University of Massachusetts Medical School [eScholarship@UMMS](https://escholarship.umassmed.edu/)

[PEER Liberia Project](https://escholarship.umassmed.edu/liberia_peer) **National Collaborations in Liberia** UMass Medical School Collaborations in Liberia

2019-2

Introduction to Biostatistics - Lecture 2: Statistical Inference Procedures

Jonggyu Baek University of Massachusetts Medical School

[Let us know how access to this document benefits you.](https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE)

Follow this and additional works at: [https://escholarship.umassmed.edu/liberia_peer](https://escholarship.umassmed.edu/liberia_peer?utm_source=escholarship.umassmed.edu%2Fliberia_peer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Biostatistics Commons,](http://network.bepress.com/hgg/discipline/210?utm_source=escholarship.umassmed.edu%2Fliberia_peer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages) [Family Medicine Commons](http://network.bepress.com/hgg/discipline/1354?utm_source=escholarship.umassmed.edu%2Fliberia_peer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages), [Infectious Disease Commons](http://network.bepress.com/hgg/discipline/689?utm_source=escholarship.umassmed.edu%2Fliberia_peer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages), [Medical Education Commons,](http://network.bepress.com/hgg/discipline/1125?utm_source=escholarship.umassmed.edu%2Fliberia_peer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages) and the [Public Health Commons](http://network.bepress.com/hgg/discipline/738?utm_source=escholarship.umassmed.edu%2Fliberia_peer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages)

Repository Citation

Baek J. (2019). Introduction to Biostatistics - Lecture 2: Statistical Inference Procedures. PEER Liberia Project. [https://doi.org/10.13028/xjxb-cf87.](https://doi.org/10.13028/xjxb-cf87) Retrieved from [https://escholarship.umassmed.edu/](https://escholarship.umassmed.edu/liberia_peer/9?utm_source=escholarship.umassmed.edu%2Fliberia_peer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages) [liberia_peer/9](https://escholarship.umassmed.edu/liberia_peer/9?utm_source=escholarship.umassmed.edu%2Fliberia_peer%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages)

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

Department of Quantitative Health Sciences

Introduction to Biostatistics

2/28/2019

Jonggyu Baek, PhD

Department of Quantitative Health Sciences

Lecture 2:

- Statistical Inference Procedures
	- –Hypothesis test for population average
	- –Hypothesis test for comparing means
	- Power and sample size

Statistical Inference

Two broad areas of statistical inference:

- **Estimation:** Use sample statistics to estimate the unknown population parameter.
	- **Point Estimate:** the best single value to describe the unknown parameter.
	- **Standard Error (SE):** standard deviation of the sample statistic. Indicates how precise is the point estimate.
	- **Confidence Interval (CI):** the

range with the most probable values for the unknown parameter with a $(1-\alpha)$ % level of confidence.

Hypothesis Testing: Test a specific statement (assumption) about the unknown parameter. CTS605A - Lecture Notes, Jonggyu Baek, PhD

Statistical Inference for population average **μ Estimation: Point Estimate & Standard Error**

- Suppose **X** a variable (e.g., systolic BP, hypertension, # of prior complications) from a population of size N with average **μ** and standard deviation **σ**.
- We select a random sample $x_1, x_2, ..., x_n$ of size n
- **Point Estimate** of μ : \bar{x}
- **Standard error** of \overline{x} : Standard Deviation of all possible \overline{x} 's
- From the central limit theorem (CLT), for n large ($n \geq 30$):

$$
\overline{\mathrm{x}} \sim \mathrm{N}(\mu, \frac{\sigma}{\sqrt{\mathrm{n}}})
$$

• If σ also unknown we can estimate from the sample standard deviation **s**.

Suppose X from a population (N) with **μ** and **σ**.

• If we take random samples (n) with replacement from the population, for **large "n"** the distribution of the sample mean \bar{x} is approximately normally distributed with $\mu_{\bar{x}} = \mu$ and $\sigma_{\overline{X}} =$ σ n , i.e.:

$$
\overline{\mathrm{X}}~\sim \mathrm{N}(\mu,\frac{\sigma}{\sqrt{\mathrm{n}}})
$$

Importance:

- The distribution of the **sample mean (**ത**)** is approximately normal even if X does **not** follow N(μ, σ).
- Sample mean is very useful for statistical inference.

