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ABSTRACT 

 

Information processing in the brain relies on a functional balance between 

excitation and inhibition, the disruption of which leads to network destabilization 

and many neurodevelopmental disorders, such as autism spectrum disorders. One 

of the homeostatic mechanisms that maintains the excitatory and inhibitory 

balance is called synaptic scaling: Neurons dynamically modulate postsynaptic 

receptor abundance through activity-dependent gene transcription and protein 

synthesis. In the first part of my thesis work, I discuss our findings that a chromatin 

reader protein L3mbtl1 is involved in synaptic scaling. We observed that knockout 

and knockdown of L3mbtl1 cause a lack of synaptic downscaling of glutamate 

receptors in hippocampal primary neurons and organotypic slice cultures. 

Genome-wide mapping of L3mbtl1 protein occupancies on chromatin identified 

Ctnnb1 and Gabra2 as downstream target genes of L3mbtl1-mediated 

transcriptional regulation. Importantly, partial knockdown of Ctnnb1 by itself 

prevents synaptic downscaling. Another aspect of maintaining E/I balance centers 

on GABAergic inhibitory neurons. In the next part of my thesis work, we address 

the role of the scaffold protein Shank1 in excitatory synapses onto inhibitory 

interneurons. We showed that parvalbumin-expressing interneurons lacking 

Shank1 display reduced excitatory synaptic inputs and decreased levels of 

inhibitory outputs to pyramidal neurons. As a consequence, pyramidal neurons in 

Shank1 mutant mice exhibit increased E/I ratio. This is accompanied by a reduced 
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expression of an inhibitory synapse scaffolding protein gephyrin. These results 

provide novel insights into the roles of chromatin reader molecules and synaptic 

scaffold molecules in synaptic functions and neuronal homeostasis. 
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CHAPTER I 

INTRODUCTION 

 

Neural plasticity 

The brain is not a static structure consists of billions of neurons ready to activate 

predefined orderly events upon stimuli, but rather an ecosystem of 

interconnections in an ongoing state of change. This ability of the brain to change 

and adapt, referred to as “plasticity” by neuroscientists, was first described by 

Santiago Ramon y Cajal, who discovered that new nerve paths can form in the 

brain after injury, and proposed mechanisms and theories for the potential of the 

brain to adapt to the environment (Cajal, 1913). In 1949, the concept of synaptic 

plasticity was more clearly defined by Donald Hebb as the Hebb’s rule (Hebb, 

1949), commonly summarized as “Neurons that fire together wire together”. This 

theory described a process that repetitive stimulation between presynaptic neuron 

and postsynaptic neuron reinforces and strengthens the synaptic connections 

between them, which later shaped the cellular basis for experience-dependent 

learning. We now know that neural plasticity can manifest at various scales 

temporally and spatially. For temporal scales, neural plasticity can occur within 

milliseconds, or involve changes that last throughout lifetime; for spatial scales, 

plasticity can be observed at individual synapses, or it can affect the neural circuits, 

or involve large scale remapping of activity patterns in different brain regions.  

At the center of all types of neural plasticity, activity is the main driving force. 
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Changes in activity level may trigger two major aspects of plasticity: positive 

feedback plasticity that sets the synapses and circuits to a new functional state, 

and negative feedback plasticity that constrains the activity levels of synapses and 

circuits to their homeostatic set point. These two sides of neural plasticity work 

coherently with each other to provide both flexibility and stability needed for the 

development and maintenance of proper neuronal functions. 

One most important form of a positive feedback type of plasticity mechanism 

is Hebbian-type homosynaptic plasticity such as long term potentiation (LTP) and 

long term depression (LTD). In 1973, Bliss and Lomo reported that high-frequency 

stimulation to presynaptic fibers induced potentiation of a postsynaptic response 

that persisted for hours (LTP), while low-frequency stimulation resulted in 

depression of postsynaptic efficacy (LTD) (Bliss and Lomo, 1973). Both LTP and 

LTD are triggered by Ca2+ influx resulting from correlated firing of pre- and 

postsynaptic neurons. For NMDA (N-Methyl-D-Aspartate ) receptor-dependent 

LTP and LTD, depolarization leads to release of the Mg2+ block on postsynaptic 

NMDA receptors, which allows Ca2+ influx through channel opening. High and 

moderate levels of intracellular Ca2+ influx trigger LTP and LTD, respectively, by 

modulating AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 

receptors at postsynaptic sites through a cascade of Ca2+-dependent signaling 

pathways (Lisman, 1989; Yang et al., 1999). For metabotropic glutamate receptor 

(mGluR)-dependent and/or cannabinoid type 1 receptor (CB1R)-dependent LTD, 

the induction instead requires Ca2+ release mediated by postsynaptic mGluRs, 
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and/or presynaptic CB1Rs (Bender et al., 2006; Sjöström et al., 2003). It was later 

found that the sign and magnitude of LTP and LTD are determined by the precise 

temporal order of presynaptic and postsynaptic action potentials (spiking), 

characterized as spike timing-dependent plasticity (STDP) (Bi and Poo, 1998; 

Debanne et al., 1998; Magee and Johnston, 1997; Markram et al., 1997). LTP and 

LTD are also found to be associated with structural and morphological changes of 

synapses. For example, LTP induces new spine formation (Engert and Bonhoeffer, 

1999); LTP and LTD can bring about the enlargement and retraction of dendritic 

spines (Matsuzaki et al., 2004; Nägerl et al., 2004; Zhou et al., 2004). 

The Hebbian type of plasticity, while contributing to the experience-

dependent learning process (Pastalkova et al., 2006; Whitlock et al., 2006), also 

may generate unconstrained instability in neuronal network activity that potentially 

leads to detrimental effects. Runaway potentiation may lead to overexcitation and 

cell death, while runaway depression may result in synapse elimination and 

silencing of neurons (Abbott and Nelson, 2000; Davis, 2006; Turrigiano and Nelson, 

2004), thus disrupting the excitatory and inhibitory balance in the brain. In the 

mammalian central nervous system (CNS), a variety of homeostatic plasticity 

mechanisms exist to provide compensatory negative feedback and to stabilize 

neuronal networks. Examples include homeostatic regulation of intrinsic 

excitability (Desai et al., 1999; Zhang and Linden, 2003), homeostatic synaptic 

scaling (O’Brien et al., 1998; Turrigiano et al., 1998), heterosynaptic plasticity 

(Abraham and Goddard, 1983; Lynch et al., 1977), metaplasticity that adjusts the 
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ability to further induce plasticity based on a history of recent activity (Abraham 

and Bear, 1996; Colino et al., 1992; Deisseroth et al., 1995). 

 

Synaptic scaling and activity-dependent gene expression       

In this part, I focus on a crucial form of homeostatic plasticity that regulates 

synaptic strength - synaptic scaling. Synaptic scaling always scales synaptic 

strength in the direction that compensates for the activity perturbation, and this 

applies for both excitatory synapses and inhibitory synapses. For example, in 

dissociated cultures, excitatory synapses onto excitatory neurons can be scaled 

up by activity blockade, whereas excitatory synapses onto inhibitory neurons are 

scaled up by activity elevation (Rutherford et al., 1998). As for inhibitory synapses 

onto excitatory neurons, the inhibitory synaptic strength is reduced by activity 

blockade and increased by activity elevation (Hartman et al., 2006; Kilman et al., 

2002; Swanwick et al., 2006). In principle, synaptic strength can be regulated at 

the level of presynaptic vesicle release and reuptake, functional synapse numbers, 

and postsynaptic receptor accumulation. For scaling of inhibitory synapses, both 

pre- and postsynaptic mechanisms are involved, including regulation of release 

probability of GABA from presynaptic terminals and change of postsynaptic GABAA 

receptor accumulation (Hartman et al., 2006; Kilman et al., 2002; Peng et al., 2010; 

Swanwick et al., 2006). For scaling of excitatory synapses, although presynaptic 

changes were found in some cases to accompany synaptic scaling (Burrone et al., 

2002; Murthy et al., 2001; Thiagarajan et al., 2002), the central mechanism is 
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attributed to changes of postsynaptic glutamate receptor abundance (O’Brien et 

al., 1998; Turrigiano et al., 1998). In the mammalian CNS, AMPA and NMDA 

receptors are the major ionotropic glutamate receptors that mediate excitatory 

synaptic transmission, and both can be regulated by synaptic scaling (Lissin et al., 

1998; O’Brien et al., 1998; Rao and Craig, 1997; Turrigiano et al., 1998; Watt et 

al., 2000). 

A synaptic scaling phenomenon was first discovered in dissociated primary 

neuronal cultures (Turrigiano et al., 1998), a model system where activity can be 

easily manipulated; for instance, bath application of the GABAA receptor blocker 

bicuculline/picrotoxin (PTX) elevates neuronal activity, whereas the sodium 

channel blocker tetrodotoxin (TTX) induces activity blockade. In the original study, 

chronic network activity elevation or blockade (24~48 hours) triggers a bidirectional 

scaling of AMPA receptor-mediated miniature excitatory postsynaptic current 

(mEPSC) amplitude (quantal amplitude) (Fig 1.1). This scaling is multiplicative, 

meaning that AMPA receptors are inserted or removed from all synapses in 

proportion to the existing number of receptors at the synapse, which allows the 

relative differences between synaptic strengths to be preserved (Turrigiano et al., 

1998).  

In the mammalian CNS, AMPA receptors are hetero-tetramers assembled 

from dimers of dimers of differing combinations of GluA1-A4 subunits. In cortical 

and hippocampal pyramidal neurons, the majority of synaptic and extrasynaptic 

AMPA receptors are the GluA1/2 subtype, and most of the remaining receptors  
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Figure 1.1 
 
 
 

 
 
 
 
Figure 1.1 Schematics for synaptic scaling of AMPARs in dissociated culture.   

Bath application of the GABAA receptor blocker picrotoxin (PTX) elevates neuronal 
activity, and induces a decrease of number of postsynaptic AMPA receptors 
through scaling factors (orange). The sodium channel blocker tetrodotoxin (TTX) 
induces activity blockade, and triggers an increase in the number of postsynaptic 
AMPA receptors through scaling factors (green).  
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are GluA2/3 subtype (Lu et al., 2009b). GluA2-containing AMPA receptors are 

Ca2+-impermeable, and have a slightly outwardly rectifying current/voltage (I/V) 

curve, while GluA2-lacking AMPA receptors are Ca2+-permeable and show inward 

rectification (Boulter et al., 1990). This is functionally important because GluA2-

lacking AMPA receptors exist in intracellular receptor pools, and can be 

incorporated transiently to the synapses in an activity-dependent manner (Ju et al., 

2004; Plant et al., 2006; Sutton et al., 2006). Which AMPA receptor subtypes are 

regulated during synaptic scaling remains controversial. Many studies have found 

that activity blockade induces a coordinated increase of GluA1 and GluA2 

(Anggono et al., 2011; Cingolani et al., 2008; O’Brien et al., 1998; Qiu et al., 2012; 

Shin et al., 2012; Wierenga et al., 2005), but others reported selective 

enhancement of GluA1-containing/GluA2-lacking receptors, thus changing AMPA 

receptor composition (Ju et al., 2004; Sutton et al., 2006; Thiagarajan et al., 2005). 

Interestingly, local activity inhibition at individual synapses, induced by genetically 

silencing presynaptic input, selectively enhances GluA1-containing/GluA2-lacking 

receptors (Hou et al., 2008). Chen et al. recently proposed that the discrepancy 

can be explained by two distinct mechanisms induced by activity blockade. When 

action potential blockade is accompanied by reduction of dendritic calcium levels 

(application of TTX together with NMDA receptor blocker APV), a rapid retinoic 

acid-dependent form of synaptic scaling is induced that requires local synthesis 

and insertion of GluA1-containing/GluA2-lacking receptors (Aoto et al., 2008; Chen 

et al., 2014). On the other hand, activity elevation is shown to preferably target 
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GluA2-containing AMPA receptors (Goold and Nicoll, 2010), thus both GluA1 and 

GluA2 are scaled down (Fu et al., 2011; Qiu et al., 2012; Shin et al., 2012; Tan et 

al., 2015).  

How is the change of activity sensed by the neuron and signaled to the 

synapses? Is it a cell autonomous process or does it require additional signaling 

from the network? Like the Hebbian forms of plasticity, intracellular calcium, an 

indicator for activity, is essential for induction of synaptic scaling. Neurons sense 

their own action potential firing through a change of calcium influx, which in turn 

activates a cascade of Ca2+-dependent signaling pathways that eventually leads 

to regulation of postsynaptic receptors (Goold and Nicoll, 2010; Ibata et al., 2008) 

(Fig 1.2). A number of molecules have been identified that bridge the induction 

and expression steps of synaptic scaling (reviewed in Chen et al., 2014; Pozo and 

Goda, 2010; Rich and Wenner, 2007; Turrigiano, 2012). It is not surprising that a 

lot of these molecules directly contribute to receptor stabilization and trafficking 

machineries, including receptor endo- and exocytosis, receptor turnover rate, and 

scaffolding proteins that tether receptors at synapses (Ehlers, 2000; Ehlers, 2003; 

O’Brien et al., 1998; Turrigiano and Nelson, 2004). For example, the immediate-

early gene Arc/Arg3.1 has been shown to modulate synaptic scaling through an 

AMPA receptor endocytic pathway (Shepherd et al., 2006). Kinases such as 

CaMKIV and CaMKK act as calcium sensors and mediate transcriptional events 

essential for synaptic scaling (Goold and Nicoll, 2010; Ibata et al., 2008). Polo-like 

kinase2 (Plk2) and cyclin-dependent kinases 5 (Cdk5) induce synaptic 
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downscaling by phosphorylation of a scaffold protein SPAR (Seeburg and Sheng, 

2008; Seeburg et al., 2008). Many scaffold molecules such as PSD93, PSD95, 

SynGap, GRIP1, GKAP/SAPAP are also involved (Gainey et al., 2015; Kim et al., 

2007; Shin et al., 2012; Sun and Turrigiano, 2011; Tan et al., 2015; Wang et al., 

2013). Cell adhesion molecules have been shown to stabilize receptors at 

synapses and modulate synaptic efficacy during scaling; examples include β3 

integrins (Cingolani et al., 2008) and the N-cadherin/β-catenin complex (Okuda et 

al., 2007).  

So far, cell-autonomous mechanisms have been discussed. However, 

synaptic scaling has also been found to involve inter-cellular interactions, such as 

soluble factors released from neurons or glia in an activity-dependent manner. 

Cytokine tumor-necrosis factor α (TNFα) released from glia is crucial for AMPA 

receptor upscaling in response to activity blockade (Stellwagen and Malenka, 

2006). Brain-derived neurotrophic factor (BDNF) can differentially influence 

synaptic strength depending on the postsynaptic neuron type through TrkB 

activation (Rutherford et al., 1998). Another soluble factor is retinoic acid (RA). As 

discussed above, a RA-dependent form of synaptic scaling was discovered when 

neural activity was blocked with TTX and APV (Aoto et al., 2008). This is suggested 

to be a distinct mechanism from global cell-autonomous synaptic scaling, because 

it is a rapid process independent of transcription and requires local synthesis of 

GluA1 (Chen et al., 2014; Sutton et al., 2006). 

Synaptic scaling also occurs in vivo.  The most-studied synaptic scaling in  
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Figure 1.2 
 
 

 
 
 
 
 
Figure 1.2 Schematics for cellular mechanisms of synaptic scaling.   

Activity alterations induce transcriptional regulation of gene expression via Ca2+-
dependent pathways, eventually leading to changes in the abundance of 
neurotransmitter receptors at postsynaptic sites. 
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vivo is driven by sensory input during visual cortex development. It has been 

shown that increased synaptogenesis associated with eye opening is 

accompanied by a homeostatic downscaling of synaptic strength (Desai et al., 

2002).  In addition, monocular visual deprivation (activity blockade on one eye) 

induces synaptic upscaling of GluA2-containing AMPA receptors (Desai et al., 

2002; Gainey et al., 2009; Maffei and Turrigiano, 2008). In contrast, binocular 

visual deprivation (dark rearing of animals) triggers synaptic upscaling of GluA2-

lacking AMPA receptors via GluA1 phosphorylation, and this form of experience-

dependent synaptic scaling has been shown to persist through adulthood (Goel 

and Lee, 2007; Goel et al., 2011). Recently, Keck et al. showed similar synaptic 

upscaling in visual cortex induced by bilateral retinal lesions in awake animals 

(Keck et al., 2013). A form of homer1a-driven synaptic scaling-down has also been 

found in vivo during sleep (Diering et al., 2017). Interestingly, the scaling-up in 

visual cortex is inhibited by sleep and enhanced by wake (Hengen et al., 2016). 

Additionally, synaptic scaling has also been observed in auditory cortex following 

auditory deprivation (Teichert et al., 2017). 

Overall, synaptic scaling, with exceptions (discussed above), is generally 

considered a slow, cumulative, cell-autonomous process that requires gene 

transcription and protein synthesis (Goold and Nicoll, 2010; Ibata et al., 2008; 

Schanzenbächer et al., 2016; Sutton et al., 2004). Importantly, many of these 

synaptic scaling factors are themselves regulated by activity, and activity-

dependent transcription has been shown to be critical for the expression of 
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synaptic scaling. For example, activity-dependent upregulation of Arc protein 

induces downscaling of synaptic AMPA receptors; overexpression of Arc reduces 

excitatory synaptic strength and disrupts synaptic upscaling (Shepherd et al., 

2006). Another example is the activity-dependent shift of CaMKII α/β ratio 

observed in synaptic scaling; overexpression of αCaMKII or βCaMKII results in 

opposite effects on synaptic strength (Thiagarajan et al., 2002). Activity also 

triggers bidirectional regulation of Homer1a expression that is required for synaptic 

upscaling and downscaling (Diering et al., 2017; Hu et al., 2010). Moreover, a 

recent study found that neuronal pentraxin-1 (Nptx1) expression increased within 

6 hours of activity blockade; knockdown of Nptx1 abolishes synaptic upscaling 

(Schaukowitch et al., 2017). These results clearly illustrate the critical role of 

activity-dependent gene expression in synaptic scaling, and point to the 

importance of identifying epigenetic mechanisms involved. So far, several 

epigenetic modifications have been identified in homeostatic synaptic scaling. 

Methyl-CpG-binding protein 2 (MeCP2), a DNA methylation binding protein, can 

cell-autonomously mediate synaptic scaling by binding to the GluA2 promoter and 

regulating its expression (Blackman et al., 2012; Qiu et al., 2012). In addition, the 

level of DNA methylation has been found to be associated with synaptic upscaling 

(Meadows et al., 2015). 

 

Histone post-translational modifications and chromatin reader proteins    

Epigenetic mechanisms provide a crucial regulatory layer for activity-dependent 
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gene expression. One of the key mechanisms is post-translational modifications 

(PTM) on the N-terminal tails of histones, known as the “histone code”. These 

covalent modifications, including acetylation, phosphorylation and methylation, 

alter chromatin structures and affect the accessibility of the underlying genes to 

regulatory components (Kouzarides, 2007). Methylation of histone lysine residues 

is a relatively complex “code”, which can exist in three different states: mono-, di- 

and tri-methylation. Depending on which amino acid residue is modified and how 

many methyl groups are added, the effects on transcriptional regulation could be 

positive or negative. The proteins that recognize these histone codes, known as 

“chromatin readers”, often evolve structural domains that bind to specific 

modification sites with remarkable accuracy (Taverna et al., 2007) and translate 

these codes to the transcriptional status of genes.  

One chromatin reader protein family of great interest is the Malignant Brain 

Tumor (MBT) family, characterized by a tandem repeat called the MBT domain. 

The MBT domain was first described in Drosophila l(3)mbt, a tumor-suppressor 

gene in Drosophila larval brain (Wismar et al., 1995). It consists of ~100 amino 

acids and is structurally related to the Royal family of chromatin binding domains 

Tudor, Chromo and PWWP (Maurer-Stroh et al., 2003). In mammals, nine MBT 

proteins have been found to date: L3mbtl1, L3mbtl2, L3mbtl3, L3mbtl4, Mbtd1, 

Scmh1, Scml2, Sfmbt1, and Sfmbt2, each containing two to four MBT domains. 

Structural evidence supports that MBT domains bind to methylated histone lysines 

(Sathyamurthy et al., 2003; Wang et al., 2003). The human L3mbtl1 gene is 
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located on chromosome 20q12, a region commonly deleted in patients with 

hematological disorders including polycythemia vera, myelodysplastic syndrome, 

and acute myeloid leukemia (Perna et al., 2010). L3mbtl1 contains three MBT 

domains, a C2HC zinc finger and an SPM oligomerization domain (Fig 1.3). In vitro 

assays showed that L3mbtl1 preferably binds to mono- and di-methylated histone 

lysines, as opposed to tri- and unmethylated lysine residues of H4K20 and H1bK26, 

via the second MBT domain (Kalakonda et al., 2008; Li et al., 2007; Min et al., 

2007; Trojer et al., 2007). What is the functional importance of this high specificity 

for lower methylation status? Studies have found that several mono-methylated 

histone lysines correlate with gene activation (H3K27me, H3K9me, H4K20me, 

H3K79me, H2BK5me) (Barski et al., 2007; Vakoc et al., 2006). However, our 

knowledge about its biological relevance remains limited. 

In heterologous cell lines, several lines of evidence suggest that L3mbtl1 acts 

as a transcriptional repressor upon binding to chromatin. For example, L3mbtl1 

was reported to interact with TEL (ETS transcription factor subfamily), a key 

regulator in hematopoiesis, through SAM-SPM domain interactions, and mediate 

transcriptional repression of TEL target genes (Boccuni et al., 2003). Furthermore, 

L3mbtl1 has been shown to repress a subset of E2F target genes including  c-myc, 

at least partly by direct compaction of chromatin via recognition of mono- and di-

methylated H4K20 and H1bK26 (Trojer et al., 2007). L3mbtl1 also physically 

interacts with other non-histone proteins such as heterochromatin protein 1γ (HP1γ) 

and retinoblastoma protein (Rb) (Trojer et al., 2007), p53 tumor suppressor protein 
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Figure 1.3 
 
 

 
 
 
 
 
 
Figure 1.3 Schematics of L3mbtl1 domain structure.   

Blue box indicates MBT (Malignant Brain Tumor) domain; purple box indicates 
C2HC zinc finger domain; red box indicates SPM (SCM, PH, MBT) domain.  
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(West et al., 2010), and H4K20 mono-methyltransferase PR-SET7 (Kalakonda et 

al., 2008). Interaction of L3mbtl1 with TEL and E2F transcription factors suggests 

its possible role in hematopoiesis and cell cycle regulation. Indeed, knockdown of 

L3mbtl1 in human pluripotent stem cells results in enhanced hematopoiesis (Aziz 

et al., 2013; Perna et al., 2010), but impaired development of neural progenitors 

(Perna et al., 2015). However, it was reported that L3mbtl1 knockout mice have 

normal hematopoiesis, and that mouse embryonic stem (ES) cells lacking 

L3mbtl1 showed normal cell cycle progression (Qin et al., 2010).  

A link between L3mbtl1 and DNA damage has also been reported by in vitro 

studies. The first evidence is that DNA damage decreases the mono-methylation 

level of p53 at lysine 382, and thus depletes L3mbtl1 from binding to p53 and its 

target promoters (West et al., 2010). Secondly, L3mbtl1 has also been shown to 

facilitate 53BP1 (p53 binding protein)-dependent repair of DNA double-strand 

breaks (DSBs) by dissociating from H4K20me2 sites (Acs et al., 2011). This is 

interesting because DNA DSBs can be triggered in neurons in vivo during seizure-

induced overexcitation as well as physiologic neuronal activity involved in learning 

and memory (Crowe et al., 2006, 2011; Suberbielle et al., 2013). Of note, L3mbtl1 

is expressed at high levels in mouse brain (Lein et al., 2007; Qin et al., 2010) and 

L3mbtl1 knockout mice display an abnormal anxiety and depression phenotype 

(Shen et al., 2015). This suggests that L3mbtl1 may serve yet unknown functions 

in post-mitotic neurons, particularly related to activity-induced plasticity. 

To date, more than 20 histone methyl-codes and their modifiers have been 
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described in the context of neuroplasticity and psychiatric diseases. For example, 

studies suggest that levels of tri-methylation of Histone 3 Lysine 4 residues 

(H3K4me3), a mark for actively transcribing genes, and di-methylation of Histone 

3 Lysine 9 residues (H3K9me2), a mark for transcription repression, are both 

associated with memory formation in contextual fear conditioning (Gupta et al., 

2010). Interestingly, inhibition of histone deacetylase HDAC2 activity enhances 

memory formation and synaptic plasticity (Guan et al., 2009), elevates H3K4me3 

and decreases H3K9me2 (Gupta et al., 2010). Another study identified an 

essential role for H3K9me2 and its di-methyltransferase G9a/G9a-like protein 

(GLP) in cocaine-induced plasticity; it was shown that repeated cocaine treatment 

induced genome-wide heightened gene expression through repression of GLP and 

H3K9me2 levels on promoter regions (Maze et al., 2010). Chronic social defeat 

stress induces downregulation of Bdnf expression through enhanced levels of 

repressive mark H3K27 methylation (Tsankova et al., 2006). In addition, histone 

methyltransferase mixed-lineage leukemia 1 (Mll1) has been shown to mediate 

H3K4 methylation at GABAergic gene promoters, a chromatin mark whose 

alterations are associated with schizophrenia (Huang et al., 2007). Moreover, 

mutations in many histone lysine methyltransferases and demethylases have been 

associated with patients with autism spectrum disorder (ASD), including EHMT1 

(Kleefstra et al., 2012), JARID1C (Adegbola et al., 2008; Jensen et al., 2005; 

Santos et al., 2006), and PHF8 (Abidi et al., 2007; Koivisto et al., 2007; Laumonnier 

et al., 2005). With growing evidence pointing to the role for histone codes in 
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neuropsychiatric disorders, research on the signal receivers of these codes has 

only just begun. 

 

Synaptic scaling, E/I balance and neurodevelopmental disorders       

Over the past decade, a body of pathophysiological evidence in various 

neuropsychiatric disorders supports an emerging theme: disruption of E/I balance. 

Especially during critical developmental stages, a deficit in synapse formation and 

neural circuit refinement, or failure of maintaining plasticity into maturity could lead 

to an imbalance of excitatory and inhibitory neurotransmission and impairment of 

information processing and cognition (Hensch, 2004). 

It has been proposed that autism spectrum disorders (ASD) may arise from 

an increase in the excitatory and inhibitory ratio, leading to hyper-excitability in the 

network (Rubenstein and Merzenich, 2003). Evidence supporting this theory 

include reduced GABA level measured in the frontal cortex of autistic children 

(Harada et al., 2011); decreased levels of GAD65 and GAD67, enzymes that 

synthesize GABA, in postmortem autistic brain (Fatemi et al., 2002; Yip et al., 

2007); and disruption of GABAA and GABAB receptor expression (Collins et al., 

2006; Fatemi et al., 2009, 2013). Indeed, approximately 30% of patients with 

autism develop early life epilepsy (Tuchman and Rapin, 2002). This all points to 

an altered inhibition and possibly a lack of homeostatic mechanisms to restore the 

E/I balance. To date, mutations in several genes involved in homeostatic synaptic 

scaling have been found to contribute to at least three forms of ASD described 
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below.  

Rett syndrome, an autism-related disorder and leading cause of mental 

retardation in females, is caused by mutations in the X-linked gene MeCP2 (Amir 

et al., 1999). Recent studies have illustrated a critical role for MeCP2 in both 

synaptic upscaling and downscaling (Blackman et al., 2012; Qiu et al., 2012). The 

expression level of MeCP2 is shown to be regulated by activity, and knockdown of 

MeCP2 leads to failure of synaptic scaling during activity elevation and blockade, 

suggesting a mechanistic link between Rett syndrome and loss of synaptic scaling.  

Another example is fragile X syndrome, a common known genetic cause of 

ASD. It has been reported that disruption of fragile X mental retardation protein 

(FMRP) caused by Fmr1 gene repeat expansion is responsible for disease 

development (Verkerk et al., 1991). FMRP binds to mRNA and regulates 

translation at synapses. Soden and Chen reported that FMRP is required for the 

retinoic acid (RA)-dependent form of synaptic scaling (discussed above) (Soden 

and Chen 2010).  

