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ABSTRACT 
 
T cell receptors (TCR) bind to peptides from various sources on MHC (Major 

Histocompatibility Complex) molecules.  A long-standing goal in the field is to 

understand the mechanisms of MHC-peptide exchange and MHC-TCR interactions.  

Here, I present work from three uniquely different systems that address the following: 

HLA-DR1 conformational stability, self-tolerant mechanisms of TCRs isolated from self-

reactive TCR transgenic mice, and TCR cross-reactivity mechanisms between LCMV 

and VV.   

 

First, I present a crystal structure of HLA-DR1 in complex with A1L9 peptide, a peptide 

with two amino acid substitutions from the parental peptide.  The singly substituted A1 

peptide, which has a pocket 1 alanine substitution, decreases intrinsic half-life between 

MHC-peptide and increases susceptibility to HLA-DM mediated peptide exchange.  This 

data agrees with previous models of HLA-DM-mediated peptide exchange in which the 

major determinant is located at the HLA-DR1 pocket 1.  However, the L9 substituted 

peptide, which has a pocket 9 leucine substitution, displays the opposite phenotype: 

increased intrinsic half-life and decreased HLA-DM susceptibility.  The crystal structure 

presented here shows that HLA-DR1 in complex with a doubly substituted peptide, 

A1L9, is in the same conformation as HLA-DR1 with the wild-type peptide, 

demonstrating that pocket 9 residues can rescue pocket 1 residue binding deficiencies and 

that HLA-DR1 stability is determined by amino acids along the peptide, not only at 

pocket 1. 
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Next, I present crystal structures of two self-tolerant TCRs in complex with IAb-3K 

pMHC.  To elucidate molecular mechanism for self-reactivity and self-tolerance, the 

TCRs J809.B5 and 14.C6 are compared to each other and its parental self-reactive TCR, 

YAe-62.8.  In comparison to YAe-62.8, J809.B5 interacts with the same pMHC, but 

utilizes more peptide specific interactions, a mechanism that may distinguish self-reactive 

receptors from self-tolerant receptors.  Additionally, the crystal structure of 14.C6 TCR, 

which bears a different CDR3α sequence from J809.B5, demonstrates that CDR3 

sequences can modulate interactions of germline encoded CDR1 and CDR2 loops.  

Together, these results highlight that in addition to CDR3 VDJ recombination, diversity 

is generated in the mature TCR repertoire by differential chain pairing, either of which 

can affect the interactions of germline encoded CDR loops. 

 

Next, I present a detailed analysis of cross-reactive TCRs between Kb-GP34 and Kb-

A11R.  The mature LCMV-immune repertoire was analyzed by DNA deep sequencing of 

TCRβ CDR3 sequences, which led to the identification of new cross-reactive sequence 

motifs.  Cross-reactive sequence motifs varied by each Vβ gene, suggesting a role of 

CDR1, CDR2, and CDR3 loop interplay in cross-reactivity.   

 

Lastly, I present the crystal structures of a GP34/A11R cross-reactive TCR in complex 

with both Kb-GP34 and Kb-A11R.  Analysis of the crystal structures revealed that the two 

complexes are largely the same, despite differences in peptide sequences.  Surprisingly, 
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the TCR to peptide interactions were dominated by three out of eight peptide side-chains.  

Cross-reactivity between these two complexes is likely due to a large amount of 

interactions from TCR to MHC compared to interactions of TCR to peptide.  We note 

two unique MHC-peptide interactions that may allow Kb to be an allele prone to cross-

reactivity.  The first is an interaction at the C-terminus of the A11R peptide which pulls 

A11R P7 asparagine away from TCR interactions.  The second interaction is from an 

arginine at position 155, which sits at the interface between TCRα and TCRβ , and 

contributes the most buried surface area in the interaction interface.  Because Kb’s 

arginine 155 is a long side chain that hydrogen bonds with the peptide backbone, and is 

also at the center of the TCR-peptide interface, GP34 and A11R peptide sequence 

differences may be occluded from TCR discrimination by Kb presentation. 

 

The data presented in this dissertation demonstrate that interactions between MHC-

peptide and MHC-TCR act harmoniously and coopertively, whereby proximal 

interactions are affected by interactions elsewhere.  While previous models of HLA-

DR/HLA-DM interactions demonstrate the importance of interactions at HLA-DR1 

pocket 1, I showed that pocket 9 also contributes to HLA-DR stability and therefore, 

HLA-DM susceptibility.  I also showed that TCR CDR3 loop sequences affect germline 

CDR1/CDR2 loop interactions and vice versa.  Lastly, I showed that allele specific MHC 

side chain interactions with the bound peptide influence TCR ligand binding and hence, 

TCR cross-reactivity.  
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PREFACE 

 
The work presented here represents data that is published as part of collaborations with 

other investigators (Chapters II and III), and work in preparation for submission 

(Chapters IV and V).  Except for Chapters I and VI, a detailed introduction will precede 

the results to introduce the specific research problem addressed.  Chapters II and III 

contain a synopsis of co-authored manuscripts to highlight my contributions with respect 

to each publication. 
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CHAPTER I 
 
 

GENERAL INTRODUCTION 
 
 

The adaptive branch of the immune system protects animals against pathogens, which 

evolve at a faster rate than humans.  The unpredictable variability of pathogens is met 

with a high degree of variability from the adaptive immune system.  While antibodies are 

directed against soluble antigens, T cell receptors (TCRs) are directed towards cellular 

antigens.  Antigenic peptides are presented on the cell surface while bound by Major 

Histocompatiblity Complex (MHC) proteins and the MHC-peptide complex is 

recognized by TCRs.  The field of adaptive immunity has benefitted immensely from 

crystal structures of MHC and TCR complexes; however, few examples represent TCR 

cross-reactivity, a general phenomenon of TCRs.  Thus it is often difficult to formulate 

mechanistic models that encompass protein dynamics from a few protein structures.  This 

thesis will examine structural features of novel MHC and TCR interactions, providing 

additional data points for a more nuanced model, and ultimately demonstrating 

conformational co-cooperativity between different antigen presentation and recognition 

components. 

 

Antigen Presentation by MHC-I and MHC-II 

The MHC is a locus on the genome involved in graft transplantation compatibility.  MHC 

proteins were originally thought to be related to, but different than, blood antigens A, B, 

and O, and were initially discovered as “antigen II” (Klein, 1986).  In mice, MHC genes 
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are located on chromosome 17 and named “H-2”, from the “histocompatibility” of 

antigen II.  In humans, the MHC genes are located on chromosome 6 and referred to as 

HLA (Human Leukocyte Antigen), from the discovery of leukocyte agglutination 

between mismatched donors.  While many immunologically relevant genes are located in 

the MHC locus, some are structurally unrelated to the MHC-fold.  On the contrary, other 

proteins also adopt the MHC-fold, such as the neonatal Fc Receptor and ZAG-1 (Zn-

alpha2-glycoprotein), but are not related to peptide presentation. (Burmeister et al., 1994; 

Sánchez, 1999; Sánchez et al., 1997) (Figure I-1). For the purposes of this dissertation, I 

will refer to MHC proteins as MHC genes with the same MHC-fold and are involved in 

peptide presentation,  

 

MHC proteins are an evolutionarily conserved component of the adaptive immune 

system.  Along with other proteins from the adaptive immune system, they are found in 

jawed chordates and are believed to have evolved after the phylogenetic split from 

jawless lampreys and hagfish (Danchin et al., 2004).  Despite evolutionary conservation, 

genetic diversity in MHC proteins is important in buffering against pathogenic species 

and preventing population epidemics (Sommer, 2005).  In comparison to the genetically 

diverse outbred populations, inbred populations are more susceptible to epidemics by 

pathogens.  Pathogens typically have a fast rate of evolution and can evolve new immune 

evasion tactics.  MHC genes are the most polymorphic in the human genome (Hu et al., 

2002) which allows them to keep up with the fast pace of pathogen evolution and makes 

them a key mechanism to combat pathogens. 
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Figure I-1 Comparison of Proteins with MHC-folds. 
(A) HLA-A2 is a MHC-I protein that is encoded by two polypeptide chains: (α and β2m 
or heavy chain and light chain respectively). (PDB: 1AO7). (B) HLA-DR1 is a MHC-II 
that is encoded by two polypeptide chains: α and β. (PDB: 1DLH). (C) ZAG is a protein 
with an MHC-fold that does not bind to peptides. (PDB: 1ZAG). (D, E, F) “Top down” 
view of A, B, and C respectively, with N-terminus (pink) of the peptide to the left.  
Domains are labeled accordingly with respective nomenclature. 
  
  



 15 

Broadly, MHC proteins are divided into two classes with similar protein folds: MHC-I 

and MHC-II.  The MHC protein fold consists of three distinct domains: a peptide-binding 

domain, which consists of two α-helices atop eight antiparallel β-strands, along with two 

Ig (immunoglobulin) domains.  As type-I transmembrane proteins, the C-terminal Ig 

domains are proximal to the cell membrane, while the peptide-binding domain (α-helices 

and β-strands) is most distal to the cell membrane.  Polymorphisms between different 

MHC alleles are primarily located at peptide binding residues, thus, different MHC 

alleles have differential peptide binding preferences (Bjorkman and Parham, 1990). Two 

of the first MHC-I crystal structures solved were H-2Kb and HLA-A2.  The first 

structures revealed that peptides bind between the two α-helices, with a number of side 

chains buried.  Comparison between the two complexes led to the identification of 

pockets that are labeled from A to F — a nomenclature borrowed from identified binding 

pockets in enzymes.  The identification of MHC pockets led to the idea that differential 

usage of deep and shallow pockets allows for the differential binding of a broad range of 

peptides.  Different MHC alleles may use different combinations of side chains to make 

up the composition of peptide binding pockets (Matsumura et al., 1992). 

 

The pockets that anchor peptides on the MHC are typically hydrophobic residues, 

aromatic residues, and sometimes, charged residues.  To illustrate the effect of pocket 

residues, consider the MHC alleles: HLA-B44 and HLA-B27.  In HLA-B44 alleles, the 

MHC A-pocket residue that interacts with the second amino acid of the peptide (P2) is 

primarily a positively charged lysine.  The amino acid typically found at the P2 of 
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peptides eluted from HLA-B44 alleles is a negatively charged glutamic acid.  On the 

contrary, the corresponding residue in HLA-B27 is negatively charged glutamic acid, 

with a preference of peptides that contain positively charged arginine, lysine, and 

histidine at P2 (Rammensee, 1995; Rammensee et al., 1993; Zhang et al., 1998).   

 

Comparing the two mouse MHC-I alleles, H-2Kb (Kb) and H-2Db (Db), illustrates that the 

amino acid composition of MHC-I specificity pockets affects more than just the selection 

of peptide side chains (Young et al., 1994).  While Kb has an octamer peptide length 

preference, Db alleles preferentially bind to nonamer peptides.  The MHC-I amino acid 

separating the C-pocket and F-pocket is residue number 73, which is a phenylalanine in 

Kb and a tryptophan in Db.  The tryptophan in Db forms a ridge in the peptide binding-

groove, which moves the peptide backbone away from the MHC and makes room for a 

longer peptide to bind in the peptide-binding groove (Figure I-2).  Examples of different 

peptide backbone torsions have also been observed in H-2Ld, H-2Kd, and H-2Dd alleles 

(Achour et al., 1998; Mitaksov and Fremont, 2006).  Thus, differences in MHC alleles 

can result in changes of peptide presentation which allows different MHC alleles to bind 

peptides of varying amino acids, length, and shape.   

 

In a strikingly parallel fashion, crystal structures of MHC-II proteins were also 

determined and their peptide specificity pockets also identified (Brown et al., 1993; Stern 

and Wiley, 1994).  In contrast to MHC-I, MHC-II proteins present longer peptides which
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Figure I-2 MHC Allelic Side Chains Influences Peptide Backbone Torsions 
(A, B) VSV peptide in H2-Kb is flatter than H2-Db-NP(366-374) because Db Side chains 
form a ridge and torsions the peptide backbone. (PDBID: 2VAA, 1HOC) 
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extend beyond the anchor pockets. Besides peptide length, a functional difference 

between MHC-I and MHC-II proteins are the cell types that express each respective 

protein, and the cell types which recognize the presented peptides.  MHC-I proteins are 

thought to be expressed on virtually all nucleated cells and present peptides to CD8+ T 

cells, while MHC-II proteins are expressed on professional antigen presenting cells 

(APCs) and present peptides to CD4+ T cells.  The role of CD4 and CD8 co-receptors in 

driving T cell specificity for MHC-I versus MHC-II is unclear (Van Laethem et al., 

2012), but it is evident from crystal structures and binding studies which use soluble 

recombinant protein that MHC-TCR binding does not depend on co-receptor binding. 

 

Interestingly, MHC-I and MHC-II proteins acquire peptides from different pathways and 

cellular compartments.  The simplified role of MHC-I proteins is to sample and report 

cytosolic peptides to the immune system (Vyas et al., 2008).  Short peptide products that 

have been degraded by the proteosome are transported to the endoplasmic reticulum 

where they are loaded onto MHC-I molecules with the aid of accessory proteins such as 

calreticulin and tapasin.  Peptide-MHC-I complexes are then trafficked through the Golgi 

network to the cell surface.  In contrast, MHC-II proteins sample peptides from endocytic 

compartments.  Peptides are loaded onto MHC-II proteins in a late endosomal 

compartment, termed MHC class II compartment (MIIC) (Neefjes et al., 2011; Stern et 

al., 2006).  Because endocytic compartments typically contain exogenous proteins from 

endocytosis, MHC-II proteins typically present extracellular antigens.  However, 

evidence of cross-presentation suggest that dendritic cells can also present extracellular 
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antigens via the MHC-I pathway (Joffre et al., 2012).  Ultimately, antigenic peptides 

presented by MHC proteins are detected by T cell receptors (TCRs).  A thorough 

understanding of how peptides are selected and loaded onto MHC proteins is important in 

deciphering which antigens are recognized by TCRs. 

 

Newly synthesized MHC-II proteins are folded with a chaperone protein called CLIP.  In 

humans, endosomal peptides are exchanged on MHC-II proteins by a non-classical (non-

polymorphic and non-peptide binding) MHC molecule, HLA-DM (DM) (Painter and 

Stern, 2012).  In the case of DM-mediated peptide exchange with HLA-DR1 (DR1), 

CLIP is exchanged for an optimal peptide with an increased half-life.  Thus, DM 

catalyzes exchange of weakly associating peptides for more stable complexes.  

Furthermore, peptides with longer DM-mediated half-lives were found to be more 

immunogenic than peptides with shorter DM-mediated half-lives (Yin et al., 2012).   

 

DM plays an important role in shaping the immunogenic peptide repertoire and 

understanding the molecular mechanisms by which DM functions on DR1 will help us 

understand how immunogenic peptides are selected.  Chapter II of this dissertation 

explores the molecular mechanisms of DM-mediated peptide exchange by examining 

peptide sequences that contribute to DR1 conformational lability. 

 

 Antigen Recognition by T cell receptors 
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The role of MHC proteins in the immune system is peptide presentation to T cells.  T 

cells that recognize antigenic peptide-MHC complexes can initiate immune effector 

responses such as recruitment of other immune cells or direct killing of the target cell.  

Thus, MHC polymorphisms allow the immune system at the population level to 

recognize a wider array of pathogenic antigens.  Surprisingly, genes within the MHC 

locus are often correlated with increased susceptibility to infectious diseases and 

autoimmune disorders (Trowsdale and Knight, 2013).  In rheumatoid arthritis and HIV-1 

infection, the etiological genetic associations of MHC to disease are located at peptide 

binding residues (Matzaraki et al., 2017; Pereyra et al., 2010).  The correlations between 

MHC allele and disease can be caused by an allele’s increased preference to bind self-

peptides or alternatively, less preference for binding antigenic viral peptides.   

 

A MHC allele’s peptide preference ultimately affects selection of mature T cells, the 

downstream effectors of antigen presentation.  T cells are effective at distinguishing self-

peptides from foreign peptides because immature T cells undergo two distinct phases of 

selection.  Since self-proteins are always degraded and turned over, self-peptides are 

always presented on the cell surface by MHC.  Immature T cells in the thymus are 

selected for tonic interactions with MHC first by a positive selection phase where 

rearranged T cells that do not interact with self-pMHCs die by neglect.  T cells are then 

selected by a negative selection phase during which T cells with strong self-peptide 

interactions are eliminated via apoptosis (Klein et al., 2014).  This double selection 

education mechanism ensures that the mature T cells which exit the thymus and move to 
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the periphery are less reactive to MHCs presenting self-peptides and presumably highly 

reactive to foreign peptides.  Taken together, an individual’s set of MHC alleles, or 

haplotype, plays an important role in determining which antigens T cells are reactive 

against because T cells are educated by their own self-peptide repertoire.  

 

Extrinsic changes to one’s self-peptide repertoire can lead to unexpected alloreactive T 

cell responses.  For example, HIV-1 positive individuals who are undergoing anti-

retroviral treatment with abacavir, and also express the HLA-B*57:01 allele, develop a 

condition called abacavir hypersensitivity syndrome; a condition similar to an 

alloreactive T cell response.  Individuals with similar alleles, such as HLA-B*57:02, 

B*57:03, B*57:11, or B*58:01, do not develop the same symptoms.  Careful biophysical 

characterization and several structural studies determined that abacavir binds within the F 

pocket of the peptide binding groove in HLA-B*57:01 individuals, therefore changing 

the specificity of the self-peptide repertoire (Illing et al., 2012; Ostrov et al., 2012).   

Circulating T cells from these individuals were selected on a peptide repertoire without 

abacavir.  During abacavir treatment, abacavir binds to HLA-B*57:01, altering the 

preferences of peptides presented, and previously matured circulating T cells recognize 

these peptide-MHC complexes as foreign peptides.  Thus, the self-peptide repertoire, 

which is dependent on abacavir treatment or an individual’s MHC haplotype, directly 

contributes to the selection of an individual’s T cell receptor repertoire. 

 



 22 

T cells are activated by binding to peptide-MHCs (pMHC), but the biophysical 

determinants in TCR ligation remain to be elucidated.  From >30 unique pMHC-TCR 

complexes with MHC-I and >20 TCR-MHC-II complexes, it is evident that TCRs utilize 

a wide variety of mechanisms to bind pMHC proteins.  The seemingly conserved binding 

mechanism is a diagonal binding mode where TCRα chain contacts MHC-I α2 or MHC-

IIβ, and TCRβ chain contacts MHC-I α1 or MHC-IIα (Bridgeman et al., 2012; Rudolph 

et al., 2006a).  However, as has been the case with most “rules” regarding MHC-TCR 

interactions, exceptions arise.  A recent study determined the crystal structure of a TCR 

binding to pMHC in a reversed polarity compared to conventional pMHC-TCR 

complexes (Beringer et al., 2015).    

 

The TCR protein consists of four Ig domains: two Ig domains from TCR alpha and two 

Ig domains from TCR beta.  Each TCR chain also has a variable domain and a constant 

domain.  TCR binding to MHCs is mediated through TCR complementarity determining 

region (CDR) loops located in the variable domain.  Each TCR chain (α + β) is 

comprised of three CDR loops each (CDR1, CDR2, and CDR3).  While CDR1 and 

CDR2 loops are germ-line encoded, CDR3 loops are randomly generated by a process 

called V(D)J recombination.  The immense diversity of TCRs is largely due to V(D)J 

recombination where one V gene segment (out of >70 Vα or  >50 Vβ) combines with one 

D gene segment (2 Dβ and absent in α), and one J segment (out of >60 Jα or >10 Jβ) 

(Calis and Rosenberg, 2014).  Nucleotides are also added or deleted between each joined 
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segment, creating another layer of diversity.  Lastly, TCRα  and TCRβ  chain pairing may 

also contribute to the diversity or restriction of TCRs. 

 

TCR contacts on MHC proteins are more conserved than peptide contacts (Bjorkman and 

Parham, 1990).  This observation suggests that MHC proteins may have evolved to 

combat evolving pathogens by presenting different peptides on different alleles, while 

preserving functional MHC-TCR interactions.  In support of this co-evolution hypothesis, 

TCRs use the same set of genes to bind MHC-I, MHC-II, and non-classical MHC-I 

molecules (Kitamura et al., 1997; Treiner et al., 2003).  Another compelling hypothesis 

regarding MHC restriction is that germ-line encoded CDR1 and CDR2 loops bind to 

MHCα helices by conserved pairwise interactions, while diverse CDR3 loops are 

sensitive to peptide sequence differences (Garcia et al., 2009a; Marrack et al., 2008). 

However, comparison of many MHC-TCR crystal complexes do not reveal conserved 

patterns of interactions between germ-line encoded regions of TCR and MHC (Baker et 

al., 2012).  

 

Of interest is how a limited set of TCR genes and their components can affect binding to 

MHC and peptide recognition.  Chapter III of this dissertation will explore how TCR α-

TCR β V gene pairing and CDR3 loop sequences affect pMHC ligand binding. 

 

Cross-reactivity and Heterologous Immunity 
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Based on the lengths of peptides presented by MHC and 20 proteogenic amino acids, it is 

estimated that  >1015 possible peptides can be presented (Davis and Bjorkman, 1988; 

Sewell, 2012), albeit not every possible peptide combination will bind an MHC molecule.  

While an effective TCR repertoire should ideally respond to any potential foreign peptide 

antigen, the number of single positive CD4+/CD8+ T cells in a mouse are on the order of 

107 cells (Sawicka et al., 2014), a number much smaller than the number of possible 

peptides.  If a mouse were to have an immune system agreeing with clonal selection 

theory, where one TCR recognizes one cognate peptide, it would have 70-fold more T 

cells (Mason, 1998).  Thus, an alternate model to clonal selection theory is that TCRs are 

inherently cross-reactive in order to recognize the milieu of potential foreign antigens. 

