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Lecture 2:

e Statistical Inference Procedures

—Hypothesis test for population average
— Hypothesis test for comparing means

— Power and sample size



Statistical Inference

Two broad areas of statistical inference:

e Estimation: Use sample statistics to estimate the unknown
population parameter.

— Point Estimate: the best single

value to describe the unknown
Population Units
parameter. (N)

— Standard Error (SE): standard deviation

of the sample statistic. Indicates how
precise is the point estimate.

sample

random
selection

— Confidence Interval (Cl): the
range with the most probable values (y&atistics
for the unknown parameter with a Parameters

(1-a)% level of confidence.

* Hypothesis Testing: Test a specific statement (assumption)

about the unknown parameter. 3
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Statistical Inference for population average p
Estimation: Point Estimate & Standard Error

Suppose X a variable (e.g., systolic BP, hypertension, # of prior
complications) from a population of size N with average p and
standard deviation o.

We select a random sample x4, X,, ..., X, of size n

Point Estimate of u: X

Standard error of X : Standard Deviation of all possible X ‘s
From the central limit theorem (CLT), for n large (n = 30):

X ~N(u, %)

If o also unknown we can estimate from the sample standard
deviation s.



The Central Limit Theorem (CLT)

Suppose X from a population (N) with p and o.

* |f we take random samples (n) with replacement from the
population, for large “n” the distribution of the sample
mean X is approximately normally distributed with pg = p

andox—— i.e..
Vn’

X ~N(u, %)

Importance:

* The distribution of the sample mean (X) is
approximately normal even if X does not follow N(u, o).

 Sample mean is very useful for statistical inference.



Normal Distribution

Examples:

N(0,1) N(2,1)

N(0,2) N(2,2)

CTS
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The Standard Normal Distribution

X ~ N(i, o/+/n) can be transformed to a Z ~ N(0, 1):

-_— )(-- Ll
o/Vn

 N(O, 1) is called the standard normal distribution

VA

e Zisthe standardized value of X

e Standardized values make comparable variables that are measured
in different units, or have different variability

y~N(10,3) z~N(0,1)

100
40 60 80

20




Statistical Inference for population average p
Estimation: confidence Interval

Confidence Interval (Cl): a range of values that are likely to cover
the true parameter value with a level of confidence (1-a)% assigned
to it. The most common choice for « is 5%.

Usually Cls are symmetric around the point estimate.

From the central limit theorem (CLT), for n large (n > 30):
_ (0)
X ~N(u, \/_E)
Hence,
X—[

0]

/yn

Z= ~N(O, 1)



Statistical Inference for population average p
Estimation: confidence Interval
e E.g., (1-a)=95% ClI for p
95% Cl for average W : [ X - 1.96-("/\/3) , X+ 1.96-(° \/ﬁ)]

How we derived its 95% CI?

e 95% of Zaround 0 is between -1.96 and 1.96
[Or Zo_025 = —1.96 and Z0_975 — 196]

|

* Remember that Z does not have any scale " R

because it is standardized. We need
the scale back to calculate 95% CI.

X — 1.96+SE X X + 1.96+SE



Statistical Inference for population average p

Estimation: Confidence Interval

commonly reported Cls:

Based on the percentiles of the N(0,1) there are some

“-

80% -1.28
90% 10 5 95 -1.64
95% 5 2.5 97.5 -1.96
99% 1 0.5 99.5 -2.58
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Example of Cls: The Framingham Heart Study

* (Can you calculate 95% Cls based only on descriptive statistics
for the systolic blood pressure?

Tibrary(psych)
describe(datlisysbp)

= library(psych)
> describe(datl$sysbp)

vars n  mean sd median trimmed mad min max range skew kurtosis  se
=1 1 11627 136.32 22.8 132 134.34 20.76 83.5 295 211.5 0.94 1.37 0.21

95% Cl: [X-1.96-(°/ ) , X +1.96:(°/ D]
= [136.32- 1.96-0.21, 136.32+ 1.960.21]
= [135.91, 136.73]



Example of Cls: The Framingham Heart Study

* |sthere any way to calculate 95% Cl directly?

t.test(datlisyshp)

= t.test{datlisysbp)
One Sample t-test

data: datl3¥sysbp
t = 644.76, df = 11626, p-value < 2.2e-16
alterpative hypothesis: true mean is not equal to 0
95 percent confidence interval;
135.9097 136.7386
EEUMEEERIEVEEF
mean of x
136.3241
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Hypothesis Testing for the mean

* Suppose X continuous from a population with
mean | and standard deviation o.