Angelman syndrome (AS), characterized by motor dysfunction, mental 

retardation, seizures and autistic-like behaviors, is caused by deletion of the E3 

ubiquitin ligase gene Ube3a (Williams et al., 2006). Contradicting results were 

reported about whether  Ube3a can interact with Arc physically in vivo to mediate 

AMPA receptor internalization (Greer et al., 2010; but see Kühnle et al., 2013; 

Mabb et al., 2014; Pastuzyn and Shepherd, 2017). Despite a lack of consensus, 

Pastuzyn and Shepherd showed in a mouse model for AS (with deletion of the 
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maternal allele of the Ube3a gene) that Arc protein is more stable in dendrites, and 

synaptic scaling of AMPA receptors is disrupted, suggesting that Ube3a may 

regulate Arc expression through indirect pathways, but nevertheless is essential 

for  homeostatic synaptic scaling (Pastuzyn and Shepherd, 2017).  

In summary, disruption of important scaling factors may lead to unchecked 

disturbances in neuronal homeostasis and E/I imbalance, a common trait for ASD 

and other neuropsychiatric disorders (Ramocki and Zoghbi, 2008). Understanding 

the molecular underpinnings of synaptic scaling will impact discoveries for potential 

treatment to restore homeostasis in diseased brain.  

 

Excitatory synapses in inhibitory interneurons  

GABAergic inhibitory interneuron is another important aspect that contributes to 

maintenance of the E/I balance. While excitatory neurons often form long range 

projections and also cluster together with other excitatory neurons (Amaral and 

Witter, 1989; Song et al., 2005), inhibitory neuron connectivity is mostly local (Fino 

and Yuste, 2011). GABAergic interneurons form microcircuits with excitatory 

pyramidal cells and control their synchronized firing, giving rise to gamma 

oscillations, which is critical for cognitive functions in the brain (Cobb et al., 1995; 

Tamás et al., 2000; Whittington et al., 1995). Unlike excitatory neurons, which are 

mostly pyramidal cells, GABAergic interneurons comprise a diverse group of cell 

types distinguished by their morphologies, synaptic connections, and physiologic 

characteristics. They can be subcategorized by their expression of calcium-binding 
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proteins and neuropeptides, such as calbindin (CB), parvalbumin (PV), calretinin 

(CR), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), somatostatin 

(SOM) and cholecystokinin (CCK) (reviewed in Markram et al., 2004). An important 

factor that influences the strength of inhibition is the excitatory synaptic input onto 

inhibitory interneurons. Indeed, it has been shown that genetically disrupting 

AMPA or NMDA receptors at excitatory synapses onto parvalbumin-expressing 

(PV+) interneurons greatly decreases their inhibitory control over pyramidal neuron 

activity, causing  major disruptions in network synchronization and impaired spatial 

working memory related behavior (Korotkova et al., 2010; Rácz et al., 2009). 

The molecular architecture of excitatory synapses onto interneurons differs 

from those formed onto excitatory neurons. First, it has been shown that the major 

AMPA receptor subtypes are different in the two types of synapses (Angulo et al., 

1997; Catania et al., 1995; Geiger et al., 1995; Kondo et al., 1997). The levels of 

NMDA receptors are also lower in interneurons (Goldberg et al., 2003). 

Postsynaptic molecules that interact with receptors are shown to be distinctly 

distributed. For example, receptor tyrosine-protein kinase ErbB4 is generally 

considered a selective marker for excitatory synapses onto interneurons (Fazzari 

et al., 2010; Vullhorst et al., 2009). ErbB4 directly interacts with the postsynaptic 

scaffold protein PSD-95 (Garcia et al., 2000; Huang et al., 2000) and plays a major 

role in the NRG(neuregulin)/ErbB signaling pathway in regulating both excitatory 

input and inhibitory output of interneurons (Buonanno, 2010). CaMKII and SynGAP 

are expressed more abundantly at excitatory synapses onto pyramidal neurons, 
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while Synapse-associated protein 97 (SAP97) and a PSD-95 binding protein Citron 

are more abundantly expressed in interneurons (Akgul and Wollmuth, 2013; 

(Zhang et al., 1999) .  

Synaptic transmission and plasticity can behave differently depending on the 

postsynaptic target cells. EPSC kinetics exhibit faster rise times and decay times 

in interneurons than those in pyramidal neurons (Aaron and Dichter, 2001). 

Differences were also observed in some but not all forms of short-term plasticity, 

for example pyramidal-interneuron connections exhibited less paired-pulse 

facilitation than pyramidal-pyramidal connections (Sun et al., 2005). Long-term 

plasticity is also different. Whether NMDAR-dependent LTP exists at excitatory 

synapses onto inhibitory neurons remains controversial (Lamsa et al., 2005; 

Maccaferri and McBain, 1995; McMahon and Kauer, 1997; Ouardouz and Lacaille, 

1995). Lamsa et al. showed that a specific form of non-Ca2+/calmodulin-dependent 

NMDAR-dependent LTP is observed in interneurons, as opposed to the 

Ca2+/calmodulin-dependent NMDAR-dependent LTP in pyramidal neurons 

(Lamsa et al., 2007a). Additionally, the same stimulation in mossy fibers that elicits 

NMDAR-independent LTP in CA3 pyramidal cells induced LTD or no change in 

interneurons (Maccaferri et al., 1998).  

As for homeostatic synaptic scaling, activity triggers opposite effects in 

excitatory synapses onto excitatory neurons versus excitatory synapses onto 

inhibitory interneurons. For example, Arc has been shown to promote GluA1-

containing AMPA receptor endocytosis in excitatory pyramidal neurons during 
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activity elevation (Shepherd et al., 2006). In PV+ interneurons, however, a different 

molecule Narp (neuronal activity-regulated pentraxin) is triggered by activity to 

insert GluA4-containing AMPA receptors at excitatory synapses, thus 

complementarily enhancing inhibition in the network (Chang et al., 2010). 

Understanding the distinct compositions of these synapses and how molecular 

mechanisms specifying each type of synaptic connection differ are therefore 

valuable. 

 

Standing questions and the scope of this dissertation      

My thesis research focuses on two important components in preserving excitatory 

and inhibitory balance in the brain: homeostatic control of synaptic strength, and 

excitatory synaptic scaffold in inhibitory interneurons. Many synaptic scaling 

factors have been identified that regulate synaptic strength from various aspects. 

Endocytosis and exocytosis of postsynaptic receptors, scaffold proteins at the 

postsynaptic densities, kinases associated with Ca2+ signaling, cell adhesion 

molecules, ubiquitin-proteasome system, etc., can all be regulated in an activity-

dependent manner and influence the homeostasis of synaptic efficacy. Although 

much progress has been made in understanding how activity-dependent 

transcription mediates homeostatic synaptic scaling, the role of epigenetic 

mechanisms, particularly chromatin regulators, in this process remains to be 

explored. The work presented in Chapter II describes my discovery of a novel role 

for the chromatin reader protein L3mbtl1 in synaptic scaling and synaptic 
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transmission. Using a genome-wide approach, I determined the downstream 

target genes involved in L3mbtl1-mediated regulation of synaptic scaling. For the 

last decade, many studies have focused on excitatory synapses and inhibitory 

synapses onto pyramidal neurons. The research on the molecular architecture of 

excitatory synapses onto inhibitory interneurons, which serves an important role in 

controlling circuit excitability and maintaining E/I balance, has just begun. In 

Chapter III, I will present the work I did in collaboration with Takuya Watanabe et 

al. to understand the role of the excitatory synaptic scaffold protein Shank1 in 

parvalbumin-expressing inhibitory interneurons. Finally, in Chapter IV, I will 

present the conclusions, significance, and limitations of both studies, and discuss 

the implications for future research.  
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CHAPTER II 

Activity-induced Epigenetic Regulation of Synaptic Strength through the 

Chromatin Reader, L3mbtl1 
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Abstract 

Excitatory and inhibitory synaptic strength are finely tuned by homeostatic 

mechanisms, such as synaptic scaling, which detect and respond to changes in 

neural network activity. Homeostatic synaptic down-scaling reduces neuronal 

excitability by modulating the number of postsynaptic receptors via activity-

dependent transcription and protein synthesis.  The mechanisms underlying 

neuronal excitation-dependent gene expression have broad implications for 

neuronal homeostasis and disorders including epilepsy, autism spectrum 

disorders and Alzheimer’s disease.  Gene expression, in turn, is affected by 

chromatin remodeling and histone modification.  Histone modification codes are 

recognized by regulatory proteins, such as chromatin readers, which affect gene 

expression by altering chromatin structure and recruiting chromatin effector 

proteins. 

We show that L3mbtl1 (Lethal 3 malignant brain tumor like 1), a polycomb 

chromatin reader, is down-regulated by neuronal activity through the ubiquitin 

proteasomal pathway and is essential for excitatory synaptic response and 

homeostatic synaptic plasticity.  Genome-scale mapping of L3mbtl1 protein 

occupancies on chromatin identified Ctnnb1 (β-Catenin), an essential regulator of 

synaptic transmission and plasticity, as a key gene downstream of L3mbtl1.  

Importantly, the occupancy of L3mbtl1 on the Ctnnb1 gene is regulated by 

neuronal activity.  L3mbtl1 knockout neurons exhibited reduced Ctnnb1 expression, 

while a partial knockdown of Ctnnb1 in wild type neurons, which mimicked the level 
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of Ctnnb1 in KO neurons, caused reduced excitatory synaptic transmission and a 

lack of homeostatic down-scaling. These results highlight a unique role for L3mbtl1 

in regulating homeostasis of synaptic efficacy through one of its downstream 

targets, β-Catenin. 

 

Introduction 

Runaway excitation of neuronal circuits induces epileptic seizures, leading to other 

detrimental consequences, including neuronal cell death.  Neurons possess 

homeostatic mechanisms that compensate for activity perturbations and maintain 

the excitatory and inhibitory balance (E/I balance). For example, excitatory and 

inhibitory synaptic strength are regulated by changing the abundance (scale) of 

ionotropic receptors, including glutamate and GABAA receptors, at postsynaptic 

sites through cell autonomous mechanisms, referred to as homeostatic synaptic 

scaling. Elevated neuronal activity induces Ca2+ influx followed by subsequent 

activation of the Ca2+/calmodulin-dependent signaling cascade and down-

regulation of the postsynaptic AMPA-type glutamate receptor (AMPAR)-mediated 

response at excitatory synapses (Goold and Nicoll, 2010). Furthermore, elevated 

neuronal activity induces compensatory activation of inhibitory synaptic 

transmission through the recruitment of GABAARs to inhibitory postsynaptic sites 

(Saliba et al., 2007) and the increased release of GABA from inhibitory terminals 

(Peng et al., 2010).  

A number of molecules that bridge the induction and expression steps of 
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homeostatic synaptic down-scaling, have been identified. The majority of these 

molecules are synaptic scaffolds, kinases and phosphatases that directly regulate 

synaptic function (Table 2.1). More than 10 genes, including Arc (Shepherd et al., 

2006), Homer1a (Hu et al., 2010), and polo-like kinase 2 (Plk2) (Seeburg et al., 

2008), display altered expression levels upon an increase in neuronal activity, and 

are critical for the expression of homeostatic synaptic down-scaling (Table 2.1). 

Importantly, actinomycin D and anisomycin, inhibitors of transcription and 

translation, respectively, dysregulate homeostatic synaptic plasticity (Ibata et al., 

2008; Schanzenbächer et al., 2016). These results clearly illustrate the critical role 

of activity-dependent transcriptional and translational machineries in homeostatic 

synaptic scaling. However, the roles of epigenetic factors, particularly chromatin 

regulators, in this plasticity is relatively unknown.  

Epigenetic modifications, including DNA and histone modifications, provide 

a crucial regulatory layer for gene expression. Methyl-CpG-binding protein 2 

(Mecp2) acts as a DNA reader by binding to methylated DNA (CpG dinucleotides) 

and represses transcription of target genes, such as Bdnf (Chahrour and Zoghbi, 

2007). Knockout, knockdown or functional mutation of Mecp2 causes deficits in 

long-term synaptic plasticity, motor skills, spatial learning, and homeostatic 

synaptic plasticity (Asaka et al., 2006; Blackman et al., 2012; Guy et al., 2007; 

Moretti, 2006; Pelka et al., 2006; Qiu et al., 2012; Shahbazian et al., 2002; Zhong 

et al., 2012). In addition, DNA methylation status and histone methyltransferase 

regulate homeostatic synaptic scaling (Benevento et al., 2016; Meadows et al., 
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2015). However, knowledge of the functions of chromatin regulators in homeostatic 

synaptic plasticity is still very limited. Over two hundred chromatin regulators have 

been identified in mammals and these regulators are sub-classified by function 

(e.g., readers, erasers or writers of histone modifications, etc.). However, to the 

best of our knowledge, there are no reports describing a systematic analysis of 

chromatin regulators for potential roles in homeostatic synaptic plasticity.  

Chromatin readers influence chromatin conformation by binding to specific 

histone modifications, thereby regulating gene expression. One of the chromatin 

reader genes, L3mbtl1, is a member of the MBT (Malignant Brain Tumor) protein 

family. The L3mbtl1 protein is classified as a Polycomb group (PcG) protein. PcG 

proteins exert gene silencing functions in Polycomb Repressive Complexes (PRC), 

which bind to specific methylated histone tails (Di Croce and Helin, 2013). L3mbtl1 

binds to chromatin through three tandem MBT repeats (3xmbt), which facilitates 

higher order chromatin organization via binding to methylated lysine residues in 

histone tails (Li et al., 2007; Min et al., 2007; Sims and Rice, 2008; Trojer et al., 

2007). Specifically, L3mbtl1 binds to mono- and dimethylated histone tails, but not 

trimethylated and unmethylated histone tails. Thus, L3mbtl1 protein contributes to 

the complex organization of chromatin as a chromatin reader (Adams-Cioaba and 

Min, 2009), and acts as an effector for post-translational histone modifications 

(Bonasio et al., 2010). The L3mbtl1-containing PRC functions as a repressor in 

heterologous cell lines (Boccuni et al., 2003; Kalakonda et al., 2008; Trojer et al., 

2007) and human pluripotent stem cells (Perna et al., 2015). Drosophila l(3)mbt 
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[dl(3)mbt], the closest homolog of mammalian L3mbtl1, is an embryonic lethal 

gene associated with malignant transformation in larval brain (Wismar et al., 1995). 

In mammals, the expression of L3mbtl1 is highest in the brain and testis, and low 

in bone marrow, thymus and spleen (Qin et al., 2010). The deletion of 

Chromosome 20q12, the locus of human L3mbtl1, is associated with polycythemia 

vera, myelodysplastic syndrome, and acute myeloid leukemia (Gurvich et al., 2010; 

Perna et al., 2010). Of note, L3mbtl1 is expressed at high levels in mouse brain 

(Lein et al., 2007; Qin et al., 2010) and L3mbtl1 KO mice display abnormal anxiety 

and depression phenotypes (Shen et al., 2015). These results suggest that 

L3mbtl1 may serve yet unknown functions in post-mitotic neurons.  

β-catenin protein, encoded by Ctnnb1, is known as a core molecule of the 

WNT signaling pathway and has pivotal roles in neuronal development and 

synaptic function by acting as a transcriptional factor in neuronal nuclei and as a 

component of synaptic scaffolding at excitatory synapses (Mosimann et al., 2009; 

Uchida et al., 1996). β-catenin regulates the expression of bidirectional 

homeostatic synaptic plasticity via interactions with cadherin, a homophilic trans-

synaptic adhesion molecule regulating synaptic structure and function (Okuda et 

al., 2007). However, the epigenetic regulatory mechanisms underlying β-catenin 

expression are still largely unknown.  

In this study, we demonstrate that L3mbtl1 mRNA is primarily expressed in 

neurons, and is decreased when neuronal activity is elevated.  Knockout of 

L3mbtl1 causes a reduced excitatory synaptic transmission in primary neurons and 
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a lack of homeostatic down-scaling at excitatory synapses both in hippocampal 

primary neurons and organotypic slice cultures.  Importantly, L3mbtl1 protein binds 

to the transcription start sites of Ctnnb1 and Gabra2, whose products mediate 

homeostatic synaptic scaling and inhibitory synaptic transmission, respectively.  

These results provide novel insight as to the roles of a chromatin reader molecule 

in synaptic function and neuronal homeostasis. 

  

Results   

L3mbtl1 expression is down-regulated by neuronal activity  

To date, 46 genes have been reported as regulators of homeostatic up- and down-

scaling in hippocampal and cortical neurons (Table 2.1). Because the expression 

of many of these genes changes during induction and expression of the scaling 

(red and green highlights in Table 2.1), we hypothesized that chromatin regulator 

molecules, whose expression is altered by neuronal activity, contribute to 

homeostatic synaptic scaling. To test this hypothesis, we performed unbiased 

transcriptome analysis by RNA-sequencing of cultured primary neurons after 

induced homeostatic down-scaling.  

Hippocampal primary cultures were prepared from C57BL6 mice and 

homeostatic synaptic scaling was induced by applying picrotoxin (PTX), a non-

competitive GABAAR blocker, for 15 hours at days in vitro 14 (DIV14). Total RNA 

isolated from Control (DMSO treated) and PTX challenged samples was subjected 
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to an unbiased transcriptome (RNA-Seq) screen. RNA-seq was performed in 

quadruplicate for each treatment and the results were highly clustered into two 

treatment groups (Fig 2.1). Using stringent criteria (control versus PTX treatment, 

fold change >2.0, FDR adjusted p value < 0.01), we identified 1150 and 689 of up- 

and down-regulated genes, respectively (Fig 2.2, Table 2.2). Multiple genes 

previously identified as neuronal activity-dependent, including Arc (Shepherd et al., 

2006), Bdnf (Ghosh et al., 1994), Plk2 (Seeburg et al., 2008), and Homer1 (Hu et 

al., 2010), showed a significant change from baseline in our transcriptome profiling, 

confirming the validity of our system (blue symbols in Fig 2.2A). Importantly, 12 

out of 246 chromatin regulatory genes showed changes in mRNA expression (Fig 

2.2B, Table 2.2D). In particular, L3mbtl1 mRNA expression was decreased to 30% 

of control value (0.33 fold change, Padj = 1.0E-06, differential expression analysis 

by DESeq2), as the top ranking down-regulated molecule amongst chromatin 

regulatory genes, (Fig 2.2B, blue symbol). Quantitative PCR (qPCR) further 

confirmed the activity-dependent down-regulation of L3mbtl1 expression (Fig 

2.2C). In contrast, expression of L3mbtl1 mRNA was insensitive to tetrodotoxin 

(TTX), a voltage-gated sodium channel blocker, treatment. These results suggest 

that the expression of L3mbtl1 is regulated only when neuronal activity is elevated.  

 

L3mbtl1 is a MBT gene highly expressed in neurons during early 
development 

We further addressed the expression profiles of L3mbtl1 transcripts and protein in 
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the hippocampus. Expression of both L3mbtl1 mRNA and protein reached peak 

levels during postnatal days 7 to 14 after which expression decreased and 

remained relatively low thereafter (Fig 2.2D). Chromogenic in situ hybridization 

indicated wide expression of L3mbtl1 mRNA in the brain with highest intensity in 

the hippocampus (Fig 2.2 E, upper left). The hippocampus exhibited strong signals 

in the pyramidal cell layer but less so in granule cells in the dentate gyrus (Fig 

2.2E, upper right). The hybridizing signals were completely abolished in L3mbtl1 

KO mice (Fig 2.2E, bottom), validating the specificity of the hybridization probes. 

Double-label fluorescent in situ hybridization in the CA3 region confirmed that 

L3mbtl1 mRNA is expressed in both excitatory and inhibitory neurons, but the 

signal intensities of L3mbtl1 in non-neuronal cells (astrocytes, oligodendrocytes 

and microglia) were equivalent to the background level in L3mbtl1 KO (Fig 2.2 F, 

G). These data demonstrate that L3mbtl1 is predominantly expressed in neurons 

of postnatal brains.  

 

Characterization of neuronal activity-dependent down-regulation of L3mbtl1  

Among differentiated tissues, L3mbtl1 is most abundantly expressed in the brain 

(Qin et al., 2010), and in the hippocampus, exclusively expressed in neurons 

based on in situ hybridization studies (Fig 2.2 F, G). To further characterize the 

regulation of L3mbtl1 expression by neuronal activity, total RNA was extracted 

from PTX-treated and control hippocampal neuronal cultures at different time 

points (4, 15, 24 and 48 hours after application of drugs), followed by qPCR. 
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Consistent with the results of RNA-Seq (Fig 2.2B), L3mbtl1 mRNA levels started 

to decrease 4 hours after application of PTX, and reached the lowest level (less 

than 30% of control level) after 15 hours (Fig 2.3A). Expression of L3mbtl1 protein 

exhibited a steady reduction and at 48 hours after PTX treatment reached 30% of 

the control group levels.  

Next, we performed pharmacological experiments (Fig 2.3B) and observed 

that blockage of AMPAR, NMDAR or L-type Ca2+-channels alone did not fully 

rescue PTX-induced down-regulation of L3mbtl1 mRNA. In contrast, simultaneous 

inhibition of AMPAR, NMDAR and L-type Ca2+-channels completely abolished the 

neuronal activity-dependent decrease of L3mbtl1 expression. These results 

suggest that neuronal L3mbtl1 down-regulation requires elevation of the 

intracellular Ca2+ concentration.  

In cell lines, DNA double strand breaks (DSBs) induce rapid dissociation of 

L3mbtl1 protein from chromatin, followed by degradation via the ubiquitin-

mediated proteasomal pathway (Acs et al., 2011). We asked whether induction of 

homeostatic down-scaling induces the ubiquitination and degradation of L3mbtl1. 

To address this possibility, we cultured hippocampal neurons in the presence of 

the proteasomal inhibitor, MG-132 and induced homeostatic down-scaling with 

PTX. Nuclei were harvested 24 hours after PTX treatment with or without MG-132, 

followed by measurement of L3mbtl1 expression. As shown in Fig 2.3A, 24 hours 

of PTX treatment significantly reduced the expression of L3mbtl1 (Fig 2.3C). 

However, MG-132 blocked the down-regulation of L3mbtl1 protein by PTX, 
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suggesting a role for ubiquitin-mediated proteasomal signaling in L3mbtl1 down- 

regulation. MG-132 itself did not cause a significant reduction of L3mbtl1 protein.  

 

Loss of homeostatic down-scaling, reduced excitatory synaptic strength 
and surface GluA1 expression in primary L3mbtl1 knockout neurons 

If the decreases of L3mbtl1 transcripts and protein are part of an essential switch 

to induce homeostatic synaptic down-scaling, then loss of L3mbtl1 should prevent 

homeostatic synaptic scaling upon activity elevation.  To test this hypothesis, we 

prepared hippocampal primary cultures from wild type and L3mbtl1 KO mice and 

compared amplitudes and frequencies of AMPA receptor-mediated miniature 

excitatory postsynaptic currents (mEPSCs) from neurons in which down-scaling 

had been induced by PTX treatment for 48 hours (Fig 2.4). We found that L3mbtl1 

KO cultured neurons failed to induce homeostatic scaling-down by PTX treatment, 

whereas wild type neurons were capable of inducing bidirectional up- and down-

scaling.  Homeostatic scaling-up by TTX was intact in L3mbtl1 KO cultures, 

suggesting that the effects of L3mbtl1 on homeostatic synaptic scaling are 

unidirectional. Interestingly, we observed that, under basal conditions, L3mbtl1 KO 

neurons showed significantly smaller mEPSC amplitudes than that of wild type, 

suggesting that a lack of L3mbtl1 reduces the number and/or conductance of 

AMPA receptors per synapse (Fig 2.4C). This observation raises the possibility 

that the lack of homeostatic down-scaling results from the floor effect of reduced 

basal AMPAR-mediated response. The frequencies of mEPSCs were not changed 
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by L3mbtl1 genetic deletion or drug treatments, suggesting that the number of 

active excitatory synapses and/or presynaptic release probability remain 

unaffected (Fig 2.4C). Taken together, we conclude that L3mbtl1 regulates basal 

synaptic transmission and homeostatic synaptic down-scaling at excitatory 

synapses in primary neurons. 

Removal of AMPARs at postsynaptic sites is an established mechanism for 

down-scaling (Pozo and Goda, 2010).  We therefore examined the level of surface 

GluA1, one of the major AMPAR subunits in hippocampal primary neurons, 

prepared from wild type and L3mbtl1 KO mice (Fig 2.5). Importantly, L3mbtl1 KO 

neurons showed a lack of PTX-induced down-regulation of surface GluA1 and 

reduced surface GluA1 expression under basal conditions compared with wild type 

neurons.  These results suggest that the lack of down-scaling and the reduction of 

basal mEPSC amplitude are a consequence of the decreased surface expression 

of AMPARs. 

The strength of inhibitory synaptic transmission is also regulated 

bidirectionally dependent on neuronal activity (Turrigiano, 2011). Activity elevation 

and blockade cause enhancement and suppression of inhibitory synaptic 

transmission in primary neurons, respectively. To address whether L3mbtl1 is 

involved in inhibitory synaptic scaling, we induced homeostatic scaling by applying 

bicuculline, a competitive GABAAR antagonist, and TTX in wild type and KO 

neurons, and compared amplitudes and frequencies of GABAA receptor-mediated 

miniature inhibitory postsynaptic currents (mIPSCs) (Fig 2.6). We found that 
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L3mbtl1 KO neurons showed reduced basal mIPSC amplitudes compared with 

those of wild type, but both exhibited intact homeostatic up- and down-scaling. 

Therefore, in contrast to its effects on excitatory synapses, the role of L3mbtl1 on 

inhibitory synaptic function is small.  

 

Loss of homeostatic down-scaling in organotypic L3mbtl1 knockout 
neurons 

The results described above were obtained in dissociated primary cultures, raising 

the question as to whether the function of L3mbtl1 may be different in a more 

physiological experimental system.  Hippocampal CA3 pyramidal neurons in 

organotypic slice cultures have been shown to self-restore synaptic connectivity 

and spontaneous network activity to a level resembling the in vivo situation 

situation (Takahashi et al., 2010).  Furthermore, it has been reported that CA3 

synapses are capable of inducing homeostatic scaling (Lee et al., 2013; Mitra et 

al., 2012), Therefore, we recorded mEPSCs from hippocampal CA3 pyramidal 

neurons in organotypic slice cultures. We found that PTX treatment induced 

scaling down in wild type but not L3mbtl1 KO neurons (Fig 2.7). In contrast to the 

results from primary cultures, basal synaptic transmission was not significantly 

different between wild type and L3mbtl1 KO neurons in slice culture (Fig 2.7). This 

discrepancy could be due to the differences in experimental systems; for example, 

dissociated primary cultures have been shown to exhibit higher network neuronal 

activity compared to organotypic hippocampal neurons that display in vivo-like 
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activity levels (Cingolani and Goda, 2008; Takahashi et al., 2010).  While loss of 

L3mbtl1 in primary cultures impairs basal excitatory synaptic transmission, our 

results suggest that L3mbtl1 specifically regulates homeostatic down-scaling but 

not basal excitatory synaptic strength in hippocampal CA3 neurons.  

 

Acute knockdown of L3mbtl1 causes a lack of homeostatic down-scaling in 
hippocampal CA3 pyramidal neurons  

It is possible that developmental effects underlie the loss of homeostatic down-

scaling in L3mbtl1 KO neurons. To address the role of L3mbtl1 in postnatal 

neurons, we acutely knocked down (KD) L3mbtl1 and measured homeostatic 

down-scaling in CA3 pyramidal neurons.  shRNA directed against L3mbtl1 (Fig 

2.8) was transfected into organotypic hippocampal slice cultures from wild type 

mice using a biolistic gene gun that allows us to test cell-autonomous function of 

genes of interest. Importantly, L3mbtl1 KD blocked homeostatic down-scaling in 

CA3 pyramidal neurons without affecting basal synaptic strength (Fig 2.9), a 

finding consistent with the results obtained from L3mbtl1 KO slice cultures (Fig 

2.7). This result suggests that L3mbtl1 plays a critical and cell-autonomous role in 

homeostatic down-scaling in CA3 pyramidal neurons.   

