variability between biological replicates showed very good repro-
ducibility (R > 0.98; Methods) (Fig. 2A,B; Supplemental Fig. S1).
Comparison with previously generated full-length libraries gener-
ated by the same laboratory, using the same protocol at two differ-
ent times (Garber et al. 2012; Jovanovic et al. 2015), showed that
the difference between end-sequence and full-length libraries
was similar to the difference between full-length libraries from bi-
ological replicates made by different people at different times
(Supplemental Fig. S2).

Inspection of the data (Fig. 2A; Supplemental Fig. S1) indicat-
ed that therewere higher rates of variabilitywith the end-sequence

libraries—and 3′-end-sequencing methods in particular—than
with full-length RNA-seq libraries. First, several genes (marked
red in Fig. 2) had poor correlation between 3′-end library replicates.
This was surprising since the same genes did not exhibit such var-
iability in 5′-end libraries (Fig. 2A,B; Supplemental Fig. S1). Further
inspection showed that all genes with poor replicability had un-
usually high read pileups on internal poly(A) sequences that tend-
ed to be randomly overrepresented from replicate to replicate.
Overamplification of low-complexity, adenosine-rich sequences
combined with poor handling of those sequences by mapping al-
gorithms may result in the observed variable genes. Second, a siz-
able number (up to 1800) of RefSeq annotations expressed a 5′ or 3′

end that was different than the annotated end (Fig. 2C–E), as has
also been found in previous reports (Carninci et al. 2006;

Figure 1. End-sequencing libraries for bulk RNA. (A) Schematic repre-
sentation of end-sequencing library methods. (B) Aggregation of the loca-
tion of each aligned read, using the annotated transcription start sites
(TSSs) and transcription termination sites (TTSs) as reference, for 5′ (green)
and 3′ libraries (red).
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Shepard et al. 2011; Derti et al. 2012; Hoque et al. 2013). Taken to-
gether, these observations suggest that a robust end-sequence
quantification method must find transcript ends de novo, rather
than rely on gene annotations, as well as filter out any read align-
ments to internal polyadenylation sites.

A method specifically designed for end-sequence quantification

In response to our observations, we created ESAT specifically to
process end-sequence data. ESAT addressed the two issues de-
scribed above, as well as other sources of unwanted variance that

Figure 2. Common problems in end-sequence analysis. (A,B) Scatter plots of gene expression computed from 3′ (A) and 5′ (B) libraries made from tech-
nical replicates of mouse bone marrow–derived dendritic cells (mBMDCs) 2 h after LPS stimulation. Red dots highlight outliers (at least 10-fold difference
between replicates in 3′ libraries). (C,D) Examples of annotated TSSs and TTSs that do not correspond to observed start and end sites in our samples. Read
coverage is normalized to library size. (E) Distance from the most highly enriched windowwithin each gene to the annotated TTS for the 2-h 3′ library (left)
and to the TSS for the 5′ library (right). (F) Fraction of repetitive sequence in 3′ UTRs, 5′ UTRs, and coding sequence (CDS) as estimated by RepeatMasker,
downloaded from the UCSC Genome Browser (Smit et al. 2004; Rosenbloom et al. 2015), in mouse (black) and rat (gray) annotated genes.
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are specific to end-sequencing: (1) Internal poly(A)
sites can result in artificial read alignment pileups
and compromise gene quantification (Fig. 2A,B); (2)
poor or cell-specific transcript ends can result in miss-
ing signal if only reads that align to annotation data-
bases are included, which especially affects 3′-end-
sequencing as the 3′ end tends to be more poorly an-
notated or more cell-type specific (Fig. 2C–E); (3)
UTRs, and 3′ UTRs in particular, contain a higher frac-
tion of repetitive or low complexity sequence com-
pared with coding sequence, which adversely affects
read mappability (Fig. 2F); (4) single-cell library con-
struction methods are diverse and need different anal-
ysis strategies, but the main difference is in how
barcodes are added and hence how they are handled
computationally (Hashimshony et al. 2012; Jaitin
et al. 2014; Soumillon et al. 2014); and (5) alternative
transcription start and polyadenylation usage can be
measuredmuchmore precisely using end-sequencing,
but current methods are not ideally suited for this
analysis.

As input, ESAT takes spliced, genomic read align-
ments from end-sequence libraries together with a
gene annotation set (Pruitt et al. 2009; Derrien et al.
2012; Yates et al. 2016). To avoid internal poly(A)
sites, ESAT offers the option to discard reads contain-
ing continuous stretches of A’s or T’s longer than a
user-defined threshold (10 in this study). To handle
incomplete or inaccurate annotations, ESAT scans a
user-specified distance beyond the annotated transcript end to
find possible transcript ends. ESAT reports all candidate alterna-
tive ends by identifying windows with significant read coverage,
after controlling for the gene expression level (Methods). After
identifying all significant windows, ESAT reports counts at the
gene and window levels, where only windows that exceed a user-
specified significance are reported. To reduce the effect of repeti-
tive sequences resulting in ambiguously mapped reads, ESAT has
an optional feature that keeps reads that cannot be uniquely
mapped genome-wide but that map uniquely to one gene (ex-
tended) UTR. To handle different UMI (unique molecular index)
strategies, ESAT relies on an external preprocessing step, which ap-
pends the cell barcode and UMI to the read ID as a colon-separated
string but makes no assumptions about the length of either the
cell barcode or UMI, making it simple to support new methods.
Finally, ESAT quantifies alternative transcription start sites (TSSs)
or transcription termination sites (TTSs) by relying on the signifi-
cant windows that represent candidate transcript ends (Methods)
(Fig. 3).