 What is the value of n?

 We select a random sample from that
population and try to make inference about p.



Statistical Inference for population average p
Key Concepts in Hypothesis Testing
* Null hypothesis (H,):

— An explicit statement about an unknown parameter the validity of
which you wish to test, e.g., u=y,
* Alternative hypothesis (H,):

— An alternative statement about the unknown parameter used to
compare your null with, e.g.,
* U#H, (two-sided test)
* U<y, (one-sided test)
* u>p, (one-sided test)

* Errors:
— Typel: rejectH, | H,is true (crucial)
— Type ll: donotreject H, | Hy is true (moderate)



Statistical Inference for population average p
Key Concepts in Hypothesis Testing

Think of Type | error as the “presumption of innocence” according
to which “everyone is presumed innocent until proven guilty”:

“It is better that ten guilty persons escape than that one innocent
suffer” from the principle of Blackstone formula:

— H, : a person is innocent

— H; : a person is guilty

* Without enough evidences, a person is innocent

What about this?
— H, : a person is guilty
— H; : a person is innocent

 Without enough evidences, a person is guilty



Hypothesis Testing for the mean

 What is the value of u? (e.g., the population
mean of systolic BP is 136.

* Hypothesis Test:
Hy: 1= po(=136)

|
H=Ho



Hypothesis Testing for the mean pn

* What is the value of n?

* Hypothesis Test:

Hy: 1= Hy(=136)

e Random sample:

J\
J\
; ' VAN
J\
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Hypothesis Testing for the mean pn

What is the value of n?

Hypothesis Test:
Hp: =1y (?)

Random sample:
X

If X close to u, = H, probable
If X far from p, - H, not probable
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Hypothesis Testing for the mean pn

What is the value of n?

Hypothesis Test:
Hp: =1y (?)

Random sample:
X

If X close to u, = H, probable
If X far from p, - H, not probable

CTS605A - Lecture Notes, Jonggyu Baek, PhD
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Statistical Inference for population average p
Key Concepts in Hypothesis Testing

 Test Statistic:

— A summary measure of your sample, with known distribution under
H,, used for testing the null hypothesis (H,), e.g.,

Test Statistic x—p, Ho
——0 . N(0, 1)
/ym

e Critical points:

— Values (percentiles) of the known distribution of the test statistic
above or below which the probability of Type | Error is a%, e.g.,

Lo Lajpr Ligjp Yigpndr »  €tC



Statistical Inference for population average p
Hypothesis Test

Example: Hypothesis testing about the population mean gy, at
0% level of significance

Ho: M=k
Hi: UZ Yy = K=l Z Mg

CLT > X ~ N(y, <) — 7=2% _ N(0, 1)
vn °)

= HO
); = N(O, 1)
/va

— Z,closeto O — H, probably true
* Z,“much” different from 0 — H, probably NOT true

If H, is true: Zy=



Statistical Inference for population average p
Hypothesis Test

 Example: Hypothesis testing about the population mean y, at
0% level of significance

* Hy: u=p,
* Hilu#ZH, = H=Hy# Yy

e CLT>% ~ Ny, <) — 7=2% _ N(0, 1)
vn °/

= HO
); = N(O, 1)
/va

— Z,closeto O — H, probably true

* IfH,is true: Zy=

* Z,“much” different from 0 — H, probably NOT true

How “much”?