 

Several models of ligand binding have been proposed based on structural studies of 

MHC-TCR complexes (Yin and Mariuzza, 2009).  While the structures of many MHC-

TCR complexes have been determined, few capture the pervasive cross-reactive nature of 

TCRs: the same TCR ligated to different peptide-MHC complexes.  Mechanistic models 

of these cross-reactive MHC-TCR complexes demonstrate the plasticity and immense 

structural adaptations between MHC, peptide, and TCRs.  In the most simplistic 

mechanism of cross-reactivity, various pMHC complexes present a similar surface for 

TCR docking.  For example, LC13 TCR docks to three pMHCs identically: HLA-B*0801 

with an EBV peptide and HLA-B*4405 with an ABCD3 peptide or mimotope (Kjer-

Nielsen	et	al.,	2003;	Macdonald	et	al.,	2009).  The three complexes overlay identically, 

which suggests that pMHC complexes with different peptides can mimic each other’s 
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surfaces.  A second mechanism of TCR cross-reactivity is the case of 2C TCR, which 

was solved in complex with Kb and the dEV8 peptide, as well as Ld with the QL9 peptide 

(Colf	et	al.,	2007).  Between the two complexes, 2C TCR rotates ~20° perpendicular to 

the peptide axis, resulting in alternative contacts between the two complexes.  These two 

examples demonstrate that a TCR can recognize different peptides with minimal changes 

to the CDR loop conformations. 

 

A third mechanism of TCR cross-reactivity relies upon CDR loop conformational 

changes in order to adjust to peptide differences.  The prototypical representation of TCR 

cross-reactivity is the case of A6 TCR with two HLA-A2 peptides (Ding et al., 1999).  

A6 binds to the HTLV-1 (Human T-lymphotropic virus 1) peptide, Tax, but also cross-

reacts with a yeast peptide, Telp.  Comparison between A6-Tax and A6-Telp complexes 

showed that A6 TCR docks on the MHC in a very similar orientation.  The differences 

between the complexes lie in the CDR3β loop where it adopts different conformations 

and “tunes” to different peptide ligands (Baker et al., 2012).  In addition, A6 in complex 

with Telp partly unravels the MHC-I α2 helix conformation upon ligation, supporting a 

model of conformational melding between MHC, TCR, and peptide (Figure I-3).		Similar 

to the A6 TCR complexes, in BM3.3 pMHC-TCR complexes, BM3.3 TCR also displays 

CDR loop conformational melding.  BM3.3 was crystallized with the Kb allele and 

several allopeptides (pBM1, pBM8), as well as a viral peptide from vesicular stomatitis 

virus, VSV8 (Mazza et al., 2007a).  BM3.3 CDR3α adopts large conformational changes 

to accommodate peptide differences between the three structures.  When comparing  
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Figure I-3 Conformational Change of CDR3β Loop Between Two Ligands. 
(A) The same TCR, A6, bound to two different peptides, Telp (blue, PDB: 3H9S ) and-
Tax (B) (pink, PDB: 1AO7) shows rearrangements in peptide sidechains and CDR3 β 
loop.  MHC-α2 helix is also slightly altered after ligand binding. 
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pMHC complexes before and after TCR ligation, the structures show that peptide side 

chain conformations also change upon ligand binding (Borbulevych et al., 2009).  Taken 

together, the same TCR can cross-react with different peptide-MHC complexes by 

rotations, translations, CDR3 conformational changes, and pMHC conformational 

changes.	

 

It is important to note, that although CDR loop conformational changes can occur after 

pMHC-TCR ligation, it is not a feature of all ligand binding and is not present in all 

examples of pMHC-TCR structures (Rossjohn et al., 2015).  Comparing the unliganded 

1E6 TCR to 1E6 in complex with HLA-A2 and a preproinsulin peptide, the TCR CDR 

loop conformations do not change upon binding (Bulek et al., 2012). 

 

The mechanisms described above are derived from investigating models of alloreactivity 

and T cell mediated autoimmunity, however, the molecular mechanisms of TCR cross-

reactivity in the context of viral peptides remains to be further investigated.  

Heterologous immunity is the immunity that develops towards one pathogen when 

exposed to an unrelated pathogen (Welsh et al., 2010).  In the case of the tuberculosis 

vaccine, bacille Calmette-Guerin (BCG) and Vaccinia virus (VacV), mice with immunity 

to BCG are also protected against subsequent VacV challenge (Mathurin et al., 2009).  

Similarly, mice immune to Lymphocytic choriomeningitis virus (LCMV) are protected 

against subsequent VacV challenge (Selin et al., 1998).  This seminal study between 
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LCMV and VacV was surprising at the time because LCMV and VacV are two 

evolutionarily distinct viruses. 

 

LCMV is a small ssRNA virus (~10 kilobase pairs) belonging to the Arenaviridae family 

and encodes only four transcripts: GP, NP, Z, and L.  On the contrary, VacV is a large 

dsDNA enveloped virus (~200 kilobase pairs) belonging to the Poxviridae family.  

Subsequent studies demonstrated that cross-reactivity between these two viruses are 

present in CD8+ memory T cells (Cornberg et al., 2007).  Cross-reactive T cell lines can 

be generated for further investigation in vitro by peptide stimulation of splenocytes from 

LCMV-immune mice with VacV peptide epitopes.  This tool was used to identify 

specific cross-reactive epitopes such as LCMV GP34 and VacV A11R, both of which 

bind to Kb (Cornberg et al., 2010).  

 

Of particular interest is how the same TCR recognizes two disparate epitopes.  Chapter 

IV of this dissertation will describe our approach to identify cross-reactive TCR motifs.  

Furthermore, Chapter V will explore the molecular mechanisms of how an isolated TCR 

recognizes GP34 and A11R.  
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CHAPTER II 
 
 

SUSCEPTIBILITY TO HLA-DM PROTEIN IS DETERMINED BY A DYNAMIC 
CONFORMATION OF MAJOR HISTOCOMPATIBILITY COMPLEX CLASS II 

MOLECULE BOUND WITH PEPTIDE 
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Introduction 

HLA-DM (DM) mediates the exchange of peptides loaded onto MHC-II molecules 

during antigen presentation in endosomal compartments.  The differential effect of DM 

on different peptides has been shown to play a key role in antigen presentation (Amria et 

al., 2008; Lazarski et al., 2006; Lovitch et al., 2003) and epitope selection (Hartman et 

al., 2010; Kremer et al., 2012; Lazarski et al., 2005; Pu et al., 2002; Sant et al., 2005; Yin 

et al., 2012).  The determinants of DM-mediated peptide exchange remain elusive and 

controversial (Anders et al., 2011; Ferrante and Gorski, 2010; Narayan et al., 2009; 

Painter et al., 2011; Pos et al., 2012; Stratikos et al., 2004). 

 

In contrast to MHC-I molecules, peptides bound to MHC-II are extended at both N and 

C-termini.  For this reason, peptide-binding pockets are confusingly labeled starting with 

N-terminal pocket 1, which does not correlate with the position along the peptide.  

Previous studies proposed that DM targets the conserved hydrogen bonds between MHC-

II and peptide in the vicinity of the P1 pocket (Narayan et al., 2007; Stratikos et al., 

2004), although others found that these interactions are dispensable for DM action 

(Ferrante and Gorski, 2010; Painter et al., 2011; Schulze et al., 2013; Zhou et al., 2009).  

Peptide side chain pocket interactions also have been implicated in DM susceptibility, 

particularly emphasizing the importance of pocket 1 near the N terminus of the bound 

peptide (Anders et al., 2011; Chou and Sadegh-Nasseri, 2000). 
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Recently, a structure of DM bound to HLA-DR1 (DR1) carrying a covalently bound, N-

terminally truncated peptide showed extensive rearrangement of the MHC-II pocket 1 

(Pos et al., 2012).  The interpretation is that this model represents a transient intermediate 

in the DM-MHCII-peptide exchange reaction, which would resolve upon peptide binding 

and displacement of DM.  A model was presented in which peptides that lack an 

optimum pocket 1 residue would not be able to displace DM from the DM-DR complex, 

tying DM-susceptibility to the nature of the residue that occupies pocket 1.  In this study, 

we directly evaluated the role of the side chain occupying the pocket 1 in determining 

susceptibility to DM-mediated peptide exchange.  

 

We focused on variants of the alloantigenic peptide HLA-A2104–117 bound to the human 

class II MHC protein DR1 (HLA-DRA*01:01, DRB1*01:01).  This MHC-peptide 

complex has been shown to be the target of graft rejection in solid organ transplant 

recipients (Hanvesakul et al., 2007; Smith et al., 2011) and allospecific human 

monoclonal antibodies (Wölpl et al., 1998).  HLA-A2104–117 is the predominant 

endogenous peptide bound to DR1 isolated from a B lymphoid cell line (Chicz et al., 

1992), presumably reflecting its high binding affinity, resistance to DM-mediated 

exchange, and the abundance of the HLA-A2 protein in the endosomal subcellular 

compartment(s), where peptide binding and DM editing occur.  The crystal structure of 

DR1-HLA-A2104–117 has been solved previously defining the major and minor anchor 

residues (Figure II-1) (Murthy and Stern, 1997), which makes it an ideal example to 

study DM action. 
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Results 

To address the role of pocket 1 in DM susceptibility, we designed variant peptides with 

non-optimal P1 pocket side-chains and combined these with optimal residues at other 

pockets.  We reasoned that if we were able to find a pocket 4, pocket 6, or pocket 9 

substitution that restored the wild-type (WT) affinity to a pocket 1-substituted variant, 

comparison of such peptides with the WT could illuminate the role of the pocket 1 

residue in DM-mediated peptide exchange, because the WT peptide gains most of its 

binding affinity through the pocket 1 interactions, whereas the double-substituted 

peptides would derive most of their affinity elsewhere. 

 

We tested each A2 peptide variant using a fluorescence polarization inhibition assay with 

tight-binding indicator peptide HA306–318 (KD = 10 nM) (Roche and Cresswell, 1990). The 

WT (HLA-A2104–117) peptide bound to DR1 very tightly with IC50 values of 36 nm 

(Figure II-1B and Table 1), consistent with a previous report (Chicz et al., 1992).  As 

expected (Sato et al., 2000), single amino acid substitutions of the pocket 1 side chain 

generally reduced binding as indicated by increased IC50 values (Figure II-1B).  We 

selected such four variants for continued work: L1, V1, T1, and A1.  Substitution of 

pocket 4 and pocket 6 side chains with preferred residues did not reduce IC50 values, and 

these positions were not investigated further (Hammer et al., 1993).  However, we found 

that leucine substitution at pocket 9 (L9) substantially enhanced the binding affinity as 

indicated by reduced IC50  
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Figure II-1	Identification of peptides with weakened pocket 1 interactions and 
strengthened interactions at other pockets.  
A) Schematic view of peptide binding groove from previously solved crystal structure of 
peptide HLA-A2104 –117 bound to DR1 (PDB code 1AQD). Pockets 1, 4, 6, and 9 on DR1, 
which harbor the major anchor residues of HLA-A2104–117, are indicated.  
B), competition binding with indicator peptide Alexa488-HA306–318 to DR1 was measured 
for HLA-A2104 –117-derived peptides harboring single mutation at pockets 1, 4, 6, and 9 
anchor residues. The amino acid after substitution for each peptide was labeled at the x 
axis, with the open bar indicating wild-type sequence, and the star indicating peptides 
selected for following detailed studies. These data represent three independent 
experiments with two replicates each.  
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Table II-1 Binding and kinetic properties of HLA-DR1-peptide complexes formed 
with HLA-A2(104 –117)-derived peptide mutants  
a Peptides are named with the substituted anchor residues. 
b The pockets 1, 4, 6, and 9 anchor residues in wild type peptides (WT) and 
corresponding substituted anchor residues are highlighted in bold and underlined.  
c 50% inhibition concentration calculated from binding competition curves. 
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values (Figure II-1), consistent with previous reports that leucine is an optimal residue at 

this position (Hammer et al., 1993; Stern et al., 1994). 

 

The L9 substitution that enhanced binding for the wild-type peptide also enhanced 

binding for the pocket 1 substituted variants L1, V1, T1, and A1.  In each case, 

substitution of leucine at position 9 into a peptide carrying a substitution at position 1 

(A1L9, T1L9, V1L9, and L1L9) reversed the effect of the pocket 1 substitution and 

returned the peptide binding affinity to nearly the wild-type level, as judged by a 

competition binding assay (Table II-1).  In the most extreme example, the A1 substitution 

showed more than 100-fold increase in IC50 relative to the wild-type peptide (Fig 1B), as 

expected based on the major anchoring function of the pocket 1 residue (Murthy and 

Stern, 1997), and consistent with a previously reported low affinity pocket 1 anchorless 

peptide derived from HA306–318 (Natarajan et al., 1999).  

 

When the A1 peptide was reconstituted with leucine at pocket 9 (A1L9), it rescued the 

binding affinity to a similar level as WT (Table II-1).  Together, these data suggest that 

stronger interactions at the C-terminal end of the peptide (pocket 9) can compensate for 

the weaker interactions at the N-terminal end of peptide (pocket 1) in terms of binding to 

MHCII.  One possible explanation for the unexpected role of L9 interaction could involve 

a potential shift to a different binding register with the A1L9 alanine not located in 

pocket 1.  Peptide binding in a noncanonical reversed orientation has been observed, with 
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DM able to accelerate the exchange of CLIP106–120 either canonically or inversely bound 

to DR1 (Günther et al., 2010; Schlundt et al., 2012).   

 

To confirm that A1L9 binds to DR1 with the same binding register as the WT peptide, 

we determined the x-ray crystal structure of DR1-AlL9 to a resolution of 2.2 Å (Figure II-

2 and Table II-; PDB ID 4OV5).  The structure shows A1L9 bound to DR1 in the 

canonical orientation with the expected pocket 1 and pocket 9 residues (Figure II-2 A and 

B), with no substantial differences in peptide conformation or MHCII side chain 

orientation relative to WT (Figure II-2C), including residues implicated in DM action 

(αTrp-43, αPhe-54, βAsn-82, and βPhe-89) (Figure II-2D).  As expected from previous 

work, weakening interactions in the pocket 1 results in a decreased MHCII-peptide 

lifetime and increased susceptibility to DM.  However, we found that weakened P1 

interactions could be completely compensated by substitutions elsewhere in the peptide; 

in particular, reconstitution with leucine at pocket 9 restores the conformation similar to 

that of DR1-WT. 

 

Discussion 

In the study where this work was published, further studies support that DM-

susceptibility is correlated with DR1 conformation.  We measured peptide dissociation 

kinetics in the absence or presence of and showed that DM accelerated the dissociation of 

peptides differentially.  The L1, V1, T1, and A1 peptide complexes all showed an 
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increase in DM susceptibility (data not shown).  Surprisingly, L1L9, V1L9, T1L9, and 

A1L9 all demonstrated DM susceptibility similar to WT.  This indicates that a gain of  

 
 
Figure II-2 X-ray crystal structure of DR1-A1L9 confirms the expected peptide -
binding motif and reveals similar conformation to that of DR1-WT.  
Electron density for peptide and DR1 residues around pocket 1 (A) and pocket 9 (B) with 
the peptide anchor residue and key contact residues on DR1 indicated in x-ray crystal 
structure of DR1-A1L9 complex (PDB code 4OV5). C, top view of DR1-A1L9 structure 
overlapped with DR1-WT structure. Four molecules in the asymmetric unit of DR1-WT 
and six molecules in the asymmetric unit of DR1-A1L9 are shown. DR1 in DR1-A1L9 is 
colored blue, A1L9 yellow, and DR1-WT green. D, a closer view at the pocket 1 with key 
residues is indicated. The pocket 1 alanine (A1) in DR1-A1L9 is highlighted as a yellow 
bulky residue, and the tryptophan in DR1-WT is highlighted as a transparent shaded 
residue. Statistics of x-ray data collection and refinement are listed in Table II-2.  
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Table II-2 Data Collection and Refinement Statistics of DR1-A1L9 Complex  
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interactions at the C-terminal end can compensate for loss of interactions at the N-

terminal end of the peptide. 

 

SDS sensitivity, antibody binding, hydrodynamic measurements, SAXS, and NMR 

analyses revealed conformational differences between DR1-A1 and DR1-A1L9.  Judged 

by several criteria, the DR1-A1 complex with weakened pocket 1 interaction appears to 

adopt a conformation different from conventional DR1-peptide complexes, which is more 

susceptible to DM-mediated peptide exchange.  Reconstitution with leucine at pocket 9 

restores the conformation to the less susceptible form similar to that of DR1-WT. 

 

The idea that the pocket 1 region is crucial to DM susceptibility has been given additional 

prominence by a recent structure of DM bound to DR1 with a covalently trapped 

truncated peptide (Pos et al., 2012), in which DR1 conformational alterations around 

pocket 1 were observed and associated with DM interaction.  However, we have shown 

here that the A1 and A1L9 peptides, both with the same non-anchoring pocket 1 alanine, 

have dramatically different DM susceptibilities.  Both of these peptides were able to 

efficiently displace bound peptides, in the absence or presence of DM, with the 

equilibrium level reached according their binding affinities and not their pocket 1 

residues.  Thus, DM susceptibility is not determined by interactions only in the pocket 1 

region of the binding sites but rather by interactions throughout the peptide-binding 

groove. 
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These data provide the clearest evidence yet that DM edits conformations, not sequences, 

and helps to define a molecular basis for conformational editing.  In conclusion, we have 

shown that the DM susceptibility of DR1-peptide complexes can be determined by 

peptide substitutions outside the P1 pocket and by MHC substitutions away from peptide 

and DM interaction sites. Our data support the idea that the dynamic conformation of 

MHCII-peptide complexes determined by interactions throughout the peptide binding 

groove is the key determinant of DM susceptibility and that DM acts as a conformational 

rather than sequence editor. 
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CHAPTER III 
 
 

TCRαβ CHAIN PAIRING AND CDR3 SEQUENCES REGULATE MHC-TCR 
CONTACTS AND LIGAND SPECIFICITY  
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Abstract 
 
A limited set of T cell receptor (TCR) variable (V) gene segments are used to create a 

repertoire of TCRs that recognize all major histocompatibility complex (MHC) ligands 

within a species.  The antigen specificity of TCRs is created from the combinatorial 

pairing of one of a set of germline encoded TCR variable (V) alpha and V beta gene 

segments with randomly created CDR3 sequences.  How individual αβTCRs are 

constructed to specifically recognize a limited set of MHC ligands is unclear.  Here we 

have identified a role for the differential paring of particular V gene segments in creating 

TCRs that differentially recognize MHC class II.  Structural studies support biophysical 

experiments and indicate that TCR specificity for MHC ligands is not driven by germline 

encoded pairwise interactions.  Rather, identical TCRβ chains can have altered peptide-

MHC (pMHC) binding modes when paired with different TCRα chains.  Furthermore, 

CDR3α residues can modulate the geometry in which TCRs bind pMHC, governing 

whether and how germline encoded TCR Vα and Vβ residues interact with MHC.  These 

findings demonstrate that the specificity of individual T cell clonotypes arises not only 

from TCR residues which create direct contacts with the pMHC, but also from a 

collection of indirect effects which modulate how TCR residues are used to bind pMHC. 
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Introduction 

Within a population, MHC allele diversity greatly limits the ability of pathogens to 

escape immune responses (Košmrlj et al., 2010; Messaoudi et al., 2002).  However, the 

diversity of MHC creates a unique problem for generating host-MHC restricted mature T 

cell repertoires.  Prior to selection, TCR rearrangement has to generate a collection of 

TCRs, which in aggregate have the ability to recognize any of the possible MHC classes 

and alleles present within a species.  To mature, pre-selection thymocytes expressing 

these TCRs are subjected to the selective pressures of positive selection to ensure T cells 

are MHC restricted, and negative selection to limit autoimmunity (Fink and Bevan, 1995; 

Kappler et al., 1987; Kisielow and Von Boehmer, 1995; Mathis and Benoist, 2004).  

After selection, individual TCRs must be MHC class specific, allowing a division of 

labor between MHC class II-reactive helper T cells and MHC class I-reactive cytotoxic T 

cells (Babbitt et al., 1985; Zinkernagel and Doherty, 1974). 

 

The sequence of individual TCR clonotypes is created from the pairing of one of a 

limited set of Vα and Vβ gene segments with highly variable CDR3α and CDR3β 

sequences derived from V(D)J recombination (Bevan, 1977).  Through studying T cells 

isolated from mice with limited negative selection, we have provided evidence that T 

cells can have a range of pMHC cross-reactivity patterns (Huseby et al., 2005a, 2006; 

Stadinski et al., 2011).  These and other T cell activation studies suggest that TCRs may 

have an intrinsic ability to bind pMHC, which is regulated by TCR V gene pairing or 
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CDR3 sequences (Blackman et al., 1986; Merkenschlager et al., 1997; Rubtsova et al., 

2009; Stadinski et al., 2011; Stritesky et al., 2013; Zerrahn et al., 1997).  