From the annotations provided, ESAT defines gene loci by
grouping all isoforms of each gene into a union gene model. The
gene count is reported as the sum of all reads that mapped to this
union gene model. We interpret this count as the sum of the
counts for all of the expressed isoforms of the gene. Although us-
ing gene counts over the gene body has been shown to result in
systematic error (Garber et al. 2011; Trapnell et al. 2012), the na-
ture of end-sequence libraries, which only produce reads for a
small portion of each transcript, is not as prone to this systematic
error as is full-length RNA-seq library analysis. At thewindow level,
ESAT reports the counts for each of the significant windows found.
We note that because some 3′-end-sequencing protocols may in-
clude internal polyadenylation sites that are not true alternative
ends, ESAT allows for the optional removal of any read alignment

that contains runs of adenine or thymidine longer than a user-
specified length (Methods).

Although there is good correlation between counts obtained
at the annotated ends comparedwith full-length TPMs (transcripts
per million) or expected counts (Li and Dewey 2011), using de
novo end-finding allowed us to improve the quantification of hun-
dreds of genes without any impact on variability or correlation
with full-length libraries (Supplemental Fig. S3A). In all of our
analyses, we used an extension of 5 kb for 3′ data and of 1 kb for
5′ data based on the observation that these extensions resulted
in the highest correlationwith full length (Supplemental Fig. S3B).

End-sequencing reveals a global change to long 3′ UTR usage

upon LPS stimulation

Control of gene expression is complex, often involving many dif-
ferent processes (Moore 2005). Alternative promoter and polyade-
nylation usage are two key mechanisms by which expression can
be controlled transcriptionally or post-transcriptionally (Elkon
et al. 2013; de Klerk and ’t Hoen 2015). Although the response
of mBMDCs to LPS has been extensively characterized (Amit
et al. 2009; Garber et al. 2012; Rabani et al. 2014; Jovanovic et al.
2015), the exact contribution of these two mechanisms to the
transcriptional response to LPS is largely unknown.

To monitor changes in the expression of transcript ends, we
used ESAT’s window output that represents likely gene TSSs or
TTSs that are expressed during the LPS response time course
(Methods). To test for changes in TSS andTTS usage independently
from changes in total expression, we computed the fraction of
reads from each TSS or TTS and tested changes in this distribution
(Methods).We foundno significant change of either TSS or TTS us-
age at any specific locus.We observed, however, a significant glob-
al trend toward short isoform usage when looking at all genes that

Figure 3. Schematic representation of the ESAT pipeline.
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have multiple alternative TTSs (Fig. 4). The trend is detectable at
2 h after LPS stimulation and peaks at the 4-h time point. No
such trend is observed when using 5′ data (Supplemental Fig.
S4), suggesting that the TTS effect was not an artifact of our anal-
ysis. Although the exact mechanism or consequence of this global
phenomena is unclear, it is consistent with a recent report describ-
ing a “telescripting” process where, as a result of a transcriptional
burst, protected poly(A) sites become accessible, resulting in a
trend toward shorter UTRs (Berg et al. 2012) that is similar to
what we observe. Whether this trend has a role in the response
of mBMDCs to LPS remains an open question.

Single-cell islet sequencing reveals a complex cellular composition

Given the suitability of 3′ sequencing protocols for both multi-
plexing and low input, it is no surprise that it is the basis for three
recently reported single-cell RNA-seq methods (Hashimshony
et al. 2012; Jaitin et al. 2014; Soumillon et al. 2014). We reasoned

that our computational approach will easily
apply to the analysis of these and other 3′-
based single-cell protocols.

To fully evaluate the usability and rele-
vance of ESAT for single-cell RNA sequenc-
ing, we used inDrop (Klein et al. 2015) to
map islet cell composition in a rat model
for type 1 diabetes (T1D) (Zipris et al. 2005)
that we have extensively studied in the past
(Greiner et al. 2001; Bortell and Yang
2012). This system is ideal for two reasons.
First, all previousdescriptionsof islet compo-
sition have relied on known markers of cells
(Pechhold et al. 2009; Dorrell et al. 2011;
Hrvatin et al. 2014;Blodgett et al. 2015)or se-
quenced a relatively small number of cells
(70) (Li et al. 2015). inDrop allows the profil-
ing of thousands of cells, and hence, rare cell
populations of even <1% are likely to be well
represented. Detection of rare cells is a pow-
erful use of single-cell RNA sequencing
(Grün et al. 2015), and its application to
T1Ddisease progressionwill likely transform
our current understanding of this disease.
For example, detection of activated macro-
phages is critical as they may be indicators
of autoimmune disease and T1Dprogression
inparticular. Second, rat genomeannotation
quality lags far behind the human and
mouse genomes, and3′ sequencing quantifi-
cation is therefore expected tobeparticularly
challenging, providing a good test for ESAT’s
transcript quantification approach.

We harvested islets from a biobreeding
diabetes-resistant rat (BBDR) that is pheno-
typically normal but can be induced by en-
vironmental perturbation to rapidly
develop an autoimmune T1D-like disease
(Bortell and Yang 2012). We used nondia-
betic BBDRs as islet donors and isolated
and dissociated the islets into single-cell sus-
pensions as previously described (Blodgett
et al. 2015). Cells were flowed through the
inDrop system to obtain single-cell RNA-

seq libraries, which were then pooled together for sequencing as
previously described (Fig. 5A; Klein et al. 2015). In all, we se-
quenced 1063 cells at an average 147 thousand reads per cell,
which we processed using an ESAT feature specially designed to
handle barcoded cells and UMIs (Methods) (Supplemental Table
S2). UMIs allow robust identification of PCR duplication artifacts
that are common in low-input libraries (Shiroguchi et al. 2012).

