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Abstract: Leptin is an adipokine that is overexpressed in obese and overweight people. Interestingly,
women with breast cancer present high levels of leptin and of its receptor ObR. Leptin plays an
important role in breast cancer progression due to the biological processes it participates in, such as
epithelial–mesenchymal transition (EMT). EMT consists of a series of orchestrated events in which
cell–cell and cell–extracellular matrix interactions are altered and lead to the release of epithelial cells
from the surrounding tissue. The cytoskeleton is also re-arranged, allowing the three-dimensional
movement of epithelial cells into the extracellular matrix. This transition provides cells with the ability
to migrate and invade adjacent or distal tissues, which is a classic feature of invasive or metastatic
carcinoma cells. In recent years, the number of cases of breast cancer has increased, making this
disease a public health problem worldwide and the leading cause of death due to cancer in women. In
this review, we focus on recent advances that establish: (1) leptin as a risk factor for the development
of breast cancer, and (2) leptin as an inducer of EMT, an event that promotes tumor progression.

Keywords: leptin; EMT; transcription factors; breast cancer

1. Introduction

Leptin is a protein that plays an important role in regulating energy homeostasis and
neuroendocrine and immune functions, in addition to glucose and lipid metabolism [1]. It is a
pleiotropic molecule that participates in regulating immunity, inflammation, cell differentiation,
and the proliferation of different types of cells, including mammary epithelial cells [2,3]. However,
diverse studies have shown that leptin and its receptor, ObR, are overexpressed in patients with
breast cancer [4]. In in vitro models, such as MCF7, MDA-MB-231, and SK-BR-3 breast cancer
cells, leptin activates signaling pathways that promote proliferation, cell migration, invasion, and
epithelial–mesenchymal transition (EMT) [5–7].

EMT is a process of trans-differentiation by which epithelial cells change to a mesenchymal
phenotype [8]. This process is characterized by the loss of epithelial markers and the acquisition of
mesenchymal markers; both molecular events contribute to tumor progression [9]. The regulation
of EMT markers is due to the activation of some transcription factors (TF), such as Snail, Slug, Zeb,
Twist, and β-catenin [6,10]. These TFs are involved in transcriptional repression of genes associated
with the epithelial phenotype, such as E-cadherin, occludin, and claudins [10,11]. The repression
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of the expression of these molecules involved in cell adhesion, lead to the loss of cell junctions and
apico-basolateral polarity [9]. Also, the trans-differentiation program is characterized by the expression
of mesenchymal markers such as vimentin, N-cadherin, and matrix metalloproteases (MMPs) [12,13].
The EMT process has been classified according to three different biological contexts: (a) Type 1, essential
for embryonic development; (b) Type 2, which is linked with wound healing and tissue regeneration;
(c) Type 3, associated with tumor progression [14].

Breast cancer is a severe public health problem worldwide. The World Health Organization
estimates 1.38 million new cases and 458,000 deaths reported every year, making this tumor the
main cause of death by cancer in women [15]. Breast cancer is a heterogeneous disease that arises
from the hyperplasia of the epithelial cells confined in ducts or lobes of the mammary gland [16].
This hyperplasia can progress to a ductal or lobular carcinoma in situ, where the EMT program can
be activated, to provide tumor cells with properties that facilitate the invasion of adjacent or distal
tissues [16]. One of the main risk factors for the development and progression of breast cancer is
obesity, which is defined as an abnormal or excessive accumulation of fat in an individual that can
be harmful [17]. Obesity is characterized by the accumulation of adipose tissue and an increase in
the body mass index (BMI > 30) [14]. An important characteristic of obesity is the dysregulation of
adipokine levels, such as leptin and adiponectin, secreted by the adipose tissue [18]. Importantly,
a decrease in adiponectin and an increase in leptin levels favor the development and progression of
breast cancer [14,19]. In this review, we focus on the molecular role of leptin as an inducer of EMT and
its implications in breast cancer.

2. Leptin Signaling

Leptin is an adipokine with a molecular weight of 16 kDa, encoded by the LEP gene, located
on chromosome 7q32.1 [20,21]. Leptin is secreted mainly by the adipose tissue [21] and, in a smaller
proportion, by the placenta [22], stomach [23], fibroblasts [24], skeletal muscle [25], normal and
tumor epithelial mammary tissue [26–28]. Leptin regulates the appetite through binding to the
ObR receptor, which is located in neurons of the arcuate nucleus (ARC) [29]. Upon leptin binding,
ObR activates the PI3K signal pathway to inhibit the expression of orexigenic neuropeptides such as
neuropeptide Y (NPY) and induces the hyperpolarization of ARC neurons [30]. Leptin also depolarizes
the hypothalamic proopiomelanocortin (POMC) neurons and activates anorexigenic neuropeptides
such as POMC and CART (Cocaine- and Amphetamine-Regulated Transcript), to further regulate food
intake [31,32].

Leptin exerts its effects through its ObR receptor, which is encoded by the LEPR gene located on
chromosome 1p31.3 [33]. The ObR receptor belongs to the family of class I cytokine receptors [25,26],
and presents six isoforms generated by alternative splicing (ObRa–ObRf) [33]. Interestingly, only the
ObRb isoform contains the intracellular motifs required for the activation of the signaling cascade
mediated by JAK2, an ObRb-associated kinase [34,35]. Structurally, the extracellular region of the
ObRb receptor is constituted by two cytokine homology regions (CHR), modulating the binding with
leptin (Figure 1). However, only the CHR2 domain is necessary for the binding with leptin; both
domains are separated by an immunoglobulin-like domain (IgD) [36]. The ObR also contains two
or three domains of fibronectin type III which regulate their interaction with cell membranes [36].
In the intracellular region, the ObRb contains three boxes, a proline-rich region called box 1, essential
for the binding of the FERM domain of JAK2, a region called box 2, which interacts with the SH2
domain of JAK2, and the box 3, containing Tyr1077 and Tyr1138, necessary residues for the activation of
STA3 and STAT5 [37]. Structurally, JAK2 is constituted by a pseudokinase domain (psKD), a kinase
domain (KD), an SH2 domain, and a FERM domain. The FERM and SH2 domains are responsible for
regulating the interaction of JAK2 with box 1 and 2 of the ObRb receptor, whereas psKD and KD are
responsible for regulating JAK2 kinase activity [38]. Leptin can bind to the CHR2 domain of ObRb,
promoting trans-dimerization of two leptin–ObRb dimers [36,39]. This event induces changes in the
intracellular region of the ObRb receptor, as well as a conformational change in JAK2, promoting its
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autophosphorylation and subsequent activation (Figure 1) [34,37,39]. JAK2 can phosphorylate multiple
sites in the ObRb receptor, activating several signaling pathways. For instance, JAK2 phosphorylates
Tyr1077 leading to the activation of STAT5, which translocates to the nucleus and regulates gene
expression [40,41]. JAK2 also phosphorylates ObRb at Tyr1138, which is recognized by the SH2 domain
of STAT3 [42]. Also, JAK2 phosphorylates STAT3 at Tyr705, inducing its dimerization and translocation
to the nucleus where it regulates the expression of different proteins involved in cancer progression,
such as cyclin D1, COX2, VEGF, and SOCS3, a negative regulator of leptin signaling [35,43]. Also, leptin
induces the phosphorylation of the insulin receptor substrate 1 (IRS-1) through JAK2, triggering the
activation of the PI3K–Akt pathway [7,44]. On the other hand, JAK2 phosphorylates Tyr985 of ObRb,
allowing the anchoring of SHP2 protein [45,46], promoting the recruitment of Grb2 and the activation
of the kinases ERK1/2 [47]. The mechanism of inhibition of SOCS3 occurs when it binds through its
SH2 domain to p-Tyr985 of ObRb, preventing the activation of the MAPKs pathway, and, through its
C-terminal domain„ recruits the ubiquitin-transferase system inducing the ubiquitination of JAK2 [48].
Another negative regulator is PTP1B, a phosphatase that participates in STAT3, STAT5 and JAK2
dephosphorylation, thus inhibiting leptin signaling [49,50]. Together, these signaling pathways regulate
cancer-related processes such as proliferation, survival, EMT, cell migration, and invasion [51–53].
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Figure 1. Structure of the ObRb receptor. The ObR is constituted by an extracellular N-terminus domain,
a transmembranal domain, and a cytoplasmic C-terminus domain. In the absence of leptin, ObR is
located in the plasma membrane as a monomer associated with inactive JAK. Upon leptin binding to
ObRb, ObRb dimerizes, and the JAK kinase is autophosphorylated, favoring its activation. Once active,
JAK2 phosphorylates tyrosine residues in ObR and activates downstream signaling pathways.

3. Epithelial–Mesenchymal Transition (EMT)

The EMT is a process involved in a pathophysiological condition in which epithelial cells acquire
characteristics of mesenchymal cells [9]. EMT involves a modification of the classic epithelial phenotype
and morphology to a fibroblastoid phenotype, as it favors an increase of cell migration, invasion, and
resistance to anoikis and chemotherapy [54,55]. In the molecular context, cells undergo changes in
gene expression, function, and/or activation of proteins involved in this transition [56–58]. EMT is
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characterized by the loss of the cell–cell junctions and the reorganization of the cytoskeleton, which
results in the loss of apicobasal polarity and the decrease in the expression of canonical epithelial
markers such as E-cadherin, cytokeratins, ZO-1 [59]. This is followed by a gain of mesenchymal
markers such as N-cadherin, vimentin, fibronectin, α-SMA, as well as an increase in the expression and
activation of the TFs that regulate EMT, such as Twist, Snail, Slug, ZEB, and β-catenin [57,60]. These TFs
regulate the expression of genes that favors cell migration and invasive processes [60,61] and contribute
to the disruption of cell junctions by transcriptionally repressing CDH1, OCLN, and CLDN [62–64].

4. EMT-Related Transcription Factors

A hallmark of EMT is the dysregulation of E-cadherin, occludin, claudins, and cytokeratins which
leads to the loss of the apico-basolateral polarity, mediated by the TFs Snail, Slug, Zeb, and Twist [10],
which are discussed below.

