University of Massachusetts Medical School

eScholarship@UMMS

PEER Liberia Project

UMass Medical School Collaborations in Liberia

2019-2

Introduction to Biostatistics - Lecture 1: Introduction and Descriptive Statistics

Jonggyu Baek University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer

Part of the Biostatistics Commons, Family Medicine Commons, Infectious Disease Commons, Medical Education Commons, and the Public Health Commons

Repository Citation

Baek J. (2019). Introduction to Biostatistics - Lecture 1: Introduction and Descriptive Statistics. PEER Liberia Project. https://doi.org/10.13028/rrh1-1470. Retrieved from https://escholarship.umassmed.edu/liberia_peer/10

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

Department of Quantitative Health Sciences

Introduction to Biostatistics

2/26/2019

Jonggyu Baek, PhD

Outline

Purpose

Introduction to biostatistics

Descriptive Statistics

Purpose of the course

- Basic principles and applications of statistics to problems in clinical and public health settings.
- Will cover tools for statistical inference: t-test, chisquare tests, ANOVA, Linear regression.
- Interpretation and presentation of the results
- Introductory foundation for the implementation of those techniques using R or R studio software.

References

Multiple authors, Openstax College

Introductory Statistics

Publisher: OpenStx, Pubdate: 2013

<u>https://open.umn.edu/opentextbooks/textbooks/introductory-statistics-2013</u>

- Quick-R: https://www.statmethods.net/
- UCLA statistical computing: https://stats.idre.ucla.edu/

What is Statistics?

- Statistics is the science of learning from data, and of measuring, controlling, and communicating uncertainty; and it thereby provides the navigation essential for controlling the course of scientific and societal advances (*Davidian*, *M. and Louis*, *T. A.*, 10.1126/science.1218685).
- Statistics is also an ART ...
 of conducting a study, analyzing the data,
 and derive useful conclusions from numerical
 outcomes about real life problems...

What is Biostatistics?

- Biostatistics is the application of statistics in medical research,
 e.g.:
 - Clinical trials
 - Epidemiology
 - Pharmacology
 - Medical decision making
 - Comparative Effectiveness Research
 - etc.

Statistical Analysis

Key steps for a complete and accurate statistical analysis:

- State a valid research question
- Collect information (DATA) for answering this question
- Validate/clean/organize the collected information
- Exploratory Data Analysis (EDA)
- Analyze this information
- Translate numerical results into answers
- Interpret results and derive conclusions
- Present the results and communicate with people

Terms in Biostatistics

Data:

all the information we collect to answer the research question

Variables:

Outcome, treatment, study population characteristics

Subjects:

units on which characteristics are measured

Observations:

data elements

Population :

all the subjects of interest

Sample:

a subset of the population for which data are collected

Sample from Population

	Population	Sample	
Descriptive Measure	Parameter	statistic	Summary of a characteristic
Size	N	n	Total # of subjects
Mean	μ	$\overline{\mathbf{X}}$	Average
Variance	σ^2	s ²	Variance

Impossible/impractical to analyze the entire population \rightarrow

 \rightarrow thus we only analyze a sample

Statistical Inference

Collect and analyze data from samples \rightarrow

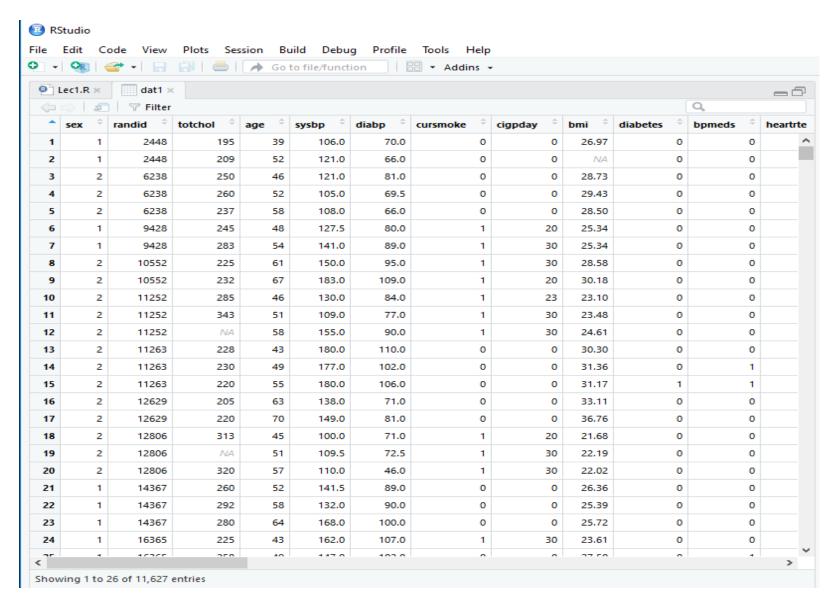
→ Calculate summary statistics →

→ Make Inference about unknown population parameters (e.g., population average from sample mean)