Similar to bulk end-sequencing, the UTR extension step great-
ly improves inDrop usability. After extending UTRs, we recover
24% more highly expressed genes, and 14 more cells pass our
threshold criteria (Methods) (Supplemental Table S2). Important-
ly, key genes may be missed without proper UTR handling. For ex-
ample, expression of genes such as Iapp (also known as amylin)
would be grossly underestimated without properly handling their
3′ UTR. We removed genes with unreliably low expression by se-
lecting only genes with at least two UMIs in at least three cells
(Methods). In all, 991 cells (93%) and 8264 genes passed our vali-
dation criteria and were used in the analysis (Methods).

Figure 4. Global switch to shorter 3′ UTR expression in stimulated DCs. (A) Boxplots of the fraction
of transcripts expressing the shortest UTR for genes with detectable expression of at least two distinct
3′ UTRs in unstimulated DCs (total of 1807). P-values were computed using a Mann-Whitney rank
sum test between the unstimulated distribution and each of the time points shown. (B) Illustrative ex-
ample showing the subtle yet reproducible increase in the expression of the shorter isoform of
Tmem248 in stimulated DCs. Read coverage is normalized to library size.
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Although islet cell composition is dominated by hormone-se-
creting cells, many other cell types contribute to these complex
organoids. By using independent component analysis (ICA) to re-
duce the high dimensional nature of single-cell transcriptomic
data, followed by spectral clustering (Methods), we found that
the cells fell into nine distinct groups (Fig. 5B). In six of these
groups, accounting for 93% of the cells, hormone expression is
dominant: Three clusters (C1, C3, C5) are dominated by insulin
(encoded by the Ins1 and Ins2 genes in rat, 57% of cells), while glu-
cagon (Gcg, 27% of cells), somatostatin (Sst, 3% of cells), and pan-
creatic polypeptide (Ppy 6% of cells) dominate C8, C6, and C2,
respectively (Fig. 5C).

Wenext sought to classify the remaining three cell clusters, in
which expression was not dominated by hormone secretion tran-
scripts. To this end, we carried out differential gene expression
analysis between the different clusters. We obtained 942 genes
that were both significant (Benjamini-Hochberg adjusted P-value
<0.01) and at least twofold different between any two sets of cells
(Methods). Clustering of these 942 genes revealed clear signatures
of the remaining three clusters (Fig. 6A; Supplemental Fig. S5):
While gene ontologyanalysis shows strong enrichment in vascular
development for clustersC4 andC9 (Supplemental Table S3),man-
ual inspectionof cluster-specific genes revealed thatC4 cells specif-
ically express pericyte markers (Paquet-Fifield et al. 2009), while

Figure 5. Single-cell analysis of rat pancreatic islets. (A) Summary of the study. (B) Two-dimensional view of a nine-component independent component
analysis (ICA) projection using t-distributed stochastic neighbor embedding (t-SNE). Cells are colored according the clusters obtained after spectral clus-
tering (Methods) of the nine-component ICA projection. (C ) Violin plots showing the distribution of hormone expression across cells in each cluster.
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cells in theC9 cluster express typical angiogenesismarkers (Fig. 6A,
B; Shih et al. 2002). Cluster C7 is enriched in genes with immune
function and likely represents innate cells such as macrophages or
dendritic cells (Supplemental Table S3), whichhave been previous-
ly reported to reside in islets and are critical for proper develop-

ment (Xiao et al. 2014; Morris 2015). Our data also revealed an
interplay between hormone-producing cells and vascular cells
(cluster C9). All hormone-producing cells, and in particular α
and δ cells, express high levels of vascular endothelial growth
factor A (Vegfa), while cells in cluster C9 express its receptors

Figure 6. Classification of 1000 islet cells. (A) Hierarchical clustering of the 940 genes that are differentially expressed between any pair of the nine-cell
clusters. Gray and black rectangles indicate major gene clusters identified by hierarchical clustering, and Gene Ontology terms significantly enriched (ad-
justed P-value <0.001) for each group are indicated (data available in Supplemental Table S3). Each of the cell clusters (same order and color as in Fig. 5B)
are indicated by the rectangles at the top of the figure. Hand-picked genes of interest are highlighted at the right of the figure. (B) Violin plot showing Vegfa
expression and that of its receptors. (C ) Boxplots showing the differences in the distribution of total UMIs per cell for each of the cell clusters. (D) Violin plots
showing the normalized expression of amylin (Iapp) in UMIs per million across the cells in each cluster.
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(e.g., Flt1, Kdr) and the transcription factors induced upon VEGFA
signaling (e.g., Jun, Fos, Egr1, gene cluster 3a in Supplemental Table
S3). This highlights the power of single-cell analysis, not only as a
cell classification method but also as a tool to uncover more com-
plex signaling among cells within an organ.

We note that in contrast to a recent report on single-cell
mRNA sequencing of human islet cells (Li et al. 2015), our data
contain neither acinar nor ductal cells. This is likely a result of
the much simpler islet isolation protocols in the rat model system
comparedwith themore-involved islet isolation fromhuman sam-
ples, resulting in a pure islet population with no detectable con-
tamination of cells that are not present in the islet proper. The
comparison also highlights the importance of sequencing a large
number of cells. With inDrop, we analyzed 991 cells compared
with the 70 human cells previously reported (Li et al. 2015). The
larger number of cells sequenced not only revealed important
low abundance cells (immune and vascular) but also showed
subtle differences between hormone-secreting cells.