Statistical Inference for population average p
Hypothesis Test

 Example: Hypothesis testing about the population mean y, at
0% level of significance

* Hy: u=p,
* Hilu#ZH, = H=Hy# Yy

e CLT>% ~ Ny, <) — 7=2% _ N(0, 1)
vn °/

= HO
)f, = N(O, 1)
/va

— Z,closeto O — H, probably true

* IfH,is true: Zy=

* Z,“much” different from 0 — H, probably NOT true

How “much”? > Critical Z point (Z)




Statistical Inference for population average p
Hypothesis Test

 Example: Hypothesis testing about the population mean y, at a%

Hy: U= o % —
o- K=Ho Test statistic: ~ Z, = —

SIRRTERTA °/vn




Statistical Inference for population average p

Hypothesis Test
Example: Hypothesis testing about the population mean y, at a%
H.: p= X—
o- H=Ho Test statistic: ~ Z,= —
SIRRTERTA /va

Standard Normal Distribution N(0,1)

Critical Points

25
CT!



Statistical Inference for population average p

Hypothesis Test
 Example: Hypothesis testing about the population mean y, at a%
H.: p= X—
o- H=Ho Test statistic: ~ Z,= —
SIRRTERTA /va

Standard Normal Distribution N(0,1)

Rejection Region

26
CT!



Statistical Inference for population average p

Hypothesis Test
 Example: Hypothesis testing about the population mean y, at a%
H.: p= X—
o- H=Ho Test statistic: ~ Z,= —
CRTERTA /va

Standard Normal Distribution N(0,1)

Decision Rule:
Reject H, if

27
CT!



Statistical Inference for population average p

Hypothesis Test

Example: Hypothesis testing about the population mean y, at a%

Critical Point

Test statistic:

Standard Normal Distribution N(0,1)

Zo

28



Statistical Inference for population average p

Hypothesis Test

 Example: Hypothesis testing about the population mean y, at a%

Rejection Region

Test statistic:

Standard Normal Distribution N(0,1)

Zo

29



Statistical Inference for population average p

Hypothesis Test
Example: Hypothesis testing about the population mean y, at a%
Hy: U= X—
o- H=Ho Test statistic: ~ Z,= —
Hi:pu<y, /v

Standard Normal Distribution N(0,1)

Decision Rule:

Reject H,, if

30



Statistical Inference for population average p

Hypothesis Test
Example: Hypothesis testing about the population mean y, at a%
Ho: = X—
o- H=Ho Test statistic: ~ Z,= —
Hpi:p>y, /yn

Standard Normal Distribution N(0,1)

Critical Point

31



Statistical Inference for population average p

Hypothesis Test

 Example: Hypothesis testing about the population mean y, at a%

Rejection Region

Test statistic:

Standard Normal Distribution N(0,1)

Zo

32



Statistical Inference for population average p

Hypothesis Test
Example: Hypothesis testing about the population mean y, at a%
Ho: = X—
o- H=Ho Test statistic: ~ Z,= —
Hi: >, /yn

Standard Normal Distribution N(0,1)

Decision Rule:
Reject H, if

L,>L

1-a

33



Statistical Inference for population average p
Key Concepts in Hypothesis Testing

* Decision Rule:

— What values of the test statistic would indicate the H, is probably not
supported by the observed data, hence it should be rejected.

e P-value:

— The exact level of significance, i.e., the probability of observing a value
as extreme or more extreme than the calculated test statistic under
the null hypothesis H,, e.g.,

p-value = P(Z > Z,)



Statistical Inference for population average p
Steps in Hypothesis Testing

Set the null hypothesis H, and alternative hypothesis H,
Set a level of significance a%.

Calculate a test statistic

decision rule or

P-value of the test statistic (preferred)

o nhkWNPR

conclusion



Statistical Inference for population average n

 We will cover examples for three cases

— 1) Single population: one sample t-test

* [nterested in the population mean

— 2) Two independent population: two sample t-test

* Interested in comparing two population means

— 3) Two dependent population: Paired t test

* Interested in comparing mean changes within subjects (before vs. after)



Statistical Inference for population average n
Case 1: One-Sample: two-sided hypothesis Test

e Example: We want to test the following hypothesis about the population
mean W of the systolic blood pressure of the Framingham Heart Study

population, at a=5% level of significance:
Hy: p=130 VS H;: p#130

_ ):(;_ Ky _ f:—llo _ 1232232—130 - 2991
/(ti /;G{ V11627
* Conclusion: Z,=29.91 = reject H,if |Z,] >1.96