 

Most TCRs bind MHC ligands within a semi-conserved diagonal orientation, which 

largely places the CDR3 loops atop the bound peptide and the germline encoded V gene 

CDR1 and CDR2 residues positioned over the MHC alpha helices (Rudolph et al., 

2006b).  Examination of TCRs carrying similar TCR V genes engaged to similar MHC 

alleles have shown a more limited range of TCR-pMHC docking angles (Dai et al., 2008; 

Feng et al., 2007).  These structural observations have led to a hypothesis that particular 

germline encoded residues of TCR V genes have been evolutionarily selected to bind 

MHC in conserved ways and provide TCRs with a built-in specificity for MHC ligands 

(Garcia et al., 2009b; Marrack et al., 2008). 

 

To test this hypothesis and identify mechanisms that control TCR ligand specificity, we 

isolated and characterized a set of TCRs reactive to IAb-3K carrying the identical TCRβ 

chain.  The TCRs were either self-tolerant or self-reactive, and differed in the ability to 

cross-react with other classes of MHC ligands.  By comparing how each receptor bound 

the same pMHC complex, we sought to identify how TCR chain pairing affects MHC 

specificity.  X-ray crystallographic experiments indicated that MHC specific TCRs and 

MHC class cross-reactive TCRs utilizes a spectrum of pMHC binding modes within a 

conventional docking footprint.  Our data demonstrate that differential TCR α-chain 

pairing can result in MHC specific TCRs that have altered TCRβ CDR loop 



 45 

conformations and placements, as well as modified TCRβ-MHC contacts.  By comparing 

similar TCRs with alternate CDR3α sequences, we demonstrate that residues distal to the 

binding interface can have profound affects on the overall geometry, thereby indirectly 

affecting how different TCR Vα and TCR Vβ residues interact with pMHC residues.  

 

 

Results 

We created a model to identify mechanisms that control TCR specificity by generating 

mice expressing the Vβ8.2 TCRβ chain of YAe62 TCR as a transgene (YAe62β mice).  

YAe62 is a MHC-cross-reactive TCR isolated from single peptide mice (Huseby et al., 

2005b).  T cells that were reactive to the 3K-peptide bound to the IAb were isolated for 

further studies.  To examine the influence of TCRα chain pairing and CDR3α sequences 

on TCR-MHC interactions, the IAb-3K-reactive TCRs J809.B5 and 14.C6 were studied. 

These two self-tolerant TCRs carry the identical TCRβ and TCR Vα2.8 sequences, 

differing only in the CDR3α sequence (Table III-1).  In comparison to the self-reactive 

YAe62 TCR, these TCRs have the same TCRβ chain, but differing TCR α chains.   

 

Structural comparison of an MHC specific and an MHC cross-reactive TCR 

By comparing how these TCRs engage pMHC, we sought to identify how αβTCR chain 

pairing controls ligand specificity.  To identify in detail how paring a Vα2 TCR α-chain 

with the YAe62 β-chain creates pMHC specificity, we first determined the 2.7Å crystal 

structure of the J809.B5 TCR bound to IAb-3K and compared it to the 3.2Å structure of  
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Table III-1 TCR Sequences of Receptors Used for Crystallographic Studies  
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the YAe62 TCR bound to IAb-3K (Table III-2) (Dai et al., 2008).  The shared use of the 

identical Vβ chain provides a direct way to evaluate how different Vα pairings control 

ligand specificity. The overall orientation and size of the interfaces of the two complexes 

were highly similar (Figure III-1A-E) Additionally, the conformation of the TCR Cα, and 

TCR Cβ domains, and the TCR Vα and TCR Vβ framework regions, superpose closely. 

The total buried surface area (BSA) for the J809.B5 complex is approximately 1560 Å2, 

comparable to 1410 Å2 for the parent YAe62 complex. In both cases the TCRβ chain 

contributes the majority of contacts to IAb-3K, 74% of the total BSA for the J809.B5 

TCR, versus 67% for YAe62 TCR (Figure III-1F-G). Some conformational differences 

were observed for the TCRα subunit, which was expected due to the alternate α-chain 

usage (Figure III-2).  Thus, as was observed with the energetic footprint analysis (data 

not shown), the J809.B5 TCR does not create self-tolerance from gross structural 

alterations. 

 

Alternative TCRα to pMHC contacts by the J809.B5 TCR versus the YAe62 TCR 

explains the change in peptide recognition of J809.B5. The majority of the YAe62 TCRα 

contacts with IAb-3K involve CDR1α Y29 engaging the IAbβ chain residues T77 and 

H81 (Figure III-2B, blue). This MHC-dominant binding mode allows the YAe62 TCR to 

be less-sensitive to alanine substitutions at several residues of the peptide. In contrast, the 

J809.B5 TCRα does not make any substantial contacts with the IAbβ chain (Figure III-2, 

orange), consistent with the energetic binding data (data not shown).  
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The J809.B5 TCR binds IAb-3K with an altered TCRβ-pMHC binding mode 

 
Table III-2 Data Refinement and Statistics of 809.B5 TCR in Complex with I-Ab-3K  
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Figure III-1 MHC cross-reactive and MHC specific TCRs bind IAb-3K within a 
similar footprint. 
 
(A) Overlay of YAe62 and J809.B5 TCRs binding IAb-3K. The YAe62 TCR is colored 
red (TCRβ) and blue (TCRα); the J809.B5 TCR is colored green (TCRβ) and orange 
(TCRα). IAb-3K is colored cyan (IAbα chain), yellow (peptide) and magenta (IAbβ 
chain). 
(B, C) Projection of IAb-3K binding onto the (B) YAe62 TCR, or (C) J809.B5 TCR. 
Contacts with the IAbα chain (colored cyan), peptide (colored yellow) and the IAbβ 
chain (colored magenta). Black line demarcates border of the TCRα subunit from the 
TCRβ subunit. 
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Figure III-1 MHC cross-reactive and MHC specific TCRs bind IAb-3K within a 
similar footprint (cont.) 
 
(D, E) Projection of the (D) YAe62 TCR or (E) J809.B5 TCR binding onto IAb-3K. 
YAe62 TCRα contacts are colored blue, YAe62 TCRβ contacts are colored red. The 
J809.B5 TCRα contacts are colored orange and the TCRβ contacts are colored yellow. 
The peptide residues are outlined in black. 
(F–I) The amount of Buried Surface Area (BSA) contributed by the (F) YAe62 or (G) 
J809.B5 TCRα and TCRβ loops to the binding reaction with IAb-3K. (H) The amount of 
BSA contributed by the peptide or MHC chains for the binding reaction with YAe62 
TCR or the (I) J809.B5 TCR. Figures were made using PyMol (DeLano). 
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Figure III-2 The J809.B5 TCRα chain induces a TCR rigid body movement and 
replaces the YAe62 TCRα contacts to MHC with TCRα contacts to the peptide. 
(A) A rigid body movement rotates the J809.B5 TCRβ chain 1–2 Å towards the peptide; 
J809.B5 TCRβ (green), J809.B5 TCRα (orange), YAe62β (red) and YAe62α (blue). 
(B) The YAe62 CDR1 αY29 (blue) contacts IAb βT77 and βH81 whereas as the J809.B5 
CDR1α (orange) makes no contact with the IAbβ chain. 
(C) The J809.B5 CDR3α (orange) makes extensive contacts with the P-1E and P3K 
residues of the peptide whereas the YAe62 CDR3α (blue) makes very few. Salt bridge 
(black arrow) and hydrogen bonds (red dashed lines) between J809.B5 CDR3α and the 
3K peptide are shown. Figures were made using PyMol (DeLano). 
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Despite having the identical TCRβ sequence, the TCRβ chains within the J809.B5 and 

YAe62 TCRs bind IAb-3K differently. The J809.B5 Vα2 chain pairing results in the 

TCRβ binding IAb-3K with a modified CDR3β loop conformation, and a rigid body 

movement that rotates the TCRβ chain 1–2 Å towards the center of the interface (Figure 

III-2), compare J809.B5 CDR3β (green) with YAe62 CDR3β (red)). In conjunction with 

the modified TCRβ-pMHC binding mode a set of TCRα to TCRβ inter-chain contacts are 

observed between TCR CDR1α, CDR2α and CDR3α residue side chains (orange) with 

the CDR3β loop (green) (Figure III-3). Most prominent are contacts between CDR1α 

Y31 and CDR2α R50 with CDR3 Jβ D97, and between CDR3 Jα A96 with CDR3 Jβ 

W95, contacts that are not present in the MHC cross-reactive YAe62 TCR.  The J809.B5 

TCR and YAe62 TCR structural comparison demonstrates that one control mechanism 

which impacts ligand specificity is the ability to modify how TCR CDR loop residues 

bind pMHC. 

 

CDR3α sequences can modulate CDR1 and CDR2 interactions with pMHC 

To gain insight into how CDR3α sequences can influence CDR1 and CDR2 interactions 

with MHC, we determined the 3.2Å cocrystal structure of the 14.C6 TCR bound to IAb-

3K, and compared it to J809.B5 bound to the same ligand.  The J809.B5 TCR and the 

14.C6 TCR engage IAb-3K similarly but with a marked change in orientation, such that 

there is a 7.5° difference in the tilt of the TCR relative to pMHC (Figure III-4, Table III-

3). This change in TCR-pMHC binding geometry is confirmed using an R-free analysis 

of the TCR V domains. The 14.C6:IAb-3K complex has an R-free of 23% 
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Figure III-3 TCRα chains can induce a conformational change to the TCRβ CDR3 
loop. 
(A) The J809.B5 chain (green) is in an altered conformation as compared to the identical 
CDR3β chain within the YAe62 TCR (red). The J809.B5 CDR3β chain creates a 
hydrogen bond (red dashed lines) with J809.B5 CDR1 αY31, CDR2 αR50 and a Van der 
Waals contact (red arrow) with CDR3 JαA96. 
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Figure III-4 CDR3α Sequence Can Alter the Positioning of CDR1 and CDR2 Loop 
Atop MHC.  
(A) Overlay of the 14.C6 and J809.B5 TCRs binding IAb-3K. The 14.C6 TCR is colored 
red (TCRβ) and blue (TCRα); the J809.B5 TCR is colored green (TCRβ) and orange 
(TCRα). IAb-3K is colored cyan (IAbα chain), yellow (peptide), and magenta (IAbβ 
chain). A 7.5% difference in the tilt of the TCR docking geometry atop IAb-3K is 
observed based on a vector from the center of mass of each TCR to the α-carbon of the 
p5 peptide residue. (B) Projection of the 14.C6 TCR or (C) J809.B5 TCR binding onto 
IAb-3K. 14.C6 TCRα contacts are colored blue, 14.C6 TCRβ contacts are colored red. 
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The J809.B5 TCRα contacts are colored orange and the TCRβ contacts are colored green. 
The peptide residues are outlined in black. (D) The amount of buried surface area (BSA) 
contributed by the 14.C6 or (E) J809.B5 TCRα, TCRβ, peptide or MHC chains for the 
binding reaction with IAb-3K. (F) The 14.C6 CDR3β loop (magenta) and the J809.B5 
CDR3β loop (green) are in a similar conformation and make similar contacts with IAb-
3K. (G) The 14.C6 CDR3α loop residues R94 and D95 interact with the peptide residues, 
P-1E, P2Q and P3K. (H) The J809.B5 CDR3α loop residues K94 and D97 interact with 
the peptide residues, P-1E, P2Q and P3K. (I) The 14.C6 CDR3α loop (blue) and the 
J809.B5 CDR3α loop (orange) are in a different conformation when bound to IAb-3K. (J) 
14.C6 CDR1α residues A28 and D30 (blue) make extensive contacts with the P2Q and 
P5K residues of the peptide, and the IAbβ chain residue H81. The J809.B5 CDR1α loops 
residues A28 and D30 (orange) are shifted approximately 4 Å, allowing only the A28 
residue to make minimal contacts with peptide, and no contact with MHC. (K) The 14.C6 
TCR CDR2α residues R50 and V52 (blue) interact with IAb β-chain residues βE69, βA73 
and βT77, contacts that are not present in the J809.B5:IAb-3K structure (orange) due to a 
4 Å rigid body shift. (L, M) The main-chain of CDR2β loop at the βY48 position in the 
14.C6 structure (green) is shifted approximately 1Å as compared to the J809.B5 structure 
(magenta), and some rotamer differences are observed for the CDR2β residues E54 and 
Y46. Figures were made with PyMol 
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 whereas if the 14.C6 V domain if forced into the J809.B5 docking geometry, the 

resulting complex would have an R-free of 42%. This change in tilt allows the 14.C6 

TCR to form an increased number of contacts with the IAbβ-chain, as compared to the 

J809.B5 TCR (Figure III-4B, C).  In addition, the total buried surface area (BSA) for the 

14.C6 complex (approximately 1970 Å2) was greater than that for the J809.B5 complex 

(approximately 1540 Å2), primarily stemming from changes to the BSA of the CDR1α 

and CDR2α loops and the IAb β-chain (Figure III-4D, E).  In contrast to these changes, 

CDR3β loop conformations and the placement of CDR3 βW94 and βF95 residues within 

these structures are similar (Figure III-4F). 

 

To evaluate how CDR3α sequences can affect TCR interactions with pMHC, we 

compared the 14.C6 and J809.B5 CDR3α loop conformations when bound to IAb-3K. In 

both structures the 14.C6 and J809.B5 CDR3α loops make similar types of contacts with 

the peptide (Figure III-4 G, H).  Despite the 14.C6 CDR3α loop being one amino acid 

longer, the J809.B5 CDR3α loop extends 2.5Å further towards the peptide, relative to the 

14.C6 CDR3α loop (Figure III-4I).  Because of the different CDR3α loop conformations, 

a steric clash would occur between the J809.B5 CDR3α loop and the peptide if this TCR 

bound IAb-3K  
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Table III-3 Data Collection and Structure Statistics of 14.C6 TCR in Complex with 
I-Ab-3K 
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with the same geometry as that of the 14.C6 TCR.  Thus, the differences in CDR3α loop 

conformation likely underlie why the J809.B5 and 14.C6 TCRs bind IAb-3K with 

different tilts. The most prominent differences in how the J809.B5 and 14.C6 TCRα 

chains engage IAb-3K involve CDR1α and CDR2α residues.  The 14.C6 TCR docking 

geometry allows its CDR1α loop to make extensive contacts with the P2 and P5 positions 

of the 3K peptide, as well as the IAbβ chain residue βH81 (Figure III-4J).  In contrast, the 

J809.B5 CDR1α loop is positioned such that it makes only minimal contacts with the 3K 

peptide and no contacts with MHC (Figure III-4J).  Likewise, the 14.C6 TCR CDR2α 

residues interact with IAbβ chain, whereas these contacts are absent in the J809.B5:IAb-

3K structure due to the 4 Å rigid body shift (Figure III-4K). 

 

Difference in the requirements of TCR Vβ and IAbα residues for J809.B5 and 14.C6 T 

cells to undergo activation, arise from less dramatic structural changes. The main-chain 

of the J809.B5 and 14.C6 CDR2β loops are shifted approximately 1Å at the CDR2 βY48 

position. In addition, some rotamer differences are observed for the CDR2β residues, 

βY46 and βE54; while the IAb αQ57 and αQ61 side chain rotamers are similarly 

orientated (Figure III-4L, M).  Thus, the requirements of TCR and MHC side chains for T 

cell activation can be strongly affected by modest shifts in CDR loop placement and side 

chain rotamer differences. 
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Discussion 

The identical set of TCR V genes are used to create TCRs that are specific for either 

classical or non-classical MHC class I or MHC class II ligands.  Although there are 

reports of some TCR V genes being preferentially used in either CD4+ or CD8+ T cell 

populations (Jameson et al., 1990; Sim et al., 1996), none of the V genes are precluded 

from creating MHC class I or MHC class II specific receptors (Garman et al., 1986; 

Jorgensen et al., 1992; Valkenburg et al., 2010).  Thus, TCRs are able to utilize a limited 

set of TCR V gene residues to create receptors that bind the highly diverse set of ligands.  

The dichotomy that individual TCR chains can be incorporated into receptors that are 

able to bind a wide range of polymorphic MHC ligands, while complete receptors can 

specifically engage a limited set of MHC ligands, strongly suggests αβTCR chain 

pairings limit MHC cross-reactivity.  The isolation of MHC specific and MHC cross-

reactive, IAb-3K reactive TCRs carrying the identical TCRβ chain allowed us to identify 

mechanisms by which TCRs become MHC specific. 

 

Several mechanisms likely allow TCRαβ chain pairing to create receptors that are 

specific for MHC ligands.  These could include the binding requirements of each TCR 

chain for the pMHC, modification of CDR loop conformational structures, CDR loop 

positioning or induced alterations of the TCR or pMHC complexes that arise during 

binding (Jorgensen et al., 1992).   Not surprisingly, the self-tolerant, MHC specific TCRs 

carrying the YAe62β chain required binding energy to be contributed from multiple 

residues of the peptide at likely TCRα contacts.  However, MHC specific TCRs did not 
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require additional MHC contacts at potential TCRα binding sites.  Within the J809.B5 

TCR-pMHC structure, no contacts were observed between the CDR1α and CDR2α loops 

with IAb-3K.  Our data further demonstrated that TCRα pairings, which created MHC 

specific TCRs, had a modified TCRβ binding reaction with pMHC.  Thus, TCRα chains 

did not influence pMHC specificity by requiring additional MHC class or allele specific 

contacts.  This was a surprising observation given the strong Vα2 gene segregation to 

MHC specific TCR, and suggested this skewing was not based on TCR Vα gene residues 

providing contacts with the pMHC. 

 

Unlike immunoglobulin genes, TCRs do not undergo somatic hypermutation.  Therefore, 

the only way TCRs can be created with reactivity for antigens presented by host-MHC 

alleles is through the combinatorial pairing of different TCR V gene segments and the 

creation of random CDR3 sequences through V(D)J recombination.  The major force in 

creating TCRs with diverse antigen reactivity patterns occurs from V(D)J recombination, 

as this process determines both the length of the CDR3 loops and the identity of the 

amino acids present within the central portion of the pMHC binding site.  Sequence 

differences amongst the Vα and Vβ gene segments also contribute to creating TCRs with 

a diversity of ligand specificities.  Differential TCR V gene pairing creates TCRs that 

express different amino acid sequences at potential sites of pMHC contact.  In addition, 

CDR1 and CDR2 loops can adopt one of a set of unique canonical structures, which 

allow different TCR Vα and Vβ pairings to create TCRs with a modest range of tertiary 

structures (Al-Lazikani et al., 2000; Arden, 1998; Garcia et al., 1999). 
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For the J809.B5 and 14.C6 TCRs structures bound to IAb-3K studied here, CDR3α 

sequences are shown to regulate the extent in which the CDR1α and CDR2α loops 

contribute to the binding reaction.  The range of TCR sequence-dependent changes in 

TCR V gene-MHC interactions are mirrored by observations that the MHC allele and the 

bound peptide or lipid sequence can influence how TCR CDR1 and CDR2 loops engage 

MHC residues (Adams et al., 2011; Borbulevych et al., 2011a; Deng et al., 2012; Felix et 

al., 2007; Liu et al., 2013; López-Sagaseta et al., 2012; Mazza et al., 2007b; Reiser et al., 

2003; Stadinski et al., 2011).  These findings may explain how very modest changes in 

TCR sequence, including TCRs with only a single amino acid change in the CDR3α loop, 

can distinguish TCRs expressed on CD4+ T cells recognizing MHC-II ligands from TCRs 

on CD8+ T cells recognizing MHC-I ligands (Correia-Neves et al., 2001).  Collectively, 

the ability of CDR3 sequences and peptide sequences to modulate how TCR V gene 

residues engage MHC residues provides a mechanism whereby the TCR-MHC binding 

properties of the mature T cell repertoire can be tailored during T cell selection to 

recognize antigens displayed by host-MHC molecules (Berg et al., 1989; Bevan, 1977; 

Morris et al., 2011; Scott et al., 1989). 

 

CDR1 and CDR2 residues can make direct contacts with the pMHC ligand.  In addition, 

CDR residues that do not contact the pMHC can affect the ability of TCRs to adopt or 

stabilize different pMHC binding conformations.  The indirect effects created by TCR 

inter- and intra-chain interactions that regulate antigen specificity from positions outside 
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of the binding interface can be seen as analogous to the allosteric regulation of protein 

function, that is controlled by V(D)J recombination and TCR V gene pairing (Nussinov 

and Tsai, 2013).  The common occurrence of interactions between CDR loops suggests 

that this is a general feature of TCRs, and that one of the functions of combinatorial 

diversity and T cell development is to equip mature T cells with TCRs that stabilize CDR 

loop conformations that specifically recognize antigens presented by host MHC. 
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CHAPTER IV 
 
 

TCR Vβ AND CDR3 SIGNATURES OF HETEROLOGOUS IMMUNITY BETWEEN 
LCMV AND VACV 

 
 
 
 
 
Author Contributions 
Keith Daniels infected mice with LCMV and harvested splenocytes for further analysis. 
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Abstract 

Memory T cells are reactivated upon secondary encounter with cognate ligand, but also 

can be reactivated by recognition of heterologous epitopes. An example is the 

heterologous CD8 T cell response that occurs between Lymphocytic choriomeningitis 

virus (LCMV) and Vaccinia virus (VacV).  Many studies of cross-reactive T cell 

recognition involving different viral epitopes or self-epitopes typically focus on particular 

individual T cell receptors, and so the numbers and diversity of T cell receptors that 

participate in heterologous immune responses in vivo are generally unknown.  