Interestingly, our data suggest that there is great heterogene-
ity in hormone-producing cells. For example, three clear clusters of
insulin-producing cells emerge differing mainly in the total num-
ber of transcripts detected. As with previously published RNA-seq
data in heterogeneous cell populations, different cell types yield a
different number of transcripts, likely due to their different raw
number of mRNAmolecules but also possibly due to different effi-
ciency in library construction.Weobserve among the different cell
types an inverse correlation between insulin and amylin (Iapp)
(Fig. 6C,D). Since dysregulation of amylin has been associated
with β-cell death in type 2 diabetes (Huang et al. 2007;
Guardado-Mendoza et al. 2009), it will be interesting to know in
which cells and the exact portion of cells where amylin becomes
dysregulated during diabetes onset.

We had recently reported that after sorting human islet cells
using intracellular staining of insulin, glucagon, and somatostatin,
a small fraction of α-cells appeared to also transcribe insulin, al-
though without any detectable protein observed (Blodgett et al.
2015). This was surprising since it is commonly thought that islet
hormone-secreting cells express a single hormone. Our BBDR data
do not provide strong evidence for or against this phenomenon in
rats; we detected a small number of cells (16) that express high lev-
els of bothGcg and Ins1/2 (Supplemental Fig. S6A). However, this is
not unexpected given that 14 is the number of expected doublets
assuming a 4% doublet rate (Klein et al. 2015). Nevertheless, it is
notable that while these 16 cells express β-cell genes at high levels,
their expression of α-cell genes is low, perhaps pointing to β-cell-
like cells expressing low levels of glucagon (Supplemental Fig.
S6B; Supplemental Table S3). Whether a fraction of hormone-pro-
ducing cells express more than a single hormone will be better ad-
dressed with a larger number of sequenced cells.

Discussion

End-sequencing techniques have become commonplace. We
have presented a unified perspective of these techniques, both
computational and experimental. By providing a computational
framework specially designed for analysis of data of this type, we
hope to increase the accessibility and usefulness of thesemethods.

Our study of bulk RNA in LPS-stimulated DCs revealed a sur-
prising shift in 3′ usage. Although its functional consequence re-
mains to be tested, previous reports suggest that this shift may
result in regulatory changes of transcripts produced after stimulus,

perhaps reducing its stability and increasing its turnover. Such ob-
servations are only possible with end-sequencing libraries, since
subtle changes in UTR usage are not readily observable with stan-
dard RNA-seq libraries.

Since many single-cell methods rely on end-sequence librar-
ies, we also attempted to provide a computational tool that is read-
ily usable by investigators generating such data. Our rat islet data
highlighted the need for specialized handling of these data as,
for example, 24% of genes would be unusable without searching
for unannotated UTRs. Single-cell data show that islet analysis
can now be extended to include all cells within the islet rather
than just those for which there is a readily available antibody.
Our analysis shows islets are composed of at least nine distinct
cell types, including multiple β-cell subtypes, as well as it helped
us detect a complex interplay between the different islet cells types
that culminates in VEGF signaling by β-cells that drives vasculari-
zation through an ERK-dependent pathway in endothelial cells. It
would be fascinating to extend these analyses to model organisms
such as the NOD mouse or the BBDR where onset of T1D can be
monitored (Bortell and Yang 2012; Yang et al. 2013b). In these
models, single-cell analysis would reveal not only changes in the
exact composition of hormone-producing cells but also subtle dif-
ferenceswithin each group.We also believe that our observation of
VEGFA signaling between hormone-producing cells and vascular
cells points to the potential of using single-cell sequencing to
study not only changes in organ composition but also changes
in signaling between cells in the islet prior to T1D development.

We finally note that our islet data should provide an impor-
tant complement to similar human and mouse single-cell RNA
data sets that are currently being produced.

Methods

5′ Sequencing
5′ RNA sequencing libraries were generated following a recently
developed protocol (S Afik, O Bartok, M Artyomov, A Shishkin,
S Kadri, X Zhu, M Gutman, P McDonel, M Garber, S Kadener,
in prep.). Briefly, RNA was fragmented and then enriched for
5′ ends using Terminator Exonuclease (Epicentre). Reaction
mixture was cleaned up with 2.5× of SPRI beads and then dephos-
phorylated with FastAP (Fermentas), cleaned (2.5× SPRI,
Agencourt), and then ligated to a linker1 (5Phos/AXXXXXXXXA
GATCGGAAGAGCGTCGTGTAG/3ddC/; XXXXXXXX is an inter-
nal barcode specific for each sample) using T4 RNA ligase I (NEB).
Ligated RNA was cleaned-up by Silane beads (Dynabeads MyOne,
Life Technologies) and pooled into a single tube. Reverse transcrip-
tion was then performed for the pooled sample, with a specific
primer (5′-CCTACACGACGCTCTTCC-3′) using an AffinityScript
multiple temperature cDNA synthesis kit (Agilent Technologies).
Then, RNA-DNA hybrids were degraded. The reaction mixture
was cleaned up using Silane beads and a second ligation was per-
formed, where the 3′ end of the cDNA was ligated to linker2
(5Phos/AGATCGGAAGAGCACACGTCTG/3ddC/) using T4 RNA
ligase I. Reaction mixture was cleaned up (Silane beads), and PCR
enrichment was performed using enrichment primers 1 and 2
(5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATCT-3′, 5′-CAAGCAGAAGACGGCATACGA
GATXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCT-3′, where XXXXX XX is barcode sequence) and Phusion HF
MasterMix (NEB). After clean-up with 0.8× volume of SPRI beads,
the library was sequenced. The barcoding-first strategy is easily in-
corporated into all three protocols reported here. Specifically, this
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is achieved by using linker1-XXXX(barcode) sequences for 5′/full-
length protocols or the linker1-XXXX-T15 primer for 3′-end RNA-
seq. However, from the experimental perspective, themost stream-
lined, least time consuming and high-throughput protocol is the
barcoding-first variation of 3′-end RNA-seq.