Normal Distribution

Examples:

The Standard Normal Distribution

 $\overline{x} \sim N(\mu, \sigma/\sqrt{n})$ can be transformed to a Z $\sim N(0, 1)$:

$$
Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}
$$

- $N(0, 1)$ is called the standard normal distribution
- Z is the standardized value of \overline{x}
- Standardized values make comparable variables that are measured in different units, or have different variability

Statistical Inference for population average **μ** Medical School-**Estimation: Confidence Interval**

- **Confidence Interval (CI)**: a range of values that are likely to cover the true parameter value with a level of confidence $(1-\alpha)$ % assigned to it. The most common choice for α is 5%.
- Usually CIs are symmetric around the point estimate.
- From the central limit theorem (CLT), for n large ($n \geq 30$):

$$
\overline{\mathrm{x}}~\sim \mathsf{N}(\mu,\frac{\sigma}{\sqrt{\mathrm{n}}})
$$

• Hence,

$$
Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)
$$

Statistical Inference for population average **μ Estimation: Confidence Interval**

• E.g., $(1-\alpha)$ =95% CI for μ

<u>95% CI for average μ</u> : σ \overline{n}), \overline{x} + 1.96 \cdot (σ / $_{\overline{n}}$)]

How we derived its 95% CI?

- 95% of Z around 0 is between -1.96 and 1.96 [or $Z_{0.025} = -1.96$ and $Z_{0.975} = 1.96$]
- Remember that Z does not have any scale because it is standardized. We need the scale back to calculate 95% CI.

Statistical Inference for population average **μ**nces **Estimation: Confidence Interval**

• Based on the percentiles of the N(0,1) there are some commonly reported CIs:

Example of CIs: The Framingham Heart Study University of

• Can you calculate 95% CIs based only on descriptive statistics for the systolic blood pressure?

```
library(psych)
describe(dat1$sysbp)
> 1ibrary(psych)
> describe(dat1$sysbp)
           n mean sd mediantrimmed
                                         mad min max range skew kurtosis
   vars
                                                                            se
     1 11627 136.32 22.8
                            132 134.34 20.76 83.5 295 211.5 0.94
X1
                                                                     1.37 0.21
```

```
95% CI : [ \overline{\text{x}} - 1.96\cdot(^{\sigma}/\overline{n}), \overline{x} + 1.96\cdot(\sigma/
                                                                          \overline{n})]
             = [136.32 - 1.96 \cdot 0.21, 136.32 + 1.96 \cdot 0.21]= [135.91, 136.73]
```
Example of CIs: The Framingham Heart Study

• Is there any way to calculate 95% CI directly?

```
t.test(dat1$sysbp)
```

```
> t. test(data1$$
```
One Sample t-test

```
data: dat1$sysbp
t = 644.76, df = 11626, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
135.9097 136.7386
sample estimates:
mean of x
 136.3241
```
Hypothesis Testing for the mean **μ**dical School

- Suppose **X** continuous from a population with mean **μ** and standard deviation **σ**.
- What is the value of **μ**?
- We select a random sample from that population and try to make inference about **μ**.

Statistical Inference for population average **μ**nces **Key Concepts in Hypothesis Testing**

- **Null hypothesis (H₀):**
	- An explicit statement about an unknown parameter the validity of which you wish to test, e.g., $\mu = \mu_0$

• **Alternative hypothesis (H¹):**

- An alternative statement about the unknown parameter used to compare your null with, e.g.,
	- $\mu \neq \mu_0$ (two-sided test)
	- $\mu < \mu_0$ (one-sided test)
	- $\mu > \mu_0$ (one-sided test)

• **Errors:**

- Type I : reject H₀ | H₀
- $-$ Type II: $\,$ do not reject H $_0$ | H $_1$

(crucial) (moderate)

Statistical Inference for population average **μ Key Concepts in Hypothesis Testing**

Think of **Type I** error as the "*presumption of innocence*" according to which "*everyone is presumed innocent until proven guilty*":

"It is better that ten guilty persons escape than that one innocent suffer" from the principle of Blackstone formula:

- $\,$ H₀ : a person is innocent
- $-$ H₁: a person is guilty
- Without enough evidences, a person is innocent

What about this?