4.1. Snail

Snail (Snail1) and Slug (Snail2) are members of the Snail family [65]. The Snail gene (SNAI1) is
located on chromosome 20q13.13 and codes for a 29 kDa protein (Figure 2) [66]. Snail is constituted
by two β chains and two α helices and, in the C-terminal region, has four Zn-fingers domains
responsible for the interaction with the consensus DNA sequence CACCTG [67]. This sequence
is found in the E2 box of the promoter regions of genes such as CDH1, MUC 1, KRT18, OCLN,
and CLDN, for which Snail functions as a repressor [11,67]. Snail presents an N-terminal SNAG
domain, essential for transcriptional repression, and a nuclear export signal (NES) domain that
regulates its nuclear export. In this way, Snail regulates the survival process through the repression
of CCND1 (cyclin D1), CCND2 (cyclin D2), and CDK4 (CDK4) [68]. In addition, Snail represses the
expression of the tumor suppressor PTEN, preventing its interaction with p53 and leading to cell cycle
blockage, further conferring resistance to cell death [68,69]. Snail also represses the expression of CDH1
and OCLN, two genes involved in the formation of cell–cell junctions [11]. Snail further represses
SERPINB5 expression, which facilitates cell migration through the PI3K–Akt–Rac1 pathway [70].
The expression and activation of Snail are regulated by various signaling pathways including PI3K,
MAPK, GSK-3β, and NF-κB [71–73]. ERK1/2 signaling regulates the activity of NF-κB, which controls
the transcription of Snail [74–76]. Similarly, PI3K-mediated signaling promotes the activation of
Akt, inducing the upregulation of NF-κB and increasing the transcriptional activation of Snail [77].
Furthermore, PI3K promotes the activation of PAK1, which phosphorylates Snail at Ser246, promoting
its nuclear translocation and the control of the expression of EMT-related genes [78]. Additionally,
SUMOylation of Snail at Lys234 stabilizes and promotes its translocation to the nucleus, allowing its
interaction with c-Jun to regulate gene expression [79]. Snail phosphorylation at Ser11 by PKA and
Ser92 by CK2 regulates the transcriptional repression of CDH1 and CLDN1 through the recruitment of
the transcriptional repressor mSin3A and histone deacetylases (HDACs), responsible for decreasing
the acetylation at H3 and H4 of CDH1 promoter [80,81]. Snail also recognizes the TCACA conserved
sequence on the MMP9 gene promoter region and forms a complex with Early Growth Response
proteins EGR/Sp1 to promote the transcription of this MMP [82]. This conserved DNA sequence is
also recognized by Snail in the Zinc Finger E-Box Binding Homeobox 1 (ZEB1) promoter to regulate
its expression [12]. However, in the nucleus, GSK3β phosphorylates Snail at Ser104 and Ser107 that
are close to the NES sequence of Snail, inducing its nuclear export; then, in the cytoplasm, Snail
phosphorylation at Ser96 and Ser100 by GSK3β inactivates it functionally, sending it to proteasome
degradation through the ubiquitin ligase β-Trcp [83,84].

4.2. Slug

The Slug gene (SNAI2) is located on chromosome 8q11.2, and encodes a 28 kDa protein, formed
by two β chains and two α helices, and containing five Zn-finger domains in the C-terminal domain
(Figure 2) [85]. These domains recognize the consensus DNA sequence CAGGTG located in the E2
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box of the CDH1 promoter. Slug presents a SNAG and a SLUG domain which recruit transcriptional
co-repressors such as CtBP-1, which in turn recruit HDAC to the promoters of target genes [86,87].
Slug is phosphorylated by ERK1/2 at Ser100 to promote its nuclear localization and at Ser87 to regulate
its transcriptional activity [88]. Also, the SUMOylation of Slug at Lys192 increases its stability and
promotes its ability to suppress the expression of E-cadherin [79]. Slug is degraded through the
p21–p53–Mdm2 complex via ubiquitination [86,89,90] and through phosphorylation by GSK3β at
Ser92 via proteasome degradation [88].
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Figure 2. Schematic representation of leptin-induced transcription factors. Structural domains of the
epithelial–mesenchymal transition (EMT)-related transcription factors (TFs), where the domains of
DNA binding and interaction with other proteins are represented.

The overexpression of Slug correlated with metastasis, invasion, and decreased survival in
patients with breast, gastric, lung, and ovarian cancer [91]. In vitro studies have shown that the ectopic
expression of Slug in MCF10A cells induces a morphological change from an epithelial phenotype to a
more elongated mesenchymal phenotype [92]. Slug induces a decrease in the levels of E-cadherin and
β-catenin and an increase of vimentin levels [93]. Slug phosphorylation at Ser87 is associated with
the overexpression of vimentin [92], which correlates with an increase in the migration capacity of
MCF10A cells [94]. Furthermore, the expression of Slug correlates with the repression of BRCA2 in
breast cancer [87].

4.3. Zeb

The Zeb family of TFs has two members, Zeb1 (TCF8) and Zeb2 (SiP1). Zeb1 is encoded by the
ZEB1 gene located on chromosome 10p11.22, while Zeb2 is encoded by the ZEB2 gene located on
chromosome 2q22.3. Both proteins are characterized by two clustered Zn fingers separated by a central
homeodomain (Figure 2) [95,96]. Zeb interacts with the DNA consensus sequences CACCT/G found
in the E-box located in the promoter regions of targets genes, through the Zn-finger domain [97,98].
Similarly, Zeb interacts with transcriptional repressors through the sequence PXDLS [11,98]. Common
interactors of Zeb are CtBP, HDAC, methyltransferases, polycomb complex, and coREST. In this way,
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Zeb inhibits the transcription of genes involved in the epithelial phenotype [95,99]. In addition, Zeb
can be activated via Ras–ERK2–Fra1 signaling, NF-KB, and JAK–STAT3 [100–102].

Zeb interacts with the transcriptional modulators Smad1, 2, and 3. The Zeb1–Smad3–p300
complex can interact with Smad7 and displace HDAC1 to allow transcriptional activation [103].
However, when the Zeb2–Smad3 complex is formed, it binds to CtBP to repress the transcription of
genes such as CDH1 [98]. The promoter of Zeb presents four E-boxes, which are recognized by Slug
and favor the transcription of Zeb [104]. The levels of Zeb are positively regulated by the TF Snail
through the transcriptional repression of miR-200, a negative regulator of Zeb; in addition, Twist and
Ets1 bind to the Zeb promoter, inducing its expression [105]. A mechanism of negative regulation of
the transcriptional repression activity of Zeb is through SUMOylation at Lys 391 and 866; this event is
mediated by the PC2 protein of the polycomb complex, which acts as a SUMO E3 ligase [79,106].

4.4. Twist

The Twist gene (TWIST1) is located on chromosome 7p21.1 and encodes a 28 kDa protein that
presents two α-helices separated by a loop. Twist N-terminal region presents an HLH domain,
that mediates specific DNA binding and contains two amphipathic helices that act as dimerization
domains (Figure 2) [107,108]. These heterodimers recognize the consensus DNA sequence CANNTG
in the promoter regions of target genes [108,109]. Also, the N-terminal region of Twist includes the
nuclear localization signals, which spans from amino acids 37 to 40 and 73 to 77 [110]. Moreover, the
phosphorylation of Ser42 and Ser68 by Akt2 and ERK1/2, respectively, also induces its translocation to
the nucleus [110–112]. Phosphorylation of Thr121 and Ser123 by Akt1 in the HLH domain induces
Twist degradation via ubiquitination [113,114]. Twist C-terminal domain contains the Twist-box
domain that has a dual function, acting as a transcriptional activator or repressor [108]. Twist activity
can be epigenetically regulated through its interaction with histone acetyltransferases and HDACs,
which induce histone modifications and repress gene expression [115]. The overexpression of Twist
in the human adenocarcinoma cell line MCF7 induces a change from an epithelial to a mesenchymal
phenotype, accompanied by an increase in the synthesis of the angiogenic vascular endothelial growth
factor (VEGF) [116]. Twist also promotes the expression of Snail and induces cell migration and
invasion of MCF7 cells [117]. Furthermore, overexpression of Twist in the MCF7 and MCF10A cell
lines promotes a breast cancer stem cell phenotype [117].

Twist and BMI1 TFs may suppress the expression of let-7i, a tumor suppressor miRNA, favoring
the motility of mesenchymal cells and invasiveness to local and distant sites, and contributes to the
maintenance of stem-cell-like properties [118].

4.5. β-Catenin

Another transcription factor involved in EMT is β-catenin, which is part of the transmembrane
adherent junctions complex (AJs) and interacts with E-cadherin [119]. The loss of E-cadherin from the
basolateral membrane is associated with a release of β-catenin to the cytosol and to the activation of the
canonical Wnt pathway [120–122]. Wnt promotes cell growth, survival, and maintenance of stemness
through the β-catenin–TCF3 complex by inhibiting the pluripotency of the factors Oct3/4, Sox2, and
Nanog, thus maintaining the self-renewal capacity of cancer stem cells [120–123]. When AJs are lost,
β-catenin can be phosphorylated at Ser33 and Ser37 by GSK3β and binds to the ubiquitin ligase β-Trcp,
inducing its degradation via ubiquitination [124]. However, Akt and PI3K can phosphorylate GSK3β at
Ser9 and prevent the formation of the subsequent destruction complex LKB1–APC–Axin, thus avoiding
β-catenin degradation [6]. JNK2 also phosphorylates β-catenin at Ser191 and Ser605, promoting its
nuclear translocation to regulate the expression of EMT-associated genes [125]. Overexpression of
Twist, Snail, and Slug also promotes the nuclear localization of β-catenin [93,121]. In the nucleus,
β-catenin constitutes a complex with TCF and LEF, which recognize the consensus DNA sequence
T/A-CAAAG located in the HMG boxes of the promoter regions of EMT-associated genes [126].
Importantly, the promoter of Snail also presents this sequence, suggesting that it may be regulated the



Int. J. Mol. Sci. 2018, 19, 3493 7 of 20

β-catenin–TCF–LEF complex as well [93,121]. The C-terminal domain of β-catenin may also interact
with CBP–p300 and the chromatin remodeling enzyme BRG1, member of the SWI–SNF complex,
allowing the transcription of c-Myc, Cyclin D1, c-Jun, fra-1 [122,127].