The Framingham Heart Study

https://www.framinghamheartstudy.org/fhs-about/history/epidemiological-background/

- ... "a long term prospective study of the etiology of cardiovascular disease among a population of free living subjects in the community of Framingham, Massachusetts."...
- Identifying risk factors for cardiovascular disease (CVD)
- N=4,434 participants (subset of the original sample)
- Follow-up period: 1956 1968
- Longitudinal data: measurements approximately every 6 years
- 1 to 3 observations for each participant (total 11,627 obs)


The Framingham Heart Study

Information:

- ID
- Age
- Sex
- Period (1st, 2nd, or 3rd exam)
- Systolic Blood Pressure (mmHg)
- Diastolic Blood Pressure (mmHg)
- Use of Anti-hypertensive medication at exam (yes/no)
- Current smoking status (yes/no)
- Average number of cigarettes smoked/day
- Prevalent coronary Heart disease (yes/no)
- ... etc

Massachusetts UMASS Medical School The Framingham Heart Study

Statistical Concepts: Example 1 Health Sciences

The Framingham Heart Study

Data: • Variables: **Subjects: Observations: Population:** Sample:

Iniversity of Statistical Concepts: Example 1 Health Sciences Aassachusetts The Framingham Heart Study

- Data :
 - all the collected information for the purposes of this study
- Variables:

Subjects:

- Observations:
- Population :
- Sample:

Iniversity of Statistical Concepts: Example 12e Health Sciences Massachusetts The Framingham Heart Study

- Data:
 - all the collected information for the purposes of this study
- Variables:
 - "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects:

- Observations:
- Population :
- Sample:

University of Statistical Concepts: Example 1 Health Sciences Massachusetts The Framingham Heart Study

- Data:
 - all the collected information for the purposes of this study
- Variables:
 - "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc
- Subjects:
 - participants (each one with unique ID number "randid")
- Observations:
- Population :
- Sample:

University of Statistical Concepts: Example 1 Health Sciences Massachusetts The Framingham Heart Study

• Data:

all the collected information for the purposes of this study

Variables:

- "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc

• Subjects:

participants (each one with unique ID number "randid")

Observations:

- Each element of the dataset, e.g. for participant with "randin"=9428 :
 - "period"=2, "totchol"=283, "age"=54, ... etc.

Population :

Sample:

University of Statistical Concepts: Example 12e Health Sciences Massachusetts The Framingham Heart Study

Data:

all the collected information for the purposes of this study

• Variables:

- "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc

Subjects:

participants (each one with unique ID number "randid")

Observations:

- Each element of the dataset, e.g. for participant with "randin"=9428 :
 - "period"=2, "totchol"=283, "age"=54, ... etc.

Population :

— ... "a population of free living subjects in the community of Framingham, Massachusetts." ...

Sample:

_

University of Statistical Concepts: Example 1 Health Sciences Massachusetts The Framingham Heart Study

Data:

all the collected information for the purposes of this study

• Variables:

- "randid", "period", "sex", "age", "totchol", "cursmoke", .., etc

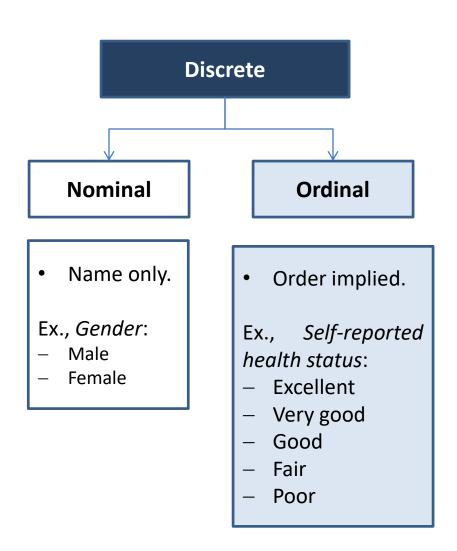
Subjects:

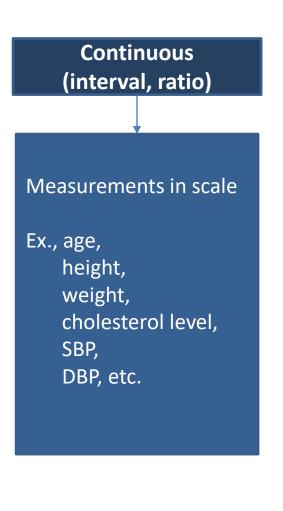
participants (each one with unique ID number "randid")

Observations:

- Each element of the dataset, e.g. for participant with "randin"=9428 :
 - "period"=2, "totchol"=283, "age"=54, ... etc.

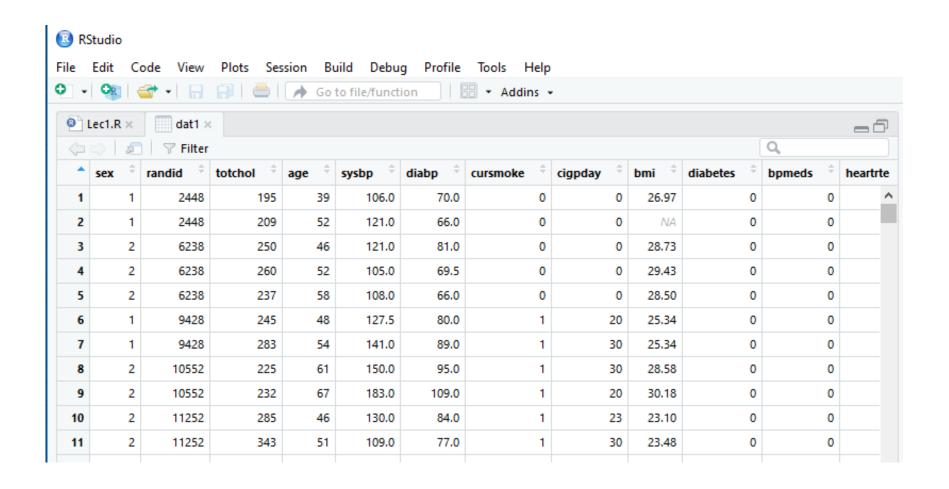
Population :


— ... "a population of free living subjects in the community of Framingham, Massachusetts." ...


Sample:

Subset of the population of size n=4,434

Classification of Variables



Classification of Variables: Example The Framingham Heart Study

- Discrete Variables:
 - Nominal:
 - Ordinal:
- Continuous Variables:

The Framingham Heart Study

Classification of Variables: Example The Framingham Heart Study

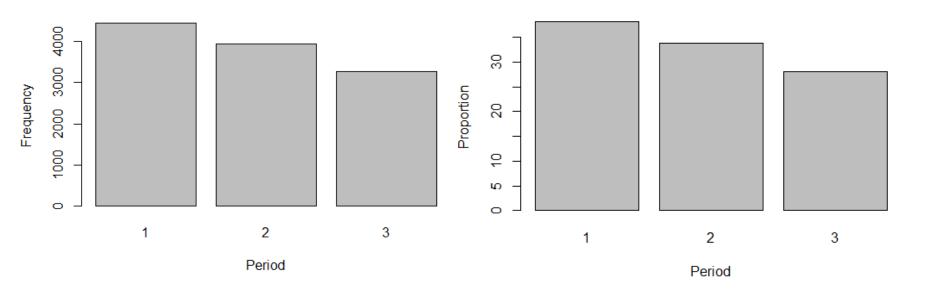
- Discrete Variables:
 - Nominal: "sex", "cursmoke", etc.
 - Ordinal: "period"
- Continuous Variables:
 - "sysbp", "bmi", etc

Descriptive statistics for Discrete variables

- Frequency (f): Number (#) of subjects in each category.
- Relative frequency $(\frac{f}{n} \cdot 100)$: Proportion (%) of subjects in each category.

Example: calculate number/proportion of subjects in each period

Period	Frequency (f)	Relative Frequency (%)	Cumulative Relative Frequency (%)
1	4434	$\frac{4434}{11627} \cdot 100 = 38.1$	38.1
2	3930	33.8	71.9
3	3260	28.1	100
Total	11627	100	


Descriptive statistics for Discrete variables

- Frequency (f): Number (#) of subjects in each category.
- Relative frequency $(\frac{f}{n} \cdot 100)$: Proportion (%) of subjects in each category.