3′-end RNA-seq

Fifty nanograms to 1 µg of total RNA is poly(A) selected using
Oligo-dT beads (Invitrogen) and then fragmented using Ambion
fragmentation buffer using an incubation time of 1 min 50 sec at
70°C. Fragmented RNA is then cleaned-up using 2.5× volume on
SPRI beads (Agencourt) and then subjected to a second poly(A) en-
richment step. Specifically, we used cDNA synthesis with custom
oligo-dT priming (CCTACACGACGCTCTTCCGATCT-T15). The
reactionmixture is then processed in the sameway as in the 5′ pro-
tocol starting with hybrid degradation and so on. Alternatively,
when using a second round of poly(A) selection after RNA frag-
mentation for 3′-end targeting, enriched RNA is processed in the
sameway as described for 5′-end-sequencing.While bothmethods
show good correlation with full-length RNA-seq (0.95 in both cas-
es), the choice of specific 3′ end enrichment method should be
made depending on the goals of the experiment. Specifically, for
3′-end-based quantitation, custom oligo-dT priming provides
more streamlined design, while secondary poly(A) selection is pre-
ferred when constructing an annotation library to achieve the best
compatibility with full-length and/or 5′-end-sequencing.

Sequencing

Constructed libraries were sequenced with 2×25-bp paired-end
Illumina pipeline that is part of standard sequencing pipeline at
Broad Institute. For all analyses, we used only a single mate out
of the pair to mimic single end-sequencing available in most stan-
dard sequencing core facilities. In our analysis, we used one mate
read at the 3′ end of each cDNA fragment (5′ end in the original
RNA fragment) (Fig. 1A). In 5′ end (ExoCAGE) libraries, this read
should match the TSS; in 3′end libraries, this read should map
within ∼200–300 bp upstream of the transcript’s 3′ end, thus
avoiding the generation of reads from the poly(A) track. The read
density distributions for the two methods are shown in Figure 1B.

Assessment of library reproducibility and selection of optimal

extension

We plated DCs in a 96 well-plate and stimulated independently.
Technical replicates shown in Figure 2, and Supplemental
Figures S1–S3 represent libraries made from different wells after
LPS stimulation. Full-length libraries were downloaded from the
Gene Expression Omnibus under accession number GSE59793
(Jovanovic et al. 2015) and GSE36104 (Garber et al. 2012), re-
mapped, and requantified using RSEM (v 1.2.7) (Li and Dewey
2011) to obtain expected counts.

To select an appropriate UTR extension, we iterated through
different extensions (0, 500, 1000, 2000, 5000, and 10,000 bp)
and computed the correlation between full and end-sequenced
data at genes that had at least 10 expected counts (Li and Dewey
2011) for full-length libraries, or reads mapped, for end-sequence
libraries. Correlations with or without proper multimapper han-
dling showed a small, yet consistent increase up to the 5000-bp ex-
tension for 3′ libraries and 1000 bp for 5′ libraries after which we
see a drop (Supplemental Fig. 3A). We therefore selected 5000 bp
for 3′ end-sequence analysis and 1000 bp for 5′ analysis.

BBDR islet preparation

Pancreatic islets fromBBDRswere isolated by collagenase digestion
as previously described (Yang et al. 2013a). Islets were dissociated
using TrypLE (Invitrogen) used a published protocol (Blodgett
et al. 2015). After all thewashes, the dissociated islet cells were sus-
pended in PBS, filtered through 15 micron CellMicroSieve
(BioDesign), and counted with a hemocytometer. The cells were
further diluted to the final concentration (100,000 cells/mL)
with OptiPrep (Sigma) and PBS, and the final concentration of
OptiPrep was 15% vol/vol. About 5000 islet cells were collected
and processed following the InDrop protocol (Klein et al. 2015).
A library containing about 1000 cells was constructed and
sequenced.

Analysis of single-cell rat islet RNA-seq data

(ICA + clustering)

Sequencing was performed on an Illumina HiSeq sequencer, re-
sulting in 156 million paired-end reads. With this protocol, the
cell barcode and unique molecule identifier (UMI) are contained
in the forward read (R1) and the transcript sequence information
is contained in the reverse (R2) read. The steps in the single-cell
analysis pipeline are as follows:

1. A custom Python script identifies reads with valid barcodes and
UMIs by examining the R1 reads. For protocols that allow for
barcode error correction such as inDrop, barcode errors are cor-
rected in this step. UMIs are considered ‘valid’ if they do not
contain any “N’s.” Valid barcode and UMIs are appended to
the read name in the corresponding R2 readwith the colon-sep-
arated format “:<barcode>:<UMI>.” This information is carried
with the read through all subsequent steps in the pipeline and is
used by ESAT for cell demultiplexing and PCR duplicate remov-
al. An output file is also created, containing the total number of
times each barcode is observed. This file is used in the next pipe-
line step.

2. A customR script reads the barcode count file from the previous
step and determines which barcodes are likely to correspond to
single cells based on the total number of reads. Generally, these
will be a relatively small number of barcodes that account for a
large percentage of the reads. When the reads are sorted by read
counts, a “knee” in the curve can be identified indicating amin-
imumnumber of reads required for a barcode to be considered a
true cell. This threshold value is used in step 4.

3. Genomic alignment of all reads with valid barcodes and UMIs
(from step 1) is performed with TopHat. For this analysis, we
used TopHat v2.0.9 (Kim et al. 2013), with the rat genome
(rn5) as a reference.

4. To reduce thememory requirements for ESAT,we applied an ad-
ditional custom Python script to remove any reads from low-
count barcodes from the alignments. The script takes the bar-
code counts file from step 1 and the count threshold calculated
in step 2 as inputs, as well as the genome-aligned reads (BAM
format). A new BAM file is created from each alignment file,
which contains only reads from barcodes with sufficient read
counts.