5. Expression of Leptin and ObR in Breast Cancer

5.1. Studies in Humans

Diverse studies in humans have reported that the levels of leptin in the serum of obese and overweight
individuals are increased compared to subjects with normal weight [2,4]. In healthy individuals with
normal weight, the concentration of leptin in the bloodstream is about 5–20 ng/mL [128–131], while, in a
patient with breast cancer, the leptin levels reach up to 100 ng/mL [132,133]. Moreover, overexpression
of leptin and its ObR receptor are associated with early stages of carcinogenesis [134]. For instance,
patients with in situ ductal carcinoma present increased expression of the ObR receptor, compared
to patients with invasive carcinoma [134]. The overexpression of leptin and the ObR receptor also
promotes the progression of breast cancer. In line with this idea, Garofalo et al. showed that both leptin
and ObR are increased in primary tumors and lymph node metastases of breast cancer [135]. Hosney et
al. observed that leptin was significantly overexpressed in obese patients compared with overweight
patients and healthy donors by 3.1-fold and 8.3-fold, respectively [26].

However, not only the overexpression of leptin and its receptor favors tumor progression, but also
polymorphisms (variation in specific DNA sequences) of leptin or its receptor genes are considered
potential mechanisms of enhanced susceptibility to develop breast cancer [136]. In the polymorphism
of LEP G2548A, the associated allele A is the risk factor for the development of breast cancer, while, in
the LEPR Q223R polymorphism, the R allele is linked to the development of the disease. Likewise, the
A allele of LEP G2548A is associated with the size of the tumor [137]. Interestingly, the LEP G2548A
polymorphism is related to variations in the levels of leptin in serum; however, this polymorphism
was not related to the susceptibility to develop breast cancer [138,139]. On the other hand, the
LEPR Q223R polymorphism, involved in receptor functionality, was shown to decrease the risk of
developing breast cancer in Asian women but not in Caucasian women [138]. A study of Iranian
women with breast cancer showed a higher frequency of breast cancer development associated with
the LEP G2548A polymorphism of the A allele, as compared to the control group; interestingly, the
polymorphism of the G allele conferred a protective phenotype [140]. Moreover, post-menopausal and
pre-menopausal Mexican women appeared susceptible to develop breast cancer if the LEPR Q223R
or the LEP G2548A polymorphisms, respectively, were present [141]. Egyptian patients with breast
cancer frequently present the AA genotype of LEP G2548A compared to healthy women, while the
LEPR Q223R polymorphism is associated with the development of breast cancer [142].

5.2. In Vitro Models

In vitro models have been used extensively to elucidate the mechanisms of leptin activation
in biological processes associated with breast cancer progression. Established cell lines, such as
MCF10A [143,144], MCF7 [143–145], T47D [143–145], and MDA-MB-231 [143–145], express both
the long and the short isoforms of the ObR receptor. Elevated mRNA levels of the ObR receptor
were observed in MCF10A [143,144], MDA-MB-231 [143–145], and MCF7 cells [143–145]. Leptin
promotes the proliferation of MCF10A [143,144], MCF7 [143–145], T47D [143–145], Leal-10 [146], and
MDA-MB-231 cells in culture [144–148]. Moreover, leptin induces cell migration and invasion of
MCF7 [6,145], Leal-10 [146], and T47D cells [145] and decreased apoptosis in MCF7 [145] and ZR-75-1
cells [149]. Consistently, chronic treatment with leptin induces an increase in the population of cancer
stem cells in the MDA-MB-231 cultured model [6,143,145,146]. Leptin also induces the expression of
TFs associated with the maintenance of the cancer stem cell phenotype, such as NANOG, SOX2, and
OCT4 in a STAT3-dependent manner, promoting a more aggressive phenotype of cancer cells [143].
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Cancer stem cells are associated with therapeutic resistance and decrease in the survival of
cancer patients [150]. Moreover, chemoresistance in cancer is associated with various mechanisms,
such as mutations, inactivation or elimination of the drug, and overexpression of the therapeutic
target [151]. In this sense, in MCF7 cells, leptin also confers resistance to tamoxifen, an anti-estrogen
treatment commonly used in cancer patients [150,152]. A possible mechanism was proposed upon the
observation that leptin induces an increase in the expression of the estrogen receptor α (ERα) in MCF7
cells treated or not with tamoxifen, suggesting that leptin may confer resistance to this treatment, even
in ER-positive cancer cells which are sensitive to tamoxifen [153,154].

6. Role of Leptin in EMT in Breast Cancer

One of the first studies that explored the effect of leptin on EMT in mammary cancer cells was
carried out by Yan et al. This study showed that in MCF7 cells, leptin stimulation induces a fibroblastoid
morphology evidenced by the decrease in the expression of epithelial markers (occludin, E-cadherin)
and an increase in mesenchymal markers (fibronectin, N-cadherin, and vimentin) [6]. Also, leptin
induces an increase in the expression of β-catenin and, through Akt, induces the phosphorylation at
Ser9 in GSK3β, preventing the formation of the destruction complex GSK3β–APC–LKB1–Axin, thus
allowing β-catenin to be translocated to the nucleus, form a complex with TLC–LEF, and regulate the
expression of cyclin D1 and fibronectin [6].

Leptin induces the overexpression of the EMT markers vimentin and fibronectin and the
downregulation of E-cadherin in MCF7 and SK-BR-3 cells, via the activation of the PI3K–Akt signaling
cascade and the increased expression of the pyruvate kinase isozyme M2 (PKM2) [155]. Importantly,
PKM2 is overexpressed in metastatic tissue compared to non-metastatic breast cancer tissue. Moreover,
PKM2 contributes to the maintenance of the cancer stem cells pool via a Wnt–β-catenin-dependent
pathway, suggesting an important role of PKM2 in metastasis [155]. Another signaling mechanism
involving leptin-induced EMT was observed in MCF7 and SK-BR-3 cells, where leptin promotes IL-8
activation via PI3K–Akt [7]. Similarly, leptin decreases the levels of E-cadherin and induces an increase
in the levels of vimentin and Snail in MCF7 cells [149].

In addition, leptin induces the expression of Twist in MCF7, SK-BR-3, and MDA-MB-231 cells [5,6,156]
and induces the phosphorylation of STAT3 at Tyr705, allowing STAT3 translocation to the nucleus
where it regulates the expression of EMT-associated genes, such as MMP-7 (MMP7), MMP-9
(MMP9), vimentin (VIM), and, importantly, Twist (TWIST) [157,158]. Furthermore, leptin induces an
increase in Zeb expression due to the formation of the STAT3–G9a complex [159]. G9a is a histone
methyltransferase which induces di-methylation of lysine 9 of histone 3 (H3K9Me2), an epigenetic
mark associated with transcriptional repression [159]. The STAT3–G9a complex binds to the response
elements of the promoter of miRNA-200c, a microRNA repressor of Zeb [159].

WISP2 or CCN5 is a transcriptional repressor that acts as a negative regulator of breast cancer
progression [160,161]. In MDA-MB-231 cells transfected with CCN5, an EMT reversion was observed,
accompanied by a decrease in the expression of mesenchymal markers such as vimentin and the stem cell
marker CD44, and an increase in epithelial markers such as keratin-19 [161]. However, leptin decreases
the expression of CCN5 in MCF7 cells, favoring tumor progression by the induction of EMT through a
mechanism regulated by the JAK–Akt–STAT pathway [149]. In addition, the decrease of CCN5 and the
induction of EMT promote the formation and maintenance of the cancer stem-like cell phenotype [162].

Interestingly, our research group demonstrated that in the non-tumoral epithelial cell line MCF10A,
leptin induces a partial-type EMT via a FAK- and ERK-dependent pathway [163]. Partial EMT in
these cells conferred both epithelial and mesenchymal characteristics, including the maintenance of
cell–cell junctions and collective cell migration [164]. Collective cell migration is part of EMT and
contributes to efficient metastasis in some kinds of cancers; it is also necessary for morphogenesis,
angiogenesis, and wound healing [165]. Although leptin does not promote changes in E-cadherin
expression, it seems to contribute to its re-localization from the plasma membrane to the cytoplasm and
to the induction of collective cell migration in MF10A cells [163]. Interestingly, collective cell migration
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involves cellular clusters with a higher potential to contain circulating tumor cells (CTCs), which can
survive in the circulation and metastasize to distal organs [164]. The molecular markers used to classify
CTCs are the epithelial markers EpCAM and CK8/18/19 and the mesenchymal markers vimentin and
Twist [166,167]. CTCs can be classified by using EMT markers in three groups including epithelial CTCs,
biophenotypic epithelial–mesenchymal CTCs, and mesenchymal CTCs phenotypes [167]. In advanced
stages of cancer, mesenchymal CTCs are most commonly found, compared with early cancer stages
that have epithelial or epithelial–mesenchymal CTC phenotypes [167]. CTCs present a heterogeneity of
EMT markers, which supports the idea that EMT generates CTCs, which are key to tumor invasiveness
and metastasis and the decreased survival of cancer patients [168].

7. Relation between Leptin and Metabolic Reprogramming during EMT in Breast Cancer

Unlike normal cells that use mitochondrial oxidative phosphorylation as the primary source of
ATP, tumor cells use aerobic glycolysis [169]. The metabolic reprogramming of tumor cells is called
“Warburg effect” and implicates the generation of energy and molecules essential for the synthesis of
amino acids, lipids, and proteins necessary for the increased the proliferation, migration, invasion, and
survival of tumors cells [170]. Recently, it has been described that metabolic reprogramming is directly
related to EMT, particularly, some molecular pathways provide a positive feed-back between EMT and
cell metabolism [171]. Metabolic reprogramming is a process partially regulated by the accumulation
of lactate, exported by the proton-linked monocarboxylate transporter 4 (MCT4 or SLC16A3), which
leads to a decrease in extracellular pH (pHe) [169]. The cellular decrease in pHe is also associated with
chemotherapeutic resistance [172], remodeling of the extracellular matrix (ECM), and activation of
MMPs [173], key events in the progression of the EMT program.