Increasingly, next generation sequencing (NGS) is used to characterize TCR repertoires, 

but it is unclear how the data can be used to identify cross-reactive TCRs.  Here, we 

analyzed the full breadth of the A11R198-206-cross-reactive component of the LCMV-

immune TCRβ repertoire directly ex-vivo by tetramer staining and deep sequencing. We 

identified a highly diverse population of many hundreds of distinct TCRβ clonotypes able 

to recognize both LCMV GP34-41 and VacV A11R198-206.  Within this population we 

observed several distinct sequence motifs with signatures that include both Vβ gene and 

CDR3 sequence components. Different signatures were observed for different CDR3 

lengths, suggesting different recognition modes. Evidence was obtained for cross-reactive 

TCRβ populations recognizing VacV A11R198-206and other LCMV epitopes in addition to 

GP34-41. 

 

 

 



 65 

Introduction 

TCRs are a key component in the adaptive immune system.  In contrast to conserved 

receptors in the innate immune system, TCRs represent a diverse set of cellular receptors 

from random gene segment pairings known as V(D)J recombination (Arden et al., 1995).  

TCR sequences are largely unpredictable because of random addition and deletion of N 

nucleotides between each gene segment.  The TCR repertoire should be diverse enough 

to bind a plethora of foreign peptides, yet specific enough to avoid self-reactivity.  

However, TCRs are generally characterized as degenerate for their pervasiveness in 

ligand specificity (Borbulevych et al., 2009; Colf et al., 2007; Collins and Riddle, 2008; 

Jones et al., 2008; Mazza et al., 2007a; Sewell, 2012; Wucherpfennig et al., 2007).  

Detailed information about TCR repertoires may be informative in providing insight into 

ligand specificity.  While a TCR can tolerate many changes to a peptide, it is unclear how 

to identify TCRs with overlapping specificity. 

 

Cross-reactivity between viral epitopes may lead to heterologous immunity, which is the 

immune response towards a pathogen that results from previous exposure to an unrelated 

pathogen (Welsh et al., 2010).  One example where protective heterologous immunity has 

been demonstrated is between two evolutionary distinct viruses: LCMV and VacV.  Mice 

with immunity to LCMV by a previous infection are protected against subsequent VacV 

infection (Selin et al., 1994, 1998).  Further studies identified a VacV epitope, A11R, 

which is uniquely expanded from LCMV infection (Cornberg et al., 2007, 2010).  A11R-

reactive cells are not detectable in naïve mice, suggesting that A11R-reactive cells only 
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arise due to cross-reactivity with LCMV epitopes (Cornberg et al., 2007; Shen et al., 

2013).   

 

One identified A11R cross-reactive epitope from LCMV is GP34, which shares only 

three identical residues.  The use of two tetramers directed against GP34 and A11R 

demonstrate that the same T cells indeed recognize these two disparate epitopes.  Mice 

that were infected with LCMV and analyzed 8 days later by a panel of antibodies for 

TCR Vβ genes show that the hierarchy of Vβ gene usage varies for the recognition of 

A11R and GP34 epitopes (Shen et al., 2013).  T cells specific for GP34 are 

predominantly TRBV15 and TRBV13-3/13-2 (Vβ12 and Vβ 8.1/8.2 in the Arden 

nomenclature), while A11R specific cells are predominantly TRBV13-3/13-2 and 

TRBV12-2/12-1 (Vβ 5.1/5.2).  Interestingly, when splenocytes from LCMV-immune 

animals were expanded with A11R peptide, these cell lines were dominated by TRBV15 

gene usage (Cornberg et al., 2007, 2010).  Furthermore, when a TRBV15-dominant 

A11R cross-reactive cell line was adoptively transferred into naïve mice, mice were 

protected from VacV challenge.  Because TRBV is a consistently identified from 

different studies, these data suggest that overlapping GP34 and A11R TRBV15 T cells 

may represent a biologically important population. 

 

Of interest is a detailed characterization of the GP34/A11R repertoire to elucidate 

specific cross-reactive determinants.  With standard Sanger sequencing methods, it is 

often difficult to capture the breadth of a TCR repertoire.  The advent of NGS has 
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allowed many groups to identify and characterize specific TCR subtypes.  Availability 

and accessibility of these tools has fostered complex analysis that extends our 

understanding of the immune system (Laydon et al., 2015; Rosati et al., 2017).  However, 

it is unclear how to isolate and identify T cells from cross-reactive populations.  Here, we 

present a tetramer-based approach followed by NGS analysis.  We have identified 

various dissimilar cross-reactive signatures between the GP34/A11R epitopes that are 

only apparent after parsing our data by TCR Vβ gene and CDR3 length. 

 

Results 

Approach to Identify Cross-reactive Receptors in LCMV-immune Mice with Tetramer 

Sort and NGS  

To identify GP34 and A11R cross-reactive TCRs directly ex vivo, we isolated 

splenocytes from LCMV-immune animals and used an NGS approach to identify and 

quantify TCRβ CDR3 sequences (Figure IV-1).  Splenocytes from 15 mice were pooled 

because GP34- and A11R-reactive cells comprise a small percentage of the memory 

population (~4% and ~0.4% respectively).  To isolate specific TCRs, pooled splenocytes 

were separated using single tetramer stains: GP34, A11R, and a control tetramer.  We 

chose this method instead of a double tetramer or bispecific molecule (Shen et al., 2010) 

because our single tetramer stains could be reliably separated above the background and 

could be used without affinity and avidity competition.  Live cells were stained with 

CD8+, CD44+, and tetramer reagents, sorted by FACS, followed by subsequent genomic 
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DNA extraction.  Tetramer negative cells were also sorted and sequenced to compare the 

extent of heterogeneity between different populations and samples.   

 

To identify cross-reactive clonotypes, we separated clonotypes that were present in both 

GP34 and A11R tetramer-positive populations separately rather than evaluating 

clonotypes that were mutally exclusive.  Non-crossreactive clonotypes are sequences that 

were only observed by one tetramer and not the other.  The dominant Vβ genes used in 

GP34+ are TRBV15-01, TRBV16-01, and TRBV13-02, whereas the dominant Vβ in 

A11R+ is TRBV03-01 (Figure IV-1B, C).  This data supports and extends previous 

studies using antibody staining to characterize T cell populations.  For example, for 

GP34-reactive cells, our data is supported by TRBV15-01 and TRBV13-02 gene usage 

observed.  However, A11R-reactive cells are dominated by TRBV03-01 clonotypes, a Vβ 

gene that was not tested previously.  The distribution of GP34/A11R cross-reactive cells 

from each population matches the respective distribution prior to separating these 

clonotypes by cross-reactivity, indicating that cross-reactivity is not limited to particular 

Vβ genes. 

 

We were interested in comparing the relative populations of GP34 and A11R-reactive T 

cells to establish that these populations are distinct from each other.  Many tools available 

for analysis regard each unique DNA sequence as a unique clonotype.  However, we 

were interested in functional clonotypes: TCRs that are identical at the amino acid level.  

From our dataset, we noticed that if we indexed our data by CDR3 sequence instead of 
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Figure IV-1 – Approach to Isolate Cross-reactive GP34/A11R T cells from LCMV-
Immune Mice 
(A) 15 mice were injected with a sublethal dose of LCMV I.P.  After mice cleared 
infection and established immunity, splenocytes were isolated and pooled for analysis ex 
vivo.  Samples were divided for tetramer staining, followed by sorting by FACS.  
Genomic DNA was extracted and analyzed for TCR sequencing by NGS.  TCR 
sequeneces that were identified in both pools were considered cross-reactive.  (B, C) 
TCR β gene usage for GP34 or A11R reactive cells show distinct distributions. 
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 nucleotide sequence, the same CDR3 sequence is encoded by several DNA sequences.  

Additionally, the same CDR3 amino acid sequence was present in different Vβ families, 

which have different CDR1 and CDR2 sequences.  To analyze functional clonotypes, we 

reindexed our data so that TCRs with the same V gene and CDR3 amino acid sequence 

were indexed as the same clonotype and the numbers of templates read were summed 

together.   

 

First, we established that tetramer+ cells were distinct from tetramer- cells.  Tetramer- 

populations from the GP34- and A11R- have a strong correlation; high abundance clones 

in GP34- are also highly abundant in A11R- (R2 = 0.89) (Figure IV-2A).  When 

comparing GP34 or A11R tetramer+ against tetramer- samples, tetramer+ samples were 

distinctly different from tetramer- samples, indicating that we separated and sequenced 

distinct populations with either GP34 or A11R tetramers (R2 correlation coefficient of 

0.001 and 0.353 respectively).  The population of GP34+ vs A11R+ tetramer clonotypes 

is spread out along the diagonal (R2 = 0.07B) than GP34- vs A11R- tetramer clonotypes.  

The weak association between GP34+ and A11R+ tetramer populations indicated that 

each tetramer stained different populations, despite originating from the same pool of 

mice in this study. 

 

Only a few CDR3 sequences have been previously identified for the GP34/A11R cross-

reactive T cell response.  Among them are two TRBV15-01 clonotypes: A22 TCR, for 

which we determined the crystal structure (Chapter V), and L/a11-4, a protective cell line  
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Figure IV-2 GP34 and A11R Tetramers Separate Distinct Populations 
(A) GP34 tetramer negative and A11R tetramer negative populations correlate while (B) 
GP34 tetramer positive and A11R tetramer positive populations do not.  Each spot 
represents a unique clonotype by Vβ gene and CDR3 sequence.  The position of each 
spot represents the relative abundance of that clonotype as separated by respective 
tetramer.  Data is representative of 15 LCMV-immune mice that were pooled, tetramer 
sorted, and TCR sequences analyzed by NGS.  Red dots highlight variants of a family of 
receptors (A22 family) that differs by one amino acid, which is highlighted next to each 
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spot.  Y=x line is drawn in black. (C, D) Represents a second data set, which is similar to 
A and B.  (E, F) Two individual mice that were acutely infected are represented here by 
GP34 tetramer positive and A11R tetramer positive.  
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against VacV challenge when adoptively transferred into mice.  These two clonotypes 

vary by one amino acid at position 4.  We used the GLYPH software to identify similar 

clonotypes and found a family of similar receptors that differ by a single amino acid at 

position 5: CASSYRGGAETLY (A22 TCR), CASSLRGGAETLY (L/a11r-4), 

CASSFRGGAETLY, CASSHRGGAETLY, and CASSIRGGAETLY (Glanville et al., 

2017).  To account for possible technical variability, we repeated the NGS analysis on a 

separate pool of 15 LCMV-immune mice (Table IV-1).  We found the A22 family 

consistently present in the cross-reactive population at similar relative frequencies and at 

low frequencies or absent in tetramer- populations (Figure IV-2).   

 

Clonotypes belonging to the A22 family are abundant in memory T cells from LCMV-

immune animals.  To determine if these clonotypes are also abundant in acute LCMV-

infected animals, we repeated our tetramer staining and NGS analysis on two mice 

acutely infected with LCMV (Figure IV-2E, F).  Both mice detected high copy numbers 

of CASSYRGGAETLY by A11R+ tetramer, but mouse #2 had only a few copies 

detected by GP34+ tetramer.  We have noted mouse-to-mouse variability in prior studies 

(Cornberg et al., 2010; Shen et al., 2013), which led to the expansion of cell lines that 

have differential cross-reactive epitopes.  Interestingly, the CASSFRGGAETLY variant 

is consistently the most abundant variant detected by GP34 or A11R tetramer in both 

LCMV-immune datasets.  Here, we note that mouse-to-mouse variability and private 

specificity are detectable by NGS.  Taken together, variants of the A22 TCR family are 

represented in both acutely infected and LCMV-immune animals.  The A22 family of 
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Table IV-1 Summary Table of Sequence Reads and Number of Clonotypes for Each 
Dataset of LCMV infected Groups 
  

Tetramer: GP34- GP34+ A11R- A11R+
# cells 1,000,000          129,802            1,000,000          28,370              
# DNA sequence reads 178,600            69,134              206,182            14,243              
# DNA sequence reads (in frame) 128,290            49,116              147,280            10,220              
# unique DNA sequences (in frame) 43,425              6,572                46,260              6,368                
# unique Amino Acid sequences (Vβ + CDR3) 40,300              6,114                42,591              6,031                
# functional clonotypes shared  (tet+ & tet-) (% of total) 11941 (30%) 1132 (19%) 11941 (28%) 1132 (19%)
# functional clonotypes (only tet+ or only tet-) (% of total) 28359 (70%) 4982 (81%) 30650 (72%) 4899 (81%)

Tetramer: GP34- GP34+ A11R- A11R+
# cells 1000000 106222 1000000 29868
# DNA sequence reads 138140 30835 182757 15649
# DNA sequence reads (in frame) 99814 23805 132009 12225
# unique DNA sequences (in frame) 37260 1893 44629 3501
# unique Amino Acid sequences (Vβ + CDR3) 34503 1642 41074 3239
# functional clonotypes shared  (tet+ & tet-) (% of total) 11109 (32%) 360 (22%) 11109 (27%) 360 (11%)
# functional clonotypes (only tet+ or only tet-) (% of total) 23394 (68%) 1282 (78%) 29965 (73%) 2879 (89%)

Tetramer: GP34- GP34+ A11R- A11R+
# cells 100000 669025 100000 3106
# DNA sequence reads 49265 41111 19454 1083
# DNA sequence reads (in frame) 35854 32355 14272 796
# unique DNA sequences (in frame) 5027 896 2069 73
# unique Amino Acid sequences (Vβ + CDR3) 4798 816 2023 70
# functional clonotypes shared  (tet+ & tet-) (% of total) 1441 (30%) 42 (5%) 1441 (71%) 42 (60%)
# functional clonotypes (only tet+ or only tet-) (% of total) 3357 (70%) 774 (95%) 582 (29%) 28 (40%)

Tetramer: GP34- GP34+ A11R- A11R+
# cells 100000 73662 100000 4063
# DNA sequence reads 23770 1213 38831 1339
# DNA sequence reads (in frame) 17126 924 27258 1000
# unique DNA sequences (in frame) 1951 65 4047 249
# unique Amino Acid sequences (Vβ + CDR3) 1908 61 3879 236
# functional clonotypes shared  (tet+ & tet-) (% of total) 1280 (67%) 19 (31%) 1280 (33%) 19 (8%)
# functional clonotypes (only tet+ or only tet-) (% of total) 628 (33%) 42 (69%) 2599 (67%) 217 (92%)

Acute Mouse 2

Acute Mouse 1

LCMV-Immune Dataset 2

LCMV-Immune Dataset 1
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 receptors is identified by a unique sequence signature and was previously shown to offer 

protective heterologous immune responses against VV challenge. 

 
Cross-reactive Sequence Signatures Vary by V Gene and CDR3 Length 

Because GP34/A11R cross-reactive cells are not restricted to TRBV15-01, we were 

interested in identifying other GP34/A11R cross-reactive clonotypes.  By starting with 

genomic DNA instead of mRNA for NGS, one sequence read is related to the number of 

cells isolated.  We weighed clonotypes by their respective copy numbers: a single 

clonotype observed hundreds of times over another are weighted so.  Input files were 

generated for each CDR3 length for input into WebLogo software (Crooks et al., 2004).  

Separate inputs were generated based on GP34 or A11R tetramer staining frequency.  

Surprisingly, important sequence signatures were not immediately apparent. 

 

As noted previously, CDR3 sequences may be identical in different Vβ families, so we 

parsed our data by Vβ gene.  When clonotypes were not weighted for their abundance 

frequency, sequence signatures were not apparent. (Figure IV-3).  However, when our 

data was parsed for Vβ gene, CDR3 length, and weighted for sequence reads, then cross-

reactive sequence signatures became much more apparent in comparison to non-

crossreactive clonotypes. 

 

To systematically identify conserved cross-reactive sequence signatures between GP34 

and A11R, we analyzed sequences separated based on the CDR3 length and Vβ using  
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Figure IV-3 Cross-reactive Motifs are Only Apparent When Sequences are Parsed 
by Vβ Gene and Weighted by The Number of Sequence Reads 
Sequences that were identified in both GP34 and A11R tetramer+ had different 

frequencies when sorted by GP34 or A11R.  Representative analyses are shown here.  (A) 

Cross-reactive sequences weighted by the number of sequence reads for each clonotype 

from GP34 tetramer.  Sequences are separated by CDR3 length and analyzed by 

WebLogo, but do not show strong cross-reactive motifs.  (B) Cross-reactive sequences 

that were separated by Vβ gene, but not weighted by sequence reads do not show strong 

cross-reactive motifs.  TRBV15-01 shown here.  (C) Cross-reactive sequences separated 

by Vβ gene (TRBV15-01 shown) and weighted for the number of sequence reads (GP34 

tetramer shown) show unique motifs for each CDR3 length.  



 77 

Two Sample Logo (Vacic et al., 2006).  Two Sample Logo is based on the WebLogo 

algorithm but highlights significant amino acid differences between two populations.  

Here, we analyzed significant differences between cross-reactive (top) and non-

crossreactive (bottom) clonotypes.  We analyzed the top three most abundant TCR Vβs in 

GP34 and A11R and inferred that sequence signatures apparent in either the GP34-

reactive population or A11R cross-reactive population are important for GP34-A11R 

cross-reactive responses.  Signatures present only in the GP34-reactive populations or 

only in the A11R cross-reactive populations were not considered major GP34/A11R 

cross-reactive signatures.  Interestingly, cross-reactive sequence signatures varied based 

on V gene and CDR3 length (Figure IV-4). 

 

Here, we highlight sequence signatures that share three consecutive residues, enriched in 

both GP34+ and A11R+ cross-reactive clonotypes, and at the same positions, while 

allowing for one gap (Figure IV-5).  In TRBV15-01, the most abundant TCR Vβ detected 

by the GP34 tetramer, showed two unique signatures: R4T5D6S7X8N9T10L11Y12 and 

R6(P/G)7G8A9(E/F)10T11L12Y13 at CDR3 lengths 13 and 14 amino acids respectively.  

TRBV03-01, the most abundant TCR Vβ detected by the A11R tetramer, had a signature 

of (L/F)5D6R7A8(N/Q)9 at length 14 amino acids.  For the other TCR Vβ genes analyzed, 

TRBV13-02’s unique signature is at length 14 amino acids (D5R6D7R8X9G10), TRBV16-

01 at length 13 and 14 amino acids (L5G6F7S8Y9), (P7I8Y9A10) respectively, and 

TRBV19-01 at length 16 amino acids (Y11A12E13). Four signatures had CDR3 lengths of  
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Figure IV-4 Two Sample Logo Analysis Shows Unique Cross-reactive Signatures 
That Are Different Between CDR3 Lengths and Different Between TCRβ Genes 
Sequences were separated by CDR3 length and Vβ gene.  Each unique clonotype was 
weighted by the number of sequence reads for that clonotype based on the number of 
sequence reads separated by respective tetramers (GP34 or A11R).  Clonotypes that were 
identified by both GP34 and A11R tetramer were separated as cross-reactive (top) and 
clonotypes that were unique to respective tetramer sorted populations were separated as 
non-crossreactive (bottom).  Two Sample Logo analysis shown where residues are each 
position that are significantly enriched (t-test with Bonferroni correction) are shown.  The 
top three most abundant Vβ genes used in GP34 or A11R reactivity are shown: (A) 
TRBV15-01, (B) TRBV03-01, (C) TRBV13-02, (D) TRBV16-01, and (E) TRBV19-01. 
Positions with significantly enriched residues in cross-reactive populations that are 
present in both GP34 and A11R tetramer sorts are highlighted with a star. 
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Figure IV-5 Summary Table of Cross-reactive Signatures Significant in GP34/A11R 
Cross-reactivity 
  

V gene
CDR3
length 3 4 5 6 7 8 9 10 11 12 13

TRBV03-01 14 L/F D R A N/Q
TRBV13-02 14 D R D R G
TRBV15-01 14 R P/G G A E/F T L Y
TRBV15-01 13 R T D S N T L Y
TRBV16-01 13 L G F S Y
TRBV16-01 14 P I Y A
TRBV19-01 16 Y A E

Position
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14 amino acids, two of 13 amino acids, and one of 16 amino acids.  Each TCR Vβ gene 

analyzed presented a unique cross-reactive signature that was only detectable after 

 separating our sequences by CDR3 length, indicating that both CDR3 length and TCR 

Vβ genes play a role in TCR specificity and cross-reactivity.  

 

Discussion 

A TCR repertoire can generate an immense about of diversity from V(D)J recombination, 

yet TCRs are often considered degenerate and plastic for its ability to recognize multiple 

ligands.  Comprehensive studies have typically focused on using a peptide-centric 

approach with large peptide libraries that focus on a few TCRs.  In this study, we used a 

TCR-centric approach to characterize cross-reactivity between two epitopes.  This 

approach is unique because only a few cross-reactive epitopes have been identified ex-

vivo.  Reliably identifying cross-reactive T cells remains a challenge due to low affinity 

binding to reagents and low copy numbers of cells in a single animal. 

 

We chose to focus on LCMV-immune animals because its repertoire may be 

representative of a potential recall response in heterologous immunity.  Our system 

uniquely allows us to pool syngeneic animals to increase the number of specific 

splenocytes without potentially introducing bias by ex vivo peptide stimulation.  We 

recognize that many systemic biases can skew repertoire analysis and many groups are 

logically introducing new tools to analyze TCR repertoires (Dash et al., 2017; Glanville 

et al., 2017; Izraelson et al., 2018; Rosati et al., 2017).  Our approach takes advantage of 
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a quantitative pipeline (Carlson et al., 2013; Robins et al., 2010), and by using Two 

Sample Logo to help identify motifs, we can use statistical significance to identify 

specific residues that are enriched in tetramer+ over tetramer- populations.   

 

Several findings from this study contribute to our understanding of TCR cross-reactivity.  