- $\,$ H₀ : a person is guilty
- H_1 : a person is innocent
- Without enough evidences, a person is guilty

Univer Hypothesis Testing for the mean μ Sciences cal School

- What is the value of **μ**? (e.g., the population mean of systolic BP is 136.
- Hypothesis Test: H_0 : μ = μ₀(=136)

UniversHypothesis Testing for the mean **μ**th Sciences</sup>

• What is the value of **μ**?

• Hypothesis Test: H_0 : μ = μ_0 (=136)

• Random sample: $\bar{\mathbf{x}}$

UniversHypothesis Testing for the mean uth sciences dical School

• What is the value of **μ**?

• Hypothesis Test: $H_0: \mu = \mu_0$ (?)

• Random sample: $\bar{\mathbf{x}}$

- If \bar{x} close to $\mu_0 \rightarrow H_0$ probable
- If \bar{x} far from $\mu_0 \rightarrow H_0$ not probable

UniversHypothesis Testing for the mean uth sciences dical School

• What is the value of **μ**?

• Hypothesis Test: $H_0: \mu = \mu_0$ (?)

• Random sample: $\bar{\mathbf{x}}$

- If \bar{x} close to $\mu_0 \rightarrow H_0$ probable
- If \bar{x} far from $\mu_0 \rightarrow H_0$ not probable

Statistical Inference for population average **μ Key Concepts in Hypothesis Testing**

• **Test Statistic:**

– A summary measure of your sample, with known distribution under H_0 , used for testing the null hypothesis (H_0), e.g.,

Test Statistic\n
$$
Z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \stackrel{H_0}{\sim} N(0, 1)
$$

• **Critical points:**

– Values (percentiles) of the known distribution of the test statistic above or below which the probability of Type I Error is α %, e.g.,

$$
Z_{\alpha}, \quad Z_{\alpha/2}, \quad Z_{1-\alpha/2}, \quad t_{1-\alpha/2, \text{ d.f.}} \quad , \qquad \text{etc.}
$$

- **Example:** Hypothesis testing about the population mean μ , at α% level of significance
- $H_0: \mu = \mu_0$

•
$$
H_1: \mu \neq \mu_0 \implies \mu = \mu_1 \neq \mu_0
$$

• CLT
$$
\rightarrow \bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})
$$
 $\Rightarrow Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

• If H₀ is true:
$$
Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)
$$

- $-$ Z₀ close to 0 \rightarrow H₀ probably true
- Z_0 "much" different from 0 \rightarrow H₀ probably NOT true

- Example: Hypothesis testing about the population mean μ, at α% level of significance
- $H_0: \mu = \mu_0$
- $H_1: \mu \neq \mu_0 \implies \mu = \mu_1 \neq \mu_0$
- CLT $\rightarrow \overline{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$ n) \Rightarrow Z = $\frac{\bar{x} - \mu}{\sigma}$ $\sigma /$ n $\sim N(0, 1)$
- If H_0 is true: $Z_0 =$ $\bar{x}-\mu_0$ $\bigg)$ σ n H_0 $\sim N(0, 1)$
	- $-$ Z₀ close to 0

How "much"?

- \rightarrow H₀ probably true
- Z_0 "much" different from 0 \rightarrow H₀ probably NOT true

- Example: Hypothesis testing about the population mean μ, at α% level of significance
- $H_0: \mu = \mu_0$
- $H_1: \mu \neq \mu_0 \implies \mu = \mu_1 \neq \mu_0$
- CLT $\rightarrow \overline{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$ n) \Rightarrow Z = $\frac{\bar{x} - \mu}{\sigma}$ $\sigma /$ n $\sim N(0, 1)$
- If H_0 is true: $Z_0 =$ $\bar{x}-\mu_0$ $\bigg)$ σ n H_0 $\sim N(0, 1)$
	- $-$ Z₀ close to 0
- \rightarrow H₀ probably true
- Z_0 "much" different from 0 \rightarrow H₀ probably NOT true

How "much"? \longleftarrow Critical Z point (Z_c)

Example: Hypothesis testing about the population mean μ , at α%

Test statistic:

 H_0 : μ=μ₀ H_1 : $\mu \neq \mu_0$

Example: Hypothesis testing about the population mean $μ$, at $α$ %

 H_0 : μ=μ₀ H_1 : $\mu \neq \mu_0$

Test statistic:
$$
Z_0 =
$$

$$
_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}
$$

Example: Hypothesis testing about the population mean μ , at α%

 H_0 : μ=μ₀ H_1 : $\mu \neq \mu_0$

Test statistic:
$$
Z_0 =
$$

$$
\sigma_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}
$$

Example: Hypothesis testing about the population mean μ , at α%

 H_0 : μ=μ₀ H_1 : $\mu \neq \mu_0$

Example: Hypothesis testing about the population mean μ , at α%

Test statistic:

Example: Hypothesis testing about the population mean μ , at α %

Test statistic:

Example: Hypothesis testing about the population mean μ , at α %

 H_0 : μ=μ₀ H_1 : μ < μ_0

Test statistic:

Example: Hypothesis testing about the population mean μ , at α%

 H_0 : μ=μ₀ H_1 : $\mu > \mu_0$

Test statistic:

 $\bar{x}-\mu_0$ $\sigma /$ n

Example: Hypothesis testing about the population mean μ , at α %

 H_0 : μ=μ₀ H_1 : $\mu > \mu_0$ Test statistic:

 $\bar{x}-\mu_0$

 $\sigma /$

Example: Hypothesis testing about the population mean μ , at α %

 H_0 : μ=μ₀ **H**₁: $\mu > \mu_0$

Statistical Inference for population average **μ**nces **Key Concepts in Hypothesis Testing**

• **Decision Rule:**

 $-$ What values of the test statistic would indicate the H_0 is probably not supported by the observed data, hence it should be rejected.

• **P-value:**

– The exact level of significance, i.e., the probability of observing a value as extreme or more extreme than the calculated test statistic under the null hypothesis H $_0$, e.g.,

$$
p-value = P(Z > Z_0)
$$

Statistical Inference for population average **μ**nces **Steps in Hypothesis Testing**

- **1.** Set the null hypothesis H_0 and alternative hypothesis H_1
- **2. Set a level of significance α%.**
- **3. Calculate a test statistic**
- **4. decision rule or**
- **5. P-value of the test statistic (preferred)**
- **6. conclusion**

Statistical Inference for population average **μ**Medical School.

- We will cover examples for three cases
	- 1) Single population: one sample t-test
		- Interested in the population mean
	- 2) Two independent population: two sample t-test
		- Interested in comparing two population means
	- 3) Two dependent population: Paired t test
		- Interested in comparing mean changes within subjects (before vs. after)

Statistical Inference for population average **μ Case 1: One-Sample: two-sided hypothesis Test**

Example: We want to test the following hypothesis about the population mean μ of the systolic blood pressure of the Framingham Heart Study population, at α=5% level of significance:

$$
H_0: \mu = 130
$$
 vs $H_1: \mu \neq 130$

- Test statistic: $\frac{\overline{x}-\mu_0}{\overline{x}}$ $\sigma /$ n = $\bar{x}-\mu_0$ $\frac{s}{2}$ n $=\frac{136.32-130}{22.8}$ $^{22.8}$ 11627 $= 29.91$
- Conclusion: $Z_0 = 29.91$ \Rightarrow reject H_0 if $|Z_0| > 1.96$
- p-value = $P(Z > |Z_0|) = P(Z < -Z_0) + P(Z > Z_0) = 2 * P(Z > 29.91) < 0.0001$

```
t.test(dat1$$ysbp, mu = 130)
```

```
> t. test(data1$$ysbp, mu = 130)
```

```
One Sample t-test
```
data: dat1\$sysbp $t = 29.911$, df = 11626, p-value < 2.2e-16 alternative hypothesis: true mean is not equal to 130 95 percent confidence interval: 135.9097 136.7386 sample estimates: mean of x 136, 3241

Statistical Inference for population average **μ** 4edical School **One-sided hypothesis Test**

Example: We want to test the following hypothesis about the population mean μ of the systolic blood pressure of the Framingham Heart Study population, at α=5% level of significance:

 H_0 : μ=130 vs H_1 : μ > 130

- Test statistic: $\frac{\overline{x}-\mu_0}{\overline{x}}$ $\sigma /$ n = $\bar{x}-\mu_0$ $\frac{s}{2}$ n $=\frac{136.32-130}{22.8}$ $^{22.8}$ 11627 $= 29.91$
- Conclusion: $Z_0 = 29.91 \Rightarrow$ reject H₀: if $Z_0 > 1.68$