Several glycolytic enzymes have been associated with EMT program completion. For instance,
aldolase A, which catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde
3-phosphate and dihydroxyacetone phosphate, contributes to EMT by promoting the overexpression
of N-cadherin and vimentin and decreasing the expression of E-cadherin [169]. Furthermore, PKM2,
an enzyme that converts phosphoenolpyruvate to pyruvate, transcriptionally regulates β-catenin by
binding to phosphorylated Y333 of β-catenin, allowing its activation [122]. In consequence, PKM2
contributes to the expression of EMT markers such as Snail and vimentin and to the downregulation
of E-cadherin [174]. In addition, PKM2 can phosphorylate STAT3, a regulator of EMT markers, such
as MMP-2, MMP-9, and Snail, in breast cancer cells [175]. In addition, lactate dehydrogenase, which
catalyzes the conversion of lactate to pyruvic acid, is essential for the expression of FAK, VEGF, and
MMP2 in MDA-MB-231 breast cancer cell line [169]. On the other hand, the expression of TFs, such
as Snail, can induce metabolic reprogramming by inhibiting mitochondrial respiration through the
repression of the activity of cytochrome C oxidase [169,176]. In addition, breast cancer epithelial cells
undergoing EMT present an increased expression of transporters and enzymes related to aerobic
glycolysis and lactate dehydrogenase, and the pentose pathway and the biosynthesis of serine are
inhibited during this process [177,178]. Blanquer-Rosselló et al. demonstrated that leptin promotes
metabolic reprogramming by favoring mitochondrial biogenesis and energy production processes,
essential for the growth and survival of MCF7 breast cancer cells [179].

The association between glucose metabolism and tumor progression has been established; also,
lipid metabolism and its association with EMT are currently investigated. Lipid metabolism is an
alternative route for energy generation, through lipolysis, fatty acids oxidation, and de novo generation
of fatty acids [180]. Tumor cells have a high demand for de novo synthesis of essential fatty acids
for the biogenesis of membrane phospholipids due, in part, to their high proliferative rates [180,181].
In this context, leptin induces the rescue of mitochondrial respiration through the use of fatty acids as
fuel for the generation of ATP. This metabolic leptin-induced reprogramming confers benefits to tumor
cells and a greater aggressiveness to breast cancer cells [182]. On the other hand, lipid β-oxidation is
an alternative route for the generation of energy [181]. Wang et al. demonstrated that leptin promotes
the oxidation of fatty acids through a JAK–STAT-dependent pathway as well as the self-renewal of
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BCSC and, consequently, induces chemoresistance of breast cancer cells [183]. Triple-negative breast
cancer cell lines express lipoprotein lipase (LPL) and fatty acid synthase, both enzymes participating
in lipolysis through the CD36 pathway, which transports fatty acids into the cell [184,185]. In addition,
CD36 is associated with the activation of EMT [186].

Therefore, a wide variety of enzymes participate in metabolic reprogramming and are closely
related to the progress of the EMT program in breast cancer cells.

8. Conclusions

Currently, breast cancer and obesity are considered a major public health problem worldwide.
Several molecules related to obesity have been associated with tumor progression in breast cancer.
Leptin promotes diverse biological events associated with essential processes of breast cancer such as
EMT. One of the mechanisms by which leptin promotes EMT is through the expression of transcription
factors such as Snail, Slug, Zeb, Twist, and β-catenin (Figure 3). These factors repress the epithelial
markers while promoting the expression of mesenchymal markers and consequently cell migration,
invasion, and metastasis of tumor cells. However, the specific signaling mechanisms by which leptin
induces the expression of these TFs and the signaling pathways regulating the EMT markers have not
been described completely. Intensive research in the field is now aimed at better understanding the
molecular mechanisms that leptin triggers in tumor cells and discovering new molecular targets for
therapy in patients with breast cancer and obesity. In conclusion, leptin promotes the progression of
breast cancer through the induction of the EMT program, promoting a more aggressive phenotype in
breast cancer cells.
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Figure 3. Representative model of leptin-induced EMT signaling. In the absence of leptin, the
transcription factors Twist, Snail, Slug, and β-catenin are phosphorylated at specific residues by
cytosolic kinases, leading these TFs to their degradation through the proteasomal pathway. When
leptin binds to the ObRb receptor, signaling cascades are activated to promote the phosphorylation of
EMT-related TFs and induce their translocation from the cytoplasm to the nucleus, where they regulate
the expression of EMT-regulators genes.
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56. Sadlecki, P.; Jóźwicki, J.; Antosik, P.; Grabiec, M. Expression of selected epithelial–mesenchymal transition
transcription factors in serous borderline ovarian tumors and type I ovarian cancers. Tumour Boil. 2018, 40.
[CrossRef] [PubMed]

57. Singh, R.; Mandhani, A.; Agrawal, V.; Garg, M. Positive Correlation between Matrix Metalloproteinases and
Epithelial-to-Mesenchymal Transition and its Association with Clinical Outcome in Bladder Cancer Patients.
Cancer Microenviron. 2018, 11, 23–39. [CrossRef] [PubMed]

58. Sarrio, D.; Rodriguez-Pinilla, S.M.; Hardisson, D.; Cano, A.; Moreno-Bueno, G.; Palacios, J.
Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008, 68,
989–997. [CrossRef] [PubMed]

http://dx.doi.org/10.1074/jbc.M702838200
http://www.ncbi.nlm.nih.gov/pubmed/17726024
http://dx.doi.org/10.1016/j.neulet.2007.02.074
http://www.ncbi.nlm.nih.gov/pubmed/17353091
http://dx.doi.org/10.1038/ng0996-95
http://www.ncbi.nlm.nih.gov/pubmed/8782827
http://dx.doi.org/10.1074/jbc.M007577200
http://www.ncbi.nlm.nih.gov/pubmed/11018044
http://dx.doi.org/10.1073/pnas.050580497
http://www.ncbi.nlm.nih.gov/pubmed/10688912
http://dx.doi.org/10.1074/jbc.M007439200
http://www.ncbi.nlm.nih.gov/pubmed/11085989
http://dx.doi.org/10.1073/pnas.95.11.6061
http://www.ncbi.nlm.nih.gov/pubmed/9600917
http://dx.doi.org/10.3390/medicines4030056
http://www.ncbi.nlm.nih.gov/pubmed/28930270
http://dx.doi.org/10.1016/S0014-5793(00)02205-5
http://dx.doi.org/10.1016/S1534-5807(02)00149-1
http://dx.doi.org/10.1016/S1534-5807(02)00148-X
http://dx.doi.org/10.1158/0008-5472.CAN-06-3075
http://www.ncbi.nlm.nih.gov/pubmed/17363567
http://dx.doi.org/10.1074/jbc.275.19.14563
http://dx.doi.org/10.1074/jbc.272.51.32686
http://dx.doi.org/10.1002/jcp.26862
http://www.ncbi.nlm.nih.gov/pubmed/29943817
http://dx.doi.org/10.1177/1010428318784807
http://www.ncbi.nlm.nih.gov/pubmed/29952249
http://dx.doi.org/10.1007/s12307-017-0199-4
http://www.ncbi.nlm.nih.gov/pubmed/29349669
http://dx.doi.org/10.1158/0008-5472.CAN-07-2017
http://www.ncbi.nlm.nih.gov/pubmed/18281472


Int. J. Mol. Sci. 2018, 19, 3493 14 of 20

59. Wallesch, M.; Pachow, D.; Blucher, C.; Firsching, R.; Warnke, J.P.; Braunsdorf, W.E.K.; Kirches, E.; Mawrin, C.
Altered expression of E-Cadherin-related transcription factors indicates partial epithelial-mesenchymal
transition in aggressive meningiomas. J. Neurol. Sci. 2017, 380, 112–121. [CrossRef] [PubMed]

60. Yuen, H.F.; Chua, C.W.; Chan, Y.P.; Wong, Y.C.; Wang, X.; Chan, K.W. Significance of TWIST and E-cadherin
expression in the metastatic progression of prostatic cancer. Histopathology 2007, 50, 648–658. [CrossRef]
[PubMed]

61. Hajra, K.M.; Chen, D.Y.; Fearon, E.R. The SLUG zinc-finger protein represses E-cadherin in breast cancer.
Cancer Res. 2002, 62, 1613–1618. [PubMed]

62. Martinez-Estrada, O.M.; Culleres, A.; Soriano, F.X.; Peinado, H.; Bolos, V.; Martinez, F.O.; Reina, M.; Cano, A.;
Fabre, M.; Vilaro, S. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in
epithelial cells. Biochem. J. 2006, 394 Pt 2, 449–457. [CrossRef]

63. Ohkubo, T.; Ozawa, M. The transcription factor Snail downregulates the tight junction components
independently of E-cadherin downregulation. J. Cell Sci. 2004, 117, 1675–1685. [CrossRef] [PubMed]

64. Ikenouchi, J.; Matsuda, M.; Furuse, M.; Tsukita, S. Regulation of tight junctions during the
epithelium-mesenchyme transition: Direct repression of the gene expression of claudins/occludin by
Snail. J. Cell Sci. 2003, 116, 1959–1967. [CrossRef] [PubMed]

65. Nieto, M.A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 2002, 3,
155–166. [CrossRef] [PubMed]

66. Mauhin, V.; Lutz, Y.; Dennefeld, C.; Alberga, A. Definition of the DNA-binding site repertoire for the
Drosophila transcription factor SNAIL. Nucleic Acids Res. 1993, 21, 3951–3957. [CrossRef] [PubMed]

67. De Herreros, A.G.; Peiró, S.; Nassour, M.; Savagner, P. Neoplasia, Snail family regulation and epithelial
mesenchymal transitions in breast cancer progression. J. Mammary Gland Boil. 2010, 15, 135–147. [CrossRef]
[PubMed]