 

L3mbtl1 occupies gene promoters in hippocampus  

To determine the binding loci of L3mbtl1 protein on a genome-wide scale, we 

performed chromatin immunoprecipitation (ChIP) followed by deep sequencing 
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(ChIP-seq). ChIP-seq experiments were performed with an antibody against 

endogenous L3mbtl1 in P7 hippocampus when the expression of L3mbtl1 reaches 

a maximal level, using KO mouse hippocampus as control (Fig 2.10). 

Reproducible peaks were obtained from three biological replicates using MACS2 

with Irreproducible Discovery Rate (IDR) threshold of 0.0025 as a consistency test 

(Table 2.3A). We identified 4677 highly consistent L3mbtl1-bound regions, 93% of 

which are located within 5kb up- and down-stream of a transcriptional start site 

(TSS) (Fig 2.10C), and 47% of which are located in promoter regions (within -1kb 

to 100bp of a TSS) (Fig 2.10B, Table 2.3B), consistent with the notion that L3mbtl1 

is a regulator of gene expression.  

For gene ontology analysis, bound regions within 1kb up- and down-stream 

from a TSS were assigned to the nearest genes. We assigned 3188 genes as 

targets for L3mbtl1 (Table 2.3C) and the 3000 genes with the highest peak scores 

were tested for functional enrichment by DAVID (Database for Annotation, 

Visualization and Integrated Discovery) (Huang et al., 2009a, 2009b) (Fig 2.10D, 

Table 2.3D). Of note, L3mbtl1 target genes were significantly enriched for GO 

terms related to transcriptional regulation, nucleosome assembly and other 

nuclear signaling, as observed for Sfmbt1 and Scml2, other members of the MBT 

domain-containing protein family in the cell lines (Bonasio et al., 2014; Zhang et 

al., 2013). We also found “synapse” among the top 20 enriched terms, which may 

include genes responsible for the defects in synaptic transmission and homeostatic 

synaptic plasticity in L3mbtl1 KO mice.  



 42 

Previous studies showed that human L3mbtl1 binds to mono- and di-

methylated histone lysine residues of H1bK26 and H4K20 and generally acts as a 

nucleosome compactor and transcriptional repressor in cell lines (Boccuni et al., 

2003; Kalakonda et al., 2008; Trojer et al., 2007) and pluripotent stem cells (Perna 

et al., 2015). To analyze L3mbtl1 binding specificity in vivo, we investigated 

whether L3mbtl1 binds to chromatin regions with active or inactive chromatin 

marks. Using a published ATAC-seq and ChIP-seq dataset (GEO GSE63137) 

generated from mouse cortical excitatory neurons (Mo et al., 2015), we performed 

correlation analysis of L3mbtl1 binding sites with those of multiple histone marks 

(H3K27ac, H3K27me3, H3K4me1 and H3K4me3) and open chromatin sites 

marked by ATAC-seq signals (Fig 2.10E). Interestingly, L3mbtl1 binding correlates 

with open chromatin sites as well as potential active transcription initiation sites 

marked by H3K4me3 and H3K27ac. L3mbtl1, H3K4me3 and H3K27ac also 

showed a similar distribution pattern near TSS (Fig 2.10 F, G). Genome-wide 

analysis of L3mbtl1 ChIP-seq signals near TSS revealed four clusters with distinct 

patterns for L3mbtl1 binding (Fig 2.10G), which highly correlate with signal 

patterns for ATAC, H3K4me3 and H3K27ac. In contrast, L3mbtl1 binding was not 

correlated with H3K27me3 or H3K4me1. Therefore, L3mbtl1 primarily localizes to 

open chromatin sites associated with active chromatin marks H3K4me3 and 

H3K27ac.  

 

L3mbtl1 regulates genes that control synaptic strength  
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To understand how L3mbtl1 mediates the homeostatic control of synaptic strength, 

we focused on a list of putative target genes that have been previously associated 

with synaptic scaling or synaptic transmission (Table 2.1, Fig 2.11A). Total mRNA 

was isolated from primary cultures prepared from wild type and L3mbtl1 KO mice, 

and RT-qPCRs were carried out to identify differentially expressed genes. The 

expression of two genes, Ctnnb1 and Gabra2, were significantly decreased in the 

absence of L3mbtl1 (Fig 2.11B). Importantly, both genes showed L3mbtl1 binding 

and the presence of H3K4me3 and H3K27ac near their TSS (Fig 2.11C). To verify 

the ChIP-seq results, we confirmed the enrichment for L3mbtl1, H3K4me3 and 

H3K27ac at Ctnnb1 and Gabra2 promoter regions in both P7 hippocampus and 

cultured neurons by ChIP-qPCR (Fig 2.11 D, E). We also examined the levels of 

L3mbtl1, H3K4me3 and H3K27ac at Ctnnb1 and Gabra2 promoter regions after 

24 hours of PTX treatment in primary cultures (Fig 2.11 D, E), and found that while 

H3K4me3 and H3K27ac were still enriched at promoter regions, L3mbtl1 was no 

longer enriched. Together, these findings demonstrate that L3mbtl1 occupies 

Ctnnb1 and Gabra2 gene promoters in an activity-dependent manner, suggesting 

a possible role for L3mbtl1 in regulating the activity-dependent expression of 

Ctnnb1 and Gabra2.  

To address whether Ctnnb1 contributes to the effects of L3mbtl1 on synaptic 

scaling, we tested if knockdown of Ctnnb1 expression affects synaptic scaling and 

synaptic transmission. Using shRNA that induces partial KD of Ctnnb1 in wild type 

neurons (Fig 2.12), we showed that partial KD of Ctnnb1 was sufficient to abolish 
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homeostatic down-scaling and weaken basal excitatory synaptic transmission (Fig 

2.13), thus mimicking the phenotype observed in L3mbtl1 KO primary neurons (Fig 

2.4). These results suggest that Ctnnb1 mediates part of the effect of L3mbtl1 on 

homeostatic control of synaptic strength, but additional L3mbtl1 targets may also 

be involved.  Another L3mbtl1 target gene Gabra2 encodes the alpha-2 subunit of 

GABAA receptors.  The reduced expression of the Gabra2 gene in L3mbtl1 KO 

neurons is likely responsible for our finding that basal inhibitory synaptic 

transmission is decreased in L3mbtl1 KO neurons compared to that in wild type 

(Fig 2.6). 

 
 
Discussion  

The number of neurotransmitter receptors located postsynaptically is dynamically 

regulated through many different mechanisms.  Homeostatic synaptic scaling is 

one of the most important regulatory mechanisms of synaptic strength that prevent 

the detrimental consequences of runaway neuronal over excitation.  However, in 

contrast to long-term synaptic plasticity (e.g., long-term potentiation) for which a 

growing body of evidence indicates the importance of epigenetic mechanisms 

(Vogel-Ciernia and Wood, 2014), our understanding of chromatin regulatory 

mechanisms underlying homeostatic scaling remains relatively limited. In the 

present study, we found that the chromatin reader molecule, L3mbtl1, is down-

regulated when neuronal activity is increased. Hippocampal primary neurons 

prepared from L3mbtl1 KO mice show reduced quantal amplitude of AMPAR 
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current and a lack of homeostatic down-scaling in excitatory synapses. 

Furthermore, L3mbtl1 KO and KD neurons in organotypic hippocampal neurons 

specifically abolished down-scaling without changing basal transmission, 

supporting the importance of L3mbtl1 in homeostatic down-scaling. Our ChIP-seq 

and ChIP-qPCR studies identified Ctnnb1 and Gabra2 genes as activity-

dependent targets of L3mbtl1 protein. Ctnnb1 expression is reduced in L3mbtl1 

KO and partial KD of Ctnnb1 causes a lack of homeostatic down-scaling, 

suggesting that Ctnnb1 contributes to the role of L3mbtl1 in controlling synaptic 

strength.  Our results highlight a critical role for the activity-regulated chromatin 

reader molecule, L3mbtl1, in homeostatic control of synaptic strength and adds to 

our understanding of epigenetic mechanisms of activity-dependent gene 

regulation. 

  

Roles of L3mbtl1 in synaptic transmission and synaptic scaling  

Neuronal activity perturbation induces a series of transcriptional regulatory events 

that alter chromatin structure, leading to a long-lasting effect on gene expression 

(Guan et al., 2002). These activity-dependent transcriptional regulations are 

involved in homeostatic scaling of synaptic strength, which is of critical importance 

for maintenance of the proper level of neuronal activity and connectivity. The 

present study identified an activity-regulated chromatin reader, L3mbtl1, whose 

expression is exclusive to neurons in hippocampus, as a key regulator for 

homeostatic synaptic scaling.  



 46 

We observed differential effects of L3mbtl1 KO in dissociated primary 

cultures and organotypic slice cultures.  Although both L3mbtl1 KO primary and 

organotypic neurons displayed disruption of synaptic down-scaling, L3mbtl1 KO 

primary neurons also showed reduced basal excitatory synaptic transmission.  

L3mbtl1 may be a regulator for basal AMPAR-mediated synaptic strength and the 

failure of homeostatic down-scaling could be attributed to a floor effect of a reduced 

number of AMPARs per synapses in primary neurons.  However, arguments could 

be made that the activity-regulated L3mbtl1 transcript and protein levels, and the 

activity-dependent dissociation of chromatin-bound L3mbtl1 from its target 

promoters strongly suggest a tightly controlled signaling pathway specifically 

activated during activity elevation.  Indeed, both conventional KO and acute KD of 

L3mbtl1 in organotypic slice cultures blocked homeostatic down-scaling in 

excitatory synapses without altering baseline AMPAR abundance, indicating a 

critical and cell-autonomous role for L3mbtl1 and its downstream genes in synaptic 

down-scaling.  The mechanism underlying the differential effect of L3mbtl1 KO in 

basal synaptic transmission in primary and organotypic slice cultures may be due 

to, i) the difference of recoding from heterologous primary neurons and 

homogenous CA3 pyramidal neurons in slice cultures, and/or ii) differential basal 

synaptic activity between primary and organotypic slice cultures (Cingolani and 

Goda, 2008). 

Our ChIP study identified L3mbtl1 occupancy on 14 genes associated with 

homeostatic synaptic scaling and 64 synaptic genes (Table 2.1 and 2.3D). Among 
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them, two genes, Ctnnb1 and Gabra2, were shown to contribute to the effect of 

L3mbtl1 on homeostatic regulation of excitatory synaptic strength and basal 

inhibitory synaptic transmission, respectively.  

 Ctnnb1 (β-catenin) has indispensable roles in many neurodevelopmental 

processes including migration and synapse formation and maturation, as a 

transcription factor and a synaptic scaffold molecule (Mosimann et al., 2009; 

Takeichi, 2007). At excitatory synaptic sites, α- and β-catenin, N-cadherin, and 

actin assemble to form an adhesion complex necessary for synapse formation and 

maturation (Uchida et al., 1996). β-catenin KO neurons exhibit reduced basal 

excitatory synaptic transmission and lack of homeostatic up- and down-scaling 

(Okuda et al., 2007). Goda and colleagues illustrated the importance of 

interactions between β- catenin and N-cadherin on basal excitatory synaptic 

transmission and homeostatic synaptic plasticity. Thus, our results suggest that β-

catenin causes at least part of the effect of L3mbtl1 on excitatory synaptic strength.  

Further studies will allow us to assess whether additional L3mbtl1 target genes are 

involved. 

The composition of GABAAR subunits in hippocampus changes during 

development. The expression of Gabra2 is high at postnatal day 0 and decreases 

during development (Fritschy et al., 1994). Although homeostatic scaling of 

mIPSCs was intact in L3mbtl1 KO neurons (Fig 2.6), we observed a reduced basal 

inhibitory synaptic transmission in L3mbtl1 KO neurons compared with that in wild 

type (Fig 2.6 E, F). The amplitude of mIPSC in L3mbtl1 KO neurons is smaller 
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than that in wild type neurons, which can be attributed to the reduced expression 

of Gabra2 in L3mbtl1 KO neurons.  

 

L3mbtl1-mediated transcriptional regulation  

The three MBT domains in L3mbtl1 protein compact chromatin by binding to mono- 

and dimethylated histone marks, including H1bK26, H3K9 and H4K20 (Li et al., 

2007; Min et al., 2007; Sims and Rice, 2008; Trojer et al., 2007). In heterologous 

cell lines, L3mbtl1 forms a complex with heterochromatin protein 1γ (HP1γ) and 

retinoblastoma protein (Rb), and contributes to repression of E2F target genes 

(Trojer et al., 2007). In this study, we for the first time identified the in vivo binding 

sites of L3mbtl1 in the brain. Our analysis of genomic occupancy suggested that 

L3mbtl1 primarily localizes to open chromatin sites associated with histone marks 

for active chromatin. Two genes, Ctnnb1 and Gabra2, bound by L3mbtl1 at their 

promoter regions, showed reduced transcript levels in the absence of L3mbtl1, 

suggesting that L3mbtl1 may act as an activator of these genes. Taken together 

with previous reports, the data suggest that L3mbtl1 acts as a transcriptional 

activator or repressor depending on the gene targets and cell types.  We also 

observed that the binding of L3mbtl1 to the promoters of these genes was 

abolished by PTX treatment, indicating that upon neuronal activity elevation, 

L3mbtl1 protein dissociates from chromatin of target genes. Therefore, we suggest 

that L3mbtl1 regulates basal expression of the Ctnnb1 and Gabra2 genes, and 

further, that the activity-dependent dissociation of L3mbtl1 from chromatin may 
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allow the recruitment of other protein complexes required for gene expression or 

repression upon activity elevation. 

The dissociation between L3mbtl1 protein and chromatin complexes is 

triggered by DNA DSBs followed by degradation via the ubiquitin-mediated 

proteasomal pathway in heterologous cell lines (Acs et al., 2011). Importantly, DNA 

DSBs are triggered by epileptic insults, amyloid β, learning and memory, and naïve 

visual stimuli in the brain, indicating that DSBs are a part of the activity-dependent 

events in vivo and can be events upstream of L3mbtl1 degradation leading to the 

expression of synaptic down-scaling (Crowe et al., 2006, 2011; Suberbielle et al., 

2013).  

Our current knowledge on the recruiting mechanisms of L3mbtl1 to its target 

sites is still limited. Histone mark H4K20me has been shown to promote L3mbtl1 

binding in heterologous cell lines (Kalakonda et al., 2008), however the interaction 

between histone and L3mbtl1 is too weak to be considered solely responsible for 

recruitment (Trojer and Reinberg, 2008). More likely, synergistic interactions with 

other proteins may be required to recruit L3mbtl1 to endogenous loci. In this 

context, it is interesting to note that several non-histone proteins were co-purified 

with L3mbtl1, including p53 tumor suppressor protein (West et al., 2010), PR-SET7 

(H4K20 mono-methyltransferase) (Kalakonda et al., 2008), ETV6 (Boccuni et al., 

2003), Rb and HP1γ (Trojer et al., 2007). To test the possibility that L3mbtl1 

interacts with additional transcriptional factors, we searched for DNA motifs 

enriched in L3mbtl1 binding sites. Among the top DNA consensus motifs, we found 
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one motif matching the E2F transcription factor consensus sequence (TTTTCGCG) 

(Fig 2.14). It has been shown that L3mbtl1 occupies E2F target sites in 

heterologous cell lines (Trojer et al., 2007), likely through binding to methylated Rb 

protein via an MBT domain (Saddic et al., 2010). This suggests a model whereby 

the recruitment of L3mbtl1 to at least a subset of promoter regions in vivo is 

facilitated by E2F/Rb complexes. Given that our ChIP-seq data highlight distinct 

neuronal gene targets for L3mbtl1 in neurons, a tissue-specific and cell type-

specific recruitment mechanism for L3mbtl1 is highly likely and warrants further 

investigation.  

We have identified 12 neuronal activity-sensitive chromatin regulators, 

including L3mbtl1, out of 246 chromatin regulator genes, (Fig 2.2B, Table 2.2D). 

It is interesting to address whether the protein levels of the remaining 11 genes 

parallel transcriptional changes and alter downstream gene expression. Among 

four chromatin regulator groups (erasers, readers, remodelers and writers), there 

was no specific group that changed expression upon activity elevation. However, 

it will be particularly interesting to test the roles of three genes, Hdac11, Jarid2 and 

Cbx6, in homeostatic down-scaling because of their prominent expression in 

neurons (Zhang et al., 2014).  

Our discovery of L3mbtl1 as an activity-dependent chromatin reader that 

coordinates the homeostatic control of synaptic strength raises the intriguing 

possibility that other chromatin regulators and their downstream genes are 

required for homeostatic synaptic plasticity.  Elucidating the roles of these other 
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chromatin regulators in synaptic plasticity coupled with our results presented here 

will provide a comprehensive view of epigenetic regulation of gene expression in 

homeostatic synaptic scaling. 

 

Materials and Methods  
 

Animals  

All animal protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Massachusetts Medical School. L3mbtl1 

mutant mice were generated previously (Qin et al., 2010) and backcrossed with 

C57BL/6 for four generations. C57BL/6 mice were also used for primary cultures 

and ChIP qPCRs. Both sexes were used.  

 

Expression and shRNA vectors  

Full-length L3mbtl1 cDNA was PCR-amplified from mRNA isolated from 

hippocampal primary neurons and cloned in the pCAG vector. The β-catenin 

construct, mVenus-β-Catenin-20 (gift from Dr. Michael Davidson, Addgene 

#56604), was used for the validation of shRNA clones. The shRNA vectors 

targeting L3mbtl1 and Ctnnb1 were purchased from Dharmacon (shL3mbtl1: 

#488433, shCtnnb1: #491202). The sequences of two control shRNAs, luciferase 

and scramble shRNA, are 5 ́-CGTACGCGGAATACTTCGA-3  ́(Zhang and Macara, 

2006) and 5 -́ATCTCGCTTGGGCGAGAGTAAG-3 ́ (Dharmacon, #RHS4346), 

respectively.  
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Antibodies and Biochemistry  

L3mbtl1 antibody #58 was generated and purified by peptide aa 1-20 (Ac- 

MEGHTDMEILRTVKGSSTGE-amide). The N-terminal region of L3mbtl1 (aa 140-

279, NP_001074807.1) was PCR-amplified and subcloned into pGEX-5X or -4T 

vector (glutathione S-transferase (GST) fusion protein, Amersham Pharmacia 

Biotech) to generate L3mbtl1 antibody. GST fusion proteins were purified using 

glutathione-Sepharose 4B resin (Amersham Pharmacia Biotech) and used to 

immunize rabbits. L3mbtl1 antibody #703 was affinity-purified using synthesized 

peptide (aa 140-169, Ac- RHEGGMARRDAGIQHPDVHQDRQDITSLEP-amide, 

AminoLink Coupling Gel, Pierce). The following antibodies were used (dilutions 

used for immunochemistry are indicated in parentheses): mouse anti-tubulin 

(1:3000, abcam); HRP-conjugated anti-mouse and -rabbit IgG antibodies (GE 

Healthcare, 1:2000); normal rabbit IgG (CST, #2729); anti-GluA1 (Calbiochem 

#PC246, 1:200); anti-H3K4me3 (Abcam, ab8580); anti-H3K27ac (Abcam, ab4729); 

rabbit anti-β-catenin (1:10000, Abcam ab32572); mouse anti-GAPDH (1:2000, 

Millipore MAB374); HRP-conjugated anti-mouse and -rabbit IgG antibodies (GE 

Healthcare, 1:2000).  

 

RNA Extraction and qPCR  

Total RNA was extracted from hippocampus, hippocampal primary cultures, or ES 

cells using RNAqueous Micro Kits (Ambion) and reverse-transcribed using High 
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Capacity RNA-to-cDNA Kits (Applied Biosystems). Reverse-transcription-qPCR 

was performed on an ABI 7500 Fast sequence detection system (Applied 

Biosystems). For RNA expression analysis, TaqMan assays (Applied Biosystems) 

were used with GAPDH or Ywhaz as reference genes (see Primers and probes). 

For ChIP-qPCR, EpiTect ChIP qPCR assays (Qiagen) were used (see Primers 

and probes). All reactions were performed with RT2 SYBR Green according to 

manufacturer-recommended cycling conditions, and subjected to melting curve 

analysis. All changes of gene expression were determined using the 2-delta(deltaCT) 

method (Livak and Schmittgen, 2001).  

 

RNA sequencing and analysis  

Sequencing libraries were prepared according to ScriptSeq v2 protocol following 

rRNA depletion (RiboZero, Illumina), and run on single-end 50-bp modules in 

Illumina HiSeq 2000. Sequencing reads that passed the default purify filtering of 

Illumina CASAVA pipeline were quality trimmed/filtered using The FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit) with a quality score cutoff of 20. Raw 

reads were first mapped to mouse GRCm38 genome using TopHat (v2.0.9) 

(Trapnell et al., 2009), then read counts were calculated for each replicate using 

HTSeq (v0.6.1) (Anders et al., 2015) with UCSC gene annotation. Differential gene 

expression analysis was carried out using DESeq2 (Love et al., 2014). A corrected 

p<0.01 and fold change >2.0 were applied to determine significant differences 

between treatment and control conditions (four biological replicates). Functional 
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enrichment analysis was performed for all differentially expressed genes by 

DAVID6.8 (Huang et al., 2009a, 2009b). After clustering using default parameters, 

a representative category within each of the most significant clusters was selected. 

A heat map was generated by hierarchical clustering using ‘hclust’ and ‘heatmap.2’ 

function in R.  

 

Chromatin Immunoprecipitation (ChIP)  

Chromatin was prepared from P7-8 mouse hippocampal tissue and DIV14-16 

hippocampal primary cultures. For each preparation, hippocampi or primary 

cultures from 18-22 mice were crosslinked by 2 mM DSG for 20 min, followed by 

the addition of 1.5 and 1.0% formaldehyde to hippocampi and primary cultures, 

respectively, during the last 10 min of DSG crosslinking. For ChIP against histone 

modifications, native histones were prepared from hippocampus without 

crosslinking. Nuclei preparation and chromatin digestion steps were done using a 

SimpleChIP Plus Enzymatic Chromatin IP Kit (Cell Signaling). Chromatin was 

digested to 100-500-bp fragments for ChIP-sequencing, or 300-1000-bp fragments 

for ChIP-qPCR. Immunoprecipitation procedures followed conventional 

procedures (Bharadwaj et al., 2013). MNase (micrococcal nuclease)-digested 

chromatin from wild type or L3mbtl1 KO mouse hippocampi and primary cultures 

was immunoprecipitated with 10µg anti-L3mbtl1 (#703), 2µg anti-H3K4me3 

(Abcam, ab8580), 2µg immunoprecipitated with 10µg anti-L3mbtl1 (#703), 2µg 

anti-H3K4me3 (Abcam, ab8580), 2µg anti-H3K27ac (Abcam, ab4729) or normal 
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rabbit IgG as control. After washing, chromatin complexes were eluted and the 

crosslinks were reversed. DNA was purified using MinElute columns (Qiagen). For 

qPCR reactions, 4% of immunoprecipitated DNA was used. Data are presented as 

the percentage of the unprecipitated (input) DNA or fold change over control 

sample.  

 

ChIP sequencing and analysis  

Libraries from three wild type samples and three L3mbtl1 KO samples were 

prepared from 10ng ChIP’d DNA each using a NEBNext Ultra DNA Library Prep 

Kit (NEB) and subjected to 50bp single-end Illumina sequencing. Reads were 

aligned to the mm10/GRCm38 reference by Bowtie (v2.2.4) (Langmead et al., 

2009). Peaks were called using the Irreproducible Discovery Rate (IDR) protocol 

(Li et al., 2011). In short, all three L3mbtl1 KO samples were pooled and used as 

control for peak callings. Peaks were called on individual wild type replicates, 

pooled wild type replicate, pseudoreplicates of individual wild type replicates, and 

pseudoreplicates of pooled wild type replicate. At least 100k peaks were called for 

each sample using MACS (v2.1.0) with a relaxed threshold: -p 0.05 --nomodel --

extsize 165. IDR threshold of 0.01 and 0.0025 were used for self-consistency and 

pooled-consistency test respectively to determine the number of final peaks called. 

Peaks were annotated using HOMER (Heinz et al., 2010). Nearest genes were 

assigned to peaks within 1kb up- and down-stream from a TSS. Functional 

enrichment analysis was performed using DAVID6.8 (Huang et al., 2009a, 2009b). 
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After clustering, a representative category within each of the most significant 

clusters was selected. For correlation analysis, peak chromosomal ranges 

generated from L3mbtl1 peaks above IDR threshold and those provided by GEO 

GSE63137 were mapped into windows of 10k nucleotides of mm10 genome, and 

pairwise Pearson correlation scores were plotted using R package corrplot v0.77. 

Read density distributions of ChIP-seq signals centered on the TSS +/- 3kb of each 

annotated transcript by the GRCm38.80.gtf were plotted using R package seqplots 

v1.12.0. Heatmaps were organized into 4 clusters based on K-means clustering of 

L3mbtl1 ChIP-seq signal patterns (“include” parameter). Average plots were 

plotted using log2 scaling. Motif analysis was performed using the Homer de novo 

motif discovery method.  

 

Data availability  

All RNA-Seq and ChIP-Seq raw and processed data have been deposited in 

NCBI’s Gene Expression Omnibus and are accessible through GEO accession 

number: GSE104802.  

 

In situ hybridization  

Fluorescein- or digoxigenin (DIG)-labeled cRNA probes were used for in situ 

hybridization: mouse L3mbtl1 (nucleotides 1289-2577; National Center for 

Biotechnology Information (NCBI) reference sequence NM_001081338.1), mouse 

type 1 vesicular glutamate transporter (VGluT1; nucleotides 301–1680; GenBank 
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accession number BC054462), mouse 67 kDa glutamic acid decarboxylase 

(GAD67; nucleotides 1036–2015; NM_008077), mouse glutamate/aspartate 

transporter (GLAST; nucleotides 1571–2473; AF330257), mouse proteolipid 

protein (PLP; nucleotides 1-1359; NM_011123), and mouse ionized calcium-

binding adapter molecule 1 (Iba1; nucleotides 66-540; D86392). cRNA probes 

were synthesized as described previously (Yamasaki et al., 2010). Chromogenic 

or double-label fluorescent in situ hybridization was carried out as described (Kudo 

et al., 2012; Yamasaki et al., 2010). Briefly, tissues were prepared from mice at 

postnatal day 7 under isoflurane anesthesia. Brains were fixed by transcardial 

perfusion with 4% paraformaldehyde/0.1 M phosphate buffer (PB, pH7.2) for 

chromogenic in situ hybridization, or frozen on powdered dry ice for double-label 

fluorescent in situ hybridization. Brain slices (thickness 20 μm) were prepared with 

a cryostat (Leica VT1000S or CM3050S), and subjected successively to 

acetylation and prehybridization. Hybridization was carried out at 63.5°C with the 

hybridization buffer supplemented with cRNA probes diluted 1:1000. After 

stringent washing and blocking, immunohistochemical detection was performed. 

For chromogenic in situ hybridization, DIG-labeled cRNA probes were detected 

with alkaline phosphatase-conjugated anti-DIG antibody (1:500, Roche 

Diagnostics) and NBT/BCIP solution (1:50; Roche Diagnostics). Images were 

taken with a stereo microscope (SZX-7, Olympus) equipped with a CCD digital 

camera (INFINITY3- 1UC, Lumenera). For double-label fluorescent in situ 

hybridization, fluorescein-labeled cRNA probes were visualized with peroxidase-



 58 

conjugated anti-fluorescein antibody (1:500, Roche Diagnostics) and the TSA plus 

Fluorescein system (PerkinElmer). After inactivation of residual peroxidase activity 

introduced in the detection of fluorescein-labeled cRNA probes, DIG-labeled cRNA 

probes were detected with peroxidase-conjugated anti-DIG antibody (1:500, 

Roche Diagnostics) and the TSA plus Cy3 system (PerkinElmer). Nuclear staining 

was performed with DAPI (1:5000, Sigma). Images were acquired with a confocal 

laser scanning microscope (TCS SP5, Leica) equipped with a 20x oil immersion 

objective lens (HCX PL APO CS 20x/0.7 IMM). The specificity of cRNA probes 

against L3mbtl1 mRNA was confirmed using L3mbtl1 KO mice. Other cRNA 

probes were validated by lack of hybridization signals with their sense probes. For 

quantification, the peak intensity for L3mbtl1 mRNA was measured in the soma of 

each cell type with ImageJ software. Background levels were determined as the 

mean peak intensity obtained from 80 excitatory neurons in L3mbtl1 KO mice.  