First, sequence motifs are identifiable by parsing our data by TCR Vβ gene and CDR3 

length.  This informs us that germline encoded CDR1 and CDR2 sequences significantly 

contribute to epitope recognition and that unique sequences are generated based on CDR3 

lengths.  This is particularly surprising because it was observed that CDR3 residues are 

frequently positioned at similar positions in MHC recognition.  However, our data 

suggest that residues conserved in particular interactions with specific epitopes may vary 

based on CDR3 length.  Based on the diversity of Vβ genes used and the diversity of 

CDR3 cross-reactive signatures, many cross-reactive recognition modes were detectable.  

Surprisingly, cross-reactive sequences were not significantly biased to Vβ genes or 

motifs. 

  

Although GP34/A11R cross-reactive cell lines are reproducibly generated from LCMV-

immune animals, a thorough repertoire analysis has never been formally demonstrated.  

Interestingly, A11R reactive cells are only detectable after LCMV infection.  Here, ~19% 

of A11R reactive clonotypes are identifiable as GP34 reactive, which suggest that A11R 

is exclusively cross-reactive with other LCMV epitopes besides GP34.  This is surprising 

because the GP33/34 epitope is among the immunodominant LCMV epitopes and 
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represents ~20% of the CD8+ T cells during an acute infection (Van Der Most et al., 

2003).  In LCMV-immune animals, GP34-reactive T cells represent ~4% of the 

splenocytes, while ~0.4% splenocytes are A11R-cross-reactive (Cornberg et al., 2010), 

suggesting that most or all A11R cross-reactive cells could be GP34 reactive.  However, 

identifying other epitopes cross-reactive with A11R remains to be elucidated. 

 

At present, our analysis considers TCRβ clonotypes and focuses on shared identified 

clonotypes.  Inclusion of TCRα with TCRβ as a functional TCR clonotype could 

considerably narrow any overlaps, as long as the sequencing depth is a representative 

population.  A previous study estimated that ~14000  VV precursors in a naïve mouse are 

expanded (Seedhom et al., 2009).  Given that <0.4% of splenocytes respond to A11R in 

LCMV-immune or VV-acute mice, we would estimate ~56 A11R clonotypes.  Our 

current study would estimate ~3000-6000 A11R clonotypes in LCMV-immune animals.  

While NGS is a sensitive and thorough analysis, it is not a substitution for functional 

studies.  Instead, it is a complementary approach with that can provide detailed insight 

into cross-reactive motifs. 
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CHAPTER V 
 
 

STRUCTURAL BASIS FOR CROSS-REACTIVITY OF A SINGLE T CELL 
RECEPTOR WITH TWO DIFFERENT VIRAL PEPTIDES  

 
 
 

Author Contributions 
Keith Daniels infected mice with LCMV and harvested splenocytes for further analysis. 
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Abstract 

Although often considered to be exquisitely specific, individual T cells need to be able to 

recognize many different antigens in order to allow a finite pool of cells to respond to an 

essentially limitless variety of pathogens. One example of such cross-reactivity involves 

lymphocytic choriomeningitis virus (LCMV) and vaccinia virus (VV).  Mice previously 

infected by LCMV are specifically protected from infection with VacV.  Cross-reactive 

CD8 epitopes, from LCMV GP34-41 (AVYNFATM) and VacV A11R198-206 

(AIVNYANL), have been identified, but how cross-reactive T cells recognize these 

peptides that share only 3 identical residues is unknown.  Here, we characterize a cross-

reactive T cell clonotype that mediates protection between these two disparate viruses. 

The A22 TCR, isolated from LCMV-immune mice, recognizes GP34-41 bound to Kb with 

2-fold higher affinity than VacV A11R198-206 bound to Kb. Crystal structures of the 

respective complexes show highly similar binding modes, with extensive TCR-peptide 

and TCR-MHC contacts involving CDR3 from both TCR chains and similar features in 

the exposed peptide-MHC surfaces.  In both Kb-LCMV and Kb-VacV, identical contacts 

are present at the shared exposed residues, P4 asparagine and P6 alanine.  However, A22 

does not utilize the side chain differences between GP34 P7 threonine and A11R P7 

asparagine to differentiate between the two peptides.  Instead, a hydrogen bond is lost in 

the A11R complex at P7 because the P7 asparagine is constrained to hydrogen bond with 

proximal Kb residues.  Additionally, because Kb P3 is an auxiliary pocket formed by 

arginine 155, side chain differences at this position do not affect A22 binding.  The 

propensity of Kb to shield P3, in addition to the lack of specific peptide contacts at P6 and 
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P7 could provide for determinants in cross-reactivity in Kb alleles.  Thus, patterns of 

cross-recognition may vary between different MHC-I alleles due to specific MHC-

peptide interactions. 

 

Introduction 

A key feature of the adaptive immune system is immunological memory.  Memory T 

cells are reactivated upon secondary encounter of its cognate epitope.  However, in some 

cases, unrelated peptides and pathogens can also activate memory T cells, leading to 

either protective cross-reactive responses or harmful pathological responses (Chen et al., 

2003; Mathurin et al., 2009; Selin et al., 1998; Walzl et al., 2000; Welsh et al., 2010).  T 

cells recognize peptide antigens T cells recognize peptide antigens bound to major 

histocompatibility complex (MHC) proteins using a cell-surface receptor complex (TCR) 

that varies clonotypically between T cells, with much of the variation present in 

complementarity-determining CDR1, CDR2, and especially CDR3 loops.  Because of the 

much lower number of T cells than potential antigenic sequences, and the need for T cells 

to engage self-antigens during thymic selection, individual TCRs must be able to 

recognize and response to multiple peptide sequences.  An accumulating body of work 

has addressed the degrees of cross-reactivity in these interactions.  TCRs can tolerate 

many changes to a peptide sequence, and an autoimmune TCR was estimated to bind on 

the order of 106 peptides (Wooldridge et al., 2012).  In studies with positional scanning 

peptide libraries and baculovirus display libraries, T cells were sometimes activated to a 

higher level by synthetic peptides than their cognate peptide (Crawford et al., 2004; 
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Gundlach et al., 1996; Wilson et al., 2012).  Despite the cross-reactive nature of TCRs, a 

study which utilized yeast-displayed MHC-peptide libraries coupled multiple rounds of 

affinity selection and deep sequencing revealed that the optimal peptides recognized, by 

five mouse and human TCRs, did not deviate significantly from their known antigens 

(Birnbaum et al., 2014).  Thus, T cells exiting selection have tonic affinity for self-MHC 

and only the potential to bind foreign peptides – it is not for certain that every naïve T 

cell will eventually bind to a foreign antigen.  While TCRs may prefer to bind to an 

optimal peptide sequence that is found synthetically, circulating TCRs are afforded 

wiggle room to bind other peptide sequences. 

 

Crystallography is often used to gain insight on TCR cross-reactive binding mechanisms.  

However, few examples exemplify TCR cross-reactivity, where the same TCR is ligated 

to different peptide-MHC complexes.  Furthermore, TCRs that have been crystallized 

with different peptide-MHC complexes utilize different mechanisms to achieve cross-

reactivity.  For example, LC13 TCR was crystallized with an allopeptide, mimetic 

peptide (mimotope), and a viral peptide (virotope) (Kjer-Nielsen et al., 2003; Macdonald 

et al., 2009).  Despite differences in peptide sequences and MHC alleles, LC13 CDR 

loops in all three complexes were oriented identically.  Conversely, 2C TCR 

differentially docks on Ld-QL9 and Kb-dEV8 with a rotation of ~20°, resulting in 

differential contacts between the two complexes (Colf et al., 2007).  While LC13 and 2C 

TCR complexes represent alloreactive responses, A6 TCR was crystallized with two 

foreign peptides on the same HLA-A2 allele (Borbulevych et al., 2009; Ding et al., 



 87 

1999).  A6 binds to the HTLV-1 (Human T-lymphotropic virus 1) peptide, Tax, but also 

cross-reacts with a yeast peptide, Telp.  Comparison between A6-Tax, A6-Telp 

complexes showed that A6 TCR docks on the MHC in a very similar orientation (Baker 

et al., 2012).  The differences between the complexes lie in the CDR3β loop where it 

adopts different conformations and “tunes” to different peptide ligands.   

 

In the case of heterologous immunity, memory responses are activated from unrelated 

pathogens.  For example, memory T cells from mice previously infected with 

lymphocytic choriomeningitis virus (LCMV) protect against subsequent challenge with 

Vaccinia virus (VacV), producing IFNγ that helps to reduce viral titers in fat pads and 

liver (Selin et al., 1994, 1998).  VacV challenge of LCMV-immune animals induces 

specific CD8+ T cell responses to LCMV epitopes (Kim et al., 2005).  By examining the 

VacV genome for sequence similarities to known LCMV epitopes, several pairs of cross-

reactive epitopes were identified (Cornberg et al., 2007).  One pair of such epitopes is 

between GP34 (AVYNFATM) and A11R (AIVNYANL) found on LCMV and VacV, 

respectively (Cornberg et al., 2010).   

 

T cell lines expanded from LCMV-immune splenocytes with the A11R peptide were also 

reactive to GP34, and sometimes other LCMV epitopes such as GP118 and NP205.  In 

adoptive transfer experiments, A11R pulsed cell lines were injected into naïve congenic 

mice and then challenged with VacV.  Mice that were adoptively transferred with a T cell 

line that is predominantly TCRβ 15-01 clonotype showed a log reduction in VacV titers 
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compared to PBS control.  Furthermore, A11R specific cells are expanded in vivo by 

adoptive transfer of A11R-pulsed dendritic cells into LCMV-immune animal, resulting in 

slightly lower viral titers following VacV challenge (Che et al., 2015).  Taken together, 

LCMV infection generates a robust CD8+ T cell response, resulting in memory T cells 

that are also activated and expanded by VacV epitopes.  T cells that are expanded from 

recognition to A11R contribute to protective immunity from subsequent VacV challenge. 

 

We previously described the molecular interactions involved in GP34-A11R cross-

reactivity by generating cell lines from LCMV-immune splenocytes, followed by 

functional analysis of the T cell lines to peptides variants (Shen et al., 2013).  When mice 

were infected with LCMV and assayed for IFNγ by intracellular cytokine staining (ICS) 

eight days post infection, splenocytes lost reactivity to both GP34 and A11R epitopes 

with alanine substitutions at P4.  Reactivity to A11R with an alanine substitution at P7 

(P7A) was not very different than wild type A11R peptide.  However, reactivity to GP34 

P7A was significantly diminished in comparison to wild type GP34 peptide.  These data 

suggest that LCMV infection results in receptors with various strategies to recognize the 

GP34 epitope.  Receptors that are cross-reactive between GP34 and A11R impinge on the 

P4 asparagine in both epitopes, but have varying utility at P7. 

 

The underlying mechanisms of GP34/A11R TCR cross-reactivity are still unclear.  In 

particular, how cross-reactivity is mediated by sharing only three amino acids (Figure V-

1A) and how cross-reactive T cells differentiate between P7 residues.  
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While previous models of TCR cross-reactivity between foreign peptides can be 

explained by CDR loop conformational changes (Borbulevych et al., 2009; Mazza et al., 

2007a).  We previously determined the crystal structures of Kb-GP34 and Kb-A11R and 

suggested a molecular mimicry mechanism.  Here, we isolated a cross-reactive TCR for 

biophysical characterization by surface plasmon resonance and x-ray crystallography to 

elucidate a mechanism for GP34/A11R cross-reactivity, and we show that the same TCR 

binds to both pMHC complexes identically, without CDR loop conformational changes 

between complexes. 

 

Results 

Identification of the cross-reactive TCR that recognizes both LCMV GP34 and VacV 

A11R 

To identify a TCR cross-reactive with both GP34 and A11R epitopes, we isolated 

splenocytes from a mouse that had recovered from LCMV infection, and expanded the 

A11R-specific subpopulation by stimulation with Kb-expressing antigen presenting cells 

pulsed with the A11R-peptide.  LCMV infection is known from previous studies to elicit 

populations of CD8+ T cells responsive to many LCMV epitopes (Cornberg et al., 2007, 

2010; Kim et al., 2005), but after several rounds of in vitro stimulation, we observed 

reactivity only to GP34 and A11R peptides, and not to other LCMV epitopes such as 

GP118 and NP205 known from previous work to be present in the polyclonal LCMV 

memory population (Figure V-1B).     
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Figure V-1 Establishing a GP34/A11R Cross-reactive Cell Line from a LCMV-
Immune Mouse  
(A) Sequence alignment of GP34 and A11R epitopes.  Identical residues are highlighted 
in bold.  (B) A cell line was generated by co-culturing A11R pulse RMA-S cells 
splenocytes from an LCMV-immune mouse for multiple passages.  ICCS analysis as 
measured by TNFα stimulated with a panel of LCMV epitopes at 1µg/mL.  (C) ICCS 
dose response curve of GP34, A11R, and negative controls (OVA and GP118) with 5-
fold dilutions from 5µg/mL to 2.5 pg/mL.  (D) Tetramer staining of cell line with 0.5µM 
of tetramers GP34, A11R, or GP118 (control). 
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We evaluated this T cell line for functional responses to the GP34 and A11R epitopes, 

using an intracellular staining assay that measures secretion of the cytokine IFNγ (Figure 

V-1C).  The cell line was responsive to both peptides, but more sensitive to the GP34 

peptide (EC50 = 1.73 ng/mL) than it was to the A11R peptide (EC50 = 56.17 ng/mL) 

(Figure V-1C).  No reactivity to control peptides GP118 or OVA was observed at any of 

the peptide concentrations tested.  We confirmed the difference in sensitivity using 

fluorescent Kb-tetramers, which stained the T cell line more brightly when carrying the 

GP34 peptide (MFI = 1244) than A11R (MFI = 442) (Figure V-1D).  Taken together, this 

T cell clone binds to GP34 tighter than A11R, which may explain the increased 

sensitivity in T cell activation.  When probed for Vβ and Vα genes by PCR and Sanger 

sequencing, only one TCRα and one TCRβ sequence was detected.  We will refer to this 

as the A22 TCR. 

 

To verify that the observed cross-reactivity was due to the A22 TCRα and TCRβ 

sequences, and to rule out potential contributions in the cellular assay from differential 

co-receptor binding or expression of a second TCRα chain, we prepared a soluble 

recombinant version of the A22 TCR, and tested its binding to various Kb peptide 

complexes.  Purified TCRs were used in a surface plasmon resonance assay (SPR) assay 

with biotinylated MHC-peptide complexes immobilized to streptavidin-coupled flow 

cells.  Increasing concentrations of TCR were injected over flow cells containing Kb-

GP34, Kb-A11R, a control Kb-complex (TB10 or OVA), and streptavidin-alone (Figure 

V-2).  The maximum binding RU of each concentration was plotted against TCR   
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Figure V-2 Equilibrium Binding Analysis of A22 TCR with Kb-GP34 and Kb-
A11R.  
(A, C, E) Representative traces of Surface Plasmon Resonance analysis with background 
subtraction.  Increasing concentrations of soluble A22 TCR was flowed over streptavidin-
alone, Kb-GP34, Kb-A11R, and a Kb with an unrelated peptide (OVA or TB10).  (B, D, 
F) Maximum binding from two independent SPR experiments are plotted against TCR 
concentration.   



 93 

concentration and fitted to a simple two-component binding model to estimate apparent 

equilibrium dissociation constants Kd (Figure V-2B, D, F).  A22 was observed to bind to 

immobilized Kb-GP34 approximately two-fold more tightly than to Kb-A11R (72.3uM 

+/- 15.6uM and 135.5uM +/- 37.2uM, respectively), consistent with the increased 

sensitivity of the T cell line to GP34 as measured by the peptide dose response assay, as 

well as the increased staining of GP34 tetramer relative to A11R at the same 

concentration.   

 

Structures of A22 TCR, A22-Kb-GP34, and A22-Kb-A11R. 

To understand the molecular basis for cross-reactive recognition of these disparate viral 

epitopes, we determined the crystal structures of A22 TCR alone, A22 bound to Kb-GP34 

or Kb-A11R.  The structure of A22 TCR alone and not bound to Kb was determined since 

higher resolution crystals were obtained to this than for TCR-MHC complexes (Figure V-

3A, Table V-1).  Despite high-resolution diffraction data, electron density was not 

observed for CDR1, CDR2, or CDR3 loops, except for CDR2α and the framework C’’ 

and parts of the D strand displaced from the beta sandwich (Figure V-4).  These data 

suggest that A22 CDR loops may have a high degree of flexibility in the absence of MHC 

binding. 
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Figure V-3 Similar Binding Modes Between A22 and Kb Complexes 
(A) A22 alone (blue and orange), (B) A22 in complex with Kb-GP34 (green), and (C) 
A22 in complex with A11R (yellow).  Kb is colored purple and β2m pink. (D, F) Surface 
representation of contacts from A22 to pMHC complexes (Kb in grey, peptide 
highlighted black).  Atoms within 4.0 Angstroms of A22 TCR are colored with the 
corresponding TCR chain colors (orange A22α, blue A22β).  Buried surface area (Å2) of 
CDR loops (E, G), pMHC complex (H,I), or peptide (J, K) in complex with Kb-GP34 or 
Kb-A11R respectively.   
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Table V-1 Summary of Data Collection and Model Statistics: A22, A22-Kb-GP34, 
A22-Kb-A11R 
  

A22 A22-GP34 A22-A11R
Source APS LRL-CAT (31-ID) APS LRL-CAT (31-ID) NSLS-II FMX (17-ID-2)

Wavelength 0.979 0.979 0.979
Resolution range 26.7  - 2.152 (2.229  - 2.152) 49.62  - 3.3 (3.418  - 3.3) 49.35  - 3.356 (3.476  - 3.356)

Space group P 1 P 61 P 61

Unit cell 41.627, 51.771, 58.012
93.078, 107.494, 107.943

249.739, 249.739, 228.727, 
90, 90, 120

248.383, 248.383, 227.917, 
90, 90, 120

Total reflections 89585 (8217) 1326032 (125103) 2430025 (242518)
Unique reflections 22795 (2080) 113977 (10767) 113577 (11260)

Multiplicity 3.9 (3.9) 11.6 (11.6) 21.4 (21.5)
Completeness (%) 97.01 (89.31) 93.86 (89.04) 99.72 (99.00)

Mean I/sigma(I) 22.59 (10.28) 10.67 (1.18) 11.12 (1.17)
Wilson B-factor 27.62 88.4 100.29

R-merge 0.06334 (0.1697) 0.2773 (2.425) 0.4241 (2.067)
R-meas 0.07338 (0.1963) 0.2901 (2.537) 0.4344 (2.116)
R-pim 0.03701 (0.09874) 0.08502 (0.7427) 0.09406 (0.4533)
CC1/2 0.997 (0.974) 0.994 (0.6) 0.981 (0.601)

CC* 0.999 (0.993) 0.999 (0.866) 0.995 (0.866)
Reflections used in refinement 22794 (2081) 113977 (10759) 113574 (11216)

Reflections used for R-free 1087 (90) 5656 (523) 5599 (585)
R-work 0.2306 (0.2474) 0.2616 (0.3992) 0.2591 (0.3973)
R-free 0.2462 (0.2732) 0.2753 (0.4439) 0.2752 (0.4346)

CC(work) 0.928 (0.885) 0.918 (0.665) 0.918 (0.703)
CC(free) 0.899 (0.884) 0.893 (0.581) 0.903 (0.660)

Number of non-hydrogen atoms 2999 27870 27623
  macromolecules 2999 27870 27623
Protein residues 385 3571 3589

RMS(bonds) 0.004 0.005 0.004
RMS(angles) 0.98 0.95 0.95

Ramachandran favored (%) 96.99 93.13 92.27
Ramachandran allowed (%) 2.74 5.69 6.47
Ramachandran outliers (%) 0.27 1.18 1.26

Rotamer outliers (%) 1.55 2.81 3.84
Clashscore 2.25 5.36 5.84

Average B-factor 33.14 113.11 119.46
  macromolecules 33.14 113.11 119.46
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Figure V-4 Comparative Analysis of A22 Data and Models 
(A) Crystal structure of A22 alone shows a hyperextended C’’ strand.  (B) A22-MHC 
crystal complexes had a 5th unligated TCR that showed an altered CDR3α loop.  Model 
from A22-GP34 represented here.  (C, D) Representative feature enchanced maps  that 
were used for model building and evaluation.  (E, F) Difference maps show that 
respective peptides are correctly in crystal complex datasets.    
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Crystal structures for the complexes of A22-Kb-GP34 and A22-Kb-A11R (Figure V-3B, 

C, Table V-1) were determined by molecular replacement using the A22 TCR model in 

conjunction with previously determined structures of Kb-GP34 and Kb-A11R (Shen et al., 

2013).  Both A22-Kb-GP34 and A22-Kb-A11R complexes have 4 MHC-TCR pairs and a 

5th uncomplexed TCR in the asymmetric unit (Figure V-4B).  CDR loops were built using 

feature-enhanced maps (Afonine et al., 2015) (Figure V-4C, D).  In each case the four 

copies of each MHC-TCR pair in the asymmetric unit were highly similar (RMSD = 0.28 

– 1.21 Å) and the free TCR was also similar to that observed in the A11R TCR only 

structure (RMSD = 0.63 – 1.43).  Comparison of the 5th uncomplexed TCR with A22 in 

complex with MHC shows a slightly altered CDR3α loop conformation (~6 Å shift at 

glycine 97) (Figure V-4B).  In the context of loop flexibility, CDR3α loop changes 

conformation before and after ligation.  In addition to the lack of resolved CDR loops in 

the A22-alone dataset, these data support the notion that A22 CDR loops may be 

uniquely flexible. 