68. Vega, S.; Morales, A.V.; Ocana, O.H.; Valdes, F.; Fabregat, I.; Nieto, M.A. Snail blocks the cell cycle and
confers resistance to cell death. Genes Dev. 2004, 18, 1131–1143. [CrossRef] [PubMed]

69. Escriva, M.; Peiro, S.; Herranz, N.; Villagrasa, P.; Dave, N.; Montserrat-Sentis, B.; Murray, S.A.; Franci, C.;
Gridley, T.; Virtanen, I.; et al. Repression of PTEN phosphatase by Snail1 transcriptional factor during
gamma radiation-induced apoptosis. Mol. Cell. Biol. 2008, 28, 1528–1540. [CrossRef] [PubMed]

70. Henderson, V.; Smith, B.; Burton, L.J.; Randle, D.; Morris, M.; Odero-Marah, V.A. Snail promotes cell
migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways
during prostate cancer progression. Cell Adhes. Migr. 2015, 9, 255–264. [CrossRef] [PubMed]

71. Smith, B.N.; Burton, L.J.; Henderson, V.; Randle, D.D.; Morton, D.J.; Smith, B.A.; Taliaferro-Smith, L.;
Nagappan, P.; Yates, C.; Zayzafoon, M.; et al. Snail promotes epithelial mesenchymal transition in breast
cancer cells in part via activation of nuclear ERK2. PLoS ONE 2014, 9, e104987. [CrossRef] [PubMed]

72. Zucchini-Pascal, N.; Peyre, L.; Rahmani, R. Crosstalk between beta-catenin and snail in the induction of
epithelial to mesenchymal transition in hepatocarcinoma: Role of the ERK1/2 pathway. Int. J. Mol. Sci. 2013,
14, 20768–20792. [CrossRef] [PubMed]

73. De Craene, B.; van Roy, F.; Berx, G. Unraveling signalling cascades for the Snail family of transcription
factors. Cell. Signal. 2005, 17, 535–547. [CrossRef] [PubMed]

74. Xiong, S.; Klausen, C.; Cheng, J.-C.; Leung, P.C.J.O. Activin B promotes endometrial cancer cell migration by
down-regulating E-cadherin via SMAD-independent MEK-ERK1/2-SNAIL signaling. Oncotarget 2016, 7,
40060–40072. [CrossRef] [PubMed]

75. Strippoli, R.; Benedicto, I.; Perez Lozano, M.L.; Cerezo, A.; Lopez-Cabrera, M.; del Pozo, M.A.
Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-κB/Snail1
pathway. Dis. Models Mech. 2008, 1, 264–274. [CrossRef] [PubMed]

76. Strippoli, R.; Loureiro, J.; Moreno, V.; Benedicto, I.; Lozano, M.L.P.; Barreiro, O.; Pellinen, T.;
Minguet, S.; Foronda, M.; Osteso, M.T. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent
epithelial–mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol. Med. 2015, 7, 102–123.
[CrossRef] [PubMed]

77. Julien, S.; Puig, I.; Caretti, E.; Bonaventure, J.; Nelles, L.; Van Roy, F.; Dargemont, C.; De Herreros, A.G.;
Bellacosa, A.; Larue, L. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium
mesenchyme transition. Oncogene 2007, 26, 7445–7456. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jns.2017.07.009
http://www.ncbi.nlm.nih.gov/pubmed/28870549
http://dx.doi.org/10.1111/j.1365-2559.2007.02665.x
http://www.ncbi.nlm.nih.gov/pubmed/17394502
http://www.ncbi.nlm.nih.gov/pubmed/11912130
http://dx.doi.org/10.1042/BJ20050591
http://dx.doi.org/10.1242/jcs.01004
http://www.ncbi.nlm.nih.gov/pubmed/15075229
http://dx.doi.org/10.1242/jcs.00389
http://www.ncbi.nlm.nih.gov/pubmed/12668723
http://dx.doi.org/10.1038/nrm757
http://www.ncbi.nlm.nih.gov/pubmed/11994736
http://dx.doi.org/10.1093/nar/21.17.3951
http://www.ncbi.nlm.nih.gov/pubmed/8371971
http://dx.doi.org/10.1007/s10911-010-9179-8
http://www.ncbi.nlm.nih.gov/pubmed/20455012
http://dx.doi.org/10.1101/gad.294104
http://www.ncbi.nlm.nih.gov/pubmed/15155580
http://dx.doi.org/10.1128/MCB.02061-07
http://www.ncbi.nlm.nih.gov/pubmed/18172008
http://dx.doi.org/10.1080/19336918.2015.1013383
http://www.ncbi.nlm.nih.gov/pubmed/26207671
http://dx.doi.org/10.1371/journal.pone.0104987
http://www.ncbi.nlm.nih.gov/pubmed/25122124
http://dx.doi.org/10.3390/ijms141020768
http://www.ncbi.nlm.nih.gov/pubmed/24135872
http://dx.doi.org/10.1016/j.cellsig.2004.10.011
http://www.ncbi.nlm.nih.gov/pubmed/15683729
http://dx.doi.org/10.18632/oncotarget.9483
http://www.ncbi.nlm.nih.gov/pubmed/27223076
http://dx.doi.org/10.1242/dmm.001321
http://www.ncbi.nlm.nih.gov/pubmed/19093035
http://dx.doi.org/10.15252/emmm.201404127
http://www.ncbi.nlm.nih.gov/pubmed/25550395
http://dx.doi.org/10.1038/sj.onc.1210546
http://www.ncbi.nlm.nih.gov/pubmed/17563753


Int. J. Mol. Sci. 2018, 19, 3493 15 of 20

78. Yang, Z.; Rayala, S.; Nguyen, D.; Vadlamudi, R.K.; Chen, S.; Kumar, R. Pak1 phosphorylation of snail,
a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and
functions. Cancer Res. 2005, 65, 3179–3184. [CrossRef] [PubMed]

79. Chanda, A.; Sarkar, A.; Bonni, S. The SUMO System and TGFβ Signaling Interplay in Regulation of
Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers 2018, 10, 264. [CrossRef]
[PubMed]

80. Peinado, H.; Ballestar, E.; Esteller, M.; Cano, A. Snail Mediates E-Cadherin Repression by the Recruitment of
the Sin3A/Histone Deacetylase 1 (HDAC1)/HDAC2 Complex. Mol. Cell. Boil. 2003, 24, 306–319. [CrossRef]

81. MacPherson, M.R.; Molina, P.; Souchelnytskyi, S.; Wernstedt, C.; Martin-Perez, J.; Portillo, F.; Cano, A.
Phosphorylation of serine 11 and serine 92 as new positive regulators of human Snail1 function: Potential
involvement of casein kinase-2 and the cAMP-activated kinase protein kinase A. Mol. Biol. Cell 2010, 21,
244–253. [CrossRef] [PubMed]

82. Hu, C.T.; Chang, T.Y.; Cheng, C.C.; Liu, C.S.; Wu, J.R.; Li, M.C.; Wu, W.S. Snail associates with EGR-1 and SP-1
to upregulate transcriptional activation of p15INK4b. FEBS J. 2010, 277, 1202–1218. [CrossRef] [PubMed]

83. Peinado, H.; Portillo, F.; Cano, A. Switching On-Off Snail: LOXL2 Versus GSK3? Cell Cycle 2005, 4, 1749–1752.
[CrossRef] [PubMed]

84. Zhou, B.P.; Deng, J.; Xia, W.; Xu, J.; Li, Y.M.; Gunduz, M.; Hung, M.-C. Dual regulation of Snail by
GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat. Cell Boil. 2004, 6,
931–940. [CrossRef] [PubMed]

85. Nieto, M.A.; Sargent, M.G.; Wilkinson, D.G.; Cooke, J. Control of cell behavior during vertebrate development
by Slug, a zinc finger gene. Science 1994, 264, 835–839. [CrossRef] [PubMed]

86. Cobaleda, C.; Perez-Caro, M.; Vicente-Duenas, C.; Sanchez-Garcia, I. Function of the zinc-finger transcription
factor SNAI2 in cancer and development. Annu. Rev. Genet. 2007, 41, 41–61. [CrossRef] [PubMed]

87. Tripathi, M.K.; Misra, S.; Khedkar, S.V.; Hamilton, N.; Irvin-Wilson, C.; Sharan, C.; Sealy, L.; Chaudhuri, G.
Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells. J. Boil. Chem.
2005, 280, 17163–17171. [CrossRef] [PubMed]

88. Kim, J.Y.; Kim, Y.M.; Yang, C.H.; Cho, S.K.; Lee, J.W.; Cho, M. Functional regulation of Slug/Snail2 is
dependent on GSK-3β-mediated phosphorylation. FEBS J. 2012, 279, 2929–2939. [CrossRef] [PubMed]

89. Wang, S.P.; Wang, W.L.; Chang, Y.L.; Wu, C.T.; Chao, Y.C.; Kao, S.H.; Yuan, A.; Lin, C.W.; Yang, S.C.;
Chan, W.K.; et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug.
Nat. Cell Biol. 2009, 11, 694–704. [CrossRef] [PubMed]

90. Kim, J.; Bae, S.; An, S.; Park, J.K.; Kim, E.M.; Hwang, S.G.; Kim, W.J.; Um, H.D. Cooperative actions of
p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion. EMBO Rep. 2014, 15,
1062–1068. [CrossRef] [PubMed]

91. Alves, C.C.; Carneiro, F.; Hoefler, H.; Becker, K.-F. Role of the epithelial-mesenchymal transition regulator
Slug in primary human cancers. Front. Biosci. 2009, 14, 3035–3050. [CrossRef]

92. Virtakoivu, R.; Mai, A.; Mattila, E.; De Franceschi, N.; Imanishi, S.Y.; Corthals, G.; Kaukonen, R.; Saari, M.;
Cheng, F.; Torvaldson, E.; et al. Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function.
Cancer Res. 2015, 75, 2349–2362. [CrossRef] [PubMed]