 

Primary and slice culture preparation  

Primary hippocampal cultures were prepared from early postnatal (P0-1) mice as 

described previously (Brewer et al., 1993) with some modifications (Futai et al., 

2013). Briefly, hippocampi were dissected and trypsinized, after which neurons 

were dissociated and plated onto coverslips (Matsunami, Japan) coated with poly- 

D-lysine (40 μg/ml, BD) and laminin (4 μg/ml, BD) at a density of 1 x 105 cell/cm2. 

Neurons were maintained in 2% B27 supplement containing medium for 14-16 

days in vitro (DIV). Organotypic hippocampal slice cultures were prepared from P6 
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to 7 mice as previously described (Futai et al., 2007; Futai et al., 2013). Neurons 

were transfected on DIV1-2 via a biolistic gene gun (BioRad) using gold particles 

coated with plasmid DNA per the manufacturer’s protocol.  

Immunocytochemistry and neuronal imaging  

To identify spiny pyramidal neurons, cultured neurons were transfected with GFP 

on DIV 12 using Lipofectamine 2000 (Invitrogen). For immunocytochemistry, 

neurons were fixed at DIV 14 with 4% paraformaldehyde (PFA)/4% sucrose. 

Primary and secondary antibodies were applied in triton-free buffer (0.1% bovine 

serum albumin, 4% normal goat serum, in PBS buffer pH 7.4). Images of 2048 x 

2048 pixels were taken from hippocampal primary cultures using a confocal 

microscope (Leica TCS SP8; University of Massachusetts Medical School Imaging 

Core Facility) with a 40X objective (NA 1.3) and optical zoom of 2.0, with sequential 

acquisition settings. Each image was a Z-series projection of 8-12 images taken 

at 0.35-μm depth intervals and pixel size 71 nm. Primary and secondary dendritic 

segments were defined by GFP epifluorescence and GluA1-immunopositive 

signals were imaged to quantify surface expressing AMPARs. Morphometric 

measurements were made using ImageJ. Briefly, maximum intensity projection 

images were background subtracted, and GluA1 channel signal was thresholded 

by gray value at 75% of the dynamic range. All puncta within a selected dendrite 

segment were analyzed as individual objects using the “analyze particles” function, 

and the total fluorescence intensity was measured. In addition, each dendrite 

length was recorded to calculate the total fluorescence intensity per 10 μm of 



 60 

dendrite length.  

 

Electrophysiology and data analysis 

Whole-cell recordings were performed from primary hippocampal cultures (DIV 14-

16) and organotypic hippocampal slice cultures (DIV 6-8) as described (Futai et 

al., 2007; Futai et al., 2013). Thick-walled borosilicate glass pipettes were pulled 

to a resistance of 3–5 MW and filled with internal solution containing (in mM): 115 

cesium methanesulfonate, 20 CsCl, 10 HEPES, 2.5 MgCl2, 4 ATP disodium salt, 

0.4 guanosine triphosphate trisodium salt, 10 sodium phosphocreatine, and 0.6 

EGTA, at pH 7.25, with CsOH.  For recordings of AMPAR-mediated miniature 

EPSCs, the extracellular solution consisted of (in mM) 119 NaCl, 2.5 KCl, 4 CaCl2, 

4 MgCl2, 26 NaHCO3, 1 NaH2PO4, and 11 glucose, gassed with 5% CO2 and 95% 

O2, pH 7.4, in the presence of picrotoxin (0.1 mM, Sigma) and tetrodotoxin (TTX, 

0.001 mM, Ascent Scientific). 

For recordings of GABAAR-mediated miniature IPSCs, whole-cell voltage-

clamp recordings were performed at Vhold = -70 mV. Extracellular solution 

consisted of (in mM) 119 NaCl, 2.5 KCl, 2.0 CaCl2, 2.0 MgCl2, 26 NaHCO3, 1 

NaH2PO4, and 11 glucose, gassed with 5% CO2/95% O2, pH 7.4, in the presence 

of NBQX (0.003 mM, Ascent Scientific), DL-APV (0.05 mM, Ascent Scientific) and 

TTX (0.001 mM, Ascent Scientific).  

All experiments and analyses of data were performed in a blind manner. 

Recordings were performed using a MultiClamp 700B amplifier and Digidata 1440, 
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and digitized at 10 kHz and filtered at 4 kHz by low-pass filter. Data were acquired 

and analyzed using pClamp (Molecular Devices) and Mini Analysis software 

(Synaptosoft). For mini analysis, approximately three hundred events were 

sampled from each experiment and events smaller than 5 pA were excluded. To 

test for multiplicative scaling of mini amplitude distributions, we followed a 

previously described method (Kim et al., 2012). To ensure that each group had an 

equal number of events and each cell contributes equally to the group, we 

randomly picked an equal number of events per cell to make up a total number of 

2000 events for each group. Briefly, we scaled down values from the group with 

larger amplitude (“treat”) to the group with smaller amplitude (“control”), by 

multiplying an arbitrary scaling factor (between 0 and 1), and then excluded any 

amplitudes that fell below the threshold. The threshold is determined by the 

smallest amplitude of the “control” group. The degrees of overlap between scaled 

“treat” and “control” data were assessed with various scaling factors, and the 

largest p value obtained from the Kolmogorov Smirnov (KS) test was reported for 

each experiment.  

 

Cell lines and transient transfection  

HEK293T cells (American Type Culture Collection, MD, USA) were grown in 

Dulbecco's Modified Eagle's Medium (DMEM) supplemented with fetal bovine 

serum (10% v/v) and penicillin/streptomycin (100 units/ml), at 37°C and in an 

atmosphere of 5% CO2. Transfections were performed with Lipofectamine 2000 
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(Invitrogen). Cells were harvested 3 days after transfection.  

 

Lentiviral vector production and infection  

Lentiviral particles were produced by co-transfecting HEK293T cells with a 3-

plasmid system, including pGIPZ, psPAX2 packaging and pVSVG envelope 

vectors, as previously described (Lois et al., 2002; Naldini et al., 1996) with 

modifications. For knockdown experiments, primary neuron cultures were infected 

with virus particles for 3 days or 7 days. For L3mbtl1 knockdown experiments, 

infected cultures were selected using puromycin (3 μg/ml) for 48 hours.  

 

Primers and probes 

For RNA expression analysis, the following TaqMan gene expression assays 

(Applied Biosystems) were used: 

Taqman gene expression assay 

gene catalog gene catalog 

Ap2a2 Mm01279159_m1 Gabra2 Mm00433435_m1 

Bdnf Mm04230607_s1 Gabra5 Mm00621092_m1 

Camk2b Mm00432284_m1    Gapdh Mm99999915_g1 

Camkk1 Mm00517053_m1 Homer1 Mm00516275_m1 

Cdh2 Mm01162497_m1 Itgb1 Mm01253230_m1 

Cfl1 Mm03057591_g1 L3mbtl1 Mm01239967_m1 

Ctnnb1 Mm00483039_m1 Nedd4 Mm00456829_m1 
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Cxcr4 Mm01996749_s1 Shank3 Mm00498775_m1 

Dag1 Mm00802400_m1 Ywhaz Mm03950126_s1 

Fxr1 Mm00484523_m1     

 

For ChIP-qPCR, the following EpiTect ChIP qPCR assays (Qiagen) were used: 

Epitect ChIP qPCR Primers 

gene catalog 

Ctnnb1 GPM1041109(-)01A 

Gabra2 GPM1051280(-)01A 

Igx1a (intergenic) GPM100001C(-)01A 

 

 

Statistical analyses 

Results are reported as mean ± SEM. For two-group comparisons, statistical 

significance was evaluated by Student’s t-test. For multiple comparisons in single-

factor experiments, one-way ANOVA was used followed by Sidak’s multiple 

comparisons test. For multiple comparisons in two-factor experiments where factor 

one is genotype and factor two is treatment, two-way ANOVA was applied followed 

by Sidak’s multiple comparisons test. Statistical significance was set at p < 0.05 

for Student’s t-test and ANOVA and p < 10-4 for KS test because the sample 

number of the miniature/spontaneous E/IPSC was large (Kim et al., 2012).  
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Table 2.1   Regulators for synaptic upscaling and downscaling  
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Figure 2.1 
 
 
 

 
 
 
 
Figure 2.1 Heat map of activity-dependent gene expression.   

Heat map of 1839 significant genes by RNA-seq analysis from control and PTX-
treated hippocampal primary neurons.  p<0.01 and fold change>2.0 were applied 
to determine significant differences between control (CTRL1 to 4) and PTX-treated 
(PTX1 to 4) groups.  Hierarchical clustering tree of the samples is shown at the top 
of the figure. 
  

Supplemental Figure 1

Figure S1. Heat map of activity-dependent gene expression.  Heat 
map of 1839 significant genes by RNAseq analysis from control and 
PTX-treated hippocampal primary neurons.  p<0.01 and fold change>2.0 
were applied to determine significant differences between control (CTRL1 
to 4) and PTX-treated (PTX1 to 4) groups.  Hierarchical clustering tree of 
the samples is shown at the top of the figure.
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Figure 2.2 
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Figure 2.2 Neuronal activity elevation reduced L3mbtl1 expression.   

(A) Scatter plot of genes that were up-regulated (magenta symbols) and down-
regulated (green) after 15 hours of PTX (100 μM) treatment.  Grey symbols are 
genes that were not differentially expressed.  (B) MA-plot (log ratio-mean average 
plot) of chromatin regulators that were up-regulated (magenta symbols) and down-
regulated (green) after PTX treatment (fold change > 2, Padj < 0.01).  (C) Activity 
elevation but not suppression changed the expression of L3mbtl1. Activity 
blockage by TTX (1 μM) did not induce a change in expression in primary cultures.  
Data shown are means ± SEM.  * p=0.026, one-way ANOVA followed by Sidak’s 
multiple comparisons test, N = 8. Connecting lines indicate matched samples from 
the same batch. (D) Developmental profile of L3mbtl1 mRNA (blue circles) and 
protein (magenta circles) levels in mouse hippocampus from postnatal 0-21 days 
(P0-21) to adulthood (2.5 and 6.5 months).  mRNA and protein expression were 
normalized to the control gene, ywhaz, and the immunoblotting signal of L3mbtl1 
at P0, respectively.  N = 4 - 7 independent culture batches.  Bottom, 
Immunoblotting images of L3mbtl1 at different postnatal days.  The pattern of 
L3mbtl1 signal changed during development.  The upper bands, presumably due 
to post-translational modification, were observed from P14 hippocampus.  Note 
that these two bands are not detected in the P14 L3mbtl1 KO sample (-/-, P14).  
(E) Chromogenic in situ hybridization against P7 brain sections prepared from wild 
type (upper) and L3mbtl1 KO (bottom) mouse brains.  Right panels show high 
power-magnified images of the hippocampus.  Cb, cerebellum; Cx, neocortex; Hi, 
hippocampus; Md, midbrain; Ob, olfactory bulb; Po, pons; DG, dentate gyrus; Py, 
pyramidal cell layer.  (F) FISH images in the CA3 regions against L3mbtl1 and cell-
type specific markers, VGluT1 (excitatory neurons (excitatory)), GAD67 (inhibitory 
neurons (inhibitory)), GLAST (astrocyte), PLP (oligodendrocyte (Oligo)), or Iba1 
(microglia).  Or, stratum oriens; Py, pyramidal cell layer; Ra, stratum radiatum.  (G) 
Summary bar graph of cell-type-specific expression showing the mean peak 
intensity of L3mbtl1 signals in distinct cell types in wild type (+/+) and L3mbtl1 KO 
(-/-) mice.  The number in the parentheses above each column indicates the 
number of cells analyzed.  ****p < 0.0001, One-way ANOVA with Sidak’s multiple 
comparisons test.  Scale bars: 1 mm (E, left); 100 μm (E, right) 10 μm (F). 
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Figure 2.3 
 

 

 

 
Figure 2.3 Calcium influx and the proteasomal pathway are involved in 
activity-dependent down-regulation of L3mbtl1.   

(A) Time course of L3mbtl1 expression (mRNA, blue circles: protein, magenta 
circles) after application of PTX.  mRNA and protein expression, relative to GAPDH 
and tubulin respectively, were normalized to untreated samples.  One sample t-
test was performed to compare mean value to 1: ****p < 0.0001, *p<0.05, N = 4 - 
6.  (B) Pharmacological characterization of activity-dependent down-regulation of 
L3mbtl1.  Primary cultures were incubated with PTX alone, or with D-APV (APV, 
50 μM), NBQX (5 μM) and nifedipine (Nife, 10 μM) for 15 hours.  Expression of 
L3mbtl1 was normalized to that of GAPDH.  One-way ANOVA with Sidak’s multiple 
comparisons test compares each condition with control: **p<0.01, ***p<0.001, 
****p<0.0001, ns: not significant. N = 4-15.  (C) The proteasome inhibitor, MG-132, 
blocked activity-dependent degradation of L3mbtl1. Nuclear lysates were prepared 
from primary cultures 24 hours after PTX and/or MG-132. Top, immunoblotting 
images of L3mbtl1 and tubulin. Bottom, quantification of immunoblotting. 
Expression of L3mbtl1 was normalized to that of tubulin. One-way ANOVA with 
Sidak’s multiple comparisons test: *p<0.05, ****p<0.0001, N = 7-16 independent 
culture batches.  Data shown are means ± SEM. 
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Figure 2. Calcium influx and the proteasomal pathway are involved in activity-dependent 
down-regulation of L3mbtl1.  (A) Time course of L3mbtl1 expression (mRNA, blue circles: 
protein, magenta circles) after application of PTX.  mRNA and protein expression, relative to 
GAPDH and tubulin respectively, were normalized to untreated samples.  One sample t-test was 
performed to compare mean value to 1: ****p < 0.0001, *p<0.05, N = 4 - 6.  (B) Pharmacological 
characterization of activity-dependent down-regulation of L3mbtl1.  Primary cultures were 
incubated with PTX alone, or with D-APV (APV, 50 μM), NBQX (5 μM) and nifedipine (Nife, 10 
μM) for 15 hours.  Expression of L3mbtl1 was normalized to that of GAPDH.  One-way ANOVA 
with Sidak’s multiple comparisons test compares each condition with control: **p<0.01, 
***p<0.001, ****p<0.0001, ns: not significant. N = 4-15.  (C) The proteasome inhibitor, MG-132, 
blocked activity-dependent degradation of L3mbtl1.  Nuclear lysates were prepared from 
primary cultures 24 hours after PTX and/or MG-132.  Top, immunoblotting images of L3mbtl1 
and tubulin. Bottom, quantification of immunoblotting.  Expression of L3mbtl1 was normalized to 
that of tubulin.  One-way ANOVA with Sidak’s multiple comparisons test: *p<0.05, ****p<0.0001, 
N = 7-16 independent culture batches.  Data shown are means ± SEM.
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Figure 2.4 
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Figure 3. L3mbtl1 is required for homeostatic down-scaling and basal excitatory 
synaptic transmission in hippocampal primary neurons.  Hippocampal primary 
cultures were prepared from wild type (L3mbtl1 +/+) or L3mbtl1 KO (L3mbtl1 -/-) mice.  
They were treated with PTX (100μM), TTX (1μM) or DMSO as control for 48 hrs. (A) 
Representative mEPSC traces (left) and average mEPSC event traces (right). (B) 
Cumulative distribution of mEPSC amplitudes obtained from L3mbtl1 wild type and KO 
primary cultures under three different conditions. Scaled distributions were plotted by 
multiplying the distribution by a scaling factor and removing values that fell below the 
detection threshold. Kolmogorov Smirnov (KS) tests for wild type distributions: Ctrl vs 
PTX, p=1.6X10-31; Ctrl vs TTX, p=5.9X10-18; scaled Ctrl vs PTX, not significant; scaled 
TTX vs Ctrl, not significant. KS tests for KO distributions: Ctrl vs PTX, not significant; Ctrl 
vs TTX, p=1.1X10-24; scaled TTX vs Ctrl, not significant. (C) Quantification of mean 
mEPSC amplitudes (left) and frequencies (right). Data shown are means ± SEM.  
****p<0.0001, ***p<0.001, ns: not significant, two-way ANOVA with Sidak’s multiple 
comparisons test.  Numbers in each bar represents the number of neurons tested (N = 
5 - 8 mice were tested).
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Figure 2.4 L3mbtl1 is required for basal excitatory synaptic transmission and 
homeostatic down-scaling in hippocampal primary neurons.   

Hippocampal primary cultures were prepared from wild type (L3mbtl1 +/+) or 
L3mbtl1 KO (L3mbtl1 -/-) mice.  They were treated with PTX (100μM), TTX (1μM) 
or DMSO as control for 48 hrs.  (A) Representative mEPSC traces (left) and 
average mEPSC event traces (right).  (B) Cumulative distribution of mEPSC 
amplitudes obtained from L3mbtl1 wild type and KO primary cultures under three 
different conditions.  Scaled distributions were plotted by multiplying the 
distribution by a scaling factor and removing values that fell below the detection 
threshold.  Kolmogorov Smirnov (KS) tests for wild type distributions: Ctrl vs PTX, 
p=1.6 X 10-31; Ctrl vs TTX, p=5.9 X 10-18; scaled Ctrl vs PTX, not significant; scaled 
TTX vs Ctrl, not significant.  KS tests for KO distributions: Ctrl vs PTX, not 
significant; Ctrl vs TTX, p=1.1 X 10-24; scaled TTX vs Ctrl, not significant.  (C) 
Quantification of mean mEPSC amplitudes (left) and frequencies (right).  Data 
shown are means ± SEM.  ****p<0.0001, ***p<0.001, ns: not significant, two-way 
ANOVA with Sidak’s multiple comparisons test.  Numbers in each bar represents 
the number of neurons tested (N = 5 - 8 mice were tested). 
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Figure 2.5 
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Figure 4. L3mbtl1 is required for GluA1-containing AMPA receptor surface accumulation and 
homeostatic down-scaling in hippocampal primary neurons.  Hippocampal primary cultures 
were prepared from wild type (L3mbtl1 +/+) or L3mbtl1 KO (L3mbtl1 -/-) mice.  They were transfected 
with EGFP and treated with PTX (100μM) or DMSO as control for 48 hrs, fixed and stained for 
endogenous surface GluA1. (A) Representative images of intrinsic EGFP fluorescence (green) and 
surface GluA1  immunostaining (magenta) at low magnification (top; scale bar: 20μm) and high 
magnification (middle and bottom; scale bar: 3μm).  (B) Quantification of surface GluA1 intensity per 
10μm dendritic length in arbituary unit. Total of 4000-5000 puncta from 12 neurons of three mice were 
analyzed for each condition. Data shown are means ± SEM. **p<0.01, *p<0.05, ns: not significant, 
two-way ANOVA with Sidak’s multiple comparisons test. 
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Figure 2.5 L3mbtl1 is required for surface GluA1-containing AMPAR 
expression and homeostatic down-scaling in hippocampal primary neurons.   

Hippocampal primary cultures were prepared from wild type (L3mbtl1 +/+) or 
L3mbtl1 KO (L3mbtl1 -/-) mice.  Spiny neurons were transfected with EGFP and 
treated with PTX (100μM) or DMSO as control for 48 hrs, fixed and stained for 
endogenous surface GluA1.  (A) Representative images of intrinsic EGFP 
fluorescence (green) and surface GluA1 immunostaining (magenta) at low 
magnification (top; scale bar: 20μm) and high magnification (middle and bottom; 
scale bar: 3μm).  (B) Quantification of surface GluA1 intensity per 10μm dendritic 
length in arbituary units.  A total of 4000-5000 puncta from 12 neurons of three 
mice were analyzed for each condition.  Data shown are means ± SEM.  **p<0.01, 
*p<0.05, ns: not significant, two-way ANOVA with Sidak’s multiple comparisons 
test. 
  



 74 

Figure 2.6 
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Supplemental Figure 3

Figure S3. L3mbtl1 is not required for homeostatic up-scaling or down-scaling in inhibitory 
synapses.  Hippocampal primary cultures were treated with Bicuculline (100μM) to induce up-scaling (A, C, 
E) or TTX (1μM) to induce down-scaling (B, D, F). Amplitudes and frequencies of mIPSCs were measured 
after 48hrs of treatment from wild type (L3mbtl1 +/+) or L3mbtl1 KO (L3mbtl1 -/-) neurons. DMSO treatment 
was used as controls.  (A, B) Representative mIPSC traces (left) and average mIPSC event traces (right).  
(C, D) Cumulative distribution of mIPSC amplitudes. Scaled distributions were plotted by multiplying the 
distribution by a scaling factor and removing values that fell below the detection threshold. Kolmogorov 
Smirnov (KS) tests for wild type distributions: Ctrl vs Bic, p=1.6X10-46; Ctrl vs scaled Bic, not significant; Ctrl 
vs TTX, p=9.3X10-53; scaled Ctrl vs TTX, not significant. KS tests for KO distributions: Ctrl vs Bic, 
p=7.6X10-51; Ctrl vs scaled Bic, not significant; Ctrl vs TTX, p=2.0X10-31; scaled Ctrl vs TTX, not significant. 
(E, F) Quantification of mean mIPSC amplitudes (left) and frequencies (right).  Data shown are means ± 
SEM.  ****p<0.0001, ***p<0.001, *p<0.05, ns, not significant. Student’s t-test was performed between wild 
type and knockout control groups in E (purple asterisk); all other comparisons were two-way ANOVA with 
Sidak’s multiple comparisons test. N = 6 - 7 mice were tested for up-scaling; N = 4 mice were tested for 
down-scaling. 
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Figure 2.6 L3mbtl1 is not required for homeostatic up-scaling and down-
scaling in inhibitory synapses.   

Hippocampal primary cultures were treated with Bicuculline (100μM) to induce up-
scaling (A, C, E) or TTX (1μM) to induce down-scaling (B, D, F).  Amplitudes and 
frequencies of mIPSCs were measured after 48hrs of treatment from wild type 
(L3mbtl1 +/+) or L3mbtl1 KO (L3mbtl1 -/-) neurons.  DMSO treatment was used as 
control.  (A, B) Representative mIPSC traces (left) and average mIPSC event 
traces (right).  (C, D) Cumulative distribution of mIPSC amplitudes.  Scaled 
distributions were plotted by multiplying the distribution by a scaling factor and 
removing values that fell below the detection threshold.  KS tests for wild type 
distributions: Ctrl vs Bic, p=1.6 X 10-46; Ctrl vs scaled Bic, not significant; Ctrl vs 
TTX, p=9.3 X 10-53; scaled Ctrl vs TTX, not significant.  KS tests for KO distributions: 
Ctrl vs Bic, p=7.6 X 10-51; Ctrl vs scaled Bic, not significant; Ctrl vs TTX, p=2.0 X 
10-31; scaled Ctrl vs TTX, not significant.  (E, F) Quantification of mean mIPSC 
amplitudes (left) and frequencies (right).  Data shown are means ± SEM.  
****p<0.0001, ***p<0.001, *p<0.05, ns, not significant. Student’s t-test was 
performed between wild type and knockout control groups in E (purple asterisk); 
all other comparisons were two-way ANOVA with Sidak’s multiple comparisons 
test.  N = 6 - 7 mice were tested for up-scaling; N = 4 mice were tested for down-
scaling. 
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Figure 2.7 
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Figure 5. L3mbtl1 is required for homeostatic down-scaling in 
hippocampal CA3 synapses.  Organotypic hippocampal slice cultures of 
wild type or L3mbtl1-/- mice were treated with PTX or DMSO for 48 hrs.  
mEPSC were recorded from CA3 pyramidal neurons.  (A) Representative 
mEPSC traces (left) and average mEPSC event traces (right) were shown.  
(B) Cumulative distribution of mEPSC amplitudes. Scaled distributions were 
plotted by multiplying the distribution by a scaling factor and removing values 
that fell below the detection threshold. Kolmogorov Smirnov (KS) tests for 
distributions in wild type group: Ctrl vs PTX, p=2.8X10-11; scaled Ctrl vs PTX, 
not significant.  (C) Mean mEPSC amplitude (left) and frequency (right).  Data 
shown are means ± SEM. *p<0.05, ns: not significant, two-way ANOVA with 
Sidak’s multiple comparisons test, N = 6 mice were tested.
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Figure 2.7 L3mbtl1 is required for homeostatic down-scaling in hippocampal 
CA3 synapses.   

Organotypic hippocampal slice cultures of wild type or L3mbtl1-/- mice were 
treated with PTX or DMSO for 48 hrs.  mEPSC were recorded from CA3 pyramidal 
neurons.  (A) Representative mEPSC traces (left) and average mEPSC event 
traces (right) are shown.  (B) Cumulative distribution of mEPSC amplitudes.  
Scaled distributions were plotted by multiplying the distribution by a scaling factor 
and removing values that fell below the detection threshold.  KS tests for 
distributions in wild type group: Ctrl vs PTX, p=2.8 X 10-11; scaled Ctrl vs PTX, not 
significant.  (C) Mean mEPSC amplitude (left) and frequency (right).  Data shown 
are means ± SEM.  *p<0.05, ns: not significant, two-way ANOVA with Sidak’s 
multiple comparisons test, N = 6 mice were tested. 
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Figure 2.8 
 
 

 
 
 
 
Figure 2.8 Validation of L3mbtl1 shRNA.   

(A) Representative blots of L3mbtl1 (antibody #58) and GAPDH (top) and 
quantification (bottom) of exogenously expressed L3mbtl1 protein in HEK293T 
cells transfected with L3mbtl1 shRNA (shL1) or luciferase control shRNA (shLuc).  
*p=0.014, student’s t-test, N = 4.  (B) Endogenous L3mbtl1 mRNA levels in primary 
cultures expressing L3mbtl1 shRNA (shL1) or luciferase control shRNA (shLuc).  
Primary neurons were infected with high-titer lenti virus-packaged shRNAs for 
seven days.  *p=0.019, student’s t-test, N = 7. Data shown are means ± SEM. 
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Figure S4. Validation of L3mbtl1 shRNA.  (A) Representative blots of 
L3mbtl1 (antibody #58) and GAPDH (top) and quantification (bottom) of 
exogenously expressed L3mbtl1 protein in HEK293T cells transfected with 
L3mbtl1 shRNA (shL1) or luciferase control shRNA (shLuc).  *p=0.014, 
student’s t-test, N = 4.  (B) Endogenous L3mbtl1 mRNA levels in primary 
cultures expressing L3mbtl1 shRNA (shL1) or luciferase control shRNA 
(shLuc).  Primary neurons were infected with high-titer lenti virus-packaged 
shRNAs for seven days.  *p=0.019, student’s t-test, N = 7. Data shown are 
means ± SEM.
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Figure 2.9 
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Figure 6. Effect of acute knockdown of L3mbtl1 on homeostatic down-scaling in hippocampal CA3 
synapses.  (A) Homeostatic down-scaling induced by PTX-treatment for 48 hours in hippocampal CA3 
pyramidal neurons. Pyramidal neurons were transfected with expression vectors for shRNA directed 
against luciferase (middle) and L3mbtl1 (right). Left, representative mEPSC traces; right, averaged mEPSC 
traces.  The shRNAs were biolistically transfected at DIV1 and PTX or DMSO were applied two days before 
recording. mEPSCs were recorded from CA3 pyramidal neurons.  (B) Cumulative distribution of mEPSC 
amplitudes. Scaled distributions were plotted by multiplying the distribution by a scaling factor and removing 
values that fell below the detection threshold. Kolmogorov Smirnov (KS) tests for distributions in 
untransfected group: Ctrl vs PTX, p=1.8X10-31; scaled Ctrl vs PTX, not significant. KS tests for distributions 
in shScrambled group: Ctrl vs PTX, p=2.1X10-26; scaled Ctrl vs PTX, not significant. KS tests for 
distributions in shL3mbtl1 group: Ctrl vs PTX, not significant.  (C) Quantification of mean mEPSC 
amplitudes (left) and frequencies (right). Data shown are means ± SEM. **p<0.01, *p<0.05, ns: not 
significant, two-way ANOVA with Sidak’s multiple comparisons test, N = 8 mice were tested.
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Figure 2.9 Effect of acute knockdown of L3mbtl1 on homeostatic down-
scaling in hippocampal CA3 synapses.   