 

Crystallization conditions, morphology, crystal packing, and asymmetric units were very 

similar between the two MHC-TCR complexes.  To confirm that the crystal complexes 

indeed contained different peptides, Fo-Fo difference maps were calculated with both 

datasets and respective model phases (Figure V-4-E, F).  Peak differences in the Fo-Fo 

maps were present at prominent size differences.  A11R P3 is a valine, which is small in 

comparison to P3 tyrosine in GP34.  Using A11R model phases, strong density is present 

at P3, suggesting a side chain larger than valine fits here.  Surprisingly, small side chain 
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differences were also observed.  For example, GP34 P8 methionine is a longer side chain 

than leucine.  This difference was also observed in the difference map calculated with 

A11R model phases.  When GP34 phases were used, density corresponding to A11R P5 

tyrosine hydroxyl was observed at the tip of GP34 P5 phenylalanine.  Similarly, 2Fo-Fc 

maps were calculated by swapping model phases to purposefully introduce phase bias 

(data not shown).  When using GP34 model phases with the A11R dataset, density at P3 

tyrosine does not extend to the side chain, despite having phase information present here.  

Taken together, our MHC-TCR crystals that were similar in morphology and packing 

contain their respective peptides.  

 

The overall docking of A22 on Kb-GP34 and Kb-A11R are very similar between the 

complexes (RMSD = 0.364) (Figure V-3).  We do not observe gross rotations or 

translations in the TCR relative to MHC in order to accommodate peptide sequence 

differences.  In addition, CDR loops are positioned identically in both complexes.  Even 

though we considered A22 CDR loops to be flexible, we do not observe CDR loop 

conformational changes between the two MHC complexes.  Surprisingly, the amounts of 

buried surface area (BSA) involved in the interactions of MHC-TCR complex formation 

are relatively identical for each CDR loop, as well as individual peptide side chains.   

 

Similar binding modes for A22-Kb-GP34, and A22-Kb-A11R 

To elucidate a specific mechanism of GP34/A11R cross-reactivity, we carried out an 

analysis of interactions along each peptide.  As usual for 8-mer peptides in Kb alleles, the 
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side chains of residues at the fifth and eight positions in the peptides (P5 and P8) are 

buried in deep pockets within the overall peptide binding groove, and the P2 and P3 

residues are partially buried in shallow pockets. This leaves the P1, P4, P6, and P7 side 

chains available for interaction with the A22 TCR, as well the exposed surface of the 

peptide main chain all along the length of the peptide. 

 

Lack of A22 Interactions at P1-P3 

The A22 TCR unexpectedly focused on C-terminal side of the peptide binding site, with 

>90% of the peptide surface area buried by interaction with TCR involving residues at 

the fourth to seventh positions (P4-P7), and little to none involving residues at the first, 

second, or third positions (P1-P3) (Figure V3J, K).  This was unexpected because 

previous structural characterization of isolated Kb-GP34 and Kb-A11R complexes had 

shown that their exposed peptide surfaces were much more similar at the amino terminal 

rather than carboxy terminal sides of the peptide binding groove, suggesting that cross-

reactive TCR might interact near the peptide amino terminus (Shen et al., 2013).  

However, in the crystal structures of both Kb-GP34 and Kb-A11R complexes, A22 

contacts at the amino-terminal side of the peptide binding site are minimal, and involve 

only CDR1a and CDR3a residues contacting MHC α1 and α2 helix residues, with little to 

no peptide involvement in the P1-P3 region 
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A22 Interactions at P4 

P4 asparagine is a major contact for A22 TCR interacting with either Kb-GP34 or Kb-

A11R (Figure V-3J,K), and this residue accounts for more than one third of the overall 

peptide buried surface area in either complex.  A hydrogen-bonding network at P4 

asparagine is found in both complexes (Figure V-5A, D), with the side chain amine of P4 

asparagine forming a hydrogen bond network with the carbonyls of CDR3α proline 95 

and glycine 97 and the main chain amide of P4 asparagine also forming a hydrogen bond 

with the main chain carbonyl of CDR3α proline 95.  This extensive interaction and 

network of hydrogen bonds between CDR3α and P4N in both complexes explains why 

GP34/A11R cross-reactivity is particularly sensitive to P4 substitutions in either peptide 

(Shen et al., 2013).  

 

A22 Interactions at P5-6 

P6 alanine is found in both GP34 and A11R peptides as well.  but is not a major contact 

site for the cross-reactive A22 TCR. P6 alanine does not form many specific interactions 

with A22, but does contact CDR3β arginine 96 with van der Waals interaction (Figure V-

5B, E).  The close contact of CDR3β to the P6 side chain explains the sensitivity of cross-

reactive recognition to P6 substitution by large but not small residues (Shen et al., 2013).  

As noted above the P5 side chain of both GP34 and A11R peptides is buried in a deep 

pocket within the overall binding groove, and not available for TCR interaction, but the 

P5 backbone carbonyls in both complexes form hydrogen bonds with A22 CDR2β 

arginine 49 (Figure V-5B, E).   
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Figure V-5 Peptide Interactions are Conserved from P2-P6, but not P7. 
(A, D) Conserved hydrogen bond network between A22α and P4N in GP34 and A11R 
complexes.  (B, E) P5 backbone interaction with A22 CDR2β is conserved between the 
two complexes.  P6 alanine is an identical residue in both peptides and interacts with Kb 
α2 and A22 CDR3β by van der Waals forces. (C, F) Hydrogen bond between A22β96 
arginine is present in interactions with GP34 P7T, but not A11R P7N.  A11R P7N forms 
a hydrogen bond network between Kb-73 serine and Kb-77 aspartic acid. 
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A22 Interactions at P7 

The most apparent differences in the exposed surfaces between Kb-GP34 and Kb-A11R 

are present at the C-terminus of the peptide at P7 (Shen et al., 2013).  Furthermore, 

alanine substitution of the A11R P7 residue did not abrogate cross-reactive recognition, 

suggesting that important MHC-peptide interaction not involve carboxy-terminal 

contacts.  In both complexes, CDR3β arginine 96 is in the same location for both 

complexes and forms hydrogen bonds with CDR3β asparagine 29 and Kb glutamate 152 

(Figure V-5 C, F).  In complex with GP34, CDR3β arginine 96 hydrogen bonds with P7 

threonine, an interaction facilitated by reorientation of the P7 Thr side chain relative to its 

orientation in the free Kb -GP34 complex.  This interaction is missing in the A22-Kb-

A11R complex, because the P7 asparagine of A11R does not reorient upon complex 

formation, remaining hydrogen bonded to Kb Ser 73 and Asp 77 (Figure V-5C, F).  This 

is explained by extensive hydrogen bonding network where P7 asparagine of A11R 

hydrogen bonds with Kb aspartic acid 77, as well as serine 73 side chain hydroxyl and 

backbone carbonyl.  Based on the model’s Cα and Cβ positions, other asparagine 

rotamers will fit at A11R P7 and hydrogen bond with A22.  But instead, A11R P7 

interactions with Kb pull the side chain away from CDR3β arginine 96.  This interaction 

is also present in the crystal structure of Kb-A11R without A22 TCR.   

 

Transient Interactions at P7 

The SIINFEKL (OVA) peptide variant, SIINFATL (OVA-AT), activated a previously 

described cross-reactive T cells line (TCL #7) (Shen et al., 2013), which was not 



 103 

activated by SIINFAAL (OVA-AA).  The changes between OVA and OVA-AT are due 

to the exposed residues in GP34 at the 6 and 7 positions.  When probed with these two 

peptides, A22 cell line is also activated by OVA-AT but not OVA-AA (Figure V-6), 

indicating a possible key interaction at P7, which contrast with other cell lines that were 

insensitive to P7 substitutions (TCL #1 and #3) and are likely different cross-reactive 

clonotypes. 

 

A22 Interactions with Kb Arg155 
The amino acid residue that contributes the most buried surface area to the A22 

interaction in both Kb-GP34 and Kb-A11R complexes is Kb Arg 155 (Figure V-4E, H).  

Arg 155 projects across the peptide binding site from the MHC α2 helix to the peptide P4 

main chain carbonyl (Figure V-5A, B), in the process capping off the top of the P3 pocket 

and shielding the substantial peptide differences at this position (Tyr in GP34 versus Val 

in A11R) from TCR recognition (Figure V-7 A-F). In this orientation, Arg 155 contacts 

both chains of the A22 TCR, at CDR2α and CDR3β.   
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Figure V-6 Intracellular Cytokine Staining of A22 Cell Line with OVA variants. 
A22 cell lines were stimulated with OVA (SIINFEKL), OVA-AA (SIINFAAL), or OVA-
AT (SIINFATL).  
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Figure V-7 Kb-155 Arginine Shields Peptide Differences at P3 between GP34 and 
A11R. 
(A, B) View of Kb-GP34 and Kb-A11R from above the peptide.  (C, D) Side view of Kb-
GP34 and Kb-A11R reveals a pocket over P3V in A11R that is shielded by arginine 155. 
(E, F) Arginine 155 is at the interface between CDR3α and CDR3β.   (G, H) Alignment 
of 72 Kb structures by pMHC domain.  58 structures are represented in E with Kb-155 
contacting the peptide and 14 in F that point away from the peptide.  Two structures in F 
are Kb variants that have a tyrosine at 155. 
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Discussion 

We were interested in elucidating a molecular mechanism for GP34/A11R cross-

reactivity because insight into the specific interactions may have implications for 

determining cross-reactivity of other epitopes.  These two naturally occurring viral 

epitopes share only three identical residues, yet LCMV infection induces expansion of 

A11R specific T cells, which are protective against subsequent VacV challenge.  It was 

unclear how a single TCR could recognize both GP34 and A11R.  Prior experiments 

detailed the reactivity of mice acutely infected with LCMV by alanine substitutions at 

individual peptide positions.  The data suggests that many strategies are utilized to bind 

GP34 because many changes to the peptide were tolerated by inducing IFN secretion.  

Some of these strategies overlap with A11R reactivity.  In particular, P4 asparagine was 

critical in both epitopes, but P7 substitutions had a differential effect. 

 

Taken together, differential hydrogen bonding networks of A22 to P7 side chains may 

account for the differences observed by our cellular assays and SPR binding studies.  The 

favored interaction between A22 TCR and GP34 threonine at P7 explains why GP34 

peptide activates our cell line at a lower concentration.  This may also explain why GP34 

tetramer binds to more cells than A11R tetramer at the same concentrations as well as a 

higher affinity measurement of GP34 than A11R. 
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We hypothesized that a GP34/A11R cross-reactive TCR would alter its docking angle or 

that CDR loops would have alternate conformations to accommodate peptide differences 

at P7.  Surprisingly, our GP34/A11R cross-reactive A22 TCR binds identically to both 

GP34 and A11R.  Differential utility of the P7 side chain leads to functional and affinity 

differences.  Among the major peptide side chain interactions with TCR (P4, P6, and P7), 

P4 and P6 are identical between GP34 and A11R.  We show that P4 interactions with 

A22 involve an extensive hydrogen-bonding network with CDR3α.   

 

P6 alanine shared between the two epitopes does not make specific electrostatic or 

hydrogen bonds with A22, but CDR3β 96 may be uniquely selected for side chains for 

van der Waal interactions with P6 alanine.  Interestingly, A11R is also cross-reactive 

with other LCMV epitopes.  GP118 (ISHNFCNL) shares P4 and P7 but has a cysteine at 

P6.  Cell lines that were strongly GP34/A11R cross-reactive were not very GP118 

reactive.  Likewise, cell lines that were strongly GP118/A11R cross-reactive were not 

very GP34 reactive.  A11R is also cross-reactive with another VacV epitope, E7R 

(STLNFNNL).  Cell lines that are A11R/E7R cross-reactive are not cross-reactive with 

GP34, GP118, or NP205.  One rationale may be that P6 asparagine in E7R is larger and 

more polar in comparison to alanine and cysteine that are present in the other cross-

reactive peptides. 

 

In the context of cross-reactivity and heterologous immunity, epitopes bound to Kb are 

generally more likely to be cross-reactive to another epitope than Db.  One plausible 
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explanation is that Kb typically binds to 8-mer peptides while Db binds to 9-mer peptides.  

With a shorter peptide, there is more likelihood to chemically overlap with another 

peptide sequence.  In addition, shorter peptides would allow less peptide surfaces for 

TCR discrimination.  This hypothesis is supported by side chain substitutions to OVA 

peptide (SIINFEKL) to match P6 and P7 of GP34.  Cross-reactive T cell lines are not 

reactive to OVA-AA (SIINFAAL), but reactivity is restored in OVA-AT (SIINFATL).  

These data provide two observations.  First, GP34 and A11R reactivity is mediated by 

merely three side chains, which may be unique to Kb 8-mer epitopes.  Second, A22 

interactions require interactions at P7 that is not captured by crystallography.  Because 

OVA-AA was not reactive to GP34/A11R cross-reactive cell lines, this suggests that 

specificity is selected for at P7.  A11R P7 asparagine lacks specific interactions because 

of its propensity to be hydrogen bonded with Kb side chain, but alternate conformations 

were not captured by crystallography. 

 

We were interested in molecular rationales for why Kb would likely present 8-mer 

peptides than 9-mer peptides because insight into allelic differences may provide 

determinants for cross-reactivity of other MHC alleles.  One reason that Db may bind to 

longer peptides is the presence of a ridge formed by tryptophan 73, tryptophan 147, and 

tyrosine 156 that might affect the peptide backbone (Young et al., 1994).  These residues 

are serine 73, tryptophan 147, and leucine 156 respectively in Kb.  Interestingly, Kb 

bound peptides have a slightly restricted sequence specificity at P3 which is an auxiliary 

pocket that is absent in many other alleles (Rammensee et al., 1993).  While alanine 
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substitutions at P3 significantly decrease peptide binding compared to wild-type peptides, 

reactivity is not abrogated (Jameson and Bevan, 1992; Saito et al., 1993).   

 

The Kb P3 pocket is formed by arginine 155 hydrogen bonding with P4 main chain 

carbonyl (Figure V-7A-D).  In our A22-Kb structures, arginine 155 contributes the most 

buried surface area for any MHC side chain and likely contributes significantly to 

binding energetics.  In only 12 out of 70 Kb models deposited in the Protein Data Bank, 

arginine 155 is modeled as pointing up and solvent exposed (Figure V-7G, H).  Arginine 

155 may play a role in shielding side chain differences at P3 for TCR discrimination, 

such as between GP34 tyrosine and A11R valine.  However, the propensity to interact 

with peptide main chain may contribute to selective peptide length and specificity.  TCR 

contacts with position 155 of MHC are highly conserved and may be important 

evolutionarily (Tynan et al., 2005, 2007).  Contacts are maintained even when the same 

TCR is rotated to bind different peptides (Borbulevych et al., 2011b).  Collectively, 

cross-reactivity may be mediated by a lack of specific MHC-TCR interactions that 

discriminate peptide side chains.  As presented here by P3, P6, and P7, allelic differences 

of MHC side chains may influence the propensity for cross-reactivity.  

 

Although prior studies describe mouse-to-mouse variability in the GP34-A11R cross-

reactive lines, TRBV15-01 (Arden nomenclature Vβ 12), was frequently detected in cell 

lines and ex vivo (Cornberg et al., 2010; Shen et al., 2013).  A cell line (L/a11r-4) bearing 

97% of a TRBV15-01 clonotype was protective against VV challenge when it was 
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adoptively transferred into LCMV-immune hosts prior to infection (Cornberg et al., 

2010).  The TRBV15-01 clonotype in L/a11r had CDR3 sequences of 

CASSLRGGAETLY, which bears only a single amino acid substitution from the A22 

TCR.  Thus, A22 TCR is a representative cross-reactive clonotype that is frequently 

detected in LCMV-immune mice (Chapter IV). 
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CHAPTER VI 
 
 

GENERAL DISCUSSION 
 
Summary 

The studies presented here are directed towards understanding molecular mechanisms 

that are involved in governing the adaptive immune system.  By using x-ray 

crystallography, a detailed snapshot of protein-protein interactions is captured at the 

atomic level.  The protein models presented here directly support other biochemical data 

or cellular assays, which was sometimes generated by my collaborators and 

acknowledged accordingly.  While several models existed previously for MHC-peptide 

exchange, pMHC-TCR interactions, and TCR cross-reactivity, these models often 

focused on one simplistic aspect of the interactions and did not account for effects from 

distal regions of the interfaces.  The preceding chapters presented evidence for 

conformational cooperatively between MHC-peptide and TCRα-TCRβ, where 

information about changes from distal regions is unexpectedly translated throughout the 

interface. 

 

In Chapter II, I provided evidence that determinants outside of the DR1 P1 pocket 

contribute to stable DR1 conformations.  Although it was previously shown that weak 

interactions at P1 decrease MHC-II peptide lifetime and increased susceptibility to DM 

(Pos et al., 2012), my collaborators demonstrated that peptides with a substitution at P9 

peptide position could rescue weak P1 interactions and stabilize peptide off-rates.  The 

structure that I presented of DR1-A1L9, which has a weakly associated P1 residue and a 
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tightly associated P9 residue, shows that the overall structure is identical to the wild-type 

peptide.  This data supports biochemical and biophysical evidence that P1 pocket 

interacting residues are not the only determinants in stable DR1 conformations and DM-

mediated peptide exchange.  Side chains that are bound in the P9 pocket, a pocket distal 

to P1, also contribute to the overall stability of DR1-peptide complexes. 

 

In Chapter III, I interrogated TCR components that may influence MHC specificity.  I 

demonstrated that distal regions of the TCR may influence specific interactions to MHC 

elsewhere.  The crystal structures of MHC-specific TCRs, J809.B5 and 14.C6, were 

solved in complex with I-Ab-3K for comparison to the parental MHC-crossreactive YAe 

TCR.  Even though the peptide, MHC, and TCRβ sequences are constant between 

J809.B5 and YAe pMHC-TCR complexes, differential TCRα chain pairing alters TCRβ 

interactions with pMHC.  Furthermore, while comparing J809.B5 and 14.C6 complexes 

with the same TCRα gene but different CDR3α sequences, I showed that CDR3 

sequences alone could modulate CDR1 and CDR2 interactions with pMHC.  This data 

corroborates biophysical and cellular data from our collaborators, and shows that MHC-

specificity is not necessarily a product of by specific pairwise interactions between MHC 

and TCR.  Instead, the composite TCR structure (CDR1, CDR2, and CDR3s of both 

TCRα and TCRβ) influences the specificity of pMHC ligands. 

 

Lastly, I examined TCR cross-reactivity between two viral epitopes in Chapters IV and 

V.  First, I used a deep sequencing approach to search for motifs which might confer 
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cross creativity upon a single T cell receptor.   None were detected when the CDR3 NGS 

data was pooled across all TCR beta genes.  After separating the CDR3 sequences by 

TCRβ genes and accounting for differences in abundance of each receptor, it was evident 

that each TCRβ gene had different cross-reactive motifs and that each motif varied in 

amino acid composition and CDR3 length.  This supports my previous conclusions in 

Chapter III that the composite TCR is involved in MHC ligand specificity because each 

TCRβ gene encodes for different CDR1 and CDR2 sequences.  I then demonstrated by x-

ray crystallography that a cross-reactive TCR, A22, docks similarly to the two peptides 

and retains similar interactions from P1 to P6.  However, A22 TCR hydrogen bonds with 

GP34 P7 threonine, but not A11R P7 asparagine.  Although A11R P7 asparagine has the 

chemical make up to hydrogen bond with A22 CDR3β arginine 96, A22 arginine 96 is 

constrained by interactions with Kb. These data provide new evidence that TCR cross-

reactivity is influenced by allelic MHC side chain interactions with the bound peptide, as 

well as TCR CDR loop sequences. 

 

A thorough understanding of MHC-peptide and pMHC-TCR interactions would allow for 

accurate epitope prediction algorithms that could be used for therapeutic goals.  However, 

predicting MHC epitopes and pMHC-TCR interactions is still difficult.  The data 

presented here describe new interactions between MHC-peptide and pMHC-TCR and 

suggest that the composite interface between MHC-peptide and MHC-TCR are important 

in peptide binding and TCR binding.  This view is supported by a model of 

conformational melding (Baker et al., 2012; Borbulevych et al., 2011c), where MHC and 
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TCR can cooperatively adjust for binding to proceed.  In short, protein interactions are 

complicated. 

 

Significance and Implications 

T cell activation is one of the potent weapons for the body to fight off a pathogen’s 

attack.  There are two major reasons why it is important to understand factors that 

contribute to epitope selection, pMHC stability, T cell activation, and TCR cross-

reactivity.  The first is to identify targets for treating pathogenic infections and 

autoimmunity.  While pathogenic agents evolve new immune evasion mechanisms, a 

thorough understanding of how peptides are selected and recognized can help direct new 

vaccination targets and strategies.  Because T cells are positively and negatively selected 

on self-pMHC molecules, understanding TCR reactivity and cross-reactivity mechanisms 

can help identify therapeutic targets to prevent alloreactivity or autoimmunity.  The 

second reason to understand the triggers of our potent immune system is to utilize the 

potency of the immune system for treatment of other diseases, such as cancer.   

 

Several therapeutics approaches already take advantage of the adaptive immune system.  

For example, traditional vaccination strategies involve the exposure to a low dosage of 

live or attenuated viruses, which will result in a memory pool of immune cells.  These 

individuals are then protected against subsequent infections of the same or similar 

viruses.  However, introducing such large biologics with many epitopes has the potential 

to introduce allergenic responses (Li et al., 2014).  Small peptide based vaccines are 
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being explored for the basis of intrinsic specificity to very targeted antigens, instead of 

introducing a whole virus cocktail.  Currently, there are over seventy peptides approved 

for clinical trials (Sharfstein, 2018), but only a few have proceeded to Phase III clinical 

trials, most likely due to poor immunogenicity.  Based on the data presented here, careful 

considerations should be made to avoid inducing cross-reactivity with self-peptides.  

