University of Massachusetts Medical School eScholarship@UMMS

PEER Liberia Project

UMass Medical School Collaborations in Liberia

2019-2

Introduction to Biostatistics - Lecture 2: Statistical Inference Procedures

Jonggyu Baek University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer

Part of the Biostatistics Commons, Family Medicine Commons, Infectious Disease Commons, Medical Education Commons, and the Public Health Commons

Repository Citation

Baek J. (2019). Introduction to Biostatistics - Lecture 2: Statistical Inference Procedures. PEER Liberia Project. https://doi.org/10.13028/xjxb-cf87. Retrieved from https://escholarship.umassmed.edu/liberia_peer/9

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

Department of Quantitative Health Sciences

Introduction to Biostatistics

2/28/2019

Jonggyu Baek, PhD

Lecture 2:

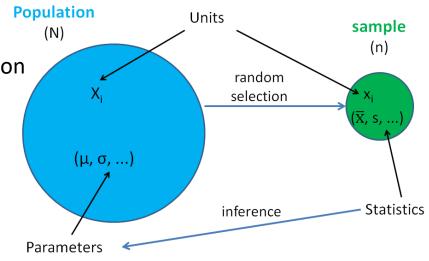
- Statistical Inference Procedures
 - -Hypothesis test for population average
 - Hypothesis test for comparing means
 - Power and sample size

Statistical Inference

Two broad areas of statistical inference:

- **Estimation:** Use sample statistics to estimate the unknown population parameter.
 - Point Estimate: the best single value to describe the unknown parameter.
 - Standard Error (SE): standard deviation
 of the sample statistic. Indicates how
 precise is the point estimate.
 - Confidence Interval (CI): the

range with the most probable values for the unknown parameter with a $(1-\alpha)\%$ level of confidence.



• **Hypothesis Testing:** Test a specific statement (assumption) about the unknown parameter. CTS605A - Lecture Notes, Jonggyu Baek, PhD

Statistical Inference for population average **µ** Estimation: Point Estimate & Standard Error

- Suppose X a variable (e.g., systolic BP, hypertension, # of prior complications) from a population of size N with average μ and standard deviation σ.
- We select a random sample x₁, x₂, ..., x_n of size n
- **Point Estimate** of μ : \overline{x}
- Standard error of \overline{x} : Standard Deviation of all possible \overline{x} 's
- From the central limit theorem (CLT), for n large ($n \ge 30$):

$$\overline{\mathbf{X}} \sim \mathsf{N}(\boldsymbol{\mu}, \frac{\sigma}{\sqrt{n}})$$

• If σ also unknown we can estimate from the sample standard deviation **s**.

Suppose X from a population (N) with μ and σ .

• If we take random samples (n) with replacement from the population, for large "n" the distribution of the sample mean \overline{x} is approximately normally distributed with $\mu_{\overline{x}} = \mu$ and $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$, i.e.:

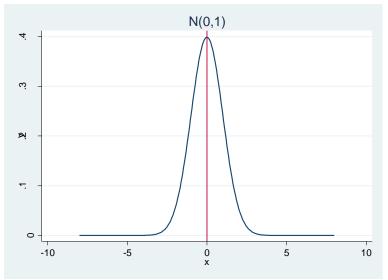
$$\overline{\mathrm{X}} \sim \mathrm{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

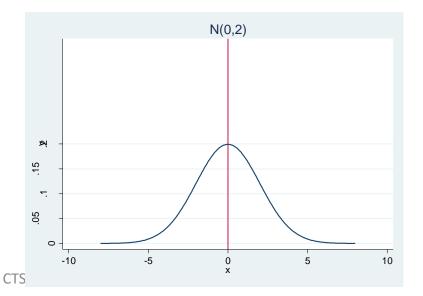
Importance:

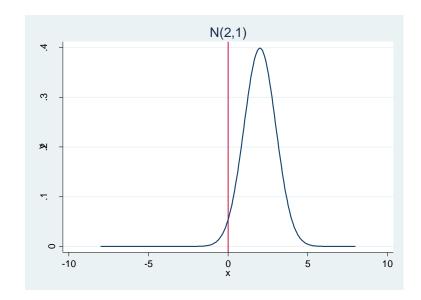
- The distribution of the sample mean (x̄) is approximately normal even if X does not follow N(μ, σ).
- Sample mean is very useful for statistical inference.

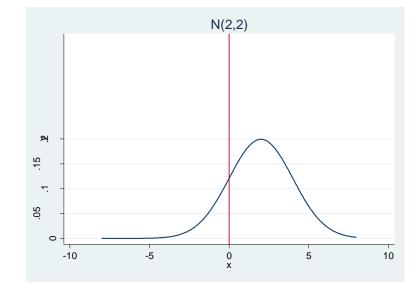
Normal Distribution

Examples:







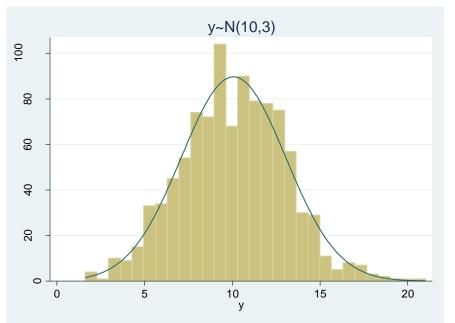


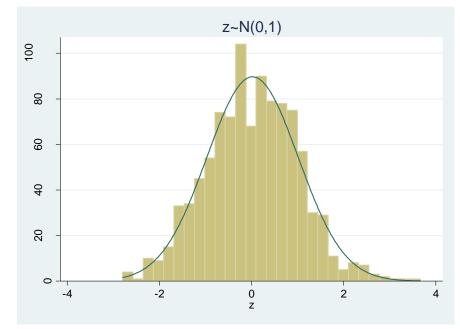
The Standard Normal Distribution

 $\overline{\mathbf{x}} \sim N(\mu, \sigma/\sqrt{n})$ can be transformed to a Z ~ N(0, 1):