(A) Homeostatic down-scaling induced by PTX-treatment for 48 hours in 
hippocampal CA3 pyramidal neurons. Pyramidal neurons were transfected with 
expression vectors for shRNA directed against luciferase (middle) and L3mbtl1 
(right).  Left, representative mEPSC traces; right, averaged mEPSC traces.  The 
shRNAs were biolistically transfected at DIV1. PTX or DMSO was applied two days 
before recording. mEPSCs were recorded from CA3 pyramidal neurons.  (B) 
Cumulative distribution of mEPSC amplitudes. Scaled distributions were plotted by 
multiplying the distribution by a scaling factor and removing values that fell below 
the detection threshold.  KS tests for distributions in untransfected group: Ctrl vs 
PTX, p=1.8 X 10-31; scaled Ctrl vs PTX, not significant.  KS tests for distributions 
in shScrambled group: Ctrl vs PTX, p=2.1 X 10-26; scaled Ctrl vs PTX, not 
significant.  KS tests for distributions in shL3mbtl1 group: Ctrl vs PTX, not 
significant.  (C) Quantification of mean mEPSC amplitudes (left) and frequencies 
(right).  Data shown are means ± SEM.  **p<0.01, *p<0.05, ns: not significant, two-
way ANOVA with Sidak’s multiple comparisons test, N = 8 mice were tested. 
  



 81 

Figure 2.10 
 
 

 
 
 
 

250
150

100
75

50

MW

Lane     1     2    3   4       5    6    7   8

WT      KO      
A                                                 B                                               C 

Figure 7

13.66%  CpG-Island
5.59%  5UTR
46.75%  Promoter
0.57%  ncRNA
6.31%  Exon
0.04%  pseudo
1.09%  TTS
21.17%  Intron
0.41%  3UTR
4.42%  Intergenic

<0
.1
0.1

-1 1-
5
5-

10
10

-5
0

50
-1

00
>1

00
0

20

40

60

80

100

P
ro

po
rt

io
n 

of
 P

ea
ks

 % Distance to TSS (kb)

L3mbtl1 ATAC H3K4me1 H3K4me3 H3K27ac H3K27me3

C1

C2

C3

C4

-3kb           TSS            3kb -3kb           TSS            3kb -3kb           TSS            3kb -3kb           TSS            3kb -3kb           TSS            3kb -3kb           TSS            3kb

0         2         4         6         8         10      20       30      40  0.5     1.0    1.5     2.0     2.5   1       2       3       4       5   1     2     3     4    5     6     7 0.5     1.0   1.5    2.0   2.5    3.0

G 
1

2
3

4
0

-3kb TSS +3kb

L3mbtl1
ATAC
H3K4me1
H3K4me3
H3K27ac
H3K27me3

lo
g2

 (r
ea

d 
co

un
t)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1ATA
C

H3K
27

ac

H3K
27

m
e3

H3K
4m

e1

H3K
4m

e3

L3m
btl1

ATAC

H3K27ac

H3K27me3

H3K4me1

H3K4me3

L3mbtl1

1

0.5

−0.29

0.47

0.39

0.23

1

−0.26

0.83

0.33

0.12

1

−0.3

−0.11

−0.05

1

0.23

0.08

1

0.38 1

0 10 20 30

methyltransferase
histone H3K4 methylation

translational initiation
GTP-binding

eIF3 complex
synapse

protein phosphatase
glioma

viral nucleoprotein
centromere

nucleosome assembly
cell-cell adherens junction

kinase
mRNA processing
nucleosome core

DNA damage stimulus
zinc-finger

nucleotide binding
cell cycle

transcription

enrichment score

189
436

314
121

41

38

85
157
82

19
43

12
20

18
8

65
9
64
39

434

D                                                   E                                         F



 82 

Figure 2.10 Genome-wide mapping of L3mbtl1 chromatin binding sites.  

 (A) Validation of antibody specificity in ChIP assays. Crosslinked chromatin 
prepared from wild type or KO P7 mouse hippocampus was pulled down by Ig-
L3mbtl1 or normal rabbit IgG, and immunoblotted against L3mbtl1. Lanes 1 and 5, 
input lysate; lanes 2 and 6, unbound fraction; lanes 3 and 7, immunoprecipitated 
(IP) with Ig-L3mbtl1; lanes 4 and 8, IP with IgG.  (B) Distribution of 4677 L3mbtl1 
bound regions at various genomic locations. Promoters are defined as -1kb to 
100bp of a transcription start site (TSS). TTS, transcription termination site; pseudo, 
pseudogenes.  (C) Distribution of L3mbtl1 binding sites around TSS. Proportion of 
L3mbtl1 bound regions is plotted at increasing distance from the nearest TSS.  
Distance is absolute, regardless of direction (up- or downstream) from TSS.  (D) 
Functional enrichment analysis of the genes obtained by ChIP-seq. Genes 
assigned to bound regions were tested by DAVID enrichment analysis. Clusters 
are sorted by enrichment score with the number of genes within each cluster 
labeled at the side of the bars.  (E) Correlation analysis of L3mbtl1 peaks with 
peaks of multiple histone PTMs and ATAC-seq data from neocortical excitatory 
neurons (provided by GEO GSE63137). Peak chromosomal ranges were mapped 
into windows of 10k nucleotides of the mouse genome and pairwise Pearson 
correlation scores were plotted. Blue represents positive correlation, and red 
represents negative correlation.  (F-G) Read density distributions of L3mbtl1 and 
multiple histone PTMs and ATAC-seq (GEO GSE63137) centered on the TSS 
±3kb of each transcript in mouse genome.  (F) Averaged profiles of read densities 
were plotted with log2 scale for all factors.  (G) Heatmaps of read densities. All 
heatmaps were organized into 4 clusters (C1, C2, C3, C4) based on K-means 
clustering of L3mbtl1 ChIP-seq signal profiles. 
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Figure 2.11 
 

 
  

Scale
chr9:

L3mbtl1.peak

10 kb
120,950,000

Ctnnb1
Ulk4

H3K4me1
4.53 -

0.283 _
H3K27me3

2.631 -

0.376 _
ATAC-seq

5.346 -

0.127 _
H3K4me3

3.502 -

0.389 _
H3K27ac

3.583 -

0.448 _
L3mbtl1.Rep1

15 -

0 _
L3mbtl1.Rep2

15 -

0 _
L3mbtl1.Rep3

15 -

0 _

Scale
chr5:

L3mbtl1.peak

10 kb
71,090,000 71,100,000

Gabra2
H3K4me1

3.114 -

0.283 _
H3K27me3

2.631 -

0.376 _
ATAC-seq

62.758 -

0.127 _
H3K4me3

5.058 -

0.389 _
H3K27ac

13.884 -

0.448 _
L3mbtl1.Rep1

12 -

0 _
L3mbtl1.Rep2

12 -

0 _
L3mbtl1.Rep3

12 -

0 _

D                                                                  E

0

4

8

12

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n
 

%
G

a
p

d
h

+/+ -/-
0

4

8

12
*

0

100

200

300

400

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n
 

%
Y

w
h

a
z

+/+ -/-
0

100

200

300

400 **

C   

Ap2a2 Ctnnb1 Homer1
Bdnf Cxcr4 Itgb1
Camk2b Dag1 Nedd4
Camkk1 Fxr1 Shank3
Cdh2 Gabra2
Cfl1 Gabra5

Candidate Genes
Ctnnb1

Ctnnb1

Gabra2

Gabra2

A                                                                  B

0.00

0.02

0.04

0.06

%
In

p
u

t

*

Ctnnb1

0.00

0.02

0.04

0.06

%
In

p
u

t

**

Gabra2

0.00

0.02

0.04

0.06

%
In

p
u

t

Intergenic

0.0
0.5
1.0
1.5
2.0

Ctnnb1

*

0.0
0.5
1.0
1.5
2.0

Gabra2

*

0.0
0.5
1.0
1.5
2.0

Intergenic

0.0
0.5
1.0
1.5
2.0

Ctnnb1

0.0
0.5
1.0
1.5
2.0

Gabra2

0.0
0.5
1.0
1.5
2.0

Intergenic

Hippocampus Primary culture

PTXDMSO

WT.703 WT.IgG KO.703

fo
ld

  e
n

ri
c
h

m
e
n

t

10

30

50

70

%
In

p
u

t

Ctnnb1

10

30

50

70

%
In

p
u

t

Gabra2

10

30

50

70

%
In

p
u

t

Intergenic

0
5

10
15
20
25

%
In

p
u

t

Ctnnb1

0
5

10
15
20
25

%
In

p
u

t

Gabra2

0
5

10
15
20
25

%
In

p
u

t

Intergenic

0
5

10
15
20
25

Ctnnb1

0
5

10
15
20
25

Gabra2

0
5

10
15
20
25

Intergenic

Hippocampus Primary culture
PTXDMSO

10

30

50

70

*** *

10

30

50

70 ****

**

10

30

50

70

0
5

10
15
20
25

* **

0
5

10
15
20
25 ***

**

0
5

10
15
20
25

0
5

10
15
20
25

*
**

0
5

10
15
20
25 **

*

0
5

10
15
20
25

H3K4me3 H3K27ac IgG

Figure 8



 84 

Figure 2.11 Identification of L3mbtl1 target genes.   

(A) List of selected putative L3mbtl1 target genes that have known functions in 
synaptic transmission and/or homeostatic synaptic plasticity. (B) Quantification of 
Ctnnb1 and Gabra2 RNA expression by qPCR. Hippocampal primary cultures 
prepared from wild type (+/+) and L3mbtl1 KO (-/-) mice were treated with PTX for 
15 hr and expression of Ctnnb1 and Gabra2 was determined. **p<0.01, *p<0.5, 
student’s t-test. N = 8-12 independent cultures.  (C) L3mbtl1-binding events at the 
promoter regions of the Ctnnb1 (left) and Gabra2 (right) genes, obtained from 
ChIP-seq of P7 mouse hippocampus. ChIP-seq tracks for L3mbtl1 from wild type 
samples (L3mbtl1.Rep1-3), various histone markers and ATAC-seq tracks 
(provided by GEO GSE63137) are shown.  Black blocks indicate signal peaks for 
L3mbtl1 bound regions.  (D) L3mbtl1 binding validated by direct ChIP-qPCR 
assays at Ctnnb1 and Gabra2 promoter regions.  ChIP was performed from P7 
hippocampus (left), or primary cultures treated with DMSO (middle) or PTX (right) 
for 24 hours.  Note that PTX treatment abolished L3mbtl1-binding in primary 
cultures.  **p<0.01, *p<0.5, one-way ANOVA with Sidak’s multiple comparisons 
test for hippocampus, and student’s t-test for primary culture.  N = 3 biological 
replicates.  (E) Enrichment for H3K4me3 and H3K27ac validated by direct ChIP-
qPCR assays at Ctnnb1 and Gabra2 promoter regions.  ChIP was performed from 
P7 hippocampus (left), or primary cultures treated with DMSO (middle) or PTX 
(right).  Note that PTX treatment did not change H3K4me3 or H3K27ac profiles at 
promoter regions.  ****p<0.0001, ***p<0.001, **p<0.01, *p<0.5, one-way ANOVA 
with Sidak’s multiple comparisons test.  N = 3 biological replicates. 
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Figure 2.12 
 
 

 
 
 
Figure 2.12 Validation of Ctnnb1 shRNA.   

(A) Representative blots of Ctnnb1 and tubulin (top) and quantification (bottom) of 
exogenously expressed Ctnnb1 protein in HEK cells transfected with Ctnnb1 
shRNA (shCtnnb1) or scramble control shRNA (shScr).  *p=0.012, student’s t-test, 
N = 4.  (B) Endogenous Ctnnb1 mRNA levels in primary cultures expressing 
Ctnnb1 shRNA (shCtnnb1) or scramble control shRNA (shScr).  Primary neurons 
were infected with high-titer lenti virus-packaged shRNAs for three days.  
****p<0.0001, student’s t-test. N = 4.  Data shown are means ± SEM. 
  Supplemental Figure 8
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Figure S8.  Validation of Ctnnb1 shRNA.  (A) Representative blots of 
Ctnnb1 and tubulin (top) and quantification (bottom) of exogenously 
expressed Ctnnb1 protein in HEK cells transfected with Ctnnb1 shRNA 
(shCtnnb1) or scramble control shRNA (shScr).  *p=0.012, student’s t-test, N 
= 4.  (B) Endogenous Ctnnb1 mRNA levels in primary cultures expressing 
Ctnnb1 shRNA (shCtnnb1) or scramble control shRNA (shScr).  Primary 
neurons were infected with high-titer lenti virus-packaged shRNAs for three 
days.  ****p<0.0001, student’s t-test. N = 4.  Data shown are means ± SEM.
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Figure 2.13 
 

 
 
 
  

Ctnnb1 shRNAScramble shRNA
Ctrl

PTX

 

A

20 pA
0.5 s

B

C

Figure 9

10pA
20ms

Untransfected

Figure 9. Reduced basal synaptic transmission and lack of homeostatic down-scaling in hippocampal 
primary neurons by partial knockdown of Ctnnb1.  Hippocampal primary cultures were prepared from wild 
type (L3mbtl1 +/+) mice.  Primary neurons were transfected with shRNA against Ctnnb1 (shCtnnb1) for three 
days and treated with PTX (100μM) or DMSO as control for two days.  Untransfected and those transfected 
with scrambled shRNA (shScr) are shown as controls.  (A) Representative mEPSC traces (left) and average 
mEPSC event traces (right).  (B) Cumulative distribution of mEPSC amplitudes. Scaled distributions were 
plotted by multiplying the distribution by a scaling factor and removing values that fell below the detection 
threshold. Kolmogorov Smirnov (KS) tests for distributions in untransfected group: Ctrl vs PTX, p=4.9X10-31; 
scaled Ctrl vs PTX, not significant. KS tests for distributions in shScrambled group: Ctrl vs PTX, p=1.1X10-40; 
scaled Ctrl vs PTX, not significant. KS tests for distributions in shCtnnb1 group: Ctrl vs PTX, not significant.   
(C) Quantification of mean mEPSC amplitudes (left) and frequencies (right).  Data shown are means ± SEM.  
****p<0.0001, ***p<0.001, *p<0.05, ns: not significant, two-way ANOVA with Sidak’s multiple comparisons 
test.  N = 4 - 5 mice were tested.
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Figure 2.13 Reduced basal synaptic transmission and a lack of homeostatic 
down-scaling in hippocampal primary neurons by partial knockdown of 
Ctnnb1.   

Hippocampal primary cultures were prepared from wild type (L3mbtl1 +/+) mice.  
Primary neurons were transfected with shRNA against Ctnnb1 (shCtnnb1) for 
three days and treated with PTX (100μM) or DMSO as control for two days.  
Untransfected and those transfected with scrambled shRNA (shScr) are shown as 
controls.  (A) Representative mEPSC traces (left) and average mEPSC event 
traces (right).  (B) Cumulative distribution of mEPSC amplitudes. Scaled 
distributions were plotted by multiplying the distribution by a scaling factor and 
removing values that fell below the detection threshold.  KS tests for distributions 
in untransfected group: Ctrl vs PTX, p=4.9 X 10-31; scaled Ctrl vs PTX, not 
significant.  KS tests for distributions in shScr group: Ctrl vs PTX, p=1.1 X 10-40; 
scaled Ctrl vs PTX, not significant. KS tests for distributions in shCtnnb1 group: 
Ctrl vs PTX, not significant.  (C) Quantification of mean mEPSC amplitudes (left) 
and frequencies (right).  Data shown are means ± SEM.  ****p<0.0001, ***p<0.001, 
*p<0.05, ns: not significant, two-way ANOVA with Sidak’s multiple comparisons 
test.  N = 4 - 5 mice were tested. 
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Figure 2.14 
 
 

 
 
 
 
Figure 2.14 Motif analysis for L3mbtl1-binding sites.  

List of top enriched DNA-binding motifs identified by motif analysis performed on 
L3mbtl1 ChIP-seq peaks using HOMER de novo motif discovery.  
  

ETV5 76.97% (58.85%) 1E-147

E2F 68.10% (54.90%) 1E-74

BARHL2 44.61% (31.93%) 1E-71

44.37% (32.37%) 1E-64NFkB-p65-Rel

66.02% (56.84%) 1E-36Arnt:Ahr(bHLH)

   Best matched
transcription factor de novo sequence motif p-value

% peaks with motif
(% backgroud)

Supplemental Figure 10

Figure S10. Motif analysis for L3mbtl1-binding sites. List of top enriched DNA-binding motifs 
identified by motif analysis performed on L3mbtl1 ChIP-seq peaks using HOMER de novo motif 
discovery. 
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Abstract 

The Shank genes (SHANK1, 2, 3) encode scaffold proteins highly enriched in 

postsynaptic densities where they regulate synaptic structure in spiny neurons. 

Mutations in human Shank genes are linked to autism spectrum disorder (ASD) 

and schizophrenia. Shank1 mutant mice exhibit intriguing cognitive phenotypes 

reminiscent of ASD individuals. However, the molecular mechanisms leading to 

the human pathophysiological phenotypes and mouse behaviors have not been 

elucidated. 

We show in this study that Shank1 protein is highly localized in Parvalbumin-

expressing (PV+) fast-spiking inhibitory interneurons in hippocampus. Importantly, 

lack of Shank1 in hippocampal CA1 PV+ neurons reduced excitatory synaptic 

inputs and inhibitory synaptic outputs to pyramidal neurons. Furthermore, we 

demonstrate that hippocampal CA1 pyramidal neurons in Shank1 mutant mice 

exhibit a shift in the excitatory and inhibitory balance (E-I balance), a 

pathophysiological hallmark of ASD. The mutant mice also exhibit lower 

expression of gephyrin (a scaffold component of inhibitory synapses), supporting 

the dysregulation of E-I balance in hippocampus. These results suggest that 

Shank1 scaffold in PV+ interneurons regulates excitatory synaptic strength and 

participates in the maintenance of E-I balance in excitatory neurons. 
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Introduction 

The Shank family proteins (Shank1, 2, 3, also known as ProSAP, Synamon, 

CortBP, Spank and SSTRIP) are enriched in postsynaptic densities (PSDs) and 

serve as scaffolds for a variety of postsynaptic molecules in excitatory neurons 

(Jiang and Ehlers, 2013). All Shank isoforms regulate the structure of dendritic 

spines, particularly spine heads, and are critical for the maturation of their structure 

in excitatory and medium spiny neurons (Durand et al., 2012; Haeckel et al., 2008; 

Peça et al., 2011; Roussignol et al., 2005; Sala et al., 2001). Consistent with these 

findings, knockdown of any of the Shank isoforms leads to reduced spine size 

and/or density in neurons thereby perturbing excitatory synaptic transmission 

(Berkel et al., 2012; Grabrucker et al., 2011; Verpelli et al., 2011). Furthermore, 

Shank knockout mouse lines exhibit abnormal synaptic structure and/or function 

in various brain regions (Hung et al., 2008; Peça et al., 2011; Schmeisser et al., 

2012; Wang et al., 2011; Won et al., 2012; Yang et al., 2012). However, the pattern 

of expression of the SHANK genes and their functions in non-spiny neurons, such 

as inhibitory interneurons, are largely unknown. 

Multiple lines of evidence indicate that the molecular organization of 

excitatory synapses in interneurons is different from that in excitatory neurons. In 

this regard, the subunit composition of AMPA receptors in interneurons is distinct 

from that in excitatory neurons (Jonas et al., 1994).The receptor tyrosine-protein 

kinase ErbB4, the PSD-95 binding protein CITRON (a putative Rho effecter), and 

Synapse-Associated Protein 97 are expressed more abundantly in interneurons 
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than in pyramidal neurons (Akgul and Wollmuth, 2013; Fazzari et al., 2010; Jaaro-

Peled et al., 2009; Mei and Xiong, 2008; Zhang et al., 1999). Furthermore, there 

are fundamental differences in short- and long-term synaptic plasticity between 

inhibitory and excitatory neurons (Lamsa et al., 2007b; McMahon and Kauer, 1997; 

Sun et al., 2005). Taken together, the excitatory postsynaptic molecular 

architecture of interneurons is different from that of excitatory neurons, and the 

types of postsynaptic neurons (projection versus inhibitory neurons) likely 

determine the physiological characteristics of excitatory synapses. 

Parvalbumin-expressing (PV+) fast-spiking inhibitory interneurons send 

inhibitory axons to perisomatic areas of excitatory neurons and regulate neuronal 

synchronization (Freund and Katona, 2007). The dysregulation of PV+ neurons 

can cause a shift of the excitatory and inhibitory balance (E-I balance), which is 

considered one of the endophenotypes of several psychiatric disorders (Rossignol, 

2011; Rubenstein and Merzenich, 2003). However, the molecular architecture of 

excitatory synapses in PV+ neurons, which serves an important role in regulating 

excitability of cortical and hippocampal circuits, is largely unknown. 

In this study, we found that Shank1 is highly expressed in PV+ neurons, and 

its deficiency in PV+ neurons causes a reduction of excitatory synaptic inputs and 

inhibitory outputs to CA1 pyramidal neurons. Furthermore, we observed that loss 

of Shank1 causes increased E-I balance by reducing inhibitory synaptic function 

and lowers expression of gephyrin in the hippocampal CA1 area. These results 
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indicate that the Shank1 scaffold plays an important role in PV+ neuron-mediated 

synaptic circuits in hippocampus. 

 

Results 

Shank1 is highly expressed in PV+ inhibitory interneurons  

Shank family scaffolds are densely localized in spines of excitatory and medium-

spiny neurons (Jiang and Ehlers, 2013). To investigate the expression of Shank in 

hippocampal non-spiny inhibitory interneurons, we performed double 

immunostaining against Shank1 and inhibitory neuronal markers. Importantly, we 

identified that Shank1 is highly expressed in adult hippocampal PV+ interneurons 

in wild-type but, as expected, not in Shank1−/− mice (Fig 3.1A). PV+ neurons in 

hippocampal CA1 area were highly reactive against Shank1 antibody (Fig 3.1B). 

We compared the signal of Shank1 staining in the dendritic segment of PV+ 

neurons and the hippocampal CA1 stratum radiatum area where most pyramidal 

neurons form excitatory synapses. Both the size and the signal intensity of Shank1 

puncta are significantly higher in PV+ neurons (averaged size of Shank1 puncta: 

dendritic segment of PV+ neurons, 0.55 ± 0.05 μm2, hippocampal stratum radiatum 

area, 0.26 ± 0.02, p < 0.0001, Wilcoxon signed rank t-test; averaged Shank1 

signal intensity: dendritic segment of PV+ neurons, 2195.4 ± 108.8 arbitrary units; 

hippocampal stratum radiatum area, 2050.6 ± 100.5; p < 0.001, paired t-test. N = 

28 PV neurons/3 mice). In addition, we observed strong VGluT1 signals, a marker 
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of glutamatergic terminals, proximal to Shank1 puncta in PV+ neurons (Fig 3.1C). 

These results suggest that Shank1 may play a key role at excitatory synapses in 

PV+ interneurons. These prominent Shank1 signals were not co-localized with 

other interneuronal markers, including Calb- and Calr-expressing inhibitory 

interneurons (Fig 3.1 D, E). 

We also measured the expression of SHANK genes in PV+ neurons. PV+ 

neurons in PV-RFP mouse hippocampi (which specifically express red fluorescent 

protein in PV+ neurons) were dissected by LCM, and, using qPCR, we confirmed 

that all SHANK genes are expressed in both PV+ and pyramidal neurons (Fig 

3.1F). 

 

Altered PSD protein expression in PV+ neurons lacking Shank1  

Shank1 protein exclusively localizes at excitatory synapses in excitatory neurons 

and regulates spine structure (Sala et al., 2001). However, the role of Shank1 in 

non-spiny neurons, such as PV+ inhibitory interneurons, has not been addressed. 

We next examined the expression of synaptic proteins in PV+ interneurons in 

dissociated hippocampal neurons cultured from wild-type or Shank1−/− mice. 

Shank1 was easily detectable in wild-type interneurons, but, as expected, was not 

observed in PV+ interneurons from mutant mice (Fig 3.2 A, B). 

Wild-type Shank1 is partially co-localized at dendritic clusters with the 

excitatory synapse marker PSD-95 (Fig 3.2A). Similar to excitatory neurons where 

45.2 ± 10.8% of Shank1 puncta co-localized with PSD-95 clusters (n = 15 neurons, 
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image not shown), the Shank1 puncta in PV+ neurons also co-localized with PSD-

95 (32.1 ± 9.8%; n = 10 neurons). It should be noted that the population of neurons 

with co-localized Shank1 and PSD-95 is much smaller than that in other reports 

because of the fixation method used in this study (see Materials and Methods) 

(Hung et al., 2008). In Shank1−/− PV+ neurons, the density of Shank puncta 

(labeled with pan-Shank antibody) along the dendrite was reduced to ≈ 50% (Fig 

3.2 B, C). The remaining Shank staining, presumably from Shank2 and Shank3 

proteins, still localized at excitatory synapses. Furthermore, immunoreactivity 

against GKAP, PSD-95 and GluA1 were significantly reduced in Shank1−/− PV+ 

neurons compared with wild-type neurons (Fig 3.2C). There was no difference 

between cultured wild-type and Shank1−/− PV+ interneurons in cluster density or 

staining pattern of Homer and Bassoon. These results indicate that Shank1 is 

important for the assembly of the excitatory postsynaptic structure in PV+ neurons. 

 

PV+ basket cells in Shank1-/- mice exhibit reduced basal excitatory synaptic 
transmission  

To study the function of Shank1 in PV+ neurons, we generated Shank1 wild-type 

and Shank1−/− mice that express RFP in PV+ neurons, and measured basal 

excitatory synaptic transmission from RFP-positive neurons. We chose PV+ 

basket neurons, one of the major PV+ cell-types in CA1 stratum pyramidale, and 

performed whole-cell recordings to measure AMPAR-mediated spontaneous and 

miniature EPSCs (sEPSCs and mEPSCs) (Fig 3.3 A-F). The amplitudes and 



 97 

frequencies of both sEPSCs and mEPSCs in PV+ Shank1−/− basket cells were 

lower than those of wild-type mice (Fig 3.3 B, E). In addition, sEPSCs in PV+ 

Shank1−/− basket cells exhibited slower rise times compared with that of wild-type 

mice (Fig 3.3 C, F). The AMPA receptor-mediated paired-pulse facilitation (PPF), 

a type of short-term synaptic plasticity that measures the change of presynaptic 

release probability, was similar in wild-type and Shank1−/− slices [PPF induced by 

50 ms of inter-stimulus interval: wild-type, 1.57 ± 0.19 (n = 8); Shank1−/−, 1.60 ± 

0.13 (n = 7); p > 0.8, Student t-test], implying that the change in sEPSC frequency 

in Shank1−/− PV+ neurons is due to the reduction of the number of functional 

excitatory synapses. These results are consistent with our immunocytochemical 

studies indicating a reduction in the expression of the excitatory postsynaptic 

markers GKAP, PSD-95 and GluA1 in Shank1−/− PV+ neurons (Fig 3.2 B, C). 

GluA1 is one of the major AMPAR subunits in PV+ neurons and regulates 

excitatory synaptic transmission in hippocampal PV+ neurons (Fuchs et al., 2007) 

while PSD-95 is critical for AMPAR trafficking at synapses (Elias and Nicoll, 2007). 

Therefore, it is possible that the reduced GluA1 and PSD-95 signals in 

Shank1−/− PV+ neurons caused the changes in amplitude and kinetics of sEPSCs. 

These results highlight that Shank1 in PV+ neurons has a different role in 

regulating excitatory synapses compared with that in pyramidal neurons, since 

CA1 pyramidal neurons exhibited only reduced miniature EPSC frequency (Hung 

et al., 2008). 
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Shank1−/− mice display normal membrane excitability in PV+ neurons 

It has been reported that Shank1 and Shank3 directly bind to Cav1.3, L-type 

Ca2+ channel subunits (Zhang et al., 2005). In addition, Shank1 regulates Ca2+-

sensitive Big K+-channel activity (Sala et al., 2005) that shapes the width of action 

potentials by regulating after-hyperpolarization of action potentials at presynaptic 

and postsynaptic sites (Hu et al., 2001; Matthews et al., 2008; Sailer et al., 2006). 

Thus, Shank1 may regulate not only excitatory synaptic transmission but also 

intrinsic membrane excitability in PV+ neurons. 