• p-value =
$$
P(Z > Z_0)
$$
 = $P(Z > 29.91) < 0.0001$

t.test(dat1\$sysbp, mu=130, alternative="greater") ## one-sided H1: mu > 130

> t.test(dat1\$sysbp, mu=130, alternative="greater") ## one-sided H1: mu > 130

```
One Sample t-test
```

```
data: dat1$sysbp
t = 29.911, df = 11626, p-value < 2.2e-16
alternative hypothesis: true mean is greater than 130
95 percent confidence interval:
 135.9763
               Inf
sample estimates:
mean of x136.3241
```
• Example: We want to test the following hypothesis about the population mean μ of the systolic blood pressure of the Framingham Heart Study population, at α=5% level of significance:

 H_0 : μ=130 vs H₁: μ < 130

- Test statistic: $\frac{\overline{x}-\mu_0}{\overline{x}}$ $\sigma /$ n = $\bar{x}-\mu_0$ $\frac{s}{2}$ n $=\frac{136.32-130}{22.8}$ $^{22.8}$ 11627 $= 29.91$
- Conclusion: $Z_0 = 29.91$ \Rightarrow reject H₀: if $Z_0 < -1.68$
- p-value = $P(Z < Z_0) = 1$

t.test(dat1\$sysbp, mu=130, alternative="less") ## one-sided H1: mu < 130 > t.test(dat1\$sysbp, mu=130, alternative="less") ## one-sided H1: mu < 130

```
One Sample t-test
```

```
data: dat1$sysbp
t = 29.911, df = 11626, p-value = 1
alternative hypothesis: true mean is less than 130
95 percent confidence interval:
     -Inf 136.6719
sample estimates:
mean of x
 136, 3241
```
The Independent of Quantitative Health Sciences

- **Case 2:** two-independent populations (two-samples)
- **X¹** 'sysbp' of people **without previous CHD**, with **μ¹** and unknown **σ¹**
- **X²** 'sysbp' of people **with previous CHD**, with **μ²** and unknown **σ²**

Hypothesis Testing for μ¹ -μ²

- Null hypothesis (H_0) : μ_1 - μ_2 =0 \implies μ_1 = μ_2
- Alternative hypothesis (H_1) :
	- $\mu_1 \cdot \mu_2 \neq 0 \implies \mu_1 \neq \mu_2$ (two-sided test), or
	- $\mu_1 \mu_2 < 0 \implies \mu_1 < \mu_2$ (one-sided test), or
	- $\mu_1 \mu_2 > 0 \implies \mu_1 > \mu_2$ (one-sided test)

The Independent Samples

- **Case 2:** two-independent populations (two-samples)
	- **Case 2.A: Known** variances
- **X¹** 'sysbp' of people **without previous CHD**, with **μ¹** and known **σ¹**
- **X²** 'sysbp' of people **with previous CHD**, with **μ²** and known **σ²**

Hypothesis Testing for μ¹ -μ²

- Test statistic: $\overline{x}_1 - \overline{x}_2$ H_0 $\sim N(0, 1)$
	- s_1^2 $\overline{n_1}$ $+\frac{s_2^2}{n}$ $n₂$
- Decision Rules by H_1 : Testing H_0 : μ_1 - μ_2 =0 vs :

The Independent of Quantitative Health Sciences

- **Case 2:** two-independent populations (two-samples)
- **X¹** 'sysbp' of people **without prevchd**, with **μ¹** and unknown **σ¹**
- **X²** 'sysbp' of people **with prevchd**, with **μ²** and unknown **σ²**

Hypothesis Testing for μ¹ -μ²

 H_0 : μ₁=μ₂ vs. H₁ : $\mu_1 \neq \mu_2$

```
t.test(sysbp ~ prevchd, data=dat1) ## var.equal = FALSE
```

```
> t.test(sysbp ~ prevchd, data=dat1) ## var.equal = FALSE
```
Welch Two Sample t-test

data: sysbp by prevchd t = -13.036, df = 945.08, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: $-13.54697 -10.00183$ sample estimates: mean in group 0 mean in group 1 135.4714 147.2458

ersity of **Neppendent** Samples of Quantitative Health Sciences

- **Case 3:** two-dependent populations (two-samples)
- **X¹** 'sysbp' of people **at baseline**, with **μ¹** and unknown **σ¹**
- **X²** 'sysbp' of people **6yrs after baseline**, with **μ²** and unknown **σ²**
- Suppose variable: d=x₁-x₂ from population with μ _d and σ _d