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

- N(0, 1) is called the standard normal distribution
- Z is the standardized value of \overline{x}
- Standardized values make comparable variables that are measured in different units, or have different variability





Statistical Inference for population average μ Statistical Inference for population average μ

- **Confidence Interval (CI)**: a range of values that are likely to cover the true parameter value with a level of confidence $(1-\alpha)$ % assigned to it. The most common choice for α is 5%.
- Usually CIs are symmetric around the point estimate.
- From the central limit theorem (CLT), for n large ($n \ge 30$):

$$\overline{\mathrm{X}} \sim \mathsf{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

• Hence,

$$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

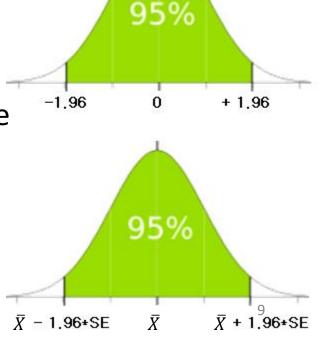
Statistical Inference for population average μ **Estimation:** Confidence Interval

• E.g., (1-α)=95% CI for μ

<u>95% Cl for average $\boldsymbol{\mu}$ </u>: $[\overline{x} - 1.96 \cdot (\sigma/\sqrt{n}), \overline{x} + 1.96 \cdot (\sigma/\sqrt{n})]$

How we derived its 95% CI?

- 95% of Z around 0 is between -1.96 and 1.96 [or $Z_{0.025} = -1.96$ and $Z_{0.975} = 1.96$]
- Remember that Z does not have any scale because it is standardized. We need the scale back to calculate 95% CI.



Statistical Inference for population average μ **Estimation:** Confidence Interval

• Based on the percentiles of the N(0,1) there are some commonly reported CIs:

(1-α)% Cl	α	α/2	1-α/2	Ζ _{α/2}	Ζ _{1-α/2}
80%	20	10	90	-1.28	1.28
90%	10	5	95	-1.64	1.64
<mark>95%</mark>	<mark>5</mark>	<mark>2.5</mark>	<mark>97.5</mark>	<mark>-1.96</mark>	<mark>1.96</mark>
99%	1	0.5	99.5	-2.58	2.58

Example of CIs: The Framingham Heart Study

• Can you calculate 95% CIs based only on descriptive statistics for the systolic blood pressure?

```
library(psych)
describe(dat1$sysbp)
> library(psych)
> describe(dat1$sysbp)
vars n mean sd median trimmed mad min max range skew kurtosis se
x1 1 11627 136.32 22.8 132 134.34 20.76 83.5 295 211.5 0.94 1.37 0.21
```

```
95% CI : [\bar{x} - 1.96 \cdot (\sigma/\sqrt{n}), \bar{x} + 1.96 \cdot (\sigma/\sqrt{n})]
= [136.32- 1.96.0.21, 136.32+ 1.96.0.21]
= [135.91, 136.73]
```

Example of CIs: The Framingham Heart Study

• Is there any way to calculate 95% CI directly?

```
t.test(dat1$sysbp)
```

```
> t.test(dat1$sysbp)
```

One Sample t-test

```
data: dat1$sysbp
t = 644.76, df = 11626, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
135.9097 136.7386
sample estimates:
mean of x
136.3241
```

Univer Hypothesis Testing for the mean µ^{th Sciences}

- Suppose X continuous from a population with mean μ and standard deviation σ.
- What is the value of μ?
- We select a random sample from that population and try to make inference about μ.

Statistical Inference for population average **µ** Key Concepts in Hypothesis Testing

- Null hypothesis (H₀):
 - An explicit statement about an unknown parameter the validity of which you wish to test, e.g., $\mu = \mu_0$
- Alternative hypothesis (H₁):
 - An alternative statement about the unknown parameter used to compare your null with, e.g.,
 - $\mu \neq \mu_0$ (two-sided test)
 - $\mu < \mu_0$ (one-sided test)
 - $\mu > \mu_0$ (one-sided test)

• Errors:

- Type I : reject $H_0 | H_0$ is true
- Type II: do not reject $H_0 | H_1$ is true

(crucial) (moderate)

Statistical Inference for population average **µ** Key Concepts in Hypothesis Testing

Think of **Type I** error as the "*presumption of innocence*" according to which "*everyone is presumed innocent until proven guilty*":

"It is better that ten guilty persons escape than that one innocent suffer" from the principle of Blackstone formula:

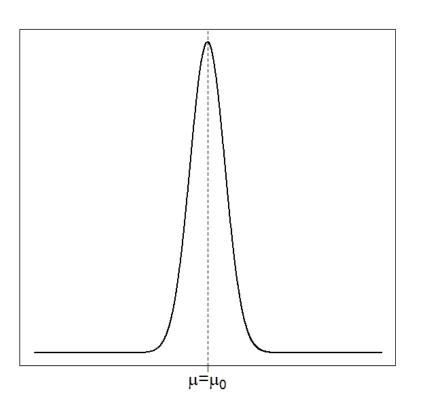
- H₀ : a person is innocent
- H_1 : a person is guilty
- Without enough evidences, a person is innocent

What about this?