One of the most prominent membrane properties of PV+ neurons is their 

firing capability, which underlies their characterization as “fast-spiking” neurons. 

Therefore, we compared the firing patterns of CA1 PV+ neurons in wild-type and 

Shank1−/− mice. We performed whole-cell current clamp recordings from RFP-

positive PV+ neurons and injected a series of current pulses into the neurons. All 

recorded RFP-positive neurons displayed fast-spiking properties. Neither the firing 

frequencies (Fig 3.3G) nor the basic membrane properties of FS-interneurons in 

Shank1−/− mice were different from those of wild-type PV+ neurons [resting 

membrane potentials: wild-type, −61.0 ± 1.1 (n = 8); Shank1−/−, −59.9 ± 0.7 mV (n 

= 7); series resistance: wild-type, 20.6 ± 1.3; Shank1−/−, 21.1 ± 1.6 MΩ; input 

resistance: wild-type, 122.6 ± 21.1; Shank1−/−, 109.7 ± 9.7 MΩ; p > 0.3, Student t-

test]. These results indicate that Shank1 does not play a major role in the 

membrane excitability of PV+ neurons. 
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Shank1-/- mice show reduced PV+ neuron-mediated inhibitory synaptic 
transmission  

The reduced excitatory synaptic transmission in Shank1−/− PV+ neurons may 

decrease basal activity in these cells. We therefore performed cell-attached patch-

clamp recordings and measured PV+ neuronal excitability in hippocampal CA1 

area (Fig 3.4A). Interestingly, PV+ neurons in Shank1−/− slices exhibited lower 

firing rates compared with those of wild-type slices. This result suggests that the 

reduced excitatory synaptic transmission in PV+ neurons (Fig 3.3 A-F) causes a 

decrease in their firing rates in Shank1−/−slices. 

Do the reduced firing rates of PV+ neurons in Shank1−/− mice change the 

inhibitory outputs onto postsynaptic pyramidal neurons? It has been reported that 

glutamatergic inputs to GABAergic neurons modulate their inhibitory outputs 

(Chang et al., 2014). Chronic reduction of PV+ neuronal activity may decrease 

their inhibitory outputs onto CA1 pyramidal neurons. To address this question, we 

performed simultaneous pre- and postsynaptic dual whole-cell voltage-clamp 

recordings from RFP-positive presynaptic CA1 PV+ neurons and postsynaptic 

pyramidal neurons located within 50 μm of PV+ neurons in wild-type and 

Shank1−/− mice (Fig 3.4 C, D). PV+ neurons were identified by RFP fluorescence 

(Fig 3.4C, left). Presynaptic GABA release was evoked by applying single or 

double depolarization commands (Fig 3.4C, middle and right). The amplitude of 

PV+ neuron-mediated inhibitory synaptic transmission and connective frequency 

were reduced in Shank1−/− mice compared with that of wild-type mice (Fig 3.4D, 
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left and middle). Shank1−/− PV+ neurons exhibited essentially similar levels of 

paired-pulse ratio as wild-type (Fig 3.4D, right), suggesting that the reduced 

inhibitory synaptic transmission and connective frequency are not attributable to a 

difference in presynaptic release probability. These results suggest that reduced 

excitatory synaptic transmission in PV+ neurons weakens the inhibitory outputs of 

PV+ neurons to pyramidal neurons, although it is possible that the null knockout of 

Shank1 can indirectly change synaptic function in hippocampus. 

 

Shank1−/− mice show increased excitatory and inhibitory ratio 

What is the consequence of reduced PV+ neuron-mediated inhibitory synaptic 

transmission in the hippocampal CA1 circuit? The E-I balance plays a critical role 

in cognitive behavior (Zikopoulos and Barbas, 2013). Abnormal E-I balance, as 

caused by the dysfunction or loss of inhibitory interneurons, has been suggested 

as a pathophysiological hallmark in ASD, schizophrenia and animal models of 

these disorders (Gatto and Broadie, 2010; LeBlanc and Fagiolini, 2011; Markram 

and Markram, 2010; Rubenstein and Merzenich, 2003; Yizhar et al., 2011). To 

address whether the abnormal PV+ neuron-mediated inhibitory transmission in 

Shank1−/− mice leads to an E-I imbalance, we measured the E-I balance in 

hippocampal CA1 pyramidal neurons using an approach previously described 

(Futai et al., 2013). We divided the amplitude of AMPAR-mediated excitatory 

postsynaptic currents (AMPAR-EPSCs) by GABAAR-mediated inhibitory 
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postsynaptic currents (GABAAR-IPSCs) in the same cells and refer to this as the E-

I ratio. 

Interestingly, the E-I ratio of Shank1−/− mice was significantly higher than that 

of wild-type animals (Fig 3.5A). It has been reported that excitatory synaptic 

strength is moderately reduced in Shank1−/− hippocampal CA1 pyramidal neurons 

(Hung et al., 2008); therefore, the degree of IPSC reduction in Shank1−/− mice must 

be more severe than the decrease of excitatory synaptic transmission to account 

for the E-I imbalance that we detected. Shank1−/− mice showed essentially the 

same paired-pulse depression (PPD) induced by the double stimulation of synaptic 

inputs with 50 ms of inter-pulse interval as wild-type (wild-type: 0.64 ± 0.03, n = 20 

from 6 mice; Shank1−/−: 0.67 ± 0.02, n = 24/6; p = 0.36, Student t-test). Paired-

pulse depression is one form of short-term synaptic plasticity that reflects the 

change of presynaptic release probability. Therefore, this result indicates that 

Shank1 knockout does not change the inhibitory presynaptic release probability. 

We next examined the amplitudes and frequencies of the GABAAR-mediated 

miniature IPSCs (Fig 3.5B). The frequencies, but not the amplitudes, of the 

mIPSCs from Shank1−/− mice were significantly reduced, suggesting that the 

increased E-I ratio is caused in large part by a reduction in the number of functional 

inhibitory synapses. 
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Gephyrin expression is down-regulated in Shank1−/− mice 

To further investigate the mechanisms underlying the shift of E-I balance, we 

compared the expression of synaptic proteins in membrane fractions of 

Shank1−/− and wild-type mice. Interestingly, expression of gephyrin, a scaffold 

molecule of inhibitory synapses, was significantly reduced in Shank1−/− membrane 

fractions (Fig 3.5C), consistent with the impairment of inhibitory transmission in 

Shank1−/− mice. We next examined expression of gephyrin histochemically in the 

hippocampal CA1 area. Consistent with our western blot data, the size of gephyrin 

immunoreactivity in CA1 stratum radiatum (SR) and pyramidale (SP) in 

Shank1−/− mice are reduced compared with Shank1 wild-type mice (averaged size 

of gephyrin puncta: wild-type, 0.09 ± 0.01 μm2; Shank1−/−, 0.05 ± 0.002 μm2, p < 

0.01; averaged puncta densities: wild-type, 13.73 ± 0.15 puncta / 100 μm2; 

Shank1−/−, 13.18 ± 0.39, p = 0.49, Student t-test. N = 4 brains from each genotype). 

(Fig 3.5D). The density of gephyrin puncta in Shank1−/− mice was comparable to 

that of wild-type mice, which is not consistent with our mIPSC results that showed 

that Shank1 KO mice exhibit normal mIPSC amplitudes (Fig 3.5B). In this regard, 

it is interesting to note that gephyrin knockout moderately reduces mIPSC 

amplitude compared with wild-type, and further, that knockdown of gephyrin 

reduces the number of GABAAR clusters (Jacob et al., 2005; Lévi et al., 2004). 

Thus, a subtle reduction of gephyrin may have more impact on the number of 

active synapses rather than the number of GABAAR per synapse. 
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Discussion 

Molecular architecture of excitatory synapses in inhibitory neurons 

Shank proteins serve as scaffolds for a variety of postsynaptic molecules, including 

GKAP, Homer, L-type Ca2+ channels and actin regulatory molecules, such as 

cortactin, Sharpin, α-fodrin, Abp1 and β-Pix (Jiang and Ehlers, 2013). Shank 

proteins are targeted to postsynaptic sites in spiny neurons and regulate spine size, 

which determines the number of AMPA receptors expressed at the synapses 

(Matsuzaki et al., 2001; Naisbitt et al., 1999). Ectopic expression of Shanks 

enlarges spines in excitatory spiny neurons and induces spinogenesis in non-spiny 

neurons (Roussignol et al., 2005; Sala et al., 2001). Questions remain what 

physiological and structural roles Shanks have in non-spiny inhibitory neurons. 

To address this, we first demonstrated that Shank1 is highly expressed in 

PV+ neurons. Furthermore, we confirmed the expression of major synaptic 

molecules, such as PSD-95, GKAP and Homer, in PV+ neurons, indicating that 

the composition of the postsynaptic architecture in inhibitory neurons is similar to 

that of excitatory neurons. However, the consequences of Shank1 knockout in PV+ 

basket cells are more severe than that in pyramidal neurons. Shank1 deficit 

reduced spine size and the frequency of mEPSCs in pyramidal neurons, while the 

expression of other postsynaptic molecules is comparable to that in wild-type 

neurons (Hung et al., 2008). In contrast, the absence of Shank1 protein in PV+ 

interneurons caused reduced expression of PSD-95, GKAP and GluA1, and led to 
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abnormal frequency, amplitude and kinetics of sEPSCs and mEPSCs (Fig 3.2 and 

3.3). While the possibility that conventional Shank1 knockout can dysregulate PV+ 

neuronal function through non-cell autonomous fashion cannot be excluded, our 

results suggest that Shank1 plays an important role in the assembly of synaptic 

molecules at postsynaptic membranes in PV+ neurons. It is possible that the 

differential impact of Shank1 knockout between excitatory and PV+ neurons is a 

consequence of the distinct structures of the excitatory synapses in these two 

classes of neurons. The spine structure in excitatory neurons may act as a barrier 

that prevents diffusion of postsynaptic proteins, thus minimizing the knockout effect 

of Shank1. In contrast, excitatory synapses in inhibitory interneurons, which mostly 

form directly on the dendritic shaft, may rely on the scaffold proteins to maintain 

synaptic structure (Douglas and Martin, 1998). 

 

Roles of Shank scaffolds in E-I balance 

We have demonstrated that Shank1 is highly expressed in PV+ neurons and 

regulates excitatory synaptic transmission in PV+ basket cells. Furthermore, 

Shank1−/− mice display increased E-I balance in hippocampal CA1 pyramidal 

neurons due to the reduction of inhibitory synaptic transmission and reduced 

gephyrin expression. Since knockout or knockdown of gephyrin reduces GABAAR-

mediated currents by disrupting receptor function without changing the total 

expression of GABAARs (Jacob et al., 2005; Kneussel et al., 1999; Lévi et al., 

2004), these results complement each other. However, it is unclear how a Shank1 
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deficit causes abnormal inhibitory synaptic transmission as Shank1 is exclusively 

localized to excitatory postsynaptic sites. We found that Shank1−/− PV+ neurons 

display reduced excitatory synaptic transmission and diminished firing rates. 

Neuronal activity is critical for synaptogenesis in the brain (Lu et al., 2009a) and 

excitatory inputs modulate the properties of synaptic outputs in GABAergic 

neurons (Chang et al., 2014). It is possible that the weakened PV+ neuronal 

activity reduces inhibitory synaptic output on pyramidal neurons, and this may lead 

to a subsequent decrease in gephyrin expression. Generating a PV+ neuron-

specific Shank1 knockout would allow us to directly address the roles of Shank1 

protein in PV+ neurons on E-I balance. An alternative possibility that explains the 

reduction of inhibition in Shank1−/−mice is the contribution of neuronal homeostasis. 

It has been reported that excitatory synaptic transmission in pyramidal neurons is 

slightly reduced in Shank1−/− mice (Hung et al., 2008). Therefore, reduced 

excitatory synaptic transmission in pyramidal neurons may cause a homeostatic 

reduction of inhibition, including a reduced number of active inhibitory synapses 

and reduced expression of gephyrin, in a cell autonomous manner. 

We evaluated E-I ratio in pyramidal neurons by taking the ratio of evoked 

EPSC and IPSC responses that are derived from non-specific synaptic inputs from 

different types of neurons, and observed increased E-I ratio in 

Shank1−/− pyramidal neurons (Fig 3.5A). In addition, we detected reduced 

inhibition in Shank1−/−pyramidal neurons by recording mIPSCs that measures the 

activity of all GABAergic synapses in pyramidal neurons (Fig 3.5B). Therefore, 
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reduced inhibitory synaptic transmission may not be solely due to abnormal 

inhibition through PV+ neurons. Other interneuronal types that exhibit lower 

clustering of Shank1 compared with PV+ neurons may also be dysregulated by 

Shank1 knockout. 

Detailed behavioral tests have shown that Shank1−/− mice exhibit better 

performance in radial maze task, impaired memory retention, impaired contextual 

fear memory, abnormal ultrasonic vocalization and scent marking behavior (Hung 

et al., 2008; Silverman et al., 2011; Wöhr et al., 2011). In contrast to these 

intriguing phenotypes, the physiological characteristics previously observed in this 

mouse line were only subtly perturbed: moderately reduced basal excitatory 

synaptic transmission in CA1 pyramidal neurons, normal NMDAR-dependent long-

term potentiation (LTP) and long term depression, and intact protein synthesis-

dependent LTP. 

Our data suggest that abnormal E-I balance can be a pathophysiological 

hallmark of Shank1−/− mice exhibiting abnormal behavioral phenotypes 

reminiscent of neuropsychiatric disorders. Importantly, Shank3 transgenic mice 

also exhibit dysregulation of E-I balance, reduced gephyrin expression and normal 

Hebbian type of synaptic plasticity (Han et al., 2013). The similarities of 

physiological phenotypes between Shank1−/− and Shank3 transgenic mice 

highlight the potential significance of Shank-mediated E-I balance in 

neuropsychiatric disorders. 
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SHANK2 and SHANK3 have also been characterized as disease-associated 

genes (Guilmatre et al., 2014; Jiang and Ehlers, 2013) and their transcripts are 

expressed in hippocampal CA1 PV+ neurons (Fig 3.1E). It is of paramount interest 

to elucidate the roles of Shank2 and Shank3 proteins in PV+ interneurons in 

hippocampus and cortex. 

 

Materials and methods 

Animals 

All animal protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Massachusetts Medical School. Shank1 

mutant mice were generated previously and backcrossed with C57BL/6 and 

129SvJae strains (gift from M. Sheng and R. Jaenisch, Massachusetts Institute of 

Technology, Cambridge, MA) (Hung et al., 2008). The animals used in this study 

were in a 129SvJae/C57BL/6 hybrid genetic background. We generated PV-RFP 

mice by crossing PV-Cre mice (Carlén et al., 2012) with a Cre-reporter mouse line 

carrying tdTomato (variant of red fluorescent protein, JAX: 007905) (Madisen et 

al., 2010). To generate Shank1−/−/PV-RFP mice, we first crossed Shank1 

heterozygous (C57BL/6 background) mutants with PV-RFP mice for at least three 

generations to transmit the cre recombinase and RFP genes [Shank1BL6+/−/PV-

RFP]. Shank1−/−/PV-RFP and wild-type mice were generated by crossing 

Shank1BL6+/−/PV-RFP and Shank1+/− (129SvJae) mutant mice. This mouse line 

expresses RFP in 80% of PV+ neurons with over 99% of the RFP-expressing cells 
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exhibiting PV immunoreactivity in the hippocampus (confirmed in two PV-RFP 

brains, 748 out of 903 PV-positive neurons expressed RFP and 7 out of 748 RFP-

positive neurons were negative to PV immunoreactivity). 

 

Antibodies and Biochemistry 

The following antibodies were used (dilution used for immunochemistry are 

indicated in parentheses): rabbit/mouse anti-calbindin, -parvalbumin and -

calretinin (1:1000, SWANT); goat/mouse anti-parvalbumin (1:2000, SWANT); 

rabbit anti-GKAP (1:1000, gift from Dr. Morgan Sheng); rabbit anti-GABAAR α1 

(1:1000, EMD Millipore); mouse anti-GABAAR β2/3 and -Synaptophysin (1:1000, 

EMD Millipore); mouse anti-pan-Shank (1:3000, Neuromab); rabbit anti-Shank1a 

[western blotting: 1:1000 Shank1_1356 (gift from Dr. E. Kim, Korea Advanced 

Institute of Science and Technology, Korea), immunohistochemistry and 

immunocytochemistry: 1:10000, Abcam (ab66315) and Synaptic Systems 

(162013)]; mouse anti-PSD95 (1:2000, Neuromab); rabbit/mouse anti-Gephyrin 

(1:1000-3000, Synaptic Systems); mouse anti-Bassoon (1:3000, Synaptic 

Systems); mouse anti-VGAT and -VGluT1 (1:2000, Synaptic Systems); mouse 

anti-Homer (1:1000, Transduction Laboratories); secondary Alexa dye-conjugated 

anti-mouse (Alexa 488, 647), anti-rabbit (Alexa 488, 594, 647), anti-goat (Alexa 

405, 488, 594), anti-guinea pig (Alexa 488, 647) antibodies (Invitrogen or Jackson 

ImmunoResearch Labs); HRP-conjugated anti-mouse and anti-rabbit antibodies 

(GE Healthcare, 1:2000). Fab fragment goat Anti-Mouse IgG (H+L) (Jackson 
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ImmunoResearch Labs) was applied prior to the application of primary mouse 

antibodies. The Triton-extracted P2 fraction was purified from the hippocampi of 

5–7 week old mice, as described previously (Cho et al., 1992; Futai et al., 2013). 

 

Immunohistochemistry 

Mice (5–7 weeks old) were deeply anesthetized under isofluorane and 

transcardially perfused with heparin/saline and 4% paraformaldehyde in 0.1 M 

phosphate buffered saline (PBS), pH 7.4. The brains were removed and post-fixed 

in the same fixative for 24 hours at 4°C. The fixed brains were sectioned in the 

coronal plane at 10 and 30 μm thicknesses on a microslicer (VT1200 S; Leica, 

Germany) to perform staining for gephyrin and Shank1, respectively. The sections 

were washed with PBS and then blocked with GDB buffer (30 mM phosphate 

buffer, pH 7.4, containing 0.2% gelatin, 0.5% Triton X-100, and 0.45 M NaCl) for 2 

hours at room temperature. Sections were then incubated overnight at 4°C with 

primary antibodies against interneuronal markers, Shank1 or gephyrin. Following 

PBS washes, the sections were incubated at room temperature for 1.5 hours with 

secondary antibodies. Following a third round of PBS washes, the sections were 

mounted on slides with Vectashield mounting medium (Vector Laboratories, Inc.). 

 

Primary hippocampal neuron culture, immunocytochemistry 

Hippocampal primary cultures were prepared from the brains of individual mice at 

postnatal day 0–3 as described previously (Futai et al., 2013). Cells were plated 
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onto coverslips (Matsunami, Japan) coated with poly-D-lysine (80 μg/ml, BD) and 

laminin (2 μg/ml, BD) at a density of 200 cells/mm2 in Neurobasal medium 

supplemented with 2% B27 supplement (Invitrogen). For immunocytochemistry 

against synaptic proteins in PV+ cells, hippocampal cultures were fixed at days in 

vitro 14 (DIV14) with 4% paraformaldehyde in PBS. The methanol fixation 

approach, a standard procedure to stain molecules in postsynaptic densities (Kim 

et al., 2007), was not used in this study as this treatment dramatically reduced 

immunoreactivity against PV. Primary and secondary antibodies were applied in 

GDB buffer using the dilutions of antibodies described above. Primary neurons 

were incubated with primary and secondary antibodies for two and one hours at 

room temperature, respectively. The coverslips washed with PBS were mounted 

on slides with Vectashield (Vector Labs) mounting medium. 

 

Neuronal Imaging 

A spinning disk confocal microscope (Nikon TE-2000E2 and Leica TCS SP5 II; 

University of Massachusetts Medical School Imaging Core Facility) was used for 

imaging. The confocal images (512 × 512 or 1024 × 1024 pixels) of primary 

hippocampal cultures and slices were taken using 40X, 60X, 63X or 100X objective 

lenses. Each image was a Z-series projection of x-y images, and taken at 0.2 – 1 

μm depth intervals. The size, intensity and density of immunopositive signals were 

evaluated by MetaMorph software (Molecular Devices). Shank1 signals in the 

dendritic segments of PV+ neurons and in the stratum radiatum region were 
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obtained from the same images (Fig 3.1A). Neurons that exhibited 

immunoreactivity against Shank1 antibody in the cell body and dendritic segments 

were classified as Shank1-decorated neurons. All measurements in Fig 3.2 and 

Fig 3.5  were carried out in a “blind” manner. 

 

Laser Capture Microdissection (LCM) and Real-time PCR 

Adult (5 – 7 week old, either sex) PV-RFP mice were euthanized and the brains 

were immediately frozen in dry ice-cooled 2-methylbutane (−60°C) and stored at 

−80°C. Coronal serial sections (10 μm) of the hippocampi were prepared using a 

cryostat (Leica, Germany) and mounted on pre-cleaned glass slides (Fisher 

Scientific). The sections were stored at −80°C until use. A Veritas Microdissection 

System Model 704 (Arcturus Bioscience) was used for LCM. Approximately 1000 

– 2000 RFP-positive neurons (PV+ inhibitory interneurons) were obtained from the 

hippocampal CA1 region of each animal. The same number of RFP-negative 

neurons in CA1 stratum pyramidale was obtained as pyramidal neurons. Five to 

seven different mice were used for each test. Neurons were captured on CapSure 

MacroLCMcaps (Arcturus Bioscience) for mRNA isolation. 

Total RNA was extracted from individual replicate samples using an 

RNAqueous-Micro Kit (Ambion). RNA samples extracted from hippocampal CA1 

PV+ and pyramidal neurons were reverse-transcribed into cDNA using TaqMan 

Gene Expression Cells-to-CT Kit (Ambion). 
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Polymerase chain reactions (PCRs) were set up in 10-μl reaction mixtures 

using TaqMan Gene Expression Assays (SHANK1: Mm01206737_m1, SHANK2: 

Mm01163731_m1, SHANK3: Mm00498775_m1, PV: Mm00443100_m1, Slc17a7 

(VGluT1): Mm00812886_m1, GAPDH: Mm99999915_g1, Applied Biosystems). 

GAPDH transcript was used as an internal control to normalize gene expression 

levels. The expression of PV and Slc17a7, a marker of excitatory neurons, 

transcripts were measured against the samples that targeted PV+ and excitatory 

neurons to evaluate the quality of samples harvested by LCM. The expression of 

PV and Slc17a7 in two different cell-types are; PV: PV+ neurons, 0.18 ± 0.06, 

excitatory neurons, 0.02 ± 0.01; Slc17a7: PV+ neurons, 0.19 ± 0.01, excitatory 

neurons, 0.78 ± 0.06, N = 4 mice. These results indicate that our LCM approach 

collected the specific cell types we expected. PCRs were performed using an ABI 

PRISM 7500 Sequence Detection System (Applied Biosystems). All reactions 

were performed in duplicate or triplicate. Relative amplicon quantification was 

calculated as the difference between Ct values of GAPDH and that of Shank1, 

Shank2 and Shank3. 

 

Electrophysiology 

Transverse hippocampal slices (400 μm thickness) were prepared from 3- to 5-

week-old mice (either sex) in ice-cold dissection buffer (in mM: 238 sucrose, 2.5 

KCl, 1 CaCl2, 5 MgCl2, 26 NaHCO3, 1 NaH2PO4, 11 glucose, gassed with 5% 

CO2/95% O2, pH 7.4) as described (Hung et al., 2008; Ryu et al., 2008). Slices 



 113 

were incubated in an interface or submersion incubation chamber containing 

extracellular artificial cerebrospinal fluid (aCSF; in mM: 119 NaCl, 2.5 KCl, 2.5 

CaCl2, 1.3 MgCl2, 26 NaHCO3, 1 NaH2PO4, 11 glucose, gassed with 

5%CO2/95%O2, pH 7.4) and allowed to recover for 30 min at 28°C and then 

maintained at room temperature (24–26°C) for at least 30 min. Slices were then 

transferred to a submerged recording chamber and continuously perfused with 

aCSF. 

For whole-cell recordings, thick-walled borosilicate glass pipettes (Warner 

Instruments) were pulled to a resistance of 3–5 MΩ. For current-clamp recordings, 

pipettes were filled with internal solution containing the following (in mM): 115 

potassium methanesulfonate, 20 CsCl, 10 HEPES, 2.5 MgCl2, 4 adenosine 

triphosphate disodium salt, 0.4 guanosine triphosphate trisodium salt, 10 sodium 

phosphocreatine, and 0.6 EGTA, pH 7.25, with KOH. For voltage-clamp recordings, 

the potassium was replaced by cesium. To measure GABAAR-mediated inhibitory 

postsynaptic current (IPSC) and AMPAR-mediated excitatory postsynaptic current 

(EPSC), NMDAR antagonist (D-APV, 0.05 mM; Ascent Scientific) dissolved in 

aCSF was present throughout the recording. A tungsten bipolar electrode 

(Frederick Haer Company, Bowdoin, ME) was placed in the stratum 

radiatum proximal to the stratum pyramidale, and the Schaffer 

collateral/commissural fibers and inhibitory inputs were stimulated at 0.1 Hz. 

GABAAR-IPSC was first measured at Vhold = 0 mV. After obtaining forty to fifty 

consecutive stable IPSC responses, picrotoxin (0.10 mM; Sigma-Aldrich) was 
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added to aCSF to eliminate the IPSC. Then, AMPAR-EPSCs were evoked at Vhold 

= −60 mV without changing the stimulus strength. Stimulus strength was set to 

produce an IPSC amplitude of ~ 1000 pA which leads to ~50 pA of AMPAR-EPSC. 

Measurements of GABAAR-mediated miniature IPSCs (mIPSCs) were performed 

in the presence of D-APV, NBQX and tetrodotoxin (0.001 mM; Ascent Scientific). 

AMPAR-mediated miniature and spontaneous EPSCs (mEPSCs and sEPSCs) in 

PV+ neurons were measured in the presence of picrotoxin and with or without 

tetrodotoxin, respectively. In Figure 3.3, all recorded PV+ neurons were filled with 

biocytin in order to identify PV+ basket cells. The measurement of firing activity 

was performed against PV+ neurons that established gigaohm seals (> 2 GΩ) 

under cell-attached voltage-clamp mode. Miniature and spontaneous synaptic 

events were analyzed using Mini Analysis software (Synaptosoft, Decatur, GA). 

Approximately three hundred events were sampled from each experiment; only 

events >5 pA were analyzed. 

Dual whole-cell recordings were performed to monitor PV+ neuron-mediated 

unitary inhibitory synaptic transmission. RFP-positive neurons that were proximal 

to hippocampal CA1 stratum pyramidale, presumably basket and axo-axonic PV+ 

neurons, were chosen as presynaptic neurons. The neighboring CA1 pyramidal 

neurons (within 50 μm radius from PV+ neurons) were selected as postsynaptic 

neurons. Cesium-based internal solution was used for double whole-cell 

recordings of presynaptic interneurons. Pre- and postsynaptic neurons were 

voltage-clamped under −70 and 0 mV, respectively. Inhibitory synaptic 
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transmission was evoked by applying one or two 70 mV depolarization pulses (2–

3 ms duration, 50 ms interval) at 0.1 Hz. Consecutive paired stimuli (25 – 50 times) 

were applied to presynaptic neurons, and responses larger than 10 pA observed 

within 5 ms after the onset of depolarization pulses were considered as evoked 

unitary IPSCs. If any evoked response was observed during this period, the pair 

was considered synaptically connected. 

All experiments and the analysis of data were performed in a blind manner. 

Recordings were performed using a MultiClamp 700B amplifier and Digidata 1440, 

while data were acquired and analyzed using Clampex 10 and Clampfit 10 

(Molecular Devices, Union City, CA). 