Example: calculate number/proportion of subjects in each period in R

• **Bar plots**: indicate frequency or relative frequency distribution

```
barplot(tab1, xlab="Period", ylab = "Frequency")
barplot(rel_tab1, xlab="Period", ylab="Proportion")
```


Descriptive statistics for Discrete variables

• Frequency and relative frequency $(\frac{f}{n} \cdot 100)$ by groups Example: calculate number/proportion of subjects in each period in R by sex (female if sex=2)

```
## period by sex ##
tab2 = table(dat1$period. dat1$sex)
rel_tab2 = prop.table(tab2, margin=2)*100 ## the option margin = 2 for column sum to be 100%
rel tab2
cbind(tab2, rel_tab2)
> ## period by sex ##
> tab2 = table(dat1$period, dat1$sex)
> tab2
  1 1944 2490
  2 1691 2239
  3 1387 1876
> rel_tab2 = prop.table(tab2, margin=2)*100 ## the option margin = 2 for column sum to be 100%
> rel_tab2
  1 38.70968 37.69871
  2 33.67184 33.89856
  3 27.61848 28.40273
> cbind(tab2, rel_tab2)
1 1944 2490 38.70968 37.69871
2 1691 2239 33.67184 33.89856
3 1387 1876 27.61848 28.40273
```


Descriptive statistics for Continuous variables

Measures of location	Measures of dispersion
Indicate where the collected values of a variable are "located" compared to the range of possible values it can take.	Indicate how dispersed the collected values of a variable are.

Descriptive statistics for Continuous variables

Measures of location	Measures of dispersion
Indicate where the collected values of a variable are "located" compared to the range of possible values it can take.	Indicate how dispersed the collected values of a variable are.
MeanMedianQuartilesModeMinMax	 Range Variance Standard Deviation Interquartile range (IQR) Mean Absolute Deviation (MAD) Coefficient of variation

Measures of Location $\underline{\mathbf{x}}$

Definition	Formula		
Average value.A typical value for the variable of interest.	$\bar{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{X}_i}{n}$		

- Sample of n=7
- X= Systolic Blood Pressure in mmHg:

X ₁	X ₂	X_3	X_4	X ₅	X ₆	X ₇
121	110	114	100	160	130	130

Measures of Location \overline{x}

Definition	Formula
Average value.A typical value for the variable of interest.	$\bar{x} = \frac{\sum_{i=1}^{n} X_i}{n}$

- Sample of n=7
- X= Systolic Blood Pressure in mmHg:

X ₁	X ₂	X ₃	X_4	X ₅	X ₆	X ₇
121	110	114	100	160	130	130

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + X_3 + \dots + X_7}{n} = \frac{121 + 110 + 114 + \dots + 130}{7} = \frac{865}{7} = 123.57 \approx 123.6$$

Measures of Location : Measures Median

	Definition	Formula
•	The middle value of the variable of interest. 50% of the collected values are less and 50% are greater than the median.	• If n odd: the $\frac{(n+1)^{th}}{2}$ observation
		• If n even: mean of the $\frac{n^{th}}{2}$ and the $(\frac{n}{2}+1)^{th}$ observations in the ordered sample

Unordered	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
	121	110	114	100	160	130	130
Ordered	X ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X ₍₅₎	X ₍₆₎	X ₍₇₎
	100	110	114	121	130	130	160

Measures of Location : Median

Definition	Formula
 The middle value of the variable of interest. 50% of the collected values are less and 50% are greater than the median. 	• If n odd: the $\frac{(n+1)^{th}}{2}$ observation
	• If n even: mean of the $(\frac{n}{2})^{th}$ and the $(\frac{n}{2}+1)^{th}$ observations in the ordered sample

Unordered	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	
	121	110	114	100	160	130	130	Median
Ordered	X ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X	X ₍₆₎	X ₍₇₎	
	100	110	114	121	130	130	160	

n=7
$$\rightarrow$$
 odd # \rightarrow median: $\frac{(7+1)}{2}$ = 4th observation in the ordered sample

$$\rightarrow$$
 median = $X_{(4)}$ = 121

Measures of Location : Measures Median

Unordered	X_1	X ₂	X ₃	X_4	X ₅	X ₆
	121	110	114	100	160	130
Ordered	X ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X ₍₅₎	X ₍₆₎
	100	110	114	121	130	130