While predicting reactivity and self-reactivity may aid in designing extrinsic peptide 

antigens as therapeutics, Chapter V of this dissertation demonstrated an unexpected MHC 

allelic interaction with the peptide.  Currently, immunogenicity and self-reactivity are 

difficult to predict by peptide sequences alone.  Predicting the immunogenicity of 

peptides may require more insight into other contextual information such as linking 

allelic MHC-peptide interactions and pMHC-TCR interactions. 

 

Another therapeutic avenue takes advantage of the potency of the immune system.  In 

contrast to vaccination strategies where an antigen is exogenously introduced and 

memory cell formation depends on antigen uptake, processing, presentation, and T cell 

recognition, exogenous TCRs are transfected directly into autologous T cells.  This 

approach bypasses the requirement for antigen presentation by the immune system to 

generate a specific immune response and has the potential to utilize TCRs that are 

engineered with a high affinity binding to specific ligands (Li et al., 2005).  TCRs 

directed against tumor specific antigens, such as NY-ESO-1, MART-1, and MAGE-A3, 

have been used in clinical trials (Chodon et al., 2014; Corrigan-Curay et al., 2014; 

Morgan et al., 2014; Rapoport et al., 2015; Robbins et al., 2015).  While transduction of 
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affinity enhanced TCRs towards NY-ESO-1 was successful, TCRs against MAGE-A3 

had very detrimental effects.  In a study of nine patients with varying cancer types 

expressing MAGE-A3, two patients lapsed into coma and died.  Subsequent studies 

determined that the TCRs transduced were highly cross-reactive with the striated muscle-

specific protein, titin (Cameron et al., 2013; Linette et al., 2013).  MAGE-A3 TCR was 

potent in vitro, but it unexpectedly cross-reacted with a self-protein and resulted in a 

massive auto-reactive response that resulted in death.   

 

One possible reason why the anti-MAGE-A3 TCR led to cross-reactive off-target effects 

is because the TCR underwent many changes during in vitro affinity maturation.  This 

TCR was initially selected for binding in mice expressing transgenic HLA-A2, but high 

affinity binding was selected in vitro by site-directed mutagenesis.  With these changes to 

the TCR bypassing the normal negative selection process, it is important to include 

parameters that include a comprehensive panel of self-peptides and a panel of MHC 

alleles to assay for cross-reactivity.  While pre-clinical assays did not show evidence of 

off-target reactivity, the data presented in this dissertation showed that subtle changes to 

TCR CDR loops sequences could alter MHC specificity and cross-reactivity.  It is unclear 

if different patients’ TCR repertoires or MHC alleles may have played a role in self-

reactivity.  Although cross-reactivity was suggested between MAGE-A3 and titin, 

patients showed varying pathologies and one patient fully recovered from Parkinson-like 

symptoms.  This case study illustrates that we do not fully understand the mechanisms of 

cross-reactivity or epitope prediction.  Because TCR repertoires are selected from an 
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individual’s MHC haplotype and self-peptide repertoire, exogenous TCR transfusion may 

require detailed understanding of the interplay between MHC haplotypes and TCR 

responses before introducing exogenous T cell receptors into patients. 

 

The success of CAR (chimeric antigen receptor) T cells exemplifies potency of T cells.  It 

is an example of how to harness T cells without fully understanding the nuisances of 

peptide-MHC-TCR interplay.  CAR-T cells are autologous T cells that are transduced 

with an antibody-like molecule and also carry the signaling components for T cell 

signaling.  Upon ligand recognition, T cells are signaled for their functional outcome 

such as target cell killing.  This approach strikes a balance between having specificity for 

soluble antigens and T cell effector functions.  Recently, CAR-T cells were used in a B-

cell malignancy clinical trial (Turtle et al., 2016) where 27 out of 29 patients achieved 

remission.  One potential reason why CAR-T cells are thus far successful is because the 

antigen receptors are antibody-like and not restricted to MHC ligands.  This allows for 

much more diversity in the sequences of receptors on the cell surface and less likelihood 

of cross-reactivity.  Conventional TCRs may have the same potential as CAR-T cells, but 

MHC-restriction limits our discovery and usage of such receptors.  In the absence of 

MHC restriction, (such as in transgenic mice that lack MHCs), T cells are expressed that 

recognize non-MHC molecules (Tikhonova et al., 2012).  

 

As we move towards personalized medicine, it is prudent to consider an individual’s 

MHC and TCR haplotype.  The data presented here suggests that MHC alleles play a role 
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in ligand reactivity and cross-reactivity.  In the same vein, an individual’s TCR alleles 

may also play a role in ligand recognition and is an avenue that remains to be investigated 

 

Limitations and Future Directions 

One criticism of x-ray crystallography is that the data represents a static view, which may 

be different than relevant dynamic interactions in solution or in vivo.  The crystal 

structure of MHC bound to peptide presented in Chapter II is an excerpt from a co-

authored manuscript. The larger study followed the crystal structure up with several 

additional assays including conformational specific antibodies, biochemical assays, and 

NMR spectroscopy.  In particular, NMR spectroscopy revealed that the significant 

changes between DR-A1 and DR-A1L9 complexes are present at pocket 1, despite 

having the same P1 residue in both complexes.  This directly supports the structure 

presented here, that A1L9 is a stable complex due to the L9 substitution and samples a 

DM-resistant conformation in comparison to DR1-A1. 

 

MHC-TCR interactions are often difficult to measure quantitatively.  Some groups use 

alanine scanning substitutions or fluorogenic probes to quantify energetic requirements at 

the interface.  However, changing residues at the interface may unpredictably affect 

ligand specificity that was previously constrained by positive and negative selection of T 

cells.  The argument presented here supports a model of conformational melding between 

peptide-MHC and MHC-TCR.  NMR would be an ideal method to test this hypothesis, 
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but the large size of MHC-TCR complexes and relatively weak binding affinities would 

provide complications for a reliable and conclusive analysis.   

 

Hence, the understanding of MHC-TCR interactions has relied heavily on MHC-TCR 

crystal structures.  Here, we isolated and determined the structures of two self-tolerant 

MHC-TCR complexes.  These receptors were isolated from TCRβ transgenic mice in 

order to study TCRs that pair with other TCRα chains.  This is a unique study in the field 

where MHC, peptide, and TCRβ are shared.  Additionally, the complex of 14.C6 TCR 

uses an identical TCRα chain as J809.B5, but carries a different CDR3 sequence.  One 

limitation of this study is that the parental TCR used to generate the TCRβ transgenic 

mice, YAe62, was isolated as self-reactive TCR.  Although only the YAe62 TCRβ chain 

is used as a transgene, the TCRs isolated from these mice may intrinsically be biased 

towards self-reactivity and have affects that are unaccounted for.  The crystal structure of 

the YAe62-pMHC complex was slightly tilted, where the TCRβ chain made many more 

contacts with MHC than TCRα.  One potential avenue would be to further characterize 

TCRs from YAe62 TCRα transgenic mice, instead of YAe62 TCRβ, to ascribe a role of 

the α chain in MHC self-reactivity.  Another avenue of interest is to characterize TCRα-

TCRβ chain pairing in other systems.  Nonetheless, the overall conclusions from this 

study, that the composite TCR is involved in ligand recognition, are supported by the 

conclusions of GP34/A11R repertoire analysis. 
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GP34/A11R cross-reactive motifs were identified after a logical process to parse NGS 

data.  Since CDR1 and CDR2 sequences vary between TCR genes, different genes 

exhibit different cross-reactive motifs.  Compared to other studies, the approach in this 

study is unique in the method by which we separated our data.  Our study is also unique 

in that CDR3 sequences were weighted accordingly, increasing the weight of a sequence 

based on how many times it was read by NGS.  Many TCR NGS analyses do not use 

these corrections, which may be a more accurate representation of the TCR repertoire in 

vivo.   

 

Many studies do not correct for the number of times a sequence is observed because PCR 

steps can amplify primer biases.  Additionally, it is difficult to obtain large enough 

sample quantities ex vivo for NGS analysis.  Therefore, RNA is typically used as starting 

material for TCR NGS.  We did not use this approach because RNA copy numbers may 

vary from cell to cell and introduce bias towards different receptors.  Instead, we used 

genomic DNA to circumvent this issue.  The NGS platform that was used also includes 

controls for quantification such as internal synthetic standards and a bioinformatics 

correction for PCR bias.  A potential pitfall in our approach is comparing datasets 

between samples.  A rarefaction analysis, which attempts to estimate the true diversity 

from a sample, showed different diversity measurements between different datasets.  

While it is still unclear of what type of analyses best represents TCR repertoires, the 

rarefaction analysis suggests that we might not be capturing the full breadth of a mouse 

repertoire.  However, this may also be due to the fact that we pooled 15 mice, with each 



 122 

pool containing a different set of mice, and each mouse possessing its own private TCR 

repertoire, a subset of receptors that are not shared between other mice.   

 

Our NGS dataset showed that many A11R-reactive receptors could be isolated from 

LCMV-immune mice.  Interestingly, only a subset (~18%) of A11R-reactive cells is also 

reactive to GP34.  Because the A11R-reactive population is only detectable after LCMV 

infection, by definition, A11R-reactive cells are cross-reactive with a LCMV epitope.  To 

understand other A11R cross-reactive patterns, future experiments would include 

tetramer staining with LCMV epitopes, such as E7R or GP118, followed by TCR NGS as 

performed here.  I would expect that different cross-reactive motifs would be apparent 

that are different from A11R/GP34 cross-reactive motifs.   

 

As of writing, our understanding of the cross-reactive TCR repertoire is limited to TCRβ 

sequencing.  It is difficult to capture paired αβ sequences with the current breadth of 

TCRβ sequencing.  As technology advances, a key avenue of research will be 

investigating how TCRα-TCRβ pairing influences cross-reactivity. 

 

Lastly, the cross-reactivity observed between GP34/A11R is unique to Kb.  As presented 

in Chapter V, cross-reactivity between GP34 and A11R is mediated constrained peptide 

interactions between P7 asparagine and Kb allelic side chains.  Compared to other MHC 

complexes, Kb epitopes were observed to be more susceptible to cross-reactivity.  While 

we captured complexes that bind similarly between the two peptides, other mechanisms 
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could potentially mediate cross-reactivity in different receptors, such as alternate docking 

angles or CDR loop conformational changes.  Determining the structures of other cross-

reactive TCRs in other MHC alleles will be of interest.  I note that unique MHC allele 

specific interactions with the peptide may contribute to cross-reactivity, such as Kb 

arginine 155 and interactions at P7, but it remains to be seen if it is a general TCR cross-

reactive mechanism.
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APPENDIX A 
 
 

MATERIALS AND METHODS 
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DR1-A1L9 (PDB: 4OV5) - Crystallization Condition, Data Collection, and Structure 
Determination 
 
Conditions: 4 °C in 4% PEG 4000, 10% ethylene glycol, 100mM sodium acetate (pH 
5.0).   
 
Cryocondition: Single 100 x 100 x 300 um crystals were transferred to cryo-solution 
containing 30% ethylene glycol and flash-cooled in liquid nitrogen.  
 
Beamline: National Synchrotron Light Source X29 beamline.  
 
Data Indexing and Scaling: HKL2000 
 
Phasing: Molecular replacement with previously solved structure of DR1-A2 
(PDB:1AQD) using Phaser (CCP4i).  Residues within 4 Å of the peptide were removed. 
 
Crystal Composition: P 21, 6 molecules/ASU 
 
Model Building: An initial model with ambiguous density was trimmed using a 
composite omit-maps (CNS).  Models were built into 2Fo-Fc maps. 
 
Refinement Strategy: XYZ positional refinement, Individual B factors 
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809.B5 TCR and IAb-3K (PDB: 3RDT)  - Crystallization Condition, Data 
Collection, and Structure Determination 
 
Conditions: 1:1 molar 809.B5 TCR and IAb-3K mixed at 10mg/ml using hanging drop 
vapor diffusion method at room temperature.  12% PEG 4000, 100 mM sodium citrate, 
and 100 mM sodium cacodylate, at pH 5.0 
 
Cryocondition: Well solution containing 25% (w/v) glycerol and flash-cooled in liquid 
nitrogen.  
 
Beamline: National Synchrotron Light Source X29 beamline.  
 
Data Indexing and Scaling: HKL2000 
 
Phasing: Molecular replacement with previously solved structure of YAe-IAb-3K 
(PDB:3C60) using Phaser (CCP4i).  Residues within 5 Å of the peptide were removed. 
 
Crystal Composition: C 2, 1 molecule/ASU 
 
Model Building: An initial model with ambiguous density was trimmed using a 
composite omit-maps (CNS).  Models were built into 2Fo-Fc maps. 
 
Refinement Strategy: XYZ positional refinement, Group B factors, TLS 
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14.C6 TCR and IAb-3K (PDB: 4P5T)  - Crystallization Condition, Data Collection, 
and Structure Determination 
 
Conditions: 1:1 molar 14.C6 TCR and IAb-3K mixed at 10mg/ml using hanging drop 
vapor diffusion method at room temperature.  100 mM sodium cacodylate, 200 mM 
sodium citrate (pH 5.5) 10% (w/v) PEG 4000 and 0.5% (w/v) n-octyl-b-D-glucoside. 
 
Cryocondition: Well solution containing 25% (w/v) glycerol and flash-cooled in liquid 
nitrogen.  
 
Beamline: National Synchrotron Light Source X29 beamline.  
 
Data Indexing and Scaling: HKL2000 
 
Phasing: Molecular replacement with previously solved structure of B5-IAb-3K 
(PDB:3RDT) using Phaser (CCP4i).  Residues within 5 Å of the peptide were removed. 
 
Crystal Composition: P 21, 2 molecule/ASU 
 
Model Building: An initial model with ambiguous density was trimmed using a 
composite omit-maps (CNS) and RESOLVE map.  Models were built into 2Fo-Fc maps. 
 
Refinement Strategy: XYZ positional refinement, Group B factors 
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A22 TCR - Crystallization Condition, Data Collection, and Structure Determination 
 
Conditions: 5-10mg/ml using sitting drop vapor diffusion method at room temperature.  
100 mM sodium acetate pH trihydrate pH 4.0, 8% (w/v) PEG 3350 
 
Cryocondition: Well solution containing 30% (w/v) PEG 400 and flash-cooled in liquid 
nitrogen.  
 
Beamline: National Synchrotron Light Source X29 beamline.  
 
Data Indexing and Scaling: HKL2000 
 
Phasing: Molecular replacement with a composite TCR structure with 3C5Z and 3UTT 
TCR chains using Phaser (CCP4i).  Initial model was trimmed using Scultor. 
 
Crystal Composition: P 1, 1 molecule/ASU 
 
Model Building: An initial model with ambiguous density was trimmed using a 
composite omit-maps (Phenix).  Models were built into 2Fo-Fc and Feature enhanced 
maps. 
 
Refinement Strategy: XYZ positional refinement, individual B factors, TLS 
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A22-Kb-GP34 - Crystallization Condition, Data Collection, and Structure 
Determination 
 
Conditions: 5-10mg/ml using sitting drop vapor diffusion method at room temperature.  
100 mM sodium cacodylate pH 7.0, 1.5% tacsimate pH 4.0, 4% (w/v) PEG 3350 
 
Cryocondition: Well solution containing 30% (w/v) PEG 400 and flash-cooled in liquid 
nitrogen.  
 
Beamline: Advanced Photon Source 31-ID.  
 
Data Indexing and Scaling: aimless 
 
Phasing: Molecular replacement with a composite TCR structure with 3TID (Kb-GP34) 
and partially built A22 TCR using Phaser (Phenix). 
 
Crystal Composition: P 61, 4 MHC:TCR molecule/ASU, 1 TCR molecule/ASU 
 
Model Building: An initial model with ambiguous density was trimmed using a 
composite omit-maps (Phenix).  Models were built into 2Fo-Fc, Feature enhanced maps, 
and NCS maps. 
 
Refinement Strategy: XYZ positional refinement, group B factors, TLS, NCS restraints 
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A22-Kb-A11R - Crystallization Condition, Data Collection, and Structure 
Determination 
 
Conditions: 5-10mg/ml using sitting drop vapor diffusion method at room temperature.  
100 mM sodium formate pH 5.0, 8% (w/v) PEG 3350 
 
Cryocondition: Well solution containing 30% (w/v) PEG 400 and flash-cooled in liquid 
nitrogen.  
 
Beamline: NSLS-II FMX 17-ID-2  
 
Data Indexing and Scaling: aimless 
 
Phasing: Molecular replacement with a composite TCR structure with 3TIE (Kb-A11R) 
and partially built A22 TCR using Phaser (Phenix). 
 
Crystal Composition: P 61, 4 MHC:TCR molecule/ASU, 1 TCR molecule/ASU 
 
Model Building: An initial model with ambiguous density was trimmed using a 
composite omit-maps (Phenix).  Models were built into 2Fo-Fc, Feature enhanced maps, 
and NCS maps. 
 
Refinement Strategy: XYZ positional refinement, group B factors, TLS, NCS restraints 
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Structural Analysis 
 
Contacts were identified with NCONT using a 4 Å cut off. 
 
Buried Surface Area and Hydrogen bonds were identified with PISA webserver. 
 
Structural alignments were done in PyMol or LSQMAN. 
 
NCS copies were moved with PyMol and Coot. 
 
B factors were reset to Wilson B factor prior to initial refinement using Moleman2. 
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Next Generation Sequencing for TCRβ  
 
Isolated splenocytes were enriched and untouched using MACS CD8+ T cell Isolation 
Kit prior to cell surface staining with antibodies and tetramer. 
 
FACS sorted cells were left unfixed for DNA isolation. 
 
Genomic DNA was isolated using Qiagen DNeasy Blood & Tissue Kit and QIAamp 
DNA Micro kits. 
 
DNA quantification was accomplished with Quan-IT PicoGreen assay 
 
NGS amplication and libraries were generated according to Adaptive Biotechnologies 
immunoSEQ kit. 
 
Data analysis was carried out using Python.  The Pandas library was used to reindex 
sequences by V gene and CDR3 sequence.  Plotly library was used to plot scatter plot 
graphs. 
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PCR reaction (adapted from Sambrook Molecular Cloning 3rd Ed, Section 8.21) 
• 50ul reaction 
• 200uM each dNTP 
• 50 units/ml of Taq 
• 1uM of fwd primer 
• 1uM of rev primer 
• 1 ng of plasmid 

 
Example Reaction: 
Primers diluted to 20uM (2ul of 100uM +8ul of dH2O) 

• 2.5ul of primers 
• 0.5-1ul of Taq 
• <1ul of plasmid 
• 1ul of dNTP 
• bring volume to 50ul with dH2O 
•  

Taq Master Mix (30ul per reaction) 
• 13ul dNTP 
• 65ul of 10x Taq buffer 
• 312ul of dH2O  

 
 
EtBr Gels 

• Stock EtBr @ 10mg/ml 
• Dilute 1:40, to get 250ug/ml (25ul of 10mg/ml EtBr + 975ul of TAE buffer) 
• Agarose gel should have 0.5 ug EtBr per ml of agarose 
• Add 100ul of 250ug/ml EtBr per 50ml of agarose 

 
DNA ladders from NEB 

• load 0.5ug per well, NEB stock is 500ug/ml 
• for 120ul, mix 12ul 100bp + 88ul dH2O + 20ul 6x loading buffer 
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Intracellular Cytokine Stain and Tetramer Stain of T cell Lines 
Adapted from Keith Daniels/Mike Brehm/Zu Shen 
 
Reagents 
 Company Cat. Number Dilution 
GolgiPlug  BD 51-2301KZ 0.2ul/200ul 
IL-2 Diluted  
(Neat = 0.004ul of 
1ug/ml 10U/ml) 

  0.4ul/200ul 

CD3   0.1ul/200ul 
    
Lympholyte CedarLane Labs MCL5035  
    
Fc Block CD16/CD32  
(unlabeled) 

BD 553142 (clone 2.4G2) 1:100 

CD44 (FITC) BD 553133 1:400 
CD8 (PerCP Cy5.5) Biolegend 126610 (clone 

YTS156.7.7) 
1:200 

Live Dead (Aqua) BD L34957 1:300 
TNFa (PE) Biolegend 506306 1:200 
IFNg (APC) BD 554413 1:1000 
    
FACS Buffer (PBS w/o Mg++ or Ca++; 1% FCS; 0.09% NaN3) 
 
Protocol 
(Specific peptide stimulation) 
 

Stimulation 
1. Plate cells at 100 ul per well in 96 well U-bottom plate.  (Final volume will be 

200 ul) 
2. Make master mix of IL-2 and Golgi plug for each well. 
3. In free wells, plate master mix to add peptide for distribution.  Add 1ul of peptide 

for each well distributed. (i.e. 3 ul for 300 ul of mix)  Distribute 100 ul to cells. 
4. Incubate at 37 degrees C for 4.5 hours 

 
Fc Block 

5. Wash 1x with FACS buffer.  Add 100 ul FACS buffer; centrifuge 5 min at 300 g 
(1200 RPM). 

6. Block Fc receptors with Fc Block antibody.  5 min at 4 degrees C in 100ul FACS 
buffer. 

7. Wash 1x with FACS buffer.  Add 100 ul FACS buffer, 
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Surface Antigens 
8. Make master mix of surface antigens in 100 ul per well. 
9. Add to cells and incubate 20 minutes at 4 degrees C. 
10. Wash 2x with FACS buffer. 