- H₀ : a person is guilty
- H₁ : a person is innocent
- Without enough evidences, a person is guilty

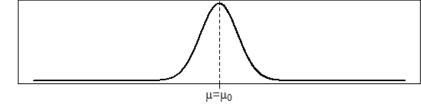
Univer Hypothesis Testing for the mean **µ**^{th Sciences}

- What is the value of μ? (e.g., the population mean of systolic BP is 136.
- Hypothesis Test: $H_0: \mu = \mu_0(=136)$

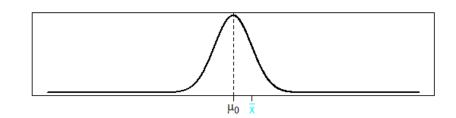


Univer Hypothesis Testing for the mean μ th sciences

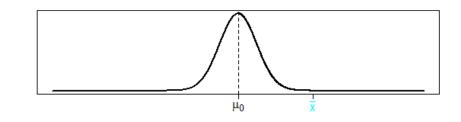
• <u>What is the value of μ</u>?

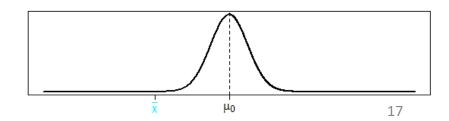


• Hypothesis Test: $H_0: \mu = \mu_0(=136)$



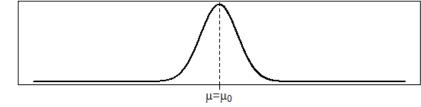
Random sample:
 x
 x



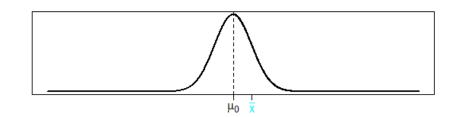


Univer Hypothesis Testing for the mean μ th Sciences

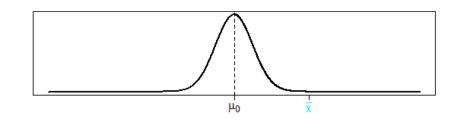
• <u>What is the value of μ</u>?



• Hypothesis Test: $H_0: \mu = \mu_0$ (?)



Random sample:
 x
 x

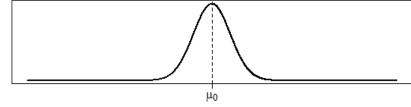


- If $\overline{\mathbf{x}}$ close to $\mu_0 \rightarrow H_0$ probable
- If $\overline{\mathbf{x}}$ far from $\mu_0 \rightarrow H_0$ not probable

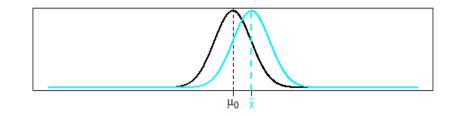


Univer Hypothesis Testing for the mean μ th Sciences

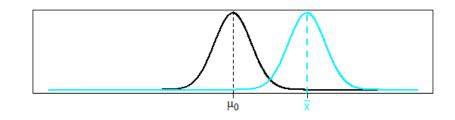
• <u>What is the value of μ</u>?



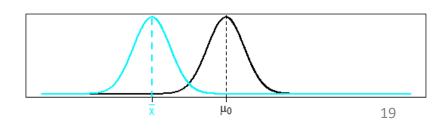
• Hypothesis Test: $H_0: \mu = \mu_0$ (?)



Random sample:
 x
 x



- If $\overline{\mathbf{x}}$ close to $\mu_0 \rightarrow H_0$ probable
- If $\overline{\mathbf{x}}$ far from $\mu_0 \rightarrow H_0$ not probable



Statistical Inference for population average **µ** Key Concepts in Hypothesis Testing

• Test Statistic:

- A summary measure of your sample, with known distribution under H_0 , used for testing the null hypothesis (H_0), e.g.,

Test Statistic
$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \stackrel{H_0}{\sim} N(0, 1)$$

• Critical points:

- Values (percentiles) of the known distribution of the test statistic above or below which the probability of Type I Error is α %, e.g.,

$$Z_{\alpha}\text{, } Z_{\alpha/2}\text{, } Z_{1\text{-}\alpha/2}\text{, } t_{1\text{-}\alpha/2, \text{ d.f.}}$$
 , etc.

- <u>Example</u>: Hypothesis testing about the population mean μ, at α% level of significance
- H₀: μ=μ₀
- $H_1: \mu \neq \mu_0 \implies \mu = \mu_1 \neq \mu_0$
- $CLT \rightarrow \overline{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \implies Z = \frac{\overline{x} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$
- If H₀ is true: $Z_0 = \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} \stackrel{H_0}{\sim} N(0, 1)$
 - Z_0 close to 0

- \rightarrow H₀ probably true
- Z_0 "much" different from 0 \rightarrow H₀ probably NOT true

- <u>Example</u>: Hypothesis testing about the population mean μ, at α% level of significance
- H₀: μ=μ₀
- $H_1: \mu \neq \mu_0 \implies \mu = \mu_1 \neq \mu_0$
- $CLT \rightarrow \overline{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \implies Z = \frac{\overline{x} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$
- If H₀ is true: $Z_0 = \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} \stackrel{H_0}{\sim} N(0, 1)$
 - Z_0 close to 0

How "much"?

- \rightarrow H₀ probably true
- Z_0 "<u>much</u>" different from 0 \rightarrow H₀ probably NOT true

- <u>Example</u>: Hypothesis testing about the population mean μ, at α% level of significance
- H₀: μ=μ₀
- $H_1: \mu \neq \mu_0 \implies \mu = \mu_1 \neq \mu_0$
- $CLT \rightarrow \overline{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \implies Z = \frac{\overline{x} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$
- If H₀ is true: $Z_0 = \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} \stackrel{H_0}{\sim} N(0, 1)$
 - Z_0 close to 0

 \rightarrow H₀ probably true

Critical Z point (Z_c)

• Z_0 "<u>much</u>" different from 0 \rightarrow H₀ probably NOT true

How "much"?