93. Medici, D.; Hay, E.D.; Olsen, B.R. Snail and Slug promote epithelial-mesenchymal transition through
β-catenin–T-cell factor-4-dependent expression of transforming growth factor-β3. Mol. Boil. Cell 2008, 19,
4875–4887. [CrossRef] [PubMed]

94. Vuoriluoto, K.; Haugen, H.; Kiviluoto, S.; Mpindi, J.P.; Nevo, J.; Gjerdrum, C.; Tiron, C.; Lorens, J.B.; Ivaska, J.
Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression
in breast cancer. Oncogene 2011, 30, 1436–1448. [CrossRef] [PubMed]

95. Williams, T.; Moolten, D.; Burlein, J.; Romano, J.; Bhaerman, R.; Godillot, A.; Mellon, M.; Rauscher, F.J., 3rd;
Kant, J.J.S. Identification of a zinc finger protein that inhibits IL-2 gene expression. Science 1991, 254,
1791–1794. [CrossRef] [PubMed]

96. Funahashi, J.; Sekido, R.; Murai, K.; Kamachi, Y.; Kondoh, H. Delta-crystallin enhancer binding protein delta
EF1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development 1993,
119, 433–446. [PubMed]

http://dx.doi.org/10.1158/0008-5472.CAN-04-3480
http://www.ncbi.nlm.nih.gov/pubmed/15833848
http://dx.doi.org/10.3390/cancers10080264
http://www.ncbi.nlm.nih.gov/pubmed/30096838
http://dx.doi.org/10.1128/MCB.24.1.306-319.2004
http://dx.doi.org/10.1091/mbc.e09-06-0504
http://www.ncbi.nlm.nih.gov/pubmed/19923321
http://dx.doi.org/10.1111/j.1742-4658.2009.07553.x
http://www.ncbi.nlm.nih.gov/pubmed/20121949
http://dx.doi.org/10.4161/cc.4.12.2224
http://www.ncbi.nlm.nih.gov/pubmed/16294032
http://dx.doi.org/10.1038/ncb1173
http://www.ncbi.nlm.nih.gov/pubmed/15448698
http://dx.doi.org/10.1126/science.7513443
http://www.ncbi.nlm.nih.gov/pubmed/7513443
http://dx.doi.org/10.1146/annurev.genet.41.110306.130146
http://www.ncbi.nlm.nih.gov/pubmed/17550342
http://dx.doi.org/10.1074/jbc.M501375200
http://www.ncbi.nlm.nih.gov/pubmed/15734731
http://dx.doi.org/10.1111/j.1742-4658.2012.08674.x
http://www.ncbi.nlm.nih.gov/pubmed/22727060
http://dx.doi.org/10.1038/ncb1875
http://www.ncbi.nlm.nih.gov/pubmed/19448627
http://dx.doi.org/10.15252/embr.201438587
http://www.ncbi.nlm.nih.gov/pubmed/25141863
http://dx.doi.org/10.2741/3433
http://dx.doi.org/10.1158/0008-5472.CAN-14-2842
http://www.ncbi.nlm.nih.gov/pubmed/25855378
http://dx.doi.org/10.1091/mbc.e08-05-0506
http://www.ncbi.nlm.nih.gov/pubmed/18799618
http://dx.doi.org/10.1038/onc.2010.509
http://www.ncbi.nlm.nih.gov/pubmed/21057535
http://dx.doi.org/10.1126/science.1840704
http://www.ncbi.nlm.nih.gov/pubmed/1840704
http://www.ncbi.nlm.nih.gov/pubmed/7904558


Int. J. Mol. Sci. 2018, 19, 3493 16 of 20

97. Verschueren, K.; Remacle, J.E.; Collart, C.; Kraft, H.; Baker, B.S.; Tylzanowski, P.; Nelles, L.; Wuytens, G.;
Su, M.-T.; Bodmer, R. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and
binds to 5′-CACCT sequences in candidate target genes. J. Boil. Chem. 1999, 274, 20489–20498. [CrossRef]

98. Gheldof, A.; Hulpiau, P.; Van Roy, F.; De Craene, B.; Berx, G. Evolutionary functional analysis and molecular
regulation of the ZEB transcription factors. Cell. Mol. Life Sci. 2012, 69, 2527–2541. [CrossRef] [PubMed]

99. Postigo, A.A.; Dean, D.C. ZEB represses transcription through interaction with the corepressor CtBP.
Proc. Natl. Acad. Sci. USA 1999, 96, 6683–6688. [CrossRef] [PubMed]

100. Xiong, M.; Jiang, L.; Zhou, Y.; Qiu, W.; Fang, L.; Tan, R.; Wen, P.; Yang, J. The miR-200 family regulates
TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting
ZEB1 and ZEB2 expression. Am. J. Physiol. Ren. Physiol. 2012, 302, F369–F379. [CrossRef] [PubMed]

101. Shin, S.; Blenis, J. ERK2/Fra1/ZEB pathway induces epithelial-to-mesenchymal transition. Cell Cycle 2010, 9,
2483–2484. [CrossRef] [PubMed]

102. Chua, H.; Bhat-Nakshatri, P.; Clare, S.; Morimiya, A.; Badve, S.; Nakshatri, H. NF-κB represses E-cadherin
expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: Potential
involvement of ZEB-1 and ZEB-2. Oncogene 2007, 26, 711–724. [CrossRef] [PubMed]

103. Postigo, A.A.; Depp, J.L.; Taylor, J.J.; Kroll, K.L. Regulation of Smad signaling through a differential
recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 2003, 22, 2453–2462. [CrossRef]
[PubMed]

104. Wels, C.; Joshi, S.; Koefinger, P.; Bergler, H.; Schaider, H. Transcriptional activation of ZEB1 by Slug
leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma.
J. Investig. Dermatol. 2011, 131, 1877–1885. [CrossRef] [PubMed]

105. Dave, N.; Guaita-Esteruelas, S.; Gutarra, S.; Frias, A.; Beltran, M.; Peiro, S.; de Herreros, A.G. Functional
cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal
transition. J. Biol. Chem. 2011, 286, 12024–12032. [CrossRef] [PubMed]

106. Long, J.; Zuo, D.; Park, M. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional
repression of E-cadherin. J. Boil. Chem. 2005, 280, 35477–35489. [CrossRef] [PubMed]

107. Kadesch, T. Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ.
1993, 4, 49–55. [PubMed]

108. Hamamori, Y.; Wu, H.-Y.; Sartorelli, V.; Kedes, L. The basic domain of myogenic basic helix-loop-helix
(bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol. Cell. Biol.
1997, 17, 6563–6573. [CrossRef] [PubMed]

109. Teng, Y.; Li, X. The roles of HLH transcription factors in epithelial mesenchymal transition and multiple
molecular mechanisms. Clin. Exp. Metastasis 2014, 31, 367–377. [CrossRef] [PubMed]

110. Vichalkovski, A.; Gresko, E.; Hess, D.; Restuccia, D.F.; Hemmings, B.A. PKB/AKT phosphorylation of the
transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage. Oncogene 2010, 29,
3554–3565. [CrossRef] [PubMed]

111. Xue, G.; Restuccia, D.F.; Lan, Q.; Hynx, D.; Dirnhofer, S.; Hess, D.; Rüegg, C.; Hemmings, B.A.
Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between
PI3K/Akt and TGF-β signaling axes. Cancer Discov. 2012, 2, 248–259. [CrossRef] [PubMed]

112. Hong, J.; Zhou, J.; Fu, J.; He, T.; Qin, J.; Wang, L.; Liao, L.; Xu, J. Phosphorylation of serine 68 of Twist1
by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011, 71,
3980–3990. [CrossRef] [PubMed]

113. Lu, S.; Nie, J.; Luan, Q.; Feng, Q.; Xiao, Q.; Chang, Z.; Shan, C.; Hess, D.; Hemmings, B.A.; Yang, Z.
Phosphorylation of the Twist1-family basic helix-loop-helix transcription factors is involved in pathological
cardiac remodeling. PLoS ONE 2011, 6, e19251. [CrossRef] [PubMed]

114. Tang, H.; Massi, D.; Hemmings, B.A.; Mandalà, M.; Hu, Z.; Wicki, A.; Xue, G. AKT-ions with a TWIST
between EMT and MET. Oncotarget 2016, 7, 62767–62777. [CrossRef] [PubMed]

115. Gong, X.Q.; Li, L. Dermo-1, a multifunctional basic helix-loop-helix protein, represses MyoD transactivation
via the HLH domain, MEF2 interaction, and chromatin deacetylation. J. Biol. Chem. 2002, 277, 12310–12317.
[CrossRef] [PubMed]