Measures of Location : Measures Median

Unordered	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	
	121	110	114	100	160	130	
Ordered	X ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X ₍₅₎	X ₍₆₎	
	100	110	114	121	130	130	
3 th				⊿ th			

n=6 \rightarrow even # \rightarrow median: mean of the $(\frac{6}{2})$ =3th and the $(\frac{6}{2}+1)$ =4th observations in the ordered sample

$$\rightarrow$$
 median = $\frac{X_{(3)} + X_{(4)}}{2} = \frac{114 + 121}{2} = 117.5$

Measures of Location : Measures of Location :

Definition

- First (Q₁): 25% of the collected values are less than Q₁.
- Second (\mathbf{Q}_2) : 50% of the collected values are less than \mathbf{Q}_2 (median).
- Third $(\mathbf{Q_3})$: 75% of the collected values are less than $\mathbf{Q_3}$.

Measures of Location : ntitative Health Sciences Percentiles

Definition

- q_p : p% of the collected values are less than q_p .
- E.g., q_1 is that value of the population (or sample) with 1% of the observed values being less and 99% being grater than it.

Measures of Location : Measures Mode / Min / Max

Definition

- **Min**: the minimum of the collected values $(X_{(1)})$.
- Max: the maximum of the collected values $(X_{(n)})$.
- Mode: the most frequent of the collected values.

Unordered	X_1	X ₂	X ₃	X_4	X ₅	X ₆	X ₇
	121	110	114	100	160	130	130
Ordered	X ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X ₍₅₎	X ₍₆₎	X ₍₇₎
	100	110	114	121	130	130	160

Measures of Location : Measures of Location : Mode / Min / Max

Definition

- **Min**: the minimum of the collected values $(X_{(1)})$.
- Max: the maximum of the collected values $(X_{(n)})$.
- Mode: the most frequent of the collected values.

Unordered	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇
	121	110	114	100	160	130	130
Ordered	X ₍₁₎	X ₍₂₎	X ₍₃₎	X ₍₄₎	X ₍₅₎	X ₍₆₎	X ₍₇₎
	100	110	114	121	130	130	160

Min

Max

Measures of Dispersion: titative Health Sciences Variance (s²)

Definition	Formula
Average squared deviation from the	$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n}$
mean.	n-1

•
$$\overline{X} = 123.6$$

X ₁	X ₂	X ₃	X_4	X ₅	X ₆	X ₇
121	110	114	100	160	130	130

Measures of Dispersion: titative Health Sciences Variance (s²)

Definition	Formula		
Average squared deviation from the	$\mathbf{S}^2 - \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$		
mean.	n-1		

•
$$\overline{X} = 123.6$$

X_1	X ₂	X_3	X_4	X ₅	X ₆	X ₇
121	110	114	100	160	130	130

$$\mathsf{S}^2 = \frac{\sum_{i=1}^n (\mathsf{X}_i - \overline{\mathsf{X}})^2}{\mathsf{n} - \mathsf{1}} = \frac{(\mathsf{X}_1 - \overline{\mathsf{X}})^2 + \dots + (\mathsf{X}_7 - \overline{\mathsf{X}})^2}{\mathsf{n} - \mathsf{1}} = \frac{(121 - 123.6)^2 + \dots + (130 - 123.6)^2}{7 - \mathsf{1}} = \frac{\mathsf{1}^2 \mathsf{1} - \mathsf{1}^2 \mathsf{1$$

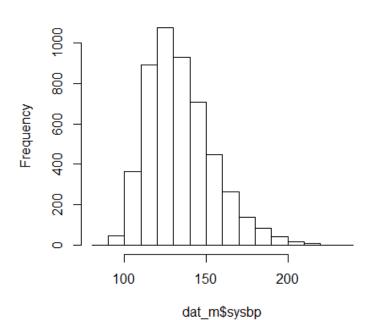
$$=\frac{2247.72}{6}=374.62\approx374.6$$

University Other Measures of Dispersion: Wassachus Other Measures of Dispersion:

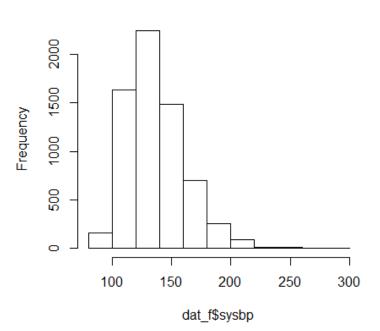
Definition	Formula
Standard deviation	$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$
Mean Absolute Deviation (MAD)	$MAD = \frac{\sum_{i=1}^{n} X_i - \overline{X} }{n}$
• Range	Max – Min
Interquartile Range (IQR)	$Q_3 - Q_1$
Coefficient of variation	$\frac{s}{\overline{\overline{X}}}$