5. Finally, the barcode-filtered, genome-aligned reads are pro-
cessed by ESAT to obtain gene-level quantification. In ESAT’s
single-cell preprocessing step, PCR duplicates are identified
and removed using the barcode/UMI information appended
to the read name in step 1. By performing this step, the counts
provided in ESAT’s output files can be interpreted as the total
number of original transcript molecules sampled from each
cell for each gene. These will be referred to as “UMI-filtered
reads.” For this analysis, we ignored multimapped reads
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(-multimap ignore) and extended the search region to up to 5000
bases past the end of the annotated gene transcripts (-wExt
5000). As with the mouse DC analysis below, we used RefSeq
gene annotations (rn5), using only transcripts whose ID begin
with “NM,” in order to remove small RNAs and noncoding
RNAs that tend to have poorer annotations. Although the win-
dow-level output was not used for this analysis, additional win-
dow-related parameter settings used were a scanning window
length of 100 bases (-wLen 100) with a window overlap of 50
bases (-wOlap 50), and the retention of all windows containing
at least one read (-sigTest 1.0).

There are five known types of islet cells, each with primary
marker genes whose expression can be used to classify the cell
types. Alpha cells produce glucagon (Gcg), beta cells produce insu-
lin (Ins1 and Ins2 in rat), gamma or PP cells produce pancreatic
polypeptide (Ppy), delta cells produce somatostatin (Sst), and epsi-
lon cells produce ghrelin (Ghrl). (Note that in this data set, a total
of only five UMI-filtered reads mapped to Ghrl—one in one cell
and four in another—so epsilon cells will not be considered in
this analysis.)

We first removed any cells with fewer than 1000 total UMI-fil-
tered reads. The next step in the analysis of the ESAT results is re-
moving genes with too few UMI-filtered reads to be considered
useable. We used raw (unnormalized) UMI-filtered read counts
and selected only genes with at least three UMI-filtered reads in
at least two cells for our analysis (8254 genes). Our intention in
this step was only to remove genes with expression levels that
are so low that they are likely to be uninformative. Genes with
the most discriminatory power are selected using the statistical
analysis in the following steps. We note here that, without apply-
ing the 5000-base extension to the transcripts with the -wExt 5000
parameter, only 6652 genes passed these filter criteria. Thus, in-
cluding a 5000-base extension results in 24%more genes available
for this analysis.

For all of the further analysis steps, we use log-transformed,
normalized UMI counts, using a simple UMIs/million normaliza-
tion (i.e., divide UMI counts for each gene by the total for the
cell, then multiply by 1 million). By using the selected genes, we
next performed PCA to help determine the number of principal
components and the subset of the most variable genes to be used
with ICA. We selected only the principal components that ac-
counted for the first 10% of the total variance and noted that
each additional PC contributed negligibly to further explaining
the variance. To select the genes used for ICA, we used the rotation
(loadings) from the PCA for these components and selected only
genes whose Mahalanobis distance from the origin are in the top
20th percentile. Our selection criteria resulted in selecting the first
nine principal components and 1654 genes. The selection criteria
eliminated one of the known islet cell marker genes (Ppy), so we
augmented the list of selected genes with this gene in order to al-
low us to later validate the ICA and clustering results.

We next applied ICA (R function fastICA) (Langlois et al.
2010) to the filtered data to attempt to separate the cells into sub-
groups, followed by spectral clustering on the ICA projection to
identify the cells in each subgroup.We then used t-distributed sto-
chastic neighbor embedding (t-SNE; using the R tsne package) (Van
der Maaten and Hinton 2008) to map the ICA projection for visu-
alization. The 2D t-SNE mapping of the result is shown in Figure
5B, colored to identify the clusters resulting from the spectral clus-
tering. We found that nine clusters separated the groups without
further subdividing some of the larger groups into multiple
clusters.

To identify the most significant genes in each cluster, we ap-
pliedDESeq2 (Love et al. 2014), contrasting the cells in each cluster

with the cells in each of the other clusters. We then selected all
genes with anMLE-adjusted log2 fold-changewith an absolute val-
ue >1.0 (i.e., twofold difference) and an adjusted P-value <0.01 to
identify genes that had significantly differential expression be-
tween the clusters. We used the online resource DAVID (Huang
et al. 2009) to identify GO categories and KEGG pathways that
showed enrichment for each cluster.

The heatmap in Figure 6A was constructed using the R heat-
map.2 function in the gplots package. Before clustering the genes
(rows), we computed the z-score for each gene and clipped the z-
score to −3≤ z≤ 3 to enhance the readability of the heatmap.
We used the default hierarchical clustering in heatmap.2, using a
distance metric of (1-cor(<gene row data>))/2. To select the major
gene groups, we cut the resulting row dendrogram (data not
shown) at a height that appeared to identify the major visual fea-
tures of the heatmap (0.585). Several smaller subsets of genes that
formed distinct narrow bands were identified by further cutting
the major branches at a height of 0.5, such as the small group of
genes showing significant enrichment in the GO “response to
Camp” biological process category.

We found that the cells in clusters C2, C6, and C8 showed rel-
atively high expression of Ppy, Sst, and Gcg, respectively, corre-
sponding to delta, gamma, and alpha cells. Clusters C1, C3, and
C5 all show relatively high expression of beta-cell markers Ins1
and Ins2 (Fig. 5C). The remaining three clusters show increased ex-
pression of immune (cluster C2) or vascularization-related (clusters
C6 and C7) genes.