116. Mironchik, Y.; Winnard, P.T., Jr.; Vesuna, F.; Kato, Y.; Wildes, F.; Pathak, A.P.; Kominsky, S.; Artemov, D.;
Bhujwalla, Z.; Van Diest, P.; et al. Twist overexpression induces in vivo angiogenesis and correlates with
chromosomal instability in breast cancer. Cancer Res. 2005, 65, 10801–10809. [CrossRef] [PubMed]

http://dx.doi.org/10.1074/jbc.274.29.20489
http://dx.doi.org/10.1007/s00018-012-0935-3
http://www.ncbi.nlm.nih.gov/pubmed/22349261
http://dx.doi.org/10.1073/pnas.96.12.6683
http://www.ncbi.nlm.nih.gov/pubmed/10359772
http://dx.doi.org/10.1152/ajprenal.00268.2011
http://www.ncbi.nlm.nih.gov/pubmed/22012804
http://dx.doi.org/10.4161/cc.9.13.12270
http://www.ncbi.nlm.nih.gov/pubmed/20543576
http://dx.doi.org/10.1038/sj.onc.1209808
http://www.ncbi.nlm.nih.gov/pubmed/16862183
http://dx.doi.org/10.1093/emboj/cdg226
http://www.ncbi.nlm.nih.gov/pubmed/12743039
http://dx.doi.org/10.1038/jid.2011.142
http://www.ncbi.nlm.nih.gov/pubmed/21593765
http://dx.doi.org/10.1074/jbc.M110.168625
http://www.ncbi.nlm.nih.gov/pubmed/21317430
http://dx.doi.org/10.1074/jbc.M504477200
http://www.ncbi.nlm.nih.gov/pubmed/16061479
http://www.ncbi.nlm.nih.gov/pubmed/8424906
http://dx.doi.org/10.1128/MCB.17.11.6563
http://www.ncbi.nlm.nih.gov/pubmed/9343420
http://dx.doi.org/10.1007/s10585-013-9621-6
http://www.ncbi.nlm.nih.gov/pubmed/24158354
http://dx.doi.org/10.1038/onc.2010.115
http://www.ncbi.nlm.nih.gov/pubmed/20400976
http://dx.doi.org/10.1158/2159-8290.CD-11-0270
http://www.ncbi.nlm.nih.gov/pubmed/22585995
http://dx.doi.org/10.1158/0008-5472.CAN-10-2914
http://www.ncbi.nlm.nih.gov/pubmed/21502402
http://dx.doi.org/10.1371/journal.pone.0019251
http://www.ncbi.nlm.nih.gov/pubmed/21559426
http://dx.doi.org/10.18632/oncotarget.11232
http://www.ncbi.nlm.nih.gov/pubmed/27623213
http://dx.doi.org/10.1074/jbc.M110228200
http://www.ncbi.nlm.nih.gov/pubmed/11809751
http://dx.doi.org/10.1158/0008-5472.CAN-05-0712
http://www.ncbi.nlm.nih.gov/pubmed/16322226


Int. J. Mol. Sci. 2018, 19, 3493 17 of 20

117. Vesuna, F.; Lisok, A.; Kimble, B.; Raman, V. Twist Modulates Breast Cancer Stem Cells by Transcriptional
Regulation of CD24 Expression. Neoplasia 2009, 11, 1318–1328. [CrossRef] [PubMed]

118. Yang, W.H.; Lan, H.Y.; Huang, C.H.; Tai, S.K.; Tzeng, C.H.; Kao, S.Y.; Wu, K.J.; Hung, M.C.; Yang, M.H.
RAC1 activation mediates Twist1-induced cancer cell migration. Nat. Cell Biol. 2012, 14, 366–374. [CrossRef]
[PubMed]

119. Kimelman, D.; Xu, W. β-Catenin destruction complex: Insights and questions from a structural perspective.
Oncogene 2006, 25, 7482–7491. [CrossRef] [PubMed]

120. Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant
and stem cell traits. Nat. Rev. Cancer 2009, 9, 265–273. [CrossRef] [PubMed]

121. Tabdanov, E.; Borghi, N.; Brochard-Wyart, F.; Dufour, S.; Thiery, J.P. Role of E-cadherin in membrane-cortex
interaction probed by nanotube extrusion. Biophys. J. 2009, 96, 2457–2465. [CrossRef] [PubMed]

122. Polakis, P. Wnt signaling in cancer. Spring Harb. Perspect. Boil. 2012, 4, a008052. [CrossRef] [PubMed]
123. Holland, J.D.; Klaus, A.; Garratt, A.N.; Birchmeier, W. Wnt signaling in stem and cancer stem cells. Curr. Opin.

Cell Boil. 2013, 25, 254–264. [CrossRef] [PubMed]
124. Stamos, J.L.; Weis, W.I. The β-catenin destruction complex. Cold Spring Harb. Perspect. Boil. 2013, 5, a007898.

[CrossRef] [PubMed]
125. Wu, X.; Tu, X.; Joeng, K.S.; Hilton, M.J.; Williams, D.A.; Long, F. Rac1 activation controls nuclear localization

of beta-catenin during canonical Wnt signaling. Cell 2008, 133, 340–353. [CrossRef] [PubMed]
126. Schmalhofer, O.; Brabletz, S.; Brabletz, T.; Reviews, M. E-cadherin, β-catenin, and ZEB1 in malignant

progression of cancer. Cancer 2009, 28, 151–166. [CrossRef] [PubMed]
127. Yang, S.; Liu, Y.; Li, M.-Y.; Ng, C.S.; Yang, S.-L.; Wang, S.; Zou, C.; Dong, Y.; Du, J.; Long, X. FOXP3 promotes

tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell
lung cancer. Mol. Cancer 2017, 16, 124. [CrossRef] [PubMed]

128. Macciò, A.; Madeddu, C.; Gramignano, G.; Mulas, C.; Floris, C.; Massa, D.; Astara, G.; Chessa, P.;
Mantovani, G. Correlation of body mass index and leptin with tumor size and stage of disease in
hormone-dependent postmenopausal breast cancer: Preliminary results and therapeutic implications.
J. Mol. Med. 2010, 88, 677–686. [CrossRef] [PubMed]

129. Babaei, Z.; Moslemi, D.; Parsian, H.; Khafri, S.; Pouramir, M.; Mosapour, A. Relationship of obesity with
serum concentrations of leptin, CRP and IL-6 in breast cancer survivors. J. Egypt. Natl. Cancer Inst. 2015, 27,
223–229. [CrossRef] [PubMed]

130. Wu, M.; Chou, Y.; Chou, W.; Hsu, G.; Chu, C.; Yu, C.; Yu, J.; Sun, C. Circulating levels of leptin, adiposity and
breast cancer risk. Br. J. Cancer 2009, 100, 578–582. [CrossRef] [PubMed]

131. Chen, D.-C.; Chung, Y.-F.; Yeh, Y.-T.; Chaung, H.-C.; Kuo, F.-C.; Fu, O.-Y.; Chen, H.-Y.; Hou, M.-F.; Yuan, S.-S.F.
Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006, 237, 109–114.
[CrossRef] [PubMed]

132. Mohammed, H.; Russell, I.A.; Stark, R.; Rueda, O.M.; Hickey, T.E.; Tarulli, G.A.; Serandour, A.A.; Birrell, S.N.;
Bruna, A.; Saadi, A.; et al. Progesterone receptor modulates ERalpha action in breast cancer. Nature 2015,
523, 313–317. [CrossRef] [PubMed]

133. Romero-Figueroa, M.D.S.; de Jesús Garduño-García, J.; Duarte-Mote, J.; Matute-González, G.;
Gómez-Villanueva, A.; De la Cruz-Vargas, J. Insulin and leptin levels in obese patients with and without
breast cancer. Clin. Breast Cancer 2013, 13, 482–485. [CrossRef] [PubMed]

134. Jeong, Y.-J.; Bong, J.-G.; Park, S.-H.; Choi, J.-H.; Oh, H.-K. Expression of leptin, leptin receptor, adiponectin,
and adiponectin receptor in ductal carcinoma in situ and invasive breast cancer. J. Breast Cancer 2011, 14,
96–103. [CrossRef] [PubMed]

135. Garofalo, C.; Koda, M.; Cascio, S.; Sulkowska, M.; Kanczuga-Koda, L.; Golaszewska, J.; Russo, A.;
Sulkowski, S.; Surmacz, E. Increased expression of leptin and the leptin receptor as a marker of breast
cancer progression: Possible role of obesity-related stimuli. Clin. Cancer Res. 2006, 12, 1447–1453. [CrossRef]
[PubMed]

136. Simone, V.; D’avenia, M.; Argentiero, A.; Felici, C.; Rizzo, F.M.; De Pergola, G.; Silvestris, F. Obesity and
breast cancer: Molecular interconnections and potential clinical applications. Oncologist 2016, 21, 404–417.
[CrossRef] [PubMed]

http://dx.doi.org/10.1593/neo.91084
http://www.ncbi.nlm.nih.gov/pubmed/20019840
http://dx.doi.org/10.1038/ncb2455
http://www.ncbi.nlm.nih.gov/pubmed/22407364
http://dx.doi.org/10.1038/sj.onc.1210055
http://www.ncbi.nlm.nih.gov/pubmed/17143292
http://dx.doi.org/10.1038/nrc2620
http://www.ncbi.nlm.nih.gov/pubmed/19262571
http://dx.doi.org/10.1016/j.bpj.2008.11.059
http://www.ncbi.nlm.nih.gov/pubmed/19289070
http://dx.doi.org/10.1101/cshperspect.a008052
http://www.ncbi.nlm.nih.gov/pubmed/22438566
http://dx.doi.org/10.1016/j.ceb.2013.01.004
http://www.ncbi.nlm.nih.gov/pubmed/23347562
http://dx.doi.org/10.1101/cshperspect.a007898
http://www.ncbi.nlm.nih.gov/pubmed/23169527
http://dx.doi.org/10.1016/j.cell.2008.01.052
http://www.ncbi.nlm.nih.gov/pubmed/18423204
http://dx.doi.org/10.1007/s10555-008-9179-y
http://www.ncbi.nlm.nih.gov/pubmed/19153669
http://dx.doi.org/10.1186/s12943-017-0700-1
http://www.ncbi.nlm.nih.gov/pubmed/28716029
http://dx.doi.org/10.1007/s00109-010-0611-8
http://www.ncbi.nlm.nih.gov/pubmed/20339829
http://dx.doi.org/10.1016/j.jnci.2015.09.001
http://www.ncbi.nlm.nih.gov/pubmed/26462194
http://dx.doi.org/10.1038/sj.bjc.6604913
http://www.ncbi.nlm.nih.gov/pubmed/19223908
http://dx.doi.org/10.1016/j.canlet.2005.05.047
http://www.ncbi.nlm.nih.gov/pubmed/16019138
http://dx.doi.org/10.1038/nature14583
http://www.ncbi.nlm.nih.gov/pubmed/26153859
http://dx.doi.org/10.1016/j.clbc.2013.08.001
http://www.ncbi.nlm.nih.gov/pubmed/24084031
http://dx.doi.org/10.4048/jbc.2011.14.2.96
http://www.ncbi.nlm.nih.gov/pubmed/21847403
http://dx.doi.org/10.1158/1078-0432.CCR-05-1913
http://www.ncbi.nlm.nih.gov/pubmed/16533767
http://dx.doi.org/10.1634/theoncologist.2015-0351
http://www.ncbi.nlm.nih.gov/pubmed/26865587