* p-value =P(Z>|Z,|) = P(2<-Z,) + P(Z>Z,) = 2*P(Z>29.91) < 0.0001

* Test statistic: Z,

t.test(datlisyshp, mu = 130)

= T.test(datlisysbp, mu = 130)
one Sample t-test

i datl%syshp
, df = 11626 | p-value < 2.2e-16 |
alternative hypothesis: true mean is not equal to 130
95 percent confidence interval:

135.9097 136.7386

sample estimates:

mean of x

136. 3241




Statistical Inference for population average p
One-sided hypothesis Test

e Example: We want to test the following hypothesis about the population
mean W of the systolic blood pressure of the Framingham Heart Study

population, at a=5% level of significance:
Hy: p=130 VS H:p>130

- ST i
 Test statistic: 7, ==t Xl 136327130 _ 99 gq

22.8

C)'/Vqi S/\/H Tiez7
 Conclusion: Z7,=29.91=  rejectH,: if Z,>1.68
* p-value=P(Z>Z2,) =P(2>29.91) < 0.0001

t.test(datlisysbp, mu=130, alternative="greater") ## one-sided HL: mu = 130

= T.test(datl¥sysbp, mu=130, alternative="greater") ## one-sided H1: mu > 130
one Sample t-test

data: datldsyshp

T = 29.9110, df = 116264 p-value <« 2.2e-16

alternative hypothesis: Lrue mean 15 greatrer than 130

95 percent confidence interval:

135.9763 Inf
sample estimates:
mean of x

136.3241

38
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Statistical Inference for population average p
One-sided hypothesis Test

e Example: We want to test the following hypothesis about the population
mean W of the systolic blood pressure of the Framingham Heart Study

population, at a=5% level of significance:
Hy: p=130 VS H: <130

X—U, _ XMy _13632-130 _ 29.91

— 228

C)'/Vqi S/\/H Tiez7
 Conclusion: Z7,=29.91 = rejectH,: ifZ,<-1.68
* p-value=P(Z<Z,)=1

* Test statistic: Z,

t.test(datlisysbp, mu=130, alternative="Tless") ## one-sided HL: mu = 130

= T.test(datl%sysbp, mu=130, alternative="less") ## one-sided Hl: mu < 130
One Sample t-test

data: datl$sysbp
t = 20.911} df = 11626, p-value = 1
alternative hypothesis: true mean 15 less Than 130
95 percent confidence interwval:
-Inf 136.6719

sample estimates:

mean of x

136.3241

39
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Two Independent Samples

Case 2: two-independent populations (two-samples)

X, ‘sysbp’ of people without previous CHD, with p, and unknown o,

X, ‘sysbp’ of people with previous CHD, with pu, and unknown o,
Hypothesis Testing for u,-u,

Null hypothesis (H,): 1-1,=0 = p=p, -

Alternative hypothesis (H,):
— W #E0 = w#E W, (two-sided test), or

- W <0 = <y, (one-sided test), or
- WH>0 = pu >y, (one-sided test)



Two Independent Samples

e Case 2: two-independent populations (two-samples)

— Case 2.A: Known variances
* X, ‘sysbp’ of people without previous CHD, with p, and known o,
* X, ‘sysbp’ of people with previous CHD, with p, and known o,

Hypothesis Testing for p,-p,

_ _ H,
« Test statistic: Z,= == ~ N(0, 1)

2 2
S_1.|_S_2
nqg np

* Decision Rules by H,: Testing Hy: H-M,=0 vs:

___Hi | RejectH,if

H-H, =0 Ly<Ly,0OrZy>2y 4

M-, <0 ly<Z,

CTS605A - Lecture Notes, Jonggyu Baek, PhD |_,|,1-p_2 >0 ZO > Zl-a



Two Independent Samples

Case 2: two-independent populations (two-samples)
* X, ‘sysbp’ of people without prevchd, with p, and unknown o,
* X, ‘sysbp’ of people with prevchd, with p, and unknown o,