 

Statistical analyses 

Results are reported as mean ± SEM. The statistical significance was evaluated 

by two-way ANOVA for multiple comparison, and by Student’s t-test, paired t-

test or Wilcoxon signed rank t-test with equal variance test for two-group 

comparison. Statistical significance was set at p < 0.05. 
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Figure 3.1 
 

 
 
 
  

the hippocampi were prepared using a cryostat (Leica) and mounted
on pre-cleaned glass slides (Fisher Scientific). The sections were
stored at !80 °C until use. A Veritas Microdissection System
Model 704 (Arcturus Bioscience) was used for LCM. Approxi-
mately 1000–2000 RFP-positive neurons (PV+ inhibitory interneu-
rons) were obtained from the hippocampal CA1 region of each
animal. The same number of RFP-negative neurons in CA1 stratum
pyramidale was obtained as pyramidal neurons. Five–seven different
mice were used for each test. Neurons were captured on CapSure
MacroLCMcaps (Arcturus Bioscience) for mRNA isolation.
Total RNA was extracted from individual replicate samples using

an RNAqueous-Micro Kit (Ambion). RNA samples extracted from
hippocampal CA1 PV+ and pyramidal neurons were reverse-tran-

scribed into cDNA using TaqMan Gene Expression Cells-to-CT Kit
(Ambion).
PCRs were set up in 10-lL reaction mixtures using TaqMan Gene

Expression Assays (SHANK1: Mm01206737_m1; SHANK2:
Mm01163731_m1; SHANK3: Mm00498775_m1; PV:
Mm00443100_m1; Slc17a7 (VGluT1): Mm00812886_m1; GAPDH:
Mm99999915_g1; Applied Biosystems). GAPDH transcript was
used as an internal control to normalize gene expression levels. The
expression of PV and Slc17a7, a marker of excitatory neurons, tran-
scripts were measured against the samples that targeted PV+ and
excitatory neurons to evaluate the quality of samples harvested by
LCM. The expressions of PV and Slc17a7 in two different cell types
are: PV: PV+ neurons, 0.18 " 0.06, excitatory neurons,
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Fig. 1. Shank1 is highly expressed in parvalbumin (PV)-expressing interneurons. (A and B) Confocal images of double-labeled immunofluorescence staining
against PV (red) and Shank1 (green) from the hippocampal CA1 pyramidal cell layer of wild-type (+/+; left) and Shank1!/! (!/!; right) mice. Note that the
immunoreactivity of Shank1 in Shank1!/! tissue is minimal, confirming the specificity of the antibody. Enlargements of the indicated rectangular fields are
shown at the bottom. (B) Relative proportion of hippocampal CA1 PV+ neurons as a fraction of neurons decorated by Shank1 signals (left), and that of
Shank1-decorated neurons as a fraction of PV+ neurons (right). The numbers of neurons obtained from four wild-type mice were: Shank1-decorated PV+ neu-
rons, 137; PV+ and Shank1 non-decorated neurons, 14; PV-negative and Shank1-positive decorated neurons, 22. Note that the majority of PV+ neurons were
immunopositive for Shank1. (C) Confocal images of triple-labeled immunofluorescence staining against PV (red), Shank1 (green) and VGluT1 (red) from the
proximal region of hippocampal CA1 stratum pyramidale (SP) of a wild-type mouse. Note that the dense VGluT1 signals (arrow heads) were localized close to
Shank1 puncta in PV+ neurons. (D and E) Confocal images of double-labeled immunofluorescence staining against calbindin (Calb, D, red), calretinin (Calr, E,
red) and Shank1 (green) from hippocampal CA1 SP and stratum radiatum (SR) regions of wild-type (+/+) mice. (F) Relative expression of SHANK genes
(SHANK1, SHANK2 and SHANK3) in PV+ and pyramidal (Py) neurons in the adult mouse hippocampus. The expression level was normalized to that of
GAPDH. Approximately 1000 PV+ and pyramidal neurons in the hippocampal CA1 pyramidal cell layer per mouse were cut from one PV-RFP mouse (N = 6–
8 mice). Scale bars: 10 lm.

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
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Figure 3.1 Shank1 is highly expressed in Parvalbumin-expressing 
interneurons 

(A, B) Confocal images of double-labeled immunofluorescence staining against 
parvalbumin (PV, red) and Shank1 (green) from the hippocampal CA1 pyramidal 
cell layer of wild-type (+/+) (left) and Shank1−/− (−/−) (right) mice. Note that the 
immunoreactivity of Shank1 in Shank1−/− tissue is minimal, confirming the 
specificity of the antibody. Enlargements of the indicated rectangular fields are 
shown at bottom. (B) Relative proportion of hippocampal CA1 PV+ neurons as a 
fraction of neurons decorated by Shank1 signals (left), and that of Shank1-
decorated neurons as a fraction of PV+ neurons (right). Numbers of neurons 
obtained from 4 wild-type mice were: Shank1-decorated PV+ neurons, 137; PV+ 
and Shank1 non-decorated neurons, 14; PV negative and Shank1 positive 
decorated neurons, 22. Note that the majority of PV+ neurons were 
immunopositive for Shank1. (C) Confocal images of triple-labeled 
immunofluorescence staining against PV (red), Shank1 (green) and VGluT1 (red) 
from the proximal region of hippocampal CA1 stratum pyramidale (SP) of a wild-
type mouse. Note that the dense VGluT1 signals (arrow heads) were localized 
close to Shank1 puncta in PV+ neurons. (D, E) Confocal images of double-labeled 
immunofluorescence staining against calbindin (Calb, D, red), calretinin (Calr, E, 
red) and Shank1 (green) from hippocampal CA1 stratum pyramidale (SP) and 
radiatum (SR) regions of wild-type (+/+) mice. (F) Relative expression of SHANK 
genes (SHANK1, SHANK2 and SHANK3) in PV+ and pyramidal (Py) neurons in 
adult mouse hippocampus. The expression level was normalized to that of GAPDH. 
Approximately 1000 PV+ and pyramidal neurons in hippocampal CA1 pyramidal 
cell layer per mouse were cut from one PV-RFP mouse (N = 6–8 mice). Scale bars: 
10 μm. 
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Figure 3.2 
 

 
 
 
 

0.02 ! 0.01; Slc17a7: PV+ neurons, 0.19 ! 0.01, excitatory neu-
rons, 0.78 ! 0.06, N = 4 mice. These results indicate that the cur-
rent LCM approach collected the specific cell types expected. PCRs
were performed using an ABI PRISM 7500 Sequence Detection
System (Applied Biosystems). All reactions were performed in
duplicate or triplicate. Relative amplicon quantification was calcu-
lated as the difference between Ct values of GAPDH and those of
SHANK1, SHANK2, SHANK3, Slc7a7 and PV.

Electrophysiology

Transverse hippocampal slices (400 lm thickness) were prepared
from 3- to 5-week-old mice (either sex) in ice-cold dissection buffer
(in mM: sucrose, 238; KCl, 2.5; CaCl2, 1; MgCl2, 5; NaHCO3, 26;
NaH2PO4, 1; glucose, 11; gassed with 5% CO2/95% O2, pH 7.4), as
described (Hung et al., 2008; Ryu et al., 2008). Slices were incubated
in an interface or submersion incubation chamber containing extracel-
lular artificial cerebrospinal fluid (aCSF; in mM: NaCl, 119; KCl, 2.5;
CaCl2, 2.5; MgCl2, 1.3; NaHCO3, 26; NaH2PO4, 1; glucose, 11;
gassed with 5%CO2/95%O2, pH 7.4) and allowed to recover for
30 min at 28 °C, and then maintained at room temperature (24–
26 °C) for at least 30 min. Slices were then transferred to a sub-
merged recording chamber and continuously perfused with aCSF.
For whole-cell recordings, thick-walled borosilicate glass pipettes

(Warner Instruments) were pulled to a resistance of 3–5 MΩ. For
current-clamp recordings, pipettes were filled with internal solution
containing the following (in mM): potassium methanesulfonate, 115;
CsCl, 20; HEPES, 10; MgCl2, 2.5; adenosine triphosphate disodium
salt, 4; guanosine triphosphate trisodium salt, 0.4; sodium phospho-
creatine, 10; EGTA, 0.6; pH 7.25, with KOH. For voltage-clamp
recordings, the potassium was replaced by cesium. To measure
GABAAR-mediated inhibitory postsynaptic current (IPSC) and AM-
PAR-mediated excitatory postsynaptic current (EPSC), N-methyl-D-
aspartate (NMDA)R antagonist (D-APV, 0.05 mM; Ascent Scien-
tific) dissolved in aCSF was present throughout the recording. A
tungsten bipolar electrode (Frederick Haer Company, Bowdoin, ME,
USA) was placed in the stratum radiatum proximal to the stratum
pyramidale, and the Schaffer collateral/commissural fibers and inhib-
itory inputs were stimulated at 0.1 Hz. GABAAR-IPSC was first
measured at Vhold = 0 mV. After obtaining 40–50 consecutive stable
IPSC responses, picrotoxin (0.10 mM; Sigma-Aldrich) was added to
aCSF to eliminate the IPSC. Then, AMPAR-EPSCs were evoked at
Vhold = "60 mV without changing the stimulus strength. Stimulus
strength was set to produce an IPSC amplitude of ~1000 pA, which
leads to ~50 pA of AMPAR-EPSC. Measurements of GABAAR-
mediated miniature IPSCs (mIPSCs) were performed in the presence
of D-APV, NBQX and tetrodotoxin (0.001 mM; Ascent Scientific).
AMPAR-mediated miniature and spontaneous EPSCs (mEPSCs and
sEPSCs) in PV+ neurons were measured in the presence of picro-
toxin, and with or without tetrodotoxin, respectively. In Fig. 3, all
recorded PV+ neurons were filled with biocytin in order to identify
PV+ basket cells. The measurement of firing activity was performed
against PV+ neurons that established gigaohm seals (> 2 GΩ) under
cell-attached voltage-clamp mode. Miniature and spontaneous synap-
tic events were analysed using Mini Analysis software (Synaptosoft,
Decatur, GA, USA). Approximately 300 events were sampled from
each experiment; only events > 5 pA were analysed.
Dual whole-cell recordings were performed to monitor PV+ neu-

ron-mediated unitary inhibitory synaptic transmission. RFP-positive
neurons that were proximal to hippocampal CA1 stratum pyramidale,
presumably basket and axo-axonic PV+ neurons, were chosen as pre-
synaptic neurons. The neighboring CA1 pyramidal neurons (within
50 lm radius from PV+ neurons) were selected as postsynaptic neu-
rons. Cesium-based internal solution was used for double whole-cell
recordings of presynaptic interneurons. Pre- and postsynaptic neurons
were voltage-clamped under "70 and 0 mV, respectively. Inhibitory
synaptic transmission was evoked by applying one or two 70-mV
depolarization pulses (2–3 ms duration, 50 ms interval) at 0.1 Hz.
Consecutive paired stimuli (25–50 times) were applied to presynaptic
neurons, and responses larger than 10 pA observed within 5 ms after
the onset of depolarization pulses were considered as evoked unitary

A

B

C

Fig. 2. Altered expression of postsynaptic proteins in Shank1-deficient parv-
albumin (PV)+ neurons. Triple- or double-labeled immunofluorescence stain-
ing for PV and synaptic proteins in hippocampal primary cultures (14 days
in vitro) prepared from wild-type (+/+) or Shank1"/" ("/") mice. (A) PV+
interneurons in wild-type and Shank1"/" cultures were triple-stained for PV,
Shank1 and postsynaptic density (PSD)-95. (B) Double-immunostaining for
pan-Shank, PSD-95, GKAP, Homer, GluA1, or Bassoon, and PV. (C) Quan-
tification of puncta density per 10 lm dendrite length (left) and puncta area
(right) for the indicated proteins. Shank1"/" dendrites show a significant
reduction in pan-Shank, PSD-95, GKAP and GluA1 (n = 10 cells from three
mice, three independent cultures) signals. The error bars show standard error.
Scale bars: 10 lm. *P < 0.05; **P < 0.01; ***P < 0.001, Student’s t-test.

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 41, 1025–1035
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Figure 3.2 Altered expression of postsynaptic proteins in Shank1-deficient 
PV+ neurons 

Triple- or double-labeled immunofluorescence staining for PV and synaptic 
proteins in hippocampal primary cultures (14 DIV) prepared from wild-type (+/+) or 
Shank1−/− (−/−) mice. (A) PV+ interneurons in wild-type and Shank1−/− cultures 
were triple-stained for PV, Shank1 and PSD-95. (B) Double-immunostaining for 
pan-Shank, PSD-95, GKAP, Homer, GluA1, or Bassoon, and PV. (C) 
Quantification of puncta density per 10 μm dendrite length (left) and puncta area 
(right) for the indicated proteins. Shank1−/− dendrites show a significant reduction 
in pan-Shank, PSD-95, GKAP and GluA1 (n = 10 cells from 3 mice, 3 independent 
cultures) signals. The error bars show standard error. Scale bars, 10 μm. *, p < 
0.05; **, p < 0.01; ***, p < 0.001, student t-test. 
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Figure 3.3 
 
 

  

IPSCs. If any evoked response was observed during this period, the
pair was considered synaptically connected.
All experiments and the analysis of data were performed in a blind

manner. Recordings were performed using a MultiClamp 700B amplifier
and Digidata 1440, and data were acquired and analysed using Clampex
10 and Clampfit 10 (Molecular Devices, Union City, CA, USA).

Statistical analysis

Results are reported as mean ! SEM. The statistical significance
was evaluated by two-way ANOVA for multiple comparison, and by

Student’s t-test, paired t-test or Wilcoxon signed rank t-test with
equal variance test for two-group comparison. Statistical significance
was set at P < 0.05.

Results

Shank1 is highly expressed in PV+ inhibitory interneurons

Shank family scaffolds are densely localized in spines of excitatory
and medium-spiny neurons (Jiang & Ehlers, 2013). To investigate
the expression of Shank in hippocampal non-spiny inhibitory

A B C

D E

G

F

Fig. 3. Shank1 regulates excitatory synaptic transmission in parvalbumin (PV)-expressing basket cells. (A and D, Top) Consecutive sample spontaneous excit-
atory postsynaptic current (sEPSC; A) and miniature excitatory postsynaptic current (mEPSC; D) traces of PV+ basket cells in wild-type (black traces) and
Shank1"/" (gray traces) mice. (Bottom) Averaged and normalized sample sEPSC (A) and mEPSC (D) traces in PV+ basket cells. (B, C, E and F) Summary of
the frequency and amplitude (B and E), and kinetics (C and F) of sEPSCs and mEPSCs in wild-type (+/+) and Shank1"/" ("/") animals. The averaged EPSC
frequency and amplitude for each cell were superimposed as circles, while the bar graphs indicate the means ! SEM. Number of cells: sEPSC: wild-type, 16
cells from seven mice; Shank1"/", 19/11; mEPSC: wild-type, 10 cells from five mice; Shank1"/", 10/4. (G, Left) Sample traces from CA1 fast-spiking PV+
basket cells in wild-type and Shank1"/" hippocampal slices showing spikes elicited by current injections of 300 and 900 pA for 400 ms. (Right) Summary
graph of the frequency of action potentials in wild-type and Shank1"/" animals. The input–output relationship [number of spikes elicited vs. amount of current
injection (400 ms duration)] was plotted for wild-type and Shank1"/" animals. Neurons were held at the indicated resting membrane potentials. Number of
cells: wild-type, 10 cells from seven mice; Shank1"/", 11/6.

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 41, 1025–1035
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Figure 3.3 Shank1 regulates excitatory synaptic transmission in 
Parvalbumin-expressing basket cells 

(A, D) Top, Consecutive sample sEPSC (A) and mEPSC (D) traces of PV+ basket 
cells in wild-type (black traces) and Shank1−/− (grey traces) mice. Bottom, 
Averaged and normalized sample sEPSC (A) and mEPSC (D) traces in PV+ 
basket cells. (B, C, E and F) Summary of the frequency and amplitude (B and E), 
and kinetics (C and F) of sEPSCs and mEPSCs in wild-type (+/+) and 
Shank1−/− (−/−) animals. The averaged EPSC frequency and amplitude for each 
cell were superimposed as circles while the bar graphs indicate the means ± SEM. 
Number of cells: sEPSC: wild-type, 16 cells from 7 mice; Shank1−/−, 19 / 11; 
mEPSC: wild-type, 10 cells from 5 mice; Shank1−/−, 10 / 4. (G) Left, Sample traces 
from CA1 fast-spiking PV+ basket cells in wild-type and Shank1−/− hippocampal 
slices showing spikes elicited by current injections of 300 pA (black) and 900 pA 
(grey) for 400 ms. Right, Summary graph of the frequency of action potentials in 
wild-type and Shank1−/− animals. Input-output relationship [number of spikes 
elicited versus amount of current injection (400 ms duration)] was plotted for wild-
type and Shank1−/− animals. Neurons were held at the indicated resting membrane 
potentials. Number of cells: wild-type, 10 cells from 7 mice; Shank1−/−, 11 / 6. 
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Figure 3.4 
 

  

122.6 ! 21.1; Shank1"/", 109.7 ! 9.7 MΩ; P > 0.3, Student’s
t-test]. These results indicate that Shank1 does not play a major role
in the membrane excitability of PV+ neurons.

Shank1 "/" mice show reduced PV+ neuron-mediated
inhibitory synaptic transmission

The reduced excitatory synaptic transmission in Shank1"/" PV+
neurons may decrease basal activity in these cells. Therefore a cell-
attached patch-clamp recording was performed, and PV+ neuronal
excitability in the hippocampal CA1 area was measured (Fig. 4A).
Interestingly, PV+ neurons in Shank1"/" slices exhibited lower fir-
ing rates compared with those of wild-type slices (Fig. 4B). This
result suggests that the reduced excitatory synaptic transmission in
PV+ neurons (Fig. 3A–F) caused a decrease in their firing rates in
Shank1"/" slices.

Do the reduced firing rates of PV+ neurons in Shank1"/" mice
change the inhibitory outputs onto postsynaptic pyramidal neurons?
It has been reported that glutamatergic inputs to GABAergic neu-
rons modulate their inhibitory outputs (Chang et al., 2014). Chronic
reduction of PV+ neuronal activity may decrease their inhibitory
outputs onto CA1 pyramidal neurons. To address this question,
simultaneous pre- and postsynaptic dual whole-cell voltage-clamp
recordings were performed from RFP-positive presynaptic CA1 PV+
neurons and postsynaptic pyramidal neurons located within 50 lm
of PV+ neurons in wild-type and Shank1"/" mice (Fig. 4C and D).
PV+ neurons were identified by RFP fluorescence (Fig. 4C, left).
Presynaptic GABA release was evoked by applying single or double
depolarization commands (Fig. 4C, middle and right). The ampli-
tudes of PV+ neuron-mediated inhibitory synaptic transmission and
connective frequency were reduced in Shank1"/" mice compared
with those of wild-type mice (Fig. 4D, left and middle). Shank1"/"

PV+ neurons exhibited essentially similar levels of paired-pulse ratio
as wild-type (Fig 4D, right), suggesting that the reduced inhibitory
synaptic transmission and connective frequency are not attributable
to the difference of presynaptic release probability. These results
suggest that reduced excitatory synaptic transmission in PV+ neu-
rons weakens the inhibitory outputs of PV+ neurons to pyramidal
neurons, although it is possible that the null knockout of Shank1
can indirectly change synaptic function in the hippocampus.

Shank1 "/" mice show increased E–I balance

What is the consequence of reduced PV+ neuron-mediated inhibi-
tory synaptic transmission in the hippocampal CA1 circuit? The E–I
balance plays a critical role in cognitive behavior (Zikopoulos &
Barbas, 2013). Abnormal E–I balance, as caused by the dysfunction
or loss of inhibitory interneurons, has been suggested as a patho-
physiological hallmark in autism spectrum disorder, schizophrenia
and animal models of these disorders (Rubenstein & Merzenich,
2003; Gatto & Broadie, 2010; Markram & Markram, 2010; LeBlanc
& Fagiolini, 2011; Yizhar et al., 2011). To address whether the
abnormal PV+ neuron-mediated inhibitory transmission in Shank1"/

" mice leads to an E–I imbalance, the E–I balance in hippocampal
CA1 pyramidal neurons was measured using an approach previously
described (Futai et al., 2013). The amplitude of AMPAR-mediated
EPSCs (AMPAR-EPSCs) was divided by GABAAR-mediated IPSCs
(GABAAR-IPSCs) in the same cells, and was referred to as the E–I
ratio.
Interestingly, the E–I ratio of Shank1"/" mice was significantly

higher than that of wild-type animals (Fig. 5A). It has been reported
that excitatory synaptic strength is moderately reduced in Shank1"/"

hippocampal CA1 pyramidal neurons (Hung et al., 2008); therefore,
the degree of IPSC reduction in Shank1"/" mice must be more
severe than the decrease of excitatory synaptic transmission to
account for the E–I imbalance that was detected. Shank1"/" showed
essentially the same paired-pulse depression (PPD) induced by the
double stimulation of synaptic inputs with 50 ms of inter-pulse
interval as wild-type (wild-type: 0.64 ! 0.03, n = 20 from 6 mice;
Shank1"/": 0.67 ! 0.02, n = 24/6; P = 0.36, Student’s t-test). PPD
is one form of short-term synaptic plasticity that reflects the change
of presynaptic release probability. Therefore, this result indicates
that Shank1 knockout does not change the inhibitory presynaptic
release probability.
Next, the amplitudes and frequencies of the GABAAR-mediated

mIPSCs were examined (Fig. 5B). The frequencies, but not the
amplitudes, of the mIPSCs from Shank1"/" mice were significantly
reduced, suggesting that the increased E–I ratio is caused in large
part by a reduction in the number of functional inhibitory synapses.

A

C

D

B

Fig. 4. Shank1 deficit causes reduced basal firing rate in parvalbumin (PV)+
neurons and PV neuron-mediated inhibitory synaptic output onto CA1 pyra-
midal neurons. (A) Sample traces of PV+ neurons in wild-type (black traces)
and Shank1"/" (gray traces) mice. (B) Summary graph of the firing rates
measured by cell-attached recordings of PV+ neurons in wild-type and
Shank1"/" animals. Number of cells: wild-type, seven cells from seven mice;
Shank1"/", 6/5. (C and D) Effect of Shank1 deficiency on unitary inhibitory
synaptic transmission between hippocampal CA1 PV+ and pyramidal neu-
rons. (C, Left) Superimposed fluorescent and Nomarski images. Averaged
sample unitary inhibitory postsynaptic current (uIPSC) traces by one (middle)
and double (right) presynaptically applied depolarization commands. (D)
Summary of uIPSC amplitude (left), connectivity (middle) and paired-pulse
ratio (right). The number in each bar represents the number of synaptically
connected cell pairs (left and right), and total number of cell pairs tested
(middle).
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Figure 3.4 Shank1 deficit causes reduced basal firing rate in PV+ neurons 
and PV neuron-mediated inhibitory synaptic output onto CA1 pyramidal 
neurons 

(A) Sample traces of PV+ neurons in wild-type (black traces) and Shank1−/− (gray 
traces) mice. (B) Summary graph of the firing rates measured by cell-attached 
recordings of PV+ neurons in wild-type and Shank1−/− animals. Number of cells: 
wild-type, 7 cells from 7 mice; Shank1−/−, 6 / 5. (C–D) Effect of Shank1 deficiency 
on unitary inhibitory synaptic transmission between hippocampal CA1 PV+ and 
pyramidal neurons. (C) Left, superimposed fluorescent and Nomarski images. 
Averaged sample unitary IPSC (uIPSC) traces by one (middle) and double (right) 
presynaptically applied depolarization commands. (D) Summary of uIPSC 
amplitude (left), connectivity (middle) and paired-pulse ratio (right). Number in 
each bar represents the number of synaptically connected cell pairs (left and right), 
total number of cell pairs tested (middle). 
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Figure 3.5 
 
 

 
  

Gephyrin expression is down regulated in Shank1 !/! mice

To further investigate the mechanisms underlying the shift of E–I
balance, the expression of synaptic proteins in membrane fractions
of Shank1!/! and wild-type mice were compared. Interestingly,
expression of gephyrin, a scaffold molecule of inhibitory synapses,
was significantly reduced in Shank1!/! membrane fractions
(Fig. 5C), consistent with the impairment of inhibitory transmission
in Shank1!/! mice. Next, expression of gephyrin was examined his-
tochemically in the hippocampal CA1 area. Consistent with the Wes-
tern blot data, the size of gephyrin immunoreactivity in the CA1
stratum radiatum and pyramidale in Shank1!/! mice is reduced com-
pared with Shank1 wild-type mice (averaged size of gephyrin punc-
ta: wild-type, 0.09 " 0.01 lm2; Shank1!/!, 0.05 " 0.002 lm2;

P < 0.01; averaged puncta densities: wild-type, 13.73 " 0.15
puncta/100 lm2; Shank1!/!, 13.18 " 0.39; P = 0.49, Student’s t-
test; N = 4 brains from each genotype; Fig. 5D). The averaged size
of gephyrin puncta in Shank1!/! was comparable to that of wild-
type mice, which is not consistent with the current mIPSC results
that showed that Shank1 knockout mice exhibit normal mIPSC
amplitudes (Fig. 5B). In this regard, it is interesting to note that ge-
phyrin knockout moderately reduces mIPSC amplitude compared
with wild-type and, further, that knockdown of gephyrin reduces the
number of GABAAR clusters (Levi et al., 2004; Jacob et al., 2005).
Thus, subtle reduction of gephyrin may have more impact on the
number of active synapses rather than the number of GABAAR per
synapse.

A

C

D

B

Fig. 5. Shank1 deficit causes reduced E–I ratio by reducing inhibitory synaptic function and gephyrin expression. (A) Shank1!/! mice display a reduced E–I
ratio compared with wild-type mice. (Left) Sample traces (average of 10 consecutive responses) mediated by GABAAR (upward) and AMPAR (downward)
from wild-type (+/+) or Shank1!/! (!/!) hippocampal slices. Stimulus artifacts were truncated. Calibration, 200 and 50 pA, 20 ms. (Right) Summary graph of
E–I ratio of wild-type (total n = 20 cells from six mice) and Shank1!/! mice (n = 24/6, Student’s t-test; see text for definition). (B) Shank1!/! mice reduce
inhibitory synaptic transmission. (Left) Sample traces of miniature inhibitory postsynaptic current (mIPSC) events (top) and the average traces of mIPSC traces
(bottom) obtained from wild-type (+/+) or Shank1!/! (!/!) hippocampal slices. The averaged traces scaled to match the amplitude and aligned at the onset of
response are shown at the bottom right (norm). Note that the time course of events is the same. Calibration, 40 pA, 500 ms (top), 5 pA, 20 ms (bottom).
(Right) Summary graphs of the frequency (left) and amplitude (right) of mIPSCs in wild-type (+/+) and Shank1!/! (!/!) animals. Number of cells: wild-type,
total nine cells from three mice; Shank1!/!, 9/3. (C–D) Shank1!/! mice exhibit reduced expression of gephyrin. (C, Left) Immunoblot analysis of membrane
(P2) fractions from individual wild-type (+/+) and Shank1!/! (!/!) mice for the indicated proteins. (Right) Quantitation of various proteins in membrane frac-
tions. Syn, synaptophysin. (D) Confocal images of gephyrin puncta in hippocampal CA1 stratum pyramidale (SP) and radiatum (SR) areas from wild-type and
Shank1!/! mice. (Left) Double-labeled staining for gephyrin and DAPI. (Right) The gephyrin images were deconvoluted and quantified after thresholding of
fluorescence intensity (gray images).