 
Permeate Cells 

11. Resuspend in 100/ul Cytofix/cytoperm for 20 min at 4 degrees C 
12. Wash 2x in 1x Perm/wash solution 

 
Intracellular Cytokines 

13. Make master mix of intracellular cytokines in 100 ul per well. 
14. Add to cells and incubate 25 minutes at 4 degrees C. 
15. Wash 2x with 1x Perm/wash. 
16. Resuspend in 150 ul of FACS buffer. 

 
 
Tetramer staining Protocol 

Cell Clean Up 
1. Resuspend cells in 5 ml increments of media, 1-2 million cells/ml. 
2. Add 5 ml of Lympholyte-M to 15 ml conical. 
3. Slowly add 5 ml of cells (5-10 million cells) per 5 ml of Lympholyte-M. 

a. Add cells at an angle and very slowly, not to disrupt the interface. 
4. Centrifuge 30 min at 900 g (2000 RPM), 25 degrees C. 

 
Wash Cells After Lymphyolyte 

5. Discard top 3 ml of media. 
6. Pipette up the interface, media, and up to 2-3 mls of Lympholyte-M. 
7. Wash 2x by adding 10 ml of media and spinning at 1200 RPM for 5 minutes. 
8. Resuspend in media and count with trypan blue. 
9. Plate about 0.5 x 106 cells per well. 

a. Resuspend at 5 x 106 per ml, then plate 100 ul per well. 
 
Stain Cells with Tetramer and Surface stains 

10. Add Tetramer stains for 45 minutes at 4 degree C. 
11. Add surface stains for 25 minutes at 4 degree C. 
12. Wash 1x with FACS buffer. 
13. Add 100 ul Cytofix, neat from bottle for 5 min. 
14. Wash 1x with FACS buffer. 
15. Resuspend in 150 ul FACS buffer. 
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SDS Gel Loading Buffer 
(Adapted Protocol from Guoqi) 
 
Reagents Needed: 
1M Tris HCL, pH 6.8; FW=157.6 
DTT; FW = 154.25 
Bromophenol blue; FW = 670 
Urea; FW = 60.04 
 
1x solution contains the following concetrations: 
125mM Tris, pH 6.8 
10% glycerol 
2% SDS (w/v) 
100mM DTT 
0.002% bromophenol blue 
 
4x solution contains the following concentrations: 
500mM Tris, pH 6.8 
40% glycerol 
8% SDS (w/v) 
400mM DTT 
0.008% bromophenol blue 
 
To make a 4x solution: 

• 5ml 1M Tris, pH 6.8 (same pH as stacking gel) 
• 4ml glycerol 
• 0.8g SDS 
• 617mg DTT 
• 8mg bromophenol blue 

 
Bring to 10ml.  Store 500ul aliquots in -20 degrees C. 
 
àTo make a urea gel loading buffer, use 5ml of 1M Tris, pH 6.8 made with 8M urea. 
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Cast SDS Page Gels 
(Adapted protocol from Guoqi) 
 

 
X% 4% 12% 

30% Acrylamide/Bis 
3.3(X%)=A 

ml 3.3ml 40ml 
0.5M tris, pH 6.8 - 6.3ml - 

1.5M Tris, pH 8.8 25ml - 25ml 
10% SDS 1.0ml 250ul 1.0ml 

dH2O 73.5-A 15ml 33.3ml 
TEMED 50ul 25ul 50ul 

10% APS 500ul 125ul 500ul 
Final Volume 100ml 25ml 100ml 

 
Reagents will make 10 gels in Biorad casting system. 
 

1. Mix reagents for 12% resolving gel, then pour into gel apparatus. 
a. Add TEMED and APS last. 

2. Carefully Layer top with saturated Tris-butanol solution.  (1:4 stacking buffer 
Tris:butanol)  (Water can also be used instead of butanol) 

3. When resolving gel has solidified, pour off Tris-butanol.  Rinse gently with 
dH2O. 

a. It takes about 1 hour to solidify in Biorad apparatus for 10 gels.  It may be 
shorter with less gels and a different apparatus.   

4. After ~1 hour, mix stacking gel, layer on top of resolving gel. 
5. Quickly put combs in between gel plates. 
6. When gels have solidified, wrap gels individually with moist paper towels and 

store in 4 degrees C. 
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Biotinylation Yield Test for MHC-I Complexes 
Protocol modified from Jennifer Stone 
 
Procedure: 
 

1. Set up reducing SDS-PAGE using a 12% polyacrylamide gel. 
2. Assemble the following samples in reducing SDS loading buffer and boil your 

samples.  Make sure to add enough reducing SDS loading buffer to account for 
the addition of streptavidin or PBS in step 3.  Samples b-d should be brought to 
the same final volume. 

a. Protein MW standards 
b. 2 µg Biotinylated MHC class I + PBS or other buffer 
c. 2 µg Biotinylated MHC class I + 2 µg Streptavidin 
d. 2 µg Streptavidin 

3. Cool all boiled samples to at least room temperature. Then add an excess of 
streptavidin (2 µg) to the samples and an equivalent volume of PBS or similar 
buffer to the unbiotinylated monomer sample.  Allow all samples to sit at least 10-
15 minutes to allow for the streptavidin-biotin interaction to occur. 

4. Run samples on gel (140V for 1 hour), then stain with coomassie. I usually rinse 
the gel after coomassie staining with deionized water and then add the destain. 

a. Note, when destaining, tie two kimwipes (single knot) and immerse in the 
destaining solution. The kimwipes will bind up the coomassie.   

5. The band corresponding to the biotinylated heavy chain of your MHC class I 
should disappear in sample C, and larger bands will appear indicating the 
presence of streptavidin-MHC oligomers.   

6. The yield of biotinylation can be determined by determining the fraction of MHC 
class I heavy chain remaining after streptavidin was added. 
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Generation and Maintenance of Antigen-Specific T cell Lines  
Protocol modified from Michael Brehm and Zu Shen 

 
Materials: 
 

o RMA cells (Roche virus transformed lymphocyte derived from B6 mice), 
expressing KbDb 

o T cell media 
o RPMI, 10% FCS, 1% P/S, 5 mL HEPES, 5 mL L-Glut, 5 mL nonessential 

amino acids, 5 mL sodium pyruvate, 2.5 mL 0.01M BME 
§ All purchased from Invitrogen (except BME) 

o RP10 
o RPMI, 10% FCS, 1% P/S, 5 mL HEPES, 5 mL L-Glut 

o 1 uM peptide (VV-A11R198-205, LCMV-GP34-41) 
o Filtered tips to prevent cross contamination of peptide 
o 0.8% Sterile Ammonium Chloride or Sigma RBC lysis buffer (Cat #R7757) 
o 12 well plates (4 mL well volume ideal) 
o BD T-Cell Culture Supplement without conA (IL-2 culture supplement), rat (BD 

Cat# 354115) 
 
Procedure: 
 

1. Spin down RMA cells for 5 minutes 1200 rpm and resuspend in T cell media to 
10 million cells/mL 

2. Pulse cells with peptide by adding 5 uL (200 ug/mL stock) peptide for every 10 
million cells/mL 

3. Incubate for 1 hour in CO2 incubator, leaving 50 mL conical caps loosened 
4. Irradiate pulsed cells for 3000 rads 

a. Wash irradiated cells with 25 mL T cell media and resuspend in 1 
million/mL 

5. Mash up spleens with 3 mL syringe top (inside of mesh) and add 5 mL of 0.8% 
Ammonium Chloride OR Sigma Lysis buffer for 5 minutes 

a. Add 25 mL of media to stop the lysis and spin down 1200 rpm for 5 
minutes, discard supernatant 

6. Count and resuspend splenocytes in 3.33 million/mL 
7. Want a 10:1 ratio of splenocytes:stimulator RMA cells 
8. Add 1 million cells (1 mL) of pulsed, irradiated cells to culture and 10 million (3 

mL) of splenocytes to the culture 
9. Check culture every 3-4 days, add 1 mL of T cell media if necessary 
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Restimulation procedure: 
 

1. Spin down stimulator RMA for 5 minutes 1200 rpm and resuspend in T cell 
media to 10 million cells/mL 

2. Pulse cells with peptide by adding 5 uL (200 ug/mL stock) peptide for every 10 
million cells/mL 

3. Incubate for 1 hour in CO2 incubator, leaving 50 mL conical caps loosened 
4. Irradiate pulsed cells for 3000 rads  

a. Tighten cap on conical tube and place tube in irradiator 
i. To operate irradiator, turn on, put samples in and set time and 

make sure the timer starts counting upwards 
ii. Set to automatic  

iii. When completed, follow procedure to exit (COMMAND, ARM, 
YES) 

b. Wash irradiated cells with 25 mL T cell media and resuspend in 1 
million/mL 

i. Can use between 500,000 and 1 million stimulator cells per well 
5. Harvest the cells by taking up the full 4 mLs in each well, and then pipet down in 

a circular motion to get all of the cells, do this twice for each well and then add to 
a 50 mL conical 

6. After harvest, add 1 mL PBS and put back into incubator for 5-10 minutes while 
harvesting other plate(s) 

a. Take 4 mLs of the harvested cell mixture and use that to harvest the 1 mL 
of PBS added + cells and add to 50 mL conical 

b. Adding PBS will help remove the cells that are stuck to the bottom of the 
well, this is more important for latter passages 

7. Spin down harvested cells for 5 minutes at 1200 rpm 
8. Reseed cell lines based on density, which is determined visually (seed 1:2 or 2:3 

for the first 3 passages and 1:3 or 1:4 for later passages) 
9. Resuspend pelleted cells using T cell media containing 10% T stim without ConA 

a. Make cocktail with T cell media so that cells can be resuspended into 3 
mLs each well  

10. Add 1 mL of pulsed RMA stimulators (between 500,000-1 million) with reseeded 
T cells and incubate for 3-4 days 
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Inclusion Body Preparation for MHC-I Subunits 
Protocol modified from Mia Rushe 
 
Procedure (for pellet from 10 L culture): 
 

1. Spin down cells at 5000 x g—collect supernatant into a container, sterilize with 
1% Wescodyne for 10-20 minutes, and then dump down the sink. 

2. With a rubber spatula, re-suspend fresh bacteria into a single plastic container 
with ~200 mL Sucrose Solution. 

3. Chop the solution briefly in a homogenizer or polytron. **Do not sonicate! 
4. Most of our cells are not pLyss, so add 1 mg dry lysozyme per mL suspension (0.2 

g) and stir for 10 minutes.  If cells are pLyss, just stir for 10 minutes. 
5. While stirring, add 500 mL Deoxycholate-Triton Solution.  Solution will become 

very viscous due to cell lysis and DNA release. 
6. Add 1 mL of 4 M MgCl2 Solution to make 5 mM final concentration. 
7. Add 2 mL DNAse Solution.  Stir until the solution is the viscosity of water. 
8. Freeze overnight at –20˚C.   
9. Thaw solution in warm water bath. 
10. Stir an additional 10 minutes after thawing to allow the DNAse to work again. 
11. Spin down in 2 centrifuge bottles at 8000 x g for 20 minutes. Discard supernatant. 
12. Re-suspend pellets in 300 mL or more each Triton Solution.  Chop briefly, 

keeping the pellets on ice as much as possible.  Spin down at 8000 x g for 20 
minutes and discard supernatant. 

13. Repeat step 12 three or more times. 
14. Re-suspend pellets into 300 mL or more each Tris Solution.  Chop briefly, 

keeping the pellets on ice as much as possible. Spin down at 8000 x g for 20 
minutes and discard supernatant. 

15. Repeat step 14 two or more times. 
16. Re-suspend/dissolve the pellets and chop in ~ 200 mL Urea Solution. 
17. Spin down at 20˚C, 15,000 x g for 30 minutes.  Filter through a 0.2 µm filter. 
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Solutions (**Note: Do not add DTT until just before use!): 
 
Solution Name Stock For 1 L, 1x For 1 L 10x 
Sucrose     
50 mM Tris, pH 8.0 
25% Sucrose 
1 mM EDTA 
0.1% NaN3 
10 mM DTT 

1 M Tris, pH 8.0 
Dry, FW = 342.3 
0.5 M EDTA 
20 % NaN3 
Dry, FW = 154.04 

50 mL 
250 g 
2 mL 
5 mL 
1.54 g 

 
N/A 

Deoxycholate-Triton    
1 % Deoxycholic Acid 
1 % Triton X-100 
20 mM Tris, pH 7.5 
100 mM NaCl 
0.1% NaN3 
10 mM DTT 

Dry, FW = 414.6 
100% solution 
1 M Tris, pH 7.5 
5 M NaCl 
20 % NaN3 
Dry, FW = 154.04 

10 g 
10 mL 
20 mL 
20 mL 
5 mL 
1.54 g 

100 g 
100 mL 
200 mL 
200 mL 
50 mL 
N/A 

Triton     
0.5 % Triton X-100 
50 mM Tris, pH 8.0 
100 mM NaCl 
1 mM EDTA 
0.1% NaN3 
1 mM DTT 

100% solution 
1 M Tris, pH 8.0 
5 M NaCl 
0.5 M EDTA 
20 % NaN3 
Dry, FW = 154.04 

5 mL 
50 mL 
20 mL 
2 mL 
5 mL 
0.154 g 

50 mL 
500 mL 
200 mL 
20 mL 
50 mL 
N/A 

Tris     
50 mM Tris, pH 8.0 
1 mM EDTA 
0.1% NaN3 
1 mM DTT 

1 M Tris, pH 8.0 
0.5 M EDTA 
20 % NaN3 
Dry, FW = 154.04 

50 mL 
2 mL 
5 mL 
0.154 g 

500 mL 
20 mL 
50 mL 
N/A 

Urea     
8 M Urea 
25 mM MES, pH 6.0 
10 mM EDTA  
0.1 mM DTT 

Dry, FW = 60.06 
Dry, FW = 213.3 
0.5 M EDTA 
Dry, FW = 154.04 

480.48 g 
5.33 g 
20 mL 
15.4 mg 

N/A 

DNAse   *Make 50 mL, not 1 L  
75 mM NaCl 
50% Glycerol 
2 mg/mL DNAse 
Sigma Cat# D25 

5 M NaCl 
100% Glycerol 
Dry 

0.75 mL 
25 mL 
100 mg 

N/A 
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Modifying Free Cysteines on Proteins Using Maleimides 
Protocol modified from Jennifer Stone 
 
Procedure: 
 

1. If the protein is not freshly reduced, add DTT to 5 mM and incubate the protein 
overnight at room temperature.  

a. If the protein has been stored in DTT and is freshly purified by anion 
exchange, there is no need to re-reduce. Skip to step 2. 

2. Either column-purify, dialyze, or concentrate/switch buffers to remove DTT and 
put protein in reaction buffer (I’ve tested PBS, Tris and Phosphate pH 6-8.  If the 
pH is too high, the maleimide reagent will also modify primary amines such as 
lysine residues).  

a. I prefer to use the NAP5 drip columns (GE Healthcare cat# 17-0853-01) 
because the procedure is quick and easys.   

b. The MHC class I complexes elute between 0.75 mL to 1.5 mL.   
3. Immediately check the concentration of the protein, which should be no lower 

than 10 µM, otherwise hydrolysis of maleimide will occur  
4. Add the maleimide reagent to a final concentration so that you get between a 5-10 

fold molar excess of maleimide to your freshly reduced protein.   
a. Your maleimide stock solution should be made in DMSO at a 

concentration greater than 5-10 mM.  The reason being is that you want to 
be able to dilute your DMSO and still have a high enough concentration to 
prevent hydrolysis.  I typically do at least a 1:20 dilution into the protein 
solution.   

5. Mix well and store the solution at room temperature for 1-2 hours. If the probe is 
fluorescent, store the solution in the dark to prevent fluorescence quenching. 

6. After the incubation, you might consider adding DTT to a final concentration of 5 
mM to quench any remaining unreacted maleimide, although I’ve found that this 
isn’t necessary.   

7. HPLC purify away the excess maleimide and DTT (if added in step 6) using a 
Superdex 200 column (GE Healthcare Cat# 17-5175-01) set up on the Biocad.   

8. Pool and concentrate the peak fractions.   
9. Measure the final concentration and, if applicable, the degree of labeling. 
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Modifying Primary Amines on Proteins Using NHS Esters  
Protocol modified from Pierce and Zu Shen 
 
Procedure: 
 

1. Make sure your protein is stored in an amine-free buffer at pH 7.25-8.0.  
Basically, avoid Tris or glycine buffers.  I typically use phosphate or PBS at pH 
8.0.   

2. Check the concentration of the protein, which should be no lower than 10 µM, 
otherwise the reaction will not go efficiently.   

3. Add the NHS ester reagent to a final concentration of so that you get a 10-20-fold 
molar excess of NHS ester to your protein.  Your NHS ester stock solution should 
be made using DMSO at a concentration around 4 mM.  The reason being is that 
you want to be able to dilute your DMSO and still have a high enough 
concentration to prevent hydrolysis of the succinimidyl ester.  I typically do at 
least a 1:20 dilution into the protein solution.   

4. Mix well and store the solution at room temperature for 1-2 hours. If the probe is 
fluorescent, store the solution in the dark to prevent fluorescence quenching. 

5. After the incubation, add a 50-fold molar excess of ethanolamine relative to the 
amount of NHS ester added, to quench any remaining unreacted NHS ester. 

a. Quenching with Tris, followed by multiple rounds of dialysis is 
insufficient to quench the NHS ester.   

6. HPLC purify away the excess NHS ester using a Superdex 200 (GE Healthcare 
Cat# 17-5175-01) column set up on the biocad.   

7. Pool and concentrate the peak fractions.   
8. Measure the final concentration and, if applicable, the degree of labeling. 
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Refolding of MHC-I Complexes 
Protocol modified from NIH Tetramer Facility 
 
Procedure: 
 

1. Pre-chill 1 L of Folding Buffer in a 1.5 L beaker to 4°C.  
2. Add 5 mM reduced glutathione, 0.5 mM oxidized glutathione, and 0.2 mM PMSF 

to cold Folding Buffer, stirring quickly and try to avoid foaming! 
3. Calculate 1 µM heavy chain urea-solubilized subunit and add to 4 mL of Injection 

Buffer. 
4. Calculate 2 µM β2M urea-solubilized subunit and add to the same 4 mL Injection 

Buffer. 
5. Weigh out 10-20 mg of peptide and dissolve in 0.5 mL DMSO. 
6. Add peptide solution dropwise to rapidly stirring Folding Buffer. 
7. Forcefully inject heavy chain and β2M to the stirring reaction through a 26-gauge 

needle as close to the stir-bar as you can.  There may be some precipitation or 
light foaming. 

8. Replace the mixture at 4°C and incubate overnight. 
9. The following morning, inject heavy chain and β2M in Injection Buffer into the 

cold, quickly-stirring mixture as above.  Replace at 4°C. 
10. In the evening, once again inject heavy chain and β2M in Injection Buffer into 

the cold, quickly-stirring mixture as above.  Replace at 4°C and incubate 
overnight 

 
Solutions: 
  
Folding Buffer (pH 8.0)    Injection Buffer (pH 4.2) 
400 mM L-Arginine (Sigma A5949)   3 M Guanidine-HCL 
100 mM Tris, pH 8.0     10 mM Sodium Acetate 
2 mM EDTA      10 mM EDTA 
 
Other Materials 
Urea-solubilized heavy chain and light chain (β2M) 
Peptide of choice 
Reduced glutathione (Sigma G4705) 
Oxidized glutathione (Sigma G4501) 
100 mM Phenylmethylsulfonyl fluoride (PMSF - Sigma P7626) 
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Refolding TCRs 
Adaptive from Guoqi Li 
 
Procedure 

1. Dilute 2uM α + 2uM β (~4.5mg α, 5.5mg βTCRs in 1.5ml Guanidine buffer 
with 4uM DTT. 

2. Add to 100ml Refolding Buffer:  
3. Mix at 4 degrees C for 24 hours. 
4. Transfer to dialysis bags. 
5. Dialyze in 10-14L dH2O at 4 degrees C for 12 hours. 
6. Switch dialysis buffer to 10-14L 10mM Tris pH 8.5 at 4 degrees C for 12 hours. 
7. Concentrate with centricon/amicon. 

 
 
 
 
Guanidine Buffer: 

• 6M Guanidine HCl 
• 10mM Sodium Acetate 
• 10mM EDTA 

 
o For 20ml: 

§ Guanidine: 95.66g/mol x 6M x 20ml = 1.91g 
§ EDTA: 2ml of 0.5M stock 
§ DTT: 30ul of 1M stock 

 
Refolding Buffer 

• 100mM Tris pH 8.5 
• 400mM L-Arginine 
• 5M Urea 
• 5mM Cysteine (reduced), dissolve in 1ml 1M NaOH 
• 0.5mM Cystine (oxidized), dissolve in 1ml 1M HCl 
• 0.2mM PMSF 

 
o For 100ml: 

§ Tris: 2.85 1ml Tris HCL, 7.15ml Tris base 
• OR 10ml of 1M Tris pH 8.5 

§ Arginine: 210g/mol x 0.4M x 100ml = 8.4g 
§ Urea: 60.06g/mol x 5M x 100ml = 30.03g 
§ Cysteine: 121.16g/mol x 5mM x 100ml = 60.5mg 
§ Cystine: 240g/mol x 0.5mM x 100ml = 12mg 
§ PMSF: 100ul of 0.2mM stock 
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