Int. J. Mol. Sci. 2018, 19, 3493 18 of 20

137. Snoussi, K.; Strosberg, A.D.; Bouaouina, N.; Ahmed, S.B.; Helal, A.N.; Chouchane, L. Leptin and leptin
receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma.
BMC Cancer 2006, 6, 38. [CrossRef] [PubMed]

138. Luan, H.; Zhang, H.; Li, Y.; Wang, P.; Cao, L.; Ma, H.; Cui, Q.; Tian, G. Association of two obesity-related gene
polymorphisms LEPG2548A rs7799039 and LEPRQ223R rs1137101 with the risk of breast cancer. Oncotarget
2017, 8, 59333–59344. [CrossRef] [PubMed]

139. Suriyaprom, K.; Tungtrongchitr, R.; Thawnasom, K. Measurement of the levels of leptin, BDNF associated
with polymorphisms LEP G2548A, LEPR Gln223Arg and BDNF Val66Met in Thai with metabolic syndrome.
Diabetol. Metab. Syndr. 2014, 6, 6. [CrossRef] [PubMed]

140. Rostami, S.; Kohan, L.; Mohammadianpanah, M. The LEP G-2548A gene polymorphism is associated with
age at menarche and breast cancer susceptibility. Gene 2015, 557, 154–157. [CrossRef] [PubMed]

141. Huerta, L.; Cabrera, C.; Montes, R.; Cuellar, H.; López, J.; Covarrubias, S. Association between leptin and
leptin receptor gene polymorphisms and breast cancer risk in premenopausal and postmenopausal Mexican
women. Cancer Res. Front. 2017, 3, 56–63. [CrossRef]

142. El-Hussiny, M.A.-B.; Atwa, M.A.; Rashad, W.E.; Shaheen, D.A.; Elkady, N.M. Leptin receptor Q223R
polymorphism in Egyptian female patients with breast cancer. Contemp. Oncol. 2017, 21, 42–47. [CrossRef]
[PubMed]

143. Mishra, A.K.; Parish, C.R.; Wong, M.L.; Licinio, J.; Blackburn, A.C. Leptin signals via TGFB1 to promote
metastatic potential and stemness in breast cancer. PLoS ONE 2017, 12, e0178454. [CrossRef] [PubMed]

144. Dubois, V.; Jardé, T.; Delort, L.; Billard, H.; Bernard-Gallon, D.; Berger, E.; Geloen, A.; Vasson, M.-P.;
Caldefie-Chezet, F. Leptin induces a proliferative response in breast cancer cells but not in normal breast
cells. Nutr. Cancer 2014, 66, 645–655. [CrossRef] [PubMed]

145. Huang, Y.; Jin, Q.; Su, M.; Ji, F.; Wang, N.; Zhong, C.; Jiang, Y.; Liu, Y.; Zhang, Z.; Yang, J. Leptin promotes
the migration and invasion of breast cancer cells by upregulating ACAT2. Cell. Oncol. 2017, 40, 537–547.
[CrossRef] [PubMed]

146. Al-Khalaf, H.H.; Amir, M.; Al-Mohanna, F.; Tulbah, A.; Al-Sayed, A.; Aboussekhra, A. Obesity
and p16(INK4A) Downregulation Activate Breast Adipocytes and Promote Their Protumorigenicity.
Mol. Cell. Biol. 2017, 37. [CrossRef] [PubMed]

147. Nadal-Serrano, M.; Sastre-Serra, J.; Valle, A.; Roca, P.; Oliver, J. Chronic-leptin attenuates Cisplatin
cytotoxicity in MCF-7 breast cancer cell line. Cell. Physiol. Biochem. 2015, 36, 221–232. [CrossRef] [PubMed]

148. Alshaker, H.; Krell, J.; Frampton, A.E.; Waxman, J.; Blyuss, O.; Zaikin, A.; Winkler, M.; Stebbing, J.; Yagüe, E.;
Pchejetski, D. Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast
cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Res. 2014, 16, 426.
[CrossRef] [PubMed]

149. Haque, I.; Ghosh, A.; Acup, S.; Banerjee, S.; Dhar, K.; Ray, A.; Sarkar, S.; Kambhampati, S.; Banerjee, S.K.
Leptin-induced ER-alpha-positive breast cancer cell viability and migration is mediated by suppressing
CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer 2018, 18, 99. [CrossRef] [PubMed]

150. Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving
paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [CrossRef] [PubMed]

151. Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275–284.
[CrossRef] [PubMed]

152. Papanikolaou, V.; Stefanou, N.; Dubos, S.; Papathanasiou, I.; Palianopoulou, M.; Valiakou, V.; Tsezou, A.
Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through
regulation of apoptosis-related genes. Cell. Oncol. 2015, 38, 155–164. [CrossRef] [PubMed]

153. Chen, X.; Zha, X.; Chen, W.; Zhu, T.; Qiu, J.; Roe, O.D.; Li, J.; Wang, Z.; Yin, Y. Leptin attenuates the
anti-estrogen effect of tamoxifen in breast cancer. Biomed. Pharmacother. 2013, 67, 22–30. [CrossRef] [PubMed]

154. Valle, A.; Sastre-Serra, J.; Oliver, J.; Roca, P. Chronic leptin treatment sensitizes MCF-7 breast cancer cells to
estrogen. Cell. Physiol. Biochem. 2011, 28, 823–832. [CrossRef] [PubMed]

155. Zhao, Z.; Song, Z.; Liao, Z.; Liu, Z.; Sun, H.; Lei, B.; Chen, W.; Dang, C. PKM2 promotes stemness of breast
cancer cell by through Wnt/β-catenin pathway. Tumor Boil. 2016, 37, 4223–4234. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1471-2407-6-38
http://www.ncbi.nlm.nih.gov/pubmed/16504019
http://dx.doi.org/10.18632/oncotarget.19580
http://www.ncbi.nlm.nih.gov/pubmed/28938640
http://dx.doi.org/10.1186/1758-5996-6-6
http://www.ncbi.nlm.nih.gov/pubmed/24444121
http://dx.doi.org/10.1016/j.gene.2014.12.021
http://www.ncbi.nlm.nih.gov/pubmed/25510398
http://dx.doi.org/10.17980/2017.56
http://dx.doi.org/10.5114/wo.2017.66655
http://www.ncbi.nlm.nih.gov/pubmed/28435397
http://dx.doi.org/10.1371/journal.pone.0178454
http://www.ncbi.nlm.nih.gov/pubmed/28542577
http://dx.doi.org/10.1080/01635581.2014.894104
http://www.ncbi.nlm.nih.gov/pubmed/24738610
http://dx.doi.org/10.1007/s13402-017-0342-8
http://www.ncbi.nlm.nih.gov/pubmed/28770546
http://dx.doi.org/10.1128/MCB.00101-17
http://www.ncbi.nlm.nih.gov/pubmed/28630279
http://dx.doi.org/10.1159/000374066
http://www.ncbi.nlm.nih.gov/pubmed/25967962
http://dx.doi.org/10.1186/s13058-014-0426-6
http://www.ncbi.nlm.nih.gov/pubmed/25482303
http://dx.doi.org/10.1186/s12885-018-3993-6
http://www.ncbi.nlm.nih.gov/pubmed/29370782
http://dx.doi.org/10.1038/nrc3599
http://www.ncbi.nlm.nih.gov/pubmed/24060863
http://dx.doi.org/10.1038/nrc1590
http://www.ncbi.nlm.nih.gov/pubmed/15803154
http://dx.doi.org/10.1007/s13402-014-0213-5
http://www.ncbi.nlm.nih.gov/pubmed/25539992
http://dx.doi.org/10.1016/j.biopha.2012.10.001
http://www.ncbi.nlm.nih.gov/pubmed/23199901
http://dx.doi.org/10.1159/000335796
http://www.ncbi.nlm.nih.gov/pubmed/22178935
http://dx.doi.org/10.1007/s13277-015-4121-8
http://www.ncbi.nlm.nih.gov/pubmed/26493994


Int. J. Mol. Sci. 2018, 19, 3493 19 of 20

156. Uthaya Kumar, D.B.; Chen, C.L.; Liu, J.C.; Feldman, D.E.; Sher, L.S.; French, S.; DiNorcia, J.; French, S.W.;
Naini, B.V.; Junrungsee, S.; et al. TLR4 Signaling via NANOG Cooperates with STAT3 to Activate Twist1
and Promote Formation of Tumor-Initiating Stem-Like Cells in Livers of Mice. Gastroenterology 2016, 150,
707–719. [CrossRef] [PubMed]

157. Zhang, C.; Guo, F.; Xu, G.; Ma, J.; Shao, F. STAT3 cooperates with Twist to mediate epithelial-mesenchymal
transition in human hepatocellular carcinoma cells. Oncol. Rep. 2015, 33, 1872–1882. [CrossRef] [PubMed]

158. Banerjee, K.; Resat, H. Constitutive activation of STAT 3 in breast cancer cells: A review. Int. J. Cancer 2016,
138, 2570–2578. [CrossRef] [PubMed]

159. Chang, C.C.; Wu, M.J.; Yang, J.Y.; Camarillo, I.G.; Chang, C.J. Leptin-STAT3-G9a Signaling Promotes
Obesity-Mediated Breast Cancer Progression. Cancer Res. 2015, 75, 2375–2386. [CrossRef] [PubMed]

160. Banerjee, S.K.; Banerjee, S. CCN5/WISP-2: A micromanager of breast cancer progression. J. Cell
Commun. Signal 2012, 6, 63–71. [CrossRef] [PubMed]

161. Das, A.; Dhar, K.; Maity, G.; Sarkar, S.; Ghosh, A.; Haque, I.; Dhar, G.; Banerjee, S.; Banerjee, S.K. Deficiency
of CCN5/WISP-2-Driven Program in breast cancer Promotes Cancer Epithelial cells to mesenchymal stem
cells and Breast Cancer growth. Sci. Rep. 2017, 7, 1220