‘Telescripting’ detection

For the analysis results presented in Figure 4A, we processed the 3′

LPS-stimulated mouse genomic alignments using the following
ESAT parameters: ignore multimappers (-multimap ignore), tran-
script extension of 1000 bases (-wExt 1000), window P-value sig-
nificance <0.05 (-sigTest 0.05), a scanning window length of 100
bases (-wLen 100) with a window overlap of 50 bases (-wOlap
50), removing any reads containing continuous stretches of As
or Ts≥ 10 in length (-filtAT 10). We used RefSeq mm10 transcript
mappings, filtered to remove any transcript IDs that did not begin
with “NM” to remove all small RNA transcripts. For this analysis,
we used both the gene- and window-level outputs of ESAT. Before
computing the fraction of reads in each significant window for
each gene for each sample, we applied the following filters to
the “no treatment” (t0) sample to select the genes for evaluation:
We removed any genes with fewer than 250 reads total to remove
genes with very low expression, removed genes with only one sig-
nificant window, required at least 20% of the reads for a gene to
occur in the final window, and limited the ratio of maximum to
minimum reads in any two windows to 1.5 to ensure that reduc-
tions in the reads after treatment would be measurable. These fil-
tering criteria resulted in a total of 1807 genes for the Figure 4A
results. We tested a wide variety of filtering parameters, and all
gave similar results, with only minor changes in the distributions
and P-values.

For each of the selected genes for each timepoint, we then
computed the total fraction of reads that were not in the final
(most 3′) window. The barplots in Figure 4A show the distribution
of these fractions for each sample. Finally, we computed the signif-
icance of the differences of each distribution compared with the
prestimulation (t0) sample using a pairedWilcoxon rank-sum test.

For the 5′ data analysis presented in the Supplemental
Material (Supplemental Fig. S4), we applied the same filters and
window selection criteria, resulting in a total of only 26 genes.
We then computed the total fraction of reads not in the first
(most 5′) window.
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ESAT methodology

A schematic view of ESAT is shown in Figure 3. As inputs, ESAT
takes a set of alignment files (SAM or BAM) with genome align-
ment coordinates, a file containing transcript coordinates (BED
or text file), and various command-line parameters that specify
the details of how analysis should be performed.

In the first pass of the analysis, all reads in all alignment files
are combined, and the total number of alignments starting at each
genomic coordinate is counted. The end of the transcript specified
by the -task parameter (3′ or 5′) is extended by the number of bases
specified by the -wExt parameter in the appropriate direction for
each transcript. The extension is truncated if it overlaps with a
neighboring transcript on the same strand. Next, the exonic re-
gions specified in the transcript coordinates file (plus any exten-
sion) are scanned with a fixed-length window that sums the
total number of reads in each window. For each window position,
a P-value (based on a SCAN statistic) is computed. The positions of
all windows with a P-value less than or equal to a specified P-value
threshold are saved for the second pass analysis. The window
width, overlap from one window to the next, P-value threshold,
number of bases to search past the annotated transcription end,
and which end to apply the extension (5′ or 3′) are all supplied
as command-line parameters. In the case where a series of overlap-
ping or adjacent windows all contain a significant number of reads
(i.e., all of the windows have P-values below the specified thresh-
old value), the contiguous region containing all of the windows
is scanned in one-base steps to locate the window position con-
taining the highest number of alignment starts. The location of
this window is then used to represent this region.

In the second pass of analysis, the total number of reads with-
in each window from the first pass are separately summed for each
input file, and all files for each experiment are combined. The lo-
cations of the windows, the associated transcript identifier (gene
or transcript ID), and the total number of reads in that region
from each input experiment are reported in the “window-level”
output file. In addition, the total number of reads for each tran-
script or gene for each experiment are reported in the “gene-level”
output file.

Multimapped reads

ESAT provides fourmethods for processing readsmarked as “multi-
mapped.”Multimapped reads are identified as having the value of
the NH tag (in the optional flags section of SAM file format) set to a
value greater than one. If this flag is not provided in the genomic
alignments, multimapped reads cannot be identified. Themethod
used for processing multimapped reads is selected with the -multi-
map <method> command-line argument, where <method> is one of
the following:

• normal—Multimapped reads are processed the same as uniquely
mapped reads. If a read is mapped to N locations, this will have
the effect of counting up to N times, once for each valid tran-
script location to which it maps (Supplemental Fig. S7A).

• scale—If the read is mapped to N genomic locations, the read is
assigned a fractional count of 1/N for each valid transcript loca-
tion to which it maps (Supplemental Fig. S7B).

• ignore—Multimapped reads are discarded, since there is no
way to definitively determine the “true” mapping location
(Supplemental Fig. S7C).

• proper—If a read is mapped to multiple genomic locations but
only one of those locations falls within the boundaries of a tran-
script (after splicing out introns and extension), the read is as-
signed to that location. If the read maps to multiple valid
transcript locations or to none, it is discarded (Supplemental

Fig. S7D). This method is performed in two steps. In the first
step, all reads that are marked as multimapped are written out
to a temporary file during the first pass of the analysis. After all
reads have been processed, the temporary files holding the mul-
timapped reads are first sorted by read ID (using the SortSam
function from the picard package) and then processed to deter-
mine whether they map to valid transcript locations. Reads
that uniquely map to a valid transcript location are then saved
to a new temporary file with the multimapping flag for the
read set to one (i.e., uniquely mapped), and the original tempo-
rary file is deleted. In the second step, the temporary file contain-
ing the uniquely mapped reads is reprocessed through ESAT’s
first pass so that these reads are included when identifying sig-
nificant window locations. In the second pass of analysis, these
files are simply treated as extra BAM files for each experiment.

Additional command-line arguments/parameters

Input alignment files

-input <alignment file>: To process a single genomic alignment file,
use -input, followed by the name of the alignment file (SAM or
BAM format).