Hypothesis Testing for p,-p,

Hy: H=H, VS. Hitp =1,

t.test(sysbp — prevchd, data=datl) ## var.equal = FALSE

= T.test(sysbp ~ prevchd, data=datl) ## var.equal = FALSE
wWelch Two Sample t-test

data: sysbp by prevchd

Tt = -13.036, df = 945.08, |p-value < 2.2e-16 |
alternative hypothesis: true ditterence in means is not equal to 0

95 percent confidence interval:

-13.54697 -10.00183
sample estimates:
mean 1n group U mean 10 group
135.4714 147, 2458

42
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Two Samples

Case 3: two-dependent populations (two-samples)

X, ‘sysbp’ of people at baseline, with p, and unknown o,
X, ‘sysbp’ of people 6yrs after baseline, with p, and unknown o,
Suppose variable: d=x,-x, from population with py and o,

Hypothesis Testing for p,

Null hypothesis (H,): =0

Alternative hypothesis (H,):
— pyz0 (two-sided test), or
— Hy<O0 (one-sided test), or
— uy>0 (one-sided test)

Looks familiar? This is then same as one-sample t-test!



Power and Sample Size Determination

Power = 1- P(Type Il error) =1 - P(do not reject H, | H, is true) =1 -
= P(reject Hy | H, is true)

* E.g., the hypothesis: Hj: U=}, VS Hit L=y > Y

 The power of this test is:

Power =P(reject H, | Hyistrue)=P(Z,>Z;, | u=1; > 1)

Accept Hy  +——

44
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Power and Sample Size Determination

Power is a function of 1) standard deviation (o),
2) sample size (n),
2) mean difference (or effect size),
3) type | error ().

a Impact of sample size on power b Impact of effect size on power
Zi? Power
- 0.53
n=3 0.53 d=15

n=7 0.84
/A 12345678910
8 10 12 14 n 8 10 12 14
Average expression Average expression

Reference: Krzywinski and Altman, “Power and sample size”, Nature Methods 10, 1139-1140 (2013).

45
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Power and Sample Size Determination

 The power of the test is:
Power = P(reject H, | H, is true) =P(Z,>Z,, - %) (2)
\/ﬁ
 The power of the test depends on:

%* n (standard deviation)
o 1= Power 4

/

<* n (sample size)
nT= Power?T

** a (significance level)

ad = Powerd

R

W, — Y, (Effect Size)
EST = Power?



Sample Size Determination

Case 1: Single population (one-sample):
Hy: =100 vs H;: p#100
* at a=5% level of significance.
* We want a powerful test with power 80% power.

 The test will reject the null hypothesis if the true mean is 5 units
different from 100 (either smaller or larger — two-sided test).
Namely, |p-p,|=5.

e Suppose we know that standard deviation of the outcome variable
0=9.5

 What is the required sample size?



Sample Size Determination

Case 1: single population (one-sample)
Ho: 1=100 vs H;: p#100 (two-sided test)

Tibrary(pwr)

pwr.t.test(d = 5/9.5, sig.level=0.05, power = 0.8, type="one.sample")

= pwr.t.test(d = 5/9.5, sig.level=0.05, power = 0.8, type="one.sample")

One-sample t test power calculation

n = 30,3112
d = 0.5263158
sig.level = 0.05
power = 0,8
alternative = two.sided

The total N = 31

CTS605A - Lecture Notes, Jonggyu Baek, PhD
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Sample Size Determination

Case 2: two dependent populations (two-samples)
with unknown variance of the differences

Example: Suppose s,=7. We want to test the hypothesis:

Ho: M1=1,=100 vs Hj: py#u,
e at a=5% level of significance.
* We want to detect | u;-u,|=5.
* With power=80%

What is the required sample size?



Sample Size Determination

Case 2: two dependent populations (two-samples)
Ho: 1=1,=100 vs Hj: p#N, (two-sided test)
Assume:

— unknown variance
of the differences,
l.e., s4=7

pwr.t.test(d = 5/7, sig.level=0.05, power = 0.8, type="two.sample")
= pwr.t.test{d = 5/7, 5ig.level=0.05, power = 0.8, tType="two.sample")
Two-sample t test power calculation
n= 31.75708
d = 0.7142857
sig. level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each® group

N = 32 per group. The total N = 64.

CTS605A - Lecture Notes, Jonggyu Baek, PhD
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