CTS605A - Lecture Notes, Jonggyu Baek, PhD

• Example: Hypothesis testing about the population mean μ , at α %

Test statistic:

 $Z_0 = \frac{x - \mu_0}{\sigma / \sqrt{n}}$

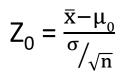
 $H_0: \mu = \mu_0$

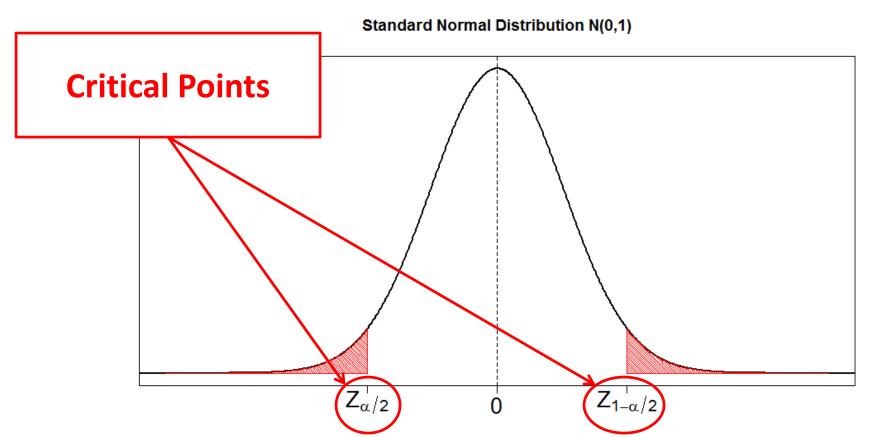
 $H_1: \mu \neq \mu_0$

• Example: Hypothesis testing about the population mean μ , at α %

 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$

Test statistic:

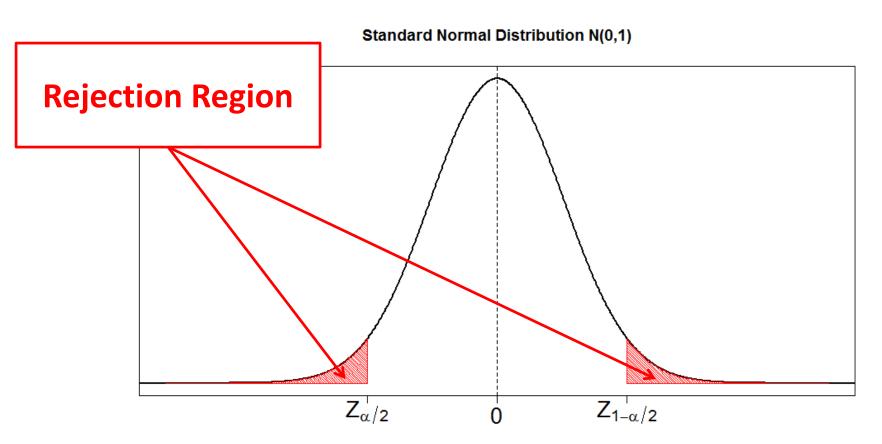




• Example: Hypothesis testing about the population mean μ , at α %

 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$

$$Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

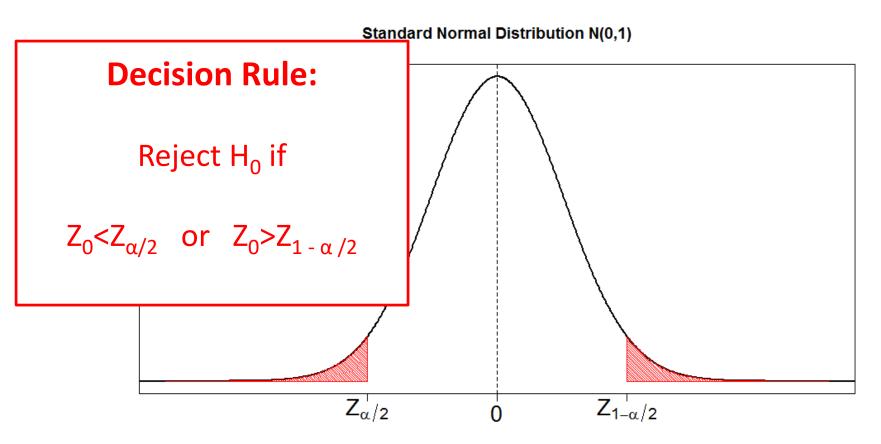


• Example: Hypothesis testing about the population mean μ , at α %

H₀: μ=μ₀ H₁: μ ≠ μ₀

Test statistic:

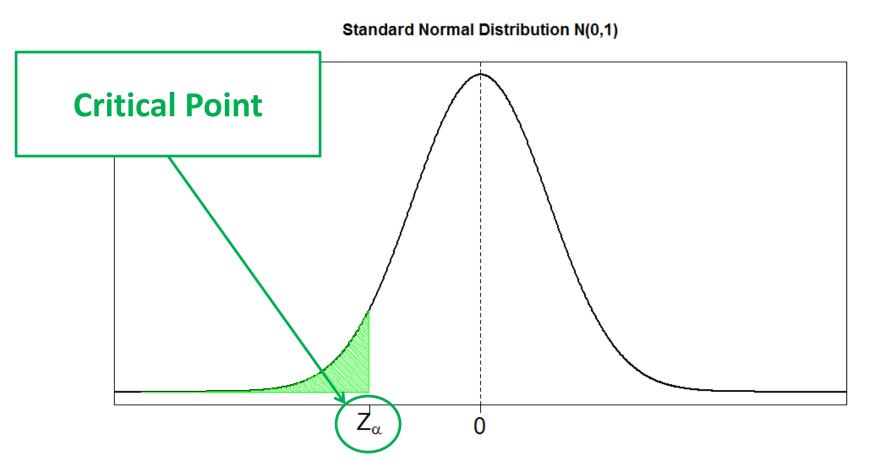
 $Z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$