-alignments <alignment list file>: To processmultiple genomic align-
ment files, use -alignments, followed by the name of a file con-
taining the list of alignment files to be processed. Each line of the
file should contain an experiment identifier followed by a tab,
followed by the full path name of the alignment file (SAM or
BAM format). Multiple alignment files can be provided for
each experiment, and all reads will be assigned to the experi-
ment as if a single, concatenated input file was provided. Note
that a tab is used to separate the experiment ID from the input
file name to allow spaces in both the experiment ID and file
name.

Input transcript annotation files

-annotations <annotation BED file>: When transcript annotations
are provided with this parameter, each transcript in the input
file is processed independently, and gene- and window-level
outputs are produced for each transcript in the file. Note that
when providing the transcript annotations in this way,multiple
isoforms for the same gene are treated as if they came from sep-
arate genes. If, for example, multiple transcripts in the file share
a common exon, any reads mapping to that exon will be as-
signed to each of the transcripts.

-geneMapping <annotation table file>:When transcripts are provided
with this parameter, all transcripts for each gene are collapsed
into a single “metatranscript,” which contains all exonic and
UTR regions from all transcripts for each gene. The <annotation
table file> is a simple tab-delimited file containing transcript
mapping information as provided by the UCSC Table Browser
(https://genome.ucsc.edu/cgi-bin/hgTables). The minimum ta-
ble columns required by ESAT are as follows:

• name—the transcript ID;
• chrom—chromosome identifier;
• strand—strand (+ or −);
• txStart—transcript start location;
• txEnd—transcript end location;
• exonStarts—comma-separated list of exon start positions;
• exonEnds—comma-separated list of exon end positions; and
• name2—gene symbol.

When collapsing gene transcripts into a single metatranscript, the
first transcript for a gene specifies the chromosome and strand for
the metatranscript. If additional transcripts for that gene are on a
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different strand or chromosome, those transcripts are discarded,
and a warning message is generated indicating a “New isoform
mismatch for <gene symbol>…,” followed by the genomic coordi-
nates of the conflicting transcript. When providing transcript co-
ordinates in this way, a single line in the gene-level output file is
provided for each gene symbol (rather than each transcript), and
any significant windows falling within the metatranscript are re-
ported with the gene symbol in the window-level output file.

Window specifications

-wLen <length>: scanning window length, in bases (≥1, default =
50).

-wOlap <overlap>: number of bases overlap fromonewindow to the
next (≥0, default = 0).

-wExt <extension>: number of bases to extend beyond the end of
the annotated transcript (≥0, default = 0).

-sigTest <P-value>: window significance threshold (0.0≤ P-value
≤1.0, default = 1.0). Only windows with a SCAN statistic P-value
less than or equal to this value will be reported in the window-
level output file.

-task <end>: specifies whether to process this as a 3′-end library
(score3p) or 5′-end library (score5p). (Default = score3p.)

Low-complexity filtering

-filtAT <n>: Discard any reads with continuous stretches of As or
Ts≥ <n> in length.

Output file

-output <file prefix>: specifies the prefix for the output file name.
Two output files will be created, <file prefix>.gene.txt, containing
the gene-level results, and <file prefix>.window.txt, containing
the window-level results.

Single-cell parameters

-scPrep: indicates that the reads are from a single-cell protocol
which uses cell barcodes and UMIs.

-bcMin <barcode count>: This optional parameter specifies the min-
imumnumber ofUMI-filtered reads thatmust be associatedwith
a barcode to have it be considered valid, as described above.

Reads are assumed to have the cell barcode and UMI append-
ed to the read name field in the following format: <read name>:
<cell barcode>:<UMI>. If at least three colon-separated fields are
not found, the read is skipped and the ‘Improper read name: …’

warning is raised.
Reads from single-cell libraries are preprocessed to remove

PCR duplicates resulting from the library preparation process.
Since each read is tagged with a barcode to indicate the source
cell and with a UMI to tag the source mRNAmolecule, PCR dupli-
cates can be identified as reads with the same cell barcode andUMI
that map to the same gene transcript. A single instance of a read
with a given cell barcode and UMImapping to a transcript is suffi-
cient to count as an observation of a transcript molecule, and all
further instances of the same cell barcode and UMI mapping to
the same transcript are discarded as PCRduplicates. The PCRdupli-
cate removal process is implemented as a preprocessing step, in
which the filtered reads (i.e., reads corresponding to specific bar-
code/UMI/transcript) are written out to temporary files, and those
files replace the original input files for ESAT processing. As the
reads are being filtered, the number of filtered reads that are asso-
ciated with each barcode (cell) are counted. The -bcMin <barcode
count> parameter allows the user to set a minimum number of fil-

tered reads that each barcode must have. Cell barcodes with fewer
than <barcode count> filtered reads are marked as ‘invalid,’ and
reads with these barcodes are ignored in all further processing.
Since memory is required to count every observed barcode/UMI/
transcript, removal of aligned reads with low-count barcodes is
also part of the preprocessing pipeline for preparing single-cell
data for ESAT. The additional -bcMin parameter allows the initial
low-count barcode filtering to be lenient (to reduce the memory
footprint of the PCR duplicate removal step) but then allows
more aggressive filtering to remove any barcodes (cells) with an in-
sufficient number of UMI-filtered reads. This both removes cells
with poor coverage and reduces the memory requirement for the
second pass of analysis.

Software availability

Our analysis toolkit and its source code are freely available from
https://github.com/garber-lab/ESAT. The exact source used in
this work is tagged as GR_release and is also available in the
Supplemental Material. Custom python and R scripts used for sin-
gle-cell analysis are included in Supplemental Data S1.

Data access

Raw sequence data and ESAT outputs from this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE79651.
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