University of Hassachusetts

Descriptive Statistics for Continuous Variables Example: The Framingham Heart Study


```
> ## the overall summary stat for sysbp ##
> describe(dat1$sysbp)
                     sd median trimmed mad min max range skew kurtosis
               mean
     1 11627 136.32 22.8
                           132 134.34 20.76 83.5 295 211.5 0.94
> ## the summary stat for sysbp by sex ##
> describeBy(dat1$sysbp, dat1$sex)
Descriptive statistics by group
group: 1
          n mean sd median trimmed mad min max range skew kurtosis
     1 5022 135.07 20.3 132 133.37 19.27 83.5 235 151.5 0.86
group: 2
                      sd median trimmed
                                        mad min max range skew kurtosis se
              mean
     1 6605 137.28 24.49 133 135.15 22.24 83.5 295 211.5 0.93
                                                                    1.28 0.3
SEX = 1 for male, 2 for female
Std.dev = Var(X_i) to explain variation of sysbp
```

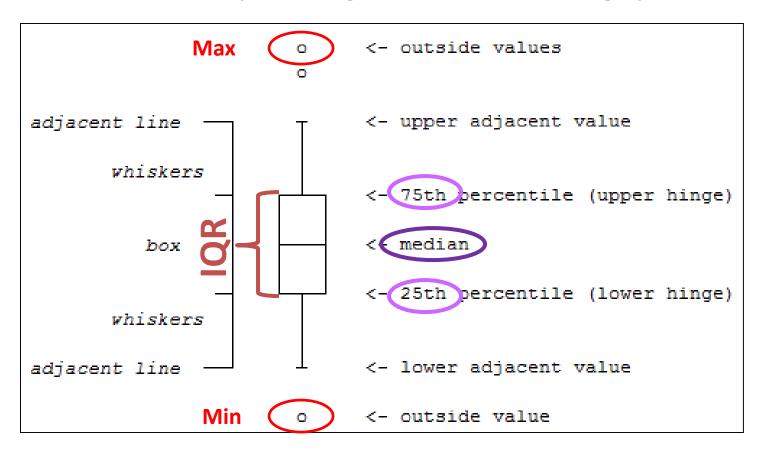
Graphical Methods for Continuous variables


Histogram: indicate the distribution of the values of a continuous variable.

```
## Histogram of sysbp by sex ##
dat_m = subset(dat1, sex==1) ## get a subset for male
dat_f = subset(dat1, sex==2) ## get a subset for female
par(mfrow = c(1,2)) ## to draw two plots side by side
hist(dat_m$sysbp, main="Histogram of sysbp for male")
hist(dat_f$sysbp, main="Histogram of sysbp for female")
```

Histogram of sysbp for male

Histogram of sysbp for female

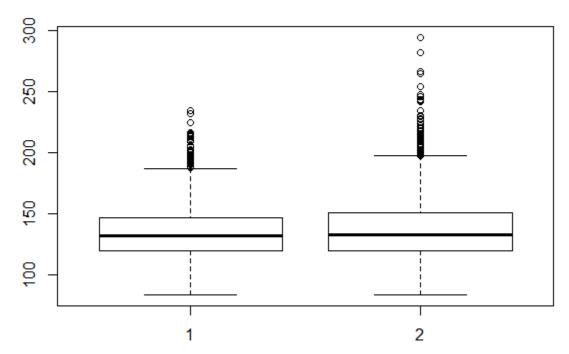


CTS60

Graphical Methods for Continuous variables

Box - Plot: indicate the distribution of the values of a continuous variable, pointing out the following quantities:

Outliers


- Observations above Q3 + 1.5IQR or below Q1 – 1.5IQR are called, "outliers", in the box plot.
- Outliers are not caused by typo or errors.
- Outliers are simply part of data, which can not be ignored.
- Outliers explain how many extreme values are located at tails of a distribution.

Graphical Methods for Continuous variables

Box-Plot: the distribution of the values of a continuous variable.

```
## A box plot of sysbp by sex ##
par(mfrow = c(1,1))
boxplot(sysbp ~ sex, data=dat1, main="Box plot of sysbp by sex")
```

Box plot of sysbp by sex