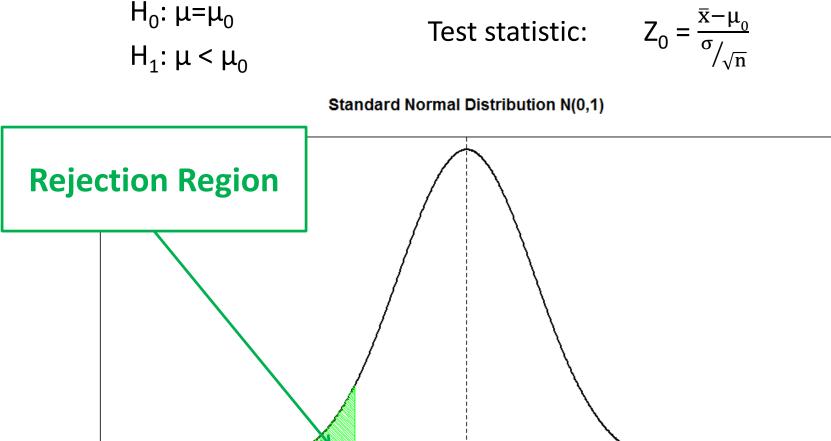
• Example: Hypothesis testing about the population mean μ , at α %

 $Z_0 = \frac{x - \mu_0}{\sigma_{1/p}}$

H₀: $μ=μ_0$ Test statistic: H₁: $μ < μ_0$



• Example: Hypothesis testing about the population mean μ , at α %



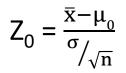
0

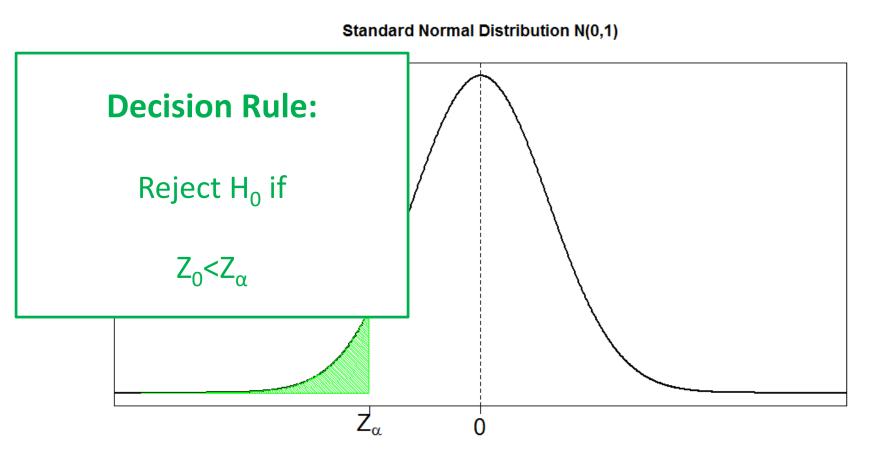
Zα

• Example: Hypothesis testing about the population mean μ , at α %

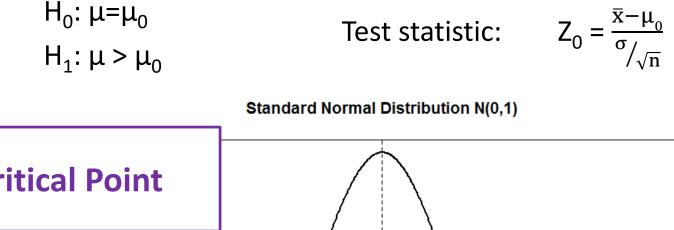
H₀: μ=μ₀ H₁: μ < μ₀

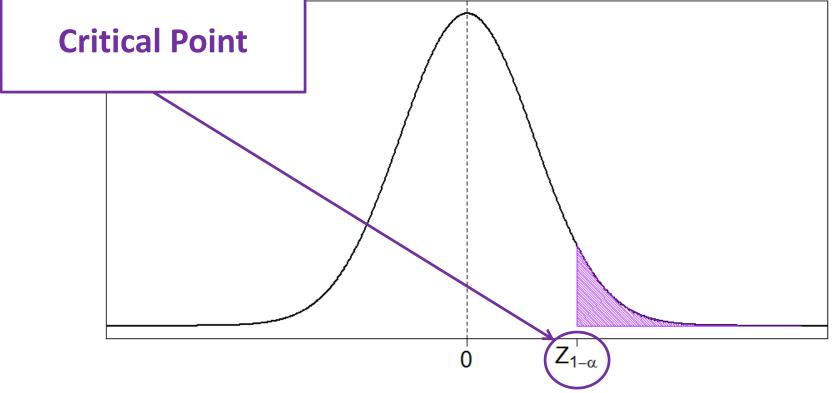
Test statistic:



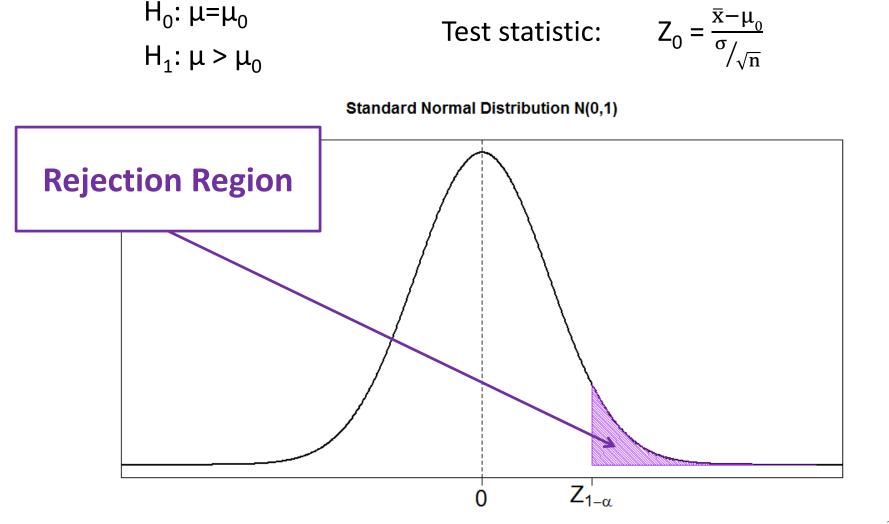


• Example: Hypothesis testing about the population mean μ , at α %





• Example: Hypothesis testing about the population mean μ , at α %

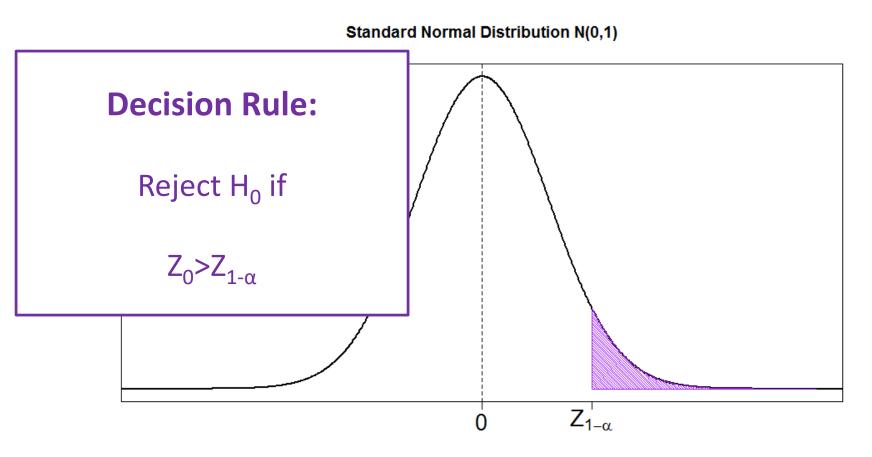


• Example: Hypothesis testing about the population mean μ , at α %

H₀: μ=μ₀ H₁: μ > μ₀

Test statistic:

 $Z_0 = \frac{x - \mu_0}{\sigma/\pi}$



Statistical Inference for population average **µ** Key Concepts in Hypothesis Testing

• Decision Rule:

 What values of the test statistic would indicate the H₀ is probably not supported by the observed data, hence it should be rejected.

• P-value:

 The exact level of significance, i.e., the probability of observing a value as extreme or more extreme than the calculated test statistic under the null hypothesis H₀, e.g.,

$$p$$
-value = $P(Z > Z_0)$

- 1. Set the null hypothesis H₀ and alternative hypothesis H₁
- **2.** Set a level of significance α %.
- 3. Calculate a test statistic
- 4. decision rule or
- 5. P-value of the test statistic (preferred)
- 6. conclusion

Statistical Inference for population average μ

- We will cover examples for three cases
 - 1) Single population: one sample t-test
 - Interested in the population mean
 - 2) Two independent population: two sample t-test
 - Interested in comparing two population means
 - 3) Two dependent population: Paired t test
 - Interested in comparing mean changes within subjects (before vs. after)

Statistical Inference for population average μ Case 1: One-Sample: two-sided hypothesis Test

 Example: We want to test the following hypothesis about the population mean μ of the systolic blood pressure of the Framingham Heart Study population, at α=5% level of significance:

$$H_0: \mu = 130$$
 vs $H_1: \mu \neq 130$

- Test statistic: $Z_0 = \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} = \frac{\overline{x} \mu_0}{s / \sqrt{n}} = \frac{136.32 130}{22.8 / \sqrt{11627}} = 29.91$
- Conclusion: $Z_0 = 29.91 \implies \text{reject } H_0 \text{ if } |Z_0| > 1.96$
- p-value = $P(Z > |Z_0|) = P(Z < Z_0) + P(Z > Z_0) = 2*P(Z > 29.91) < 0.0001$

```
t.test(dat1$sysbp, mu = 130)
```

```
> t.test(dat1$sysbp, mu = 130)
```

```
One Sample t-test
```

data: dat1\$sysbp t = 29.911, df = 11626, p-value < 2.2e-16 alternative hypothesis: true mean is not equal to 130 95 percent confidence interval: 135.9097 136.7386 sample estimates: mean of x 136.3241

CTS605A - Lecture Notes, Jonggyu Baek, PhD

Statistical Inference for population average **µ** One-sided hypothesis Test

 <u>Example</u>: We want to test the following hypothesis about the population mean μ of the systolic blood pressure of the Framingham Heart Study population, at α=5% level of significance:

 $H_0: \mu = 130$ vs $H_1: \mu > 130$

- Test statistic: $Z_0 = \frac{\overline{x} \mu_0}{\sigma/\sqrt{n}} = \frac{\overline{x} \mu_0}{s/\sqrt{n}} = \frac{136.32 130}{22.8} = 29.91$
- Conclusion: $Z_0 = 29.91 \Rightarrow$ reject H_0 : if $Z_0 > 1.68$

t.test(dat1\$sysbp, mu=130, alternative="greater") ## one-sided H1: mu > 130

> t.test(dat1\$sysbp, mu=130, alternative="greater") ## one-sided H1: mu > 130

```
One Sample t-test
```

```
data: dat1$sysbp
t = 29.911, df = 11626, p-value < 2.2e-16
alternative hypothesis: true mean is greater than 130
95 percent confidence interval:
135.9763 Inf
sample estimates:
mean of x
136.3241
```

CTS605A - Lecture Notes, Jonggyu Baek, PhD

Statistical Inference for population average **µ** One-sided hypothesis Test

 <u>Example</u>: We want to test the following hypothesis about the population mean μ of the systolic blood pressure of the Framingham Heart Study population, at α=5% level of significance:

$$H_0: \mu = 130$$
 vs $H_1: \mu < 130$

- Test statistic: $Z_0 = \frac{\overline{x} \mu_0}{\sigma/\sqrt{n}} = \frac{\overline{x} \mu_0}{s/\sqrt{n}} = \frac{136.32 130}{22.8} = 29.91$
- Conclusion: $Z_0 = 29.91 \implies \text{reject } H_0: \text{ if } Z_0 < -1.68$
- p-value = $P(Z < Z_0) = 1$

t.test(dat1\$sysbp, mu=130, alternative="less") ## one-sided H1: mu < 130
> t.test(dat1\$sysbp, mu=130, alternative="less") ## one-sided H1: mu < 130</pre>

```
One Sample t-test
```

```
data: dat1$sysbp
t = 29.911 df = 11626, p-value = 1
alternative hypothesis: true mean is less than 130
95 percent confidence interval:
        -Inf 136.6719
sample estimates:
mean of x
136.3241
```

CTS605A - Lecture Notes, Jonggyu Baek, PhD

University of Massach Two Independent Samples

- Case 2: two-independent populations (two-samples)
- X_1 'sysbp' of people without previous CHD, with μ_1 and unknown σ_1
- X_2 'sysbp' of people with previous CHD, with μ_2 and unknown σ_2

Hypothesis Testing for $\mu_1 - \mu_2$

- Null hypothesis (H₀): μ_1 - μ_2 =0 \implies μ_1 = μ_2
- Alternative hypothesis (H₁):
 - $\hspace{0.1 cm} \mu_{1} \text{-} \hspace{0.1 cm} \mu_{2} \neq 0 \hspace{0.1 cm} \Longrightarrow \hspace{0.1 cm} \hspace{0.1 cm} \mu_{1} \neq \mu_{2} \hspace{1cm} (\text{two-sided test}), \hspace{0.1 cm} \text{or} \hspace{0.1 cm}$
 - $\mu_1 \mu_2 < 0 \implies \mu_1 < \mu_2$ (one-sided test), or
 - $\mu_1 \mu_2 > 0 \implies \mu_1 > \mu_2$ (one-sided test)

Two Independent Samples

Case 2: two-independent populations (two-samples)

- Case 2.A: Known variances

- X_1 'sysbp' of people without previous CHD, with μ_1 and known σ_1
- X₂ 'sysbp' of people with previous CHD, with μ_2 and known σ_2

<u>Hypothesis Testing for $\mu_1 - \mu_2$ </u>

- Test statistic:
- $Z_{0} = \frac{\overline{x}_{1} \overline{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}} \sim N(0, 1)$
- Decision Rules by H₁: Testing H₀: μ_1 - μ_2 =0 vs :

H ₁	Reject H _o if:
$\mu_1\text{-}\mu_2\neq 0$	$Z_0 < Z_{\alpha/2} \text{ or } Z_0 > Z_{1-\alpha/2}$
$\mu_1 - \mu_2 < 0$	$Z_0 < Z_{\alpha}$
$\mu_1 - \mu_2 > 0$	$Z_0 > Z_{1-\alpha}$

University of Massach Two Independent Samples

- Case 2: two-independent populations (two-samples)
- X_1 'sysbp' of people without prevchd, with μ_1 and unknown σ_1
- X_2 'sysbp' of people with prevchd, with μ_2 and unknown σ_2

Hypothesis Testing for \mu_1 - \mu_2

 $H_0: \mu_1 = \mu_2 \qquad vs. \qquad H_1: \mu_1 \neq \mu_2$

```
t.test(sysbp ~ prevchd, data=dat1) ## var.equal = FALSE
```

```
> t.test(sysbp ~ prevchd, data=dat1) ## var.equal = FALSE
```

Welch Two Sample t-test

data: sysbp by prevchd t = -13.036, df = 945.08, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -13.54697 -10.00183 sample estimates: mean in group 0 mean in group 1 135.4714 147.2458

University of Massachus**Two Dependent Samples**

- **Case 3:** two-dependent populations (two-samples)
- X_1 'sysbp' of people at baseline, with μ_1 and unknown σ_1
- X_2 'sysbp' of people **6yrs after baseline**, with μ_2 and unknown σ_2
- Suppose variable: $d=x_1-x_2$ from population with μ_d and σ_d

<u>Hypothesis Testing for μ_d </u>

- Null hypothesis (H_0): $\mu_d=0$
- Alternative hypothesis (H₁):
 - $\mu_d \neq 0$ (two-sided test), or
 - $\mu_d < 0$ (one-sided test), or
 - $\mu_d > 0$ (one-sided test)

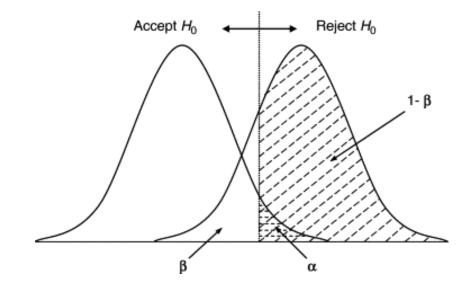
Looks familiar? This is then same as one-sample t-test!