Hypothesis Testing for μ_d

- Null hypothesis (H_0) : $\mu_d = 0$
- Alternative hypothesis (H_1) :
	- $\mu_d \neq 0$ (two-sided test), or
	- $\mu_d < 0$ (one-sided test), or
	- $\mu_d > 0$ (one-sided test)

Looks familiar? This is then same as one-sample t-test!

Power and Sample Size Determination Medical School

Power = 1- P(Type II error) = 1 - P(do not reject H_0 | H_1 is true) = $1 - \beta$ = P(reject H_0 | H_1 is true)

- E.g., the hypothesis: H_0 : $\mu = \mu_0$ vs H_1 : $\mu = \mu_1 > \mu_0$
- The power of this test is:

Power = P(reject H₀ | H₁ is true) = P(Z₀ > Z_{1-α} | μ = μ ₁ > μ ₀)

Power and Sample Size Determination

Reference: Krzywinski and Altman, "Power and sample size", Nature Methods 10, 1139-1140 (2013).

Power and Sample Size Determination

• The power of the test is:

Power = P(reject H₀ | H₁ is true) = P(Z₁ > Z_{1-\alpha} -
$$
\frac{\mu_1 - \mu_0}{\sigma_{\sqrt{n}}}
$$
) (2)

- The power of the test depends on:
	- ❖ n (**standard deviation**)

 σ 1 \Rightarrow Power \downarrow

- ❖ n (**sample size**) $n \uparrow \Rightarrow Power \uparrow$
- ❖ α (**significance level**) $\alpha \downarrow \Rightarrow$ Power \downarrow
- ❖ μ¹ − μ⁰ (**Effect Size**) $ES \uparrow \Rightarrow Power \uparrow$

Case 1: Single population (one-sample):

```
H_0: μ=100 vs H<sub>1</sub>: μ≠100
```
- at α =5% level of significance.
- We want a powerful test with power 80% power.
- The test will reject the null hypothesis if the true mean is 5 units different from 100 (either smaller or larger – two-sided test). Namely, $|\mu-\mu_0|=5$.
- Suppose we know that standard deviation of the outcome variable σ=9.5
- What is the required sample size?

Case 1: single population (one-sample) H_0 : μ =100 vs H_1 : μ ≠100 (two-sided test)

 $library(pwr)$ $pwr.t. test(d = 5/9.5, sig. level=0.05, power = 0.8, type="one.sample")$

```
> pwr.t.test(d = 5/9.5, sig.level=0.05, power = 0.8, type="one.sample")
```

```
One-sample t test power calculation
```

```
n = 30.3112d = 0.5263158sig. level = 0.05power = 0.8\lambdalternative = two.sided
```
The total $N = 31$

ersity or **Sample Size Determination** Cuantitative Health Sciences

Case 2: two dependent populations (two-samples) with unknown variance of the differences

Example: Suppose s_d =7. We want to test the hypothesis:

 H_0 : μ₁=μ₂=100 vs H₁: μ₁≠μ₂

- at α =5% level of significance.
- We want to detect $|\mu_1-\mu_2|=5$.
- With power=80%

What is the required sample size?

Sample Size Determination

Case 2: two dependent populations (two-samples)

 H_0 : $\mu_1 = \mu_2 = 100$ vs **H**₁ **: μ1μ2** (two-sided test)

Assume:

 \rightarrow unknown variance

of the differences,

i.e., $s_d = 7$

 $pwr.t.test(d = 5/7, sig. level=0.05, power = 0.8, type="two.sample")$

> pwr.t.test($d = 5/7$, sig.level=0.05, power = 0.8, type="two.sample")

Two-sample t test power calculation

 $n = 31.75708$ $d = 0.7142857$ $sig. level = 0.05$ power = 0.8 λ alternative = two.sided

NOTE: n is number in *each* group

$N = 32$ per group. The total $N = 64$.