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
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Figure 3.5 Shank1 deficit causes increased E-I ratio by reducing inhibitory 
synaptic function and gephyrin expression 

(A) Shank1−/− mice display increased E-I ratio compared with wild-type mice. Left, 
Sample traces (average of 10 consecutive responses) mediated by GABAAR 
(upward) and AMPAR (downward) from wild-type (+/+) or Shank1−/− (−/−) 
hippocampal slices. Stimulus artifacts were truncated. Calibration, 200 and 50 pA, 
20 msec. Right, Summary graph of E-I ratio of wild-type (total n = 20 cells from 6 
mice) and Shank1−/− mice (n = 24 / 6, student t-test) (see text for definition). (B) 
Shank1−/− mice reduce inhibitory synaptic transmission. Left, Sample traces of 
mIPSC events (top) and the average traces of mIPSC traces (bottom) obtained 
from wild-type (+/+) or Shank1−/− (−/−) hippocampal slices. The averaged traces 
scaled to match the amplitude and aligned at the onset of response are shown at 
the bottom right (norm). Note that the time course of events is the same. Calibration, 
40 pA, 500 msec (top), 5 pA, 20 msec (bottom). Right, Summary graphs of the 
frequency (left) and amplitude (right) of mIPSCs in wild-type (+/+) and 
Shank1−/− (−/−) animals. Number of cells: wild-type, total 9 cells from 3 mice; 
Shank1−/−, 9 / 3. (C, D, E) Shank1−/− mice exhibit reduced expression of gephyrin. 
(C) Left, Immunoblot analysis of membrane (P2) fractions from individual wild-type 
(+/+) and Shank1−/− (−/−) mice for the indicated proteins. Right, Quantitation of 
various proteins in membrane fractions. Syn: Synaptophysin. (D) Confocal images 
of gephyrin puncta in hippocampal CA1 stratum pyramidale (SP) and radiatum (SR) 
areas from wild-type and Shank1−/− mice. Left, double-labeled staining for 
gephyrin and DAPI. Right, the gephyrin images were deconvoluted and quantified 
after thresholding of fluorescence intensity (grey images). 
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CHAPTER IV 

DISCUSSION 

 

Summary 

Research presented in this dissertation demonstrated two aspects of preserving 

excitatory and inhibitory balance in the brain: the homeostatic control of 

neurotransmitter receptor abundance (Chapter II) and the modulation of excitatory 

synapses onto inhibitory interneurons (Chapter III). In Chapter II, we set out to 

identify epigenetic regulators in synaptic compensation. We first showed that 

chromatin reader L3mbtl1 is downregulated by neuronal activity elevation. We next 

investigated its role in synaptic functions and found that L3mbtl1 knockout 

exhibited reduced basal excitatory synaptic transmission and disrupted synaptic 

downscaling of AMPA receptors. The TTX-induced synaptic upscaling is 

unaffected. The bidirectional scaling of GABAA receptor-mediated inhibitory 

synaptic transmission is also unperturbed. Furthermore, by genome-wide analysis, 

we showed that L3mbtl1 is associated with transcriptional regulation and binds to 

the promotors of Ctnnb1 and Gabra2, two genes previously identified to be 

involved in homeostatic plasticity. Finally, we confirmed that Ctnnb1 knockdown 

by itself prevents activity-induced synaptic downscaling and also exhibits 

weakened basal synaptic transmission, mimicking the effect of L3mbtl1 knockout 

and knockdown. In Chapter III, we addressed the role of scaffold protein Shank1 

in excitatory synapses onto inhibitory interneurons. We showed that Shank1 is 
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expressed in parvalbumin-expressing (PV+) interneurons and regulates the 

steady-state excitatory synaptic transmission, which in turn affects inhibitory 

outputs of PV+ neurons to CA1 pyramidal neurons. In addition, we observed that 

loss of Shank1 caused a shift of the E/I balance towards excitation, due to 

significantly weakened inhibitory synaptic transmission. This is accompanied by 

reduced expression of gephyrin, a scaffold protein at inhibitory synapses. Overall, 

these results are important because they continue the identification and 

characterization of molecular players involved in preserving excitatory and 

inhibitory balance in the brain, but they also raise questions that warrant further 

investigations. In this chapter, I will address the challenges in interpreting the 

results and the implications for future studies.  

 

Is L3mbtl1 a scaling factor? 

Sustained changes in neuronal activity induce transcriptional regulatory events 

that alter chromatin structure and composition, which in turn has a long-lasting 

effect on gene expression. This is especially important for terminally differentiated 

neurons in the face of chronic activity perturbations, where neurons initiate 

homeostatic control of synaptic transmission to maintain the proper levels of 

neuronal activity over a time course of days. A question remains whether the 

involvement of these chromatin modifications merely reflects a general 

transcriptional control pathway in any cellular system, or that a chromatin regulator 

is a central component playing a specific role in this context. The study presented 
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in Chapter II provides several lines of evidence suggesting a highly specific role 

for the chromatin reader L3mbtl1, a member of the MBT protein family, in 

transcriptional control of synaptic scaling. 

First, we showed that expression of L3mbtl1 mRNA in the brain is highest in 

hippocampus, particularly in the pyramidal cell layer. We further demonstrated 

specific expression of L3mbtl1 in neurons, but not in non-neuronal cells such as 

astrocytes, oligodendrocytes or microglia, suggesting a cell-type specific function. 

Importantly, the transcript and protein levels of L3mbtl1 are tightly regulated by 

activity. We observed a drop of L3mbtl1 mRNA level four hours after PTX 

application, followed by protein reduction 24 hours after PTX application. 

Interestingly, we also noted a correlated downregulation of the L3mbtl1 target gene 

Ctnnb1, shown to be an effector protein for L3mbtl1-mediated transcriptional 

regulation at synapses.  Note that this time course loosely correlates with the 

timing for the expression of homeostatic synaptic scaling (O’Brien et al., 1998; 

Sutton et al., 2006; Turrigiano et al., 1998). Further characterization determined 

that the activity-induced downregulation of L3mbtl1 is dependent on Ca2+ influx, 

which is established as a prerequisite to triggering synaptic scaling (Goold and 

Nicoll, 2010; Ibata et al., 2008) .  

Additional piece of evidence for a role of L3mbtl1 in synaptic scaling is the 

specificity of L3mbtl1’s functions in PTX-induced synaptic downscaling of AMPA 

receptors. We found that L3mbtl1 is not required in TTX-induced excitatory 

synaptic upscaling and does not affect bidirectional scaling at inhibitory synapses. 
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Moreover, L3mbtl1 knockout mice express normal Hebbian-type hippocampal LTP, 

LTD and mGluR-LTD (data not shown). Based on these results, the lack of 

synaptic downscaling in L3mbtl1 knockout mice is not likely due to a general defect 

in plasticity; rather, it’s tempting to speculate that elevated activity triggers a highly 

regulated process involving L3mbtl1 and its transcriptional regulation of target 

genes, needed for expression of synaptic downscaling. Indeed, while activation of 

Ca2+/calmodulin-dependent signaling has been established as necessary for both 

scaling up and scaling down (Goold and Nicoll, 2010; Ibata et al., 2008), there are 

likely divergent downstream pathways involved, indicated by studies showing 

molecular players specifically involved in unidirectional synaptic scaling. For 

instance, Arc/Arg3.1 knockout mice fail to induce scaling up of AMPA receptors 

but continue to display activity induced-scaling down, suggesting that Arc is 

dispensable for synaptic downscaling (Shepherd et al., 2006). In contrast, synaptic 

downscaling can be triggered by a separate Ca2+-dependent pathway which 

involves Plk2/Cdk5-dependent phosphorylation of SPAR and subsequent AMPA 

receptor endocytosis (Seeburg and Sheng, 2008; Seeburg et al., 2008). Whether 

these pathways converge, and if so at what point, remains an open question. This 

study places L3mbtl1 between Ca2+ sensing and the expression of divergent 

effector proteins at synapses. 

One complication to interpret L3mbtl1 functions is that the synaptic 

phenotype in primary dissociated cultures is different from that in organotypic slice 

cultures. L3mbtl1 knockout or sparse knockdown in CA3 neurons in slice cultures 
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caused a failure to induce synaptic downscaling, without affecting basal synaptic 

transmission. In contrast, in primary cultured neurons, L3mbtl1 knockout led to a 

reduction in basal excitatory synaptic transmission, on top of disruption of synaptic 

downscaling. An important question rises whether these two aspects of L3mbtl1 

functions (basal synaptic transmission and synaptic plasticity) represent multifold 

effects from parallel pathway, or are mechanistically linked. For example, L3mbtl1 

may be a regulator for general maintenance of steady-state AMPA receptor 

abundance at synapses and may not be related to scaling; the failure to scale down 

in L3mbtl1 knockout could be attributed to a floor-effect, where there is a limit to 

the degree of downscaling that can occur under reduced levels of basal synaptic 

transmission. However, arguments could be made that the activity-regulated 

L3mbtl1 transcript and protein levels, and the activity-dependent dissociation of 

chromatin-bound L3mbtl1 from its target promoters strongly suggest a tightly 

controlled signaling pathway specifically activated during activity elevation. On the 

premise that L3mbtl1 is in fact a plasticity gene, what could be the reason for 

reduced basal synaptic transmission in L3mbtl1 knockout primary cultures? In this 

study, we showed that Gabra2, encoding the GABAA receptor subunit α2, is also 

a target for L3mbtl1. In L3mbtl1 knockout primary cultures, we indeed observed 

reduced expression levels of Gabra2 and decreased inhibitory synaptic 

transmission, raising the possibility that a homeostatic mechanism could be 

responsible for the reduction of excitatory synaptic transmission. Why is it induced 

in primary cultures but not in slice cultures? One explanation is that high-density 
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dissociated cultures which we used are known to have high levels of neuronal 

network activity, thus are more readily prone to overexcitation by Gabra2 deficit, 

triggering a secondary homeostatic response in excitatory synaptic transmission. 

Ultimately, separating the effects of basal transmission from plasticity requires 

careful considerations, and which category L3mbtl1 falls into remains open to 

interpretation.  

 

Activity-dependent gene expression and L3mbtl1-mediated transcription 

Synaptic scaling is generally considered to require activity-dependent transcription 

(Goold and Nicoll, 2010; Ibata et al., 2008; Meadows et al., 2015). In Chapter II, 

we utilized an unbiased transcriptome screen in dissociated primary neuronal 

cultures to identify genes that are up- and down-regulated during synaptic 

downscaling. Not surprisingly, genes with known functions in regulating neuronal 

excitability were shown to respond to activity. The top functional enriched 

categories include protein kinases, calcium signaling pathway, synapse, 

sequence-specific DNA binding (transcription factors). Note that genes previously 

implicated in synaptic scaling showed changes in expression in our study, 

including Arc, Bdnf, Camk4, Casp3, Cdk5, Epha4, Grip1, Homer1, Itgb3, Nptx1, 

Nptx2, Plk2, etc. (reviewed in Chen et al., 2014; Pozo and Goda, 2010; Rich and 

Wenner, 2007; Turrigiano, 2012). The caveat of this approach is that dissociated 

cultures are extremely heterogeneous, which may reduce the sensitivity to detect 

cell-type specific scaling factors involved in synaptic plasticity (Feldman, 2009). To 
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overcome this challenge, future studies could employ cell sorting approaches prior 

to RNA-seq, for example by fluorescence-activated cell sorting (FACS) for cells 

expressing GFP-tagged histone H2B under control of a cell-type specific promoter 

(Jiang et al., 2008), or by affinity purification-based INTACT (isolation of nuclei 

tagged in specific cell types) approach (Deal and Henikoff, 2010; Steiner et al., 

2012). 

Since we established roles for the chromatin reader L3mbtl1 in synaptic 

downscaling and synaptic transmission, we next asked through what mechanisms 

L3mbtl1 affects changes at the synapse. In other words, what are the target genes 

for L3mbtl1-mediated transcriptional regulation? We identified L3mbtl1 chromatin 

binding sites in vivo by ChIP-seq from P7 hippocampus. Because L3mbtl1 

regulates synaptic downscaling likely through transcriptional regulation, we would 

expect a significant overlap between L3mbtl1-bound genes and genes that 

respond to activity elevation. We performed analyses to test for any enrichment of 

L3mbtl1 putative targets in activity-deregulated genes. We found that 16% of 

upregulated and 12% of downregulated genes are putative L3mbtl1 targets. 

However, since 3,188 L3mbtl1 target genes comprise ~16% of all expressed 

genes detected in the RNA-seq experiment, there is no significant enrichment. Two 

possibilities could contribute to the poor correlation. (1) Different experimental 

systems were used. The ChIP-seq experiment was conducted in P7 pups whereas 

RNA-seq data were obtained from P0 primary neuronal cultures at days in vitro 14. 

Besides the difference in developmental stages, the heterogenous cell populations 
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in primary cultures (discussed above) could mask potential L3mbtl1-mediated 

transcriptional changes. Notably, both the Ctnnb1 and Gabra2 genes, 

retrospectively confirmed by RT-qPCR to be regulated by activity, fell below our 

detection threshold in the RNA-seq experiment. (2) Chromatin binding does not 

necessarily facilitate transcriptional regulation. In fact, it has been shown that a 

substantial number of transcription factor binding sites are non-functional and do 

not influence gene expression (Cusanovich et al., 2014). Among the 16 L3mbtl1-

bound genes we tested by RT-qPCR, only 2 genes show differential expression in 

L3mbtl1 knockout neurons. If only a small portion of L3mbtl1 binding sites are 

functional, we cannot expect a direct correlation between ChIP-seq and RNA-seq 

data. Therefore, in the current study, we decided to focus on a subset of L3mbtl1-

bound genes that have known functions in synaptic scaling and synaptic 

transmission, and subsequently identified Ctnnb1 and Gabra2 as L3mbtl1 target 

genes. Note that this approach will not identify uncharacterized genes that have 

not been previously implicated in synaptic scaling. For example, among the 3,188 

L3mbtl putative target genes, the top significantly enriched functional categories 

include transcriptional regulation and nucleosome assembly, suggesting that 

L3mbtl1-mediated transcriptional regulation could occur at multiple levels, for 

instance through regulating regulators of gene expression, influencing chromatin 

structures, and other secondary mechanisms. Future studies could coordinately 

perform expression analysis and chromatin binding analysis from sorted cells of 

the same cell-type (discussed above) in an attempt to shed light on the broader 
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picture of L3mbtl1-mediated synaptic scaling. 

How does L3mbtl1 affect synaptic scaling and transmission through Ctnnb1 

and Gabra2? Ctnnb1 encodes β-catenin, which forms adherent junctions with N-

cadherin at synaptic clefts and postsynaptic densities (Uchida et al., 1996). The 

cadherin/catenin complex is known to be critical for synaptic efficacy and spine 

morphology (Bozdagi et al., 2004; Murase et al., 2002; Okuda et al., 2007; Togashi 

et al., 2002), axon outgrowth (Riehl et al., 1996), cell-cell contact and recognition 

(Fannon and Colman, 1996). One group showed that N-cadherin/β-catenin cell-

autonomously controls the abundance of postsynaptic AMPA receptors; ablation 

of postsynaptic β-catenin reduced synaptic transmission and abolished 

bidirectional homeostatic synaptic scaling (Okuda et al., 2007). Interestingly, they 

also found that N-cadherin affects presynaptic release under basal conditions, 

whereas β-catenin disrupts activity blockade-induced upregulation of presynaptic 

release without affecting the basal level (Vitureira et al., 2012). In Chapter II, we 

identified Ctnnb1 (β-catenin) as one of the putative target genes of L3mbtl1 and 

validated that L3mbtl1 binds to the Ctnnb1 promoter in an activity-dependent 

manner, and acts as a transcriptional activator. We further demonstrated by a 

knockdown experiment that a reduction in β-catenin levels is sufficient to weaken 

synaptic transmission and prevent synaptic downscaling in a cell-autonomous 

manner. We observed a change in AMPA receptor-mediated mEPSC amplitude 

but not frequency, consistent with previous findings that β-catenin mediates 

postsynaptic but not presynaptic mechanisms under basal conditions. Taken 
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together, these results present a model where a constitutive reduction in Ctnnb1 

levels caused by L3mbtl1 knockout is responsible for the deficits in basal synaptic 

transmission and synaptic scaling (Fig 4.1). However, this does not rule out 

possible roles for other molecules regulated by L3mbtl1 in synaptic scaling. 

To address this possibility, one could perform rescue experiments, for 

example, by overexpressing Ctnnb1 in L3mbtl1 knockout cultures, and test if 

synaptic transmission and synaptic scaling can be restored. Overexpression of 

exogenous protein, however, often leads to adverse effects. Recently, with the 

discovery of the CRISPR-Cas9 system, many approaches have been developed 

to recruit chromatin regulators or transcription factors endogenously to specific 

genomic sequences (Braun et al., 2017; Enríquez, 2016; Gaj et al., 2013; 

Tanenbaum et al., 2014; Zetsche et al., 2015). For future experiments, we could 

tether L3mbtl1 to a dCas9 sgRNA complex using the FIRE-Cas9 system (Braun et 

al., 2017), with a sgRNA sequence designed to target the Ctnnb1 promoter loci, 

and specifically activate Ctnnb1 expression in L3mbtl1 knockout neurons. This will 

bypass any epigenetic regulation by L3mbtl1 on other genes, and directly examine 

the role for L3mbtl1-mediated Ctnnb1 expression in synaptic transmission and 

synaptic scaling. 

Another target gene regulated by L3mbtl1 is Gabra2, which encodes the α2 

subunit of GABAA receptors. During early development, GABA initially exerts 

excitatory effects due to a high intracellular chloride concentration, and gradually 

switches to an inhibitory function by the end of the first postnatal week in rodents 
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(Valeeva et al., 2013), a process commonly referred to as the “GABA switch” (Ben-

Ari et al., 1989; Luhmann and Prince, 1991; Mueller et al., 1984). GABA switching 

is accompanied by a receptor subunit composition change from α2/α3-containing 

receptors to α1-containing receptors (Fritschy et al., 1994). The change in subunit 

compositions is functionally linked to acquisition of the mature type of IPSCs with 

a shorter duration (Bosman et al., 2005; Okada et al., 2000). The timing of the 

“GABA switch” is interesting because it coincides with the peak of L3mbtl1 

expression at postnatal day 7 in hippocampus. Whether L3mbtl1 affects the switch 

in vivo has not been tested. However, we observed in primary hippocampal 

cultures that basal inhibitory synaptic transmission is reduced in L3mbtl1 knockout 

compared to that in wild type, likely due to decreased Gabra2 gene expression 

(Fig 4.1). 

While we showed that L3mbtl1 binds to target gene loci and likely mediates 

transcriptional activation, we still do not know how it performs this function. For 

example, how is L3mbtl1 recruited to chromatin? To address this question, we first 

compared L3mbtl1 occupancy to histone modification signals across the genome.  

With the caveat that the datasets for histone PTMs are from cortical neurons, we 

were able to establish a positive correlation between L3mbtl1 binding and 

H3K4me3/H3K27ac signals, generally associated with active transcription; and a 

negative correlation between L3mbtl1 binding and H3K27me3 signals, a mark for 

transcription repression. This genome-wide correlation is also observed at specific 

target gene loci. For example, both the Ctnnb1 and Gabra2 promoters are enriched  
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Figure 4.1 
 
 

 
 
 
 
Figure 4.1 Models for L3mbtl1-mediated control of synaptic strength and 
synaptic plasticity. 
L3mbtl1 regulates synaptic scaling of AMPARs through target gene Ctnnb1; 
L3mbtl1 regulates inhibitory synaptic transmission through target gene Gabra2.  
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for L3mbtl1, H3K4me3 and H3K27ac. This is consistent with the result that both 

Ctnnb1 and Gabra2 display reduced expression in L3mbtl1 knockout. We note that 

our data contrasts previous findings that L3mbtl1 represses transcription in 

heterologous cell lines (Boccuni et al., 2003; Kalakonda et al., 2008; Perna et al., 

2015; Trojer et al., 2007). This is not surprising, however, because the functional 

outcomes for chromatin binding factors are context-dependent, and can have 

opposing effects in a loci-specific and cell-type specific manner. For example, 

multiple MBT proteins including L3mbtl2, Scml2, Sfmbt1 and Sfmbt2 work in 

conjunction with Polycomb Repressive Complex (PRC) (Bonasio et al., 2014; 

Trojer et al., 2011; Zhang et al., 2013). PRC2 has been shown to regulate the 

methylation status of H3K27 in a spatially defined manner, which leads to opposing 

transcriptional outcomes (Ferrari et al., 2014). PRC1 can also mediate gene 

activation through the action of protein kinases in a tissue-specific manner 

(Frangini et al., 2013; Gao et al., 2014; Kondo et al., 2014). This does not exclude 

the possibility that L3mbtl1 may mediate repression of other target genes. It will be 

interesting to explore the effects of L3mbtl1 regulation on a global scale and 

assess the transcriptional outcome against the histone disposition of underlying 

genes. We showed that L3mbtl1-occupied regions are enriched with active histone 

marks, but whether these histone marks themselves are sufficient to recruit 

L3mbtl1 still needs to be determined.  

Another interesting question to address is what other proteins are included in 

the L3mbtl1 complex. One candidate may be the E2F/Rb complex. L3mbtl1 has 
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been shown to interact with E2F/Rb in cell lines through binding to methylated Rb 

via its MBT domain (Saddic et al., 2010). Our motif analysis identified an E2F 

transcription factor consensus sequence among the top L3mbtl1 binding motifs, 

suggesting that L3mbtl1 may be recruited to E2F/Rb target sites in vivo. Mass 

spectrometry analysis of L3mbtl1-immunoprecipitated samples from cultures or 

hippocampus can help to elucidate protein components in L3mbtl1-containing 

chromatin complexes. 

 

Animal behavior associated with synaptic scaling deficit 

What is the biological relevance of the observed alterations in homeostatic 

synaptic downscaling by L3mbtl1 knockout? Previously, we reported (published as 

Shen et al., 2015) that L3mbtl1 knockout mice exhibit decreased anxiety in some 

behavior paradigms, such as the light-dark box and open-field test, but not in 

others, such as the elevated plus maze. In addition, decreased depression is 

observed in the forced swim and tail suspension tests. Spatial working memory, 

fear conditioning retrieval and locomotor activity are normal. Interestingly, social 

isolation stress induced a reduction in general locomotor activity in L3mbtl1 

knockout mice, which is a depression-related phenotype. Overall, we observed 

that L3mbtl1 loss caused subtle changes in behavior but that the changes were 

not consistent across all tests applied.  

One important caveat is that all animals tested above are 3-6 months of age. 

However, in the study presented in Chapter 2, we demonstrated that L3mbtl1 



 141 

expression peaks at postnatal day 7 and downregulates significantly afterwards 

into adulthood. Therefore, it will be interesting to test behaviors in infant or juvenile 

mice. Although multiple studies have demonstrated the importance of synaptic 

scaling in visual cortex development in vivo (Desai et al., 2002; Gainey et al., 2009; 

Goel and Lee, 2007; Goel et al., 2011; Keck et al., 2013; Maffei and Turrigiano, 

2008), to date no animal behavior has been directly associated with synaptic 

scaling deficit. In L3mbtl1 knockouts, we reported a lack of excitatory synaptic 

downscaling and reduced inhibitory synaptic transmission caused by decreased 

Gabra2 levels. It is therefore likely that L3mbtl1 knockout may exhibit disrupted E/I 

balance and manifest seizure-like behavior. For future studies, it will be interesting 

to test PTX or PTZ (pentylenetetrazole)-induced epileptic seizures in young 

animals. We expect to see increased susceptibility to epileptic stress in L3mbtl1 

knockouts. 

 

Role of Shank1 in E/I balance 

Shank family proteins are a core component of the postsynaptic density (PSD) of 

excitatory synapses. They interact with other scaffolding molecules such as GKAP 

(Boeckers et al., 1999; Naisbitt et al., 1999), GRIP (Brückner et al., 1999; Dong et 

al., 1997), Homer (Tu et al., 1998; Xiao et al., 1998) and Cortactin (Du et al., 1998; 

Wu and Parsons, 1993) at synapses, thus indirectly affecting the expression, 

function or distribution of AMPA receptors, NMDA receptors and mGluRs. 

Overexpression or knockdown studies have found that Shank proteins contribute 
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to the formation of new synapses, maturation of spine structure and mediate 

excitatory synaptic transmission (Grabrucker et al., 2011; Haeckel et al., 2008; 

Roussignol et al., 2005; Sala et al., 2001; Verpelli et al., 2011). In the study 

presented in Chapter III, we used a Shank1 mutant mouse line with a deletion in 

its PDZ domain (Hung et al., 2008). Multiple studies have characterized the 

behavior phenotypes in Shank1 knockout mice, including increased anxiety, 

decreased locomotor activity, enhanced spatial learning but impaired memory 

retention, abnormal ultrasonic vocalization and scent marking behaviors indicating 

impaired social behavior responses (Hung et al., 2008; Silverman et al., 2011; 

Wöhr et al., 2011), reminiscent of autistic-like behaviors. Indeed, microdeletions of 

the Shank1 gene has been found in male patients with mild ASD (Sato et al., 2012). 

Hung et al. demonstrated a role for Shank1 at excitatory synapses onto pyramidal 

neurons. They observed a moderately altered PSD composition: GKAP and Homer 

were reduced, while no changes in AMPARs, NMDARs, mGluR5, GRIP, PSD95, 

Cortactin, CaMKII and β-PIX were observed. This was accompanied by smaller 

spine sizes, thinner PSDs, and decreased excitatory synaptic transmission (Hung 

et al., 2008). In Chapter III, we asked what role Shank1 plays at excitatory 

synapses onto inhibitory interneurons. 

We first showed that the expression of Shank1 in PV+ interneurons is 

comparable to that in pyramidal neurons. Shank1 puncta in PV+ neurons were 

observed proximal to vesicular glutamate transporter VGluT1, a glutamatergic 

terminal marker, demonstrating a highly specific localization of Shank1 at 
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excitatory synapses.  Notably, calretinin- and calbindin-expressing interneurons do 

not exhibit prominent Shank1 signals, suggesting that divergent scaffolding 

compositions may exist in different interneuron types.  

What properties are affected in PV+ interneurons by loss of Shank1? We 

further reported alterations of several PSD scaffold molecules, reduced basal 

excitatory synaptic input due to decreases in postsynaptic AMPAR abundance and 

functional excitatory synapse number, reduced firing rate, and reduced unitary 

inhibitory synaptic output. Finally, we measured the E/I ratio in pyramidal neurons, 

and observed a shift of E/I balance towards excitation in Shank1 knockouts. Given 

the previous finding that basal excitatory transmission is reduced in Shank1 

knockouts, we conclude that this shift of E/I balance is due to a larger decrease in 

inhibition. Consistent with this speculation, we found that GABAAR-mediated 

mIPSC frequency is reduced, and an inhibitory synaptic scaffold molecule gephyrin 

is also reduced in Shank1 knockouts. These results are summarized in Fig 4.2. 

A major complication in interpreting the results from this study is that Shank1 

protein is knocked out in all cell types. Without future studies using PV+ neuron 

specific conditional Shank1 knockout or knockdown, it is difficult to separate cell-

autonomous functions of Shank1 in PV+ neurons from secondary effects due to 

loss of Shank1 in pyramidal cells and other cell types. For example, we showed a 

reduction of several synaptic scaffold proteins at excitatory synapses onto PV+ 

neurons in Shank1 knockout mice. This could be a direct consequence of the loss 

of Shank1 scaffold protein at postsynaptic densities in PV+ neurons. However,  
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Figure 4.2 
 

 
 
 
 
 
Figure 4.2 Summary for Shank1-/- phenotypes. 

Shank1-/- pyramidal neurons show increased E/I ratio due to moderate reduction 
in excitation (E) and strong reduction in inhibition (I).  
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Shank1-deficient pyramidal neurons could affect postsynaptic PV+ neurons 

indirectly, for instance by altered excitatory synaptic output. In addition, we found 

that Shank1 deficient PV+ neurons display reduced firing rates and decreased 

inhibitory outputs onto pyramidal neurons. If this is indeed cell-autonomous, how 

does synaptically localized Shank1 affect inhibitory output? Two studies reported 

that selective disruption of postsynaptic receptors at excitatory synapses onto PV+ 

interneurons leads to changes in their inhibitory outputs onto pyramidal neurons 

(Korotkova et al., 2010; Rácz et al., 2009), which is similar to what we observed in 

this study by knocking out Shank1. An alternative possibility is due to homeostatic 

mechanisms. Pyramidal neurons have the ability to change their inhibitory synaptic 

strength cell-autonomously when activity is chronically perturbed (Peng et al., 

2010). In this context, reduced excitatory synaptic transmission in pyramidal 

neurons (Hung et al., 2008) could be the cause of a homeostatic reduction of 

inhibitory transmission. Indeed, we detected a reduction of mIPSCs in pyramidal 

neurons, which is a sum for all GABAergic inhibitory synaptic events, and therefore 

does not necessarily point to abnormal inhibition by PV+ interneurons. The same 

applies to reduction of gephyrin expression. In summary, the cause and effect of 

physiologic changes in pyramidal cells and interneurons in Shank1 knockout mice 

can be difficult to discern. Future studies employing cell-type specific knockout or 

knockdown approaches will be able to isolate the effects of Shank1 in specific cell 

types.  
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