Power and Sample Size Determination

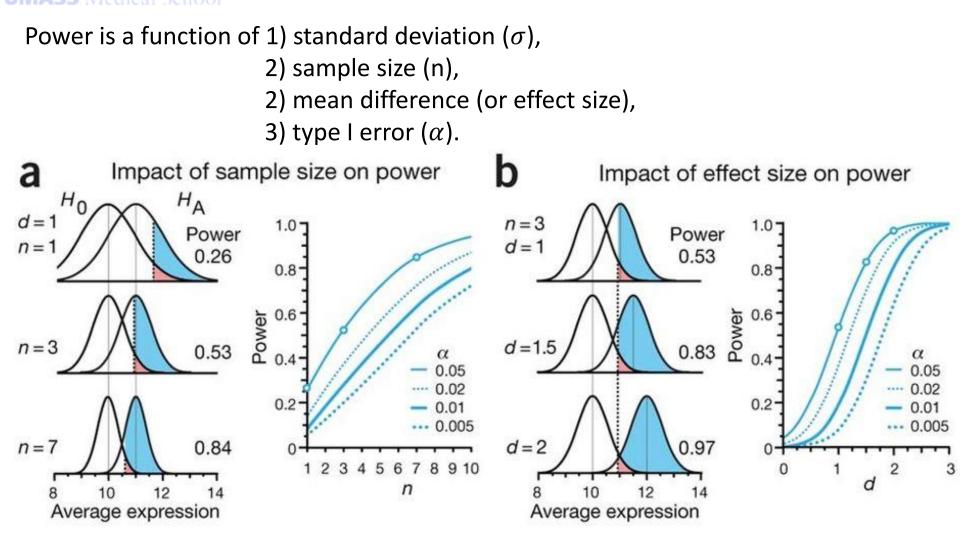
Power = 1- P(Type II error) = 1 - P(do not reject $H_0 | H_1$ is true) = 1 - β = P(reject $H_0 | H_1$ is true)

- E.g., the hypothesis: $H_0: \mu = \mu_0$ vs $H_1: \mu = \mu_1 > \mu_0$
- The power of this test is:

Power = P(reject H₀ | H₁ is true) = P($Z_0 > Z_{1-\alpha}$ | $\mu = \mu_1 > \mu_0$)



Power and Sample Size Determination



Reference: Krzywinski and Altman, "Power and sample size", Nature Methods 10, 1139-1140 (2013).

Power and Sample Size Determination

• The power of the test is:

Power = P(reject H₀ | H₁ is true) = P(Z₁ > Z_{1-\alpha} -
$$\frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}}$$
) (2)

- The power of the test depends on:
 - n (standard deviation)

 $\sigma \uparrow \Rightarrow \mathsf{Power} \downarrow$

- ✤ n (sample size)
 n ↑ ⇒ Power ↑

Case 1: Single population (one-sample):

```
H_0: \mu=100 \text{ vs } H_1: \mu\neq 100
```

- at α =5% level of significance.
- We want a powerful test with power 80% power.
- The test will reject the null hypothesis if the true mean is 5 units different from 100 (either smaller or larger two-sided test). Namely, $|\mu-\mu_0|=5$.
- Suppose we know that standard deviation of the outcome variable σ =9.5
- What is the required sample size?

University of Massac Sample Size Determination

Case 1: single population (one-sample) $H_0: \mu=100 \text{ vs } H_1: \mu\neq 100 \text{ (two-sided test)}$

```
library(pwr)
pwr.t.test(d = 5/9.5, sig.level=0.05, power = 0.8, type="one.sample")
```

```
> pwr.t.test(d = 5/9.5, sig.level=0.05, power = 0.8, type="one.sample")
```

```
One-sample t test power calculation
```

```
n = 30.3112
d = 0.5263158
sig.level = 0.05
power = 0.8
alternative = two.sided
```

The total N = 31

University of Massach Sample Size Determination

Case 2: two dependent populations (two-samples) with unknown variance of the differences

<u>Example</u>: Suppose $s_d = 7$. We want to test the hypothesis:

 $H_0: \mu_1 = \mu_2 = 100 \text{ vs } H_1: \mu_1 \neq \mu_2$

- at α =5% level of significance.
- We want to detect $|\mu_1 \mu_2| = 5$.
- With power=80%

What is the required sample size?

University of Massach Sample Size Determination

Case 2: two dependent populations (two-samples)

 $H_0: \mu_1 = \mu_2 = 100 \text{ vs } H_1: \mu_1 \neq \mu_2 \qquad (two-sided test)$

<u>Assume</u>:

 \rightarrow unknown variance

of the differences,

i.e., s_d=7

pwr.t.test(d = 5/7, sig.level=0.05, power = 0.8, type="two.sample")

> pwr.t.test(d = 5/7, sig.level=0.05, power = 0.8, type="two.sample")

Two-sample t test power calculation

n = 31.75708 d = 0.7142857 sig.level = 0.05 power = 0.8 alternative = two.sided

NOTE: n is number in *each* group

N = 32 per group. The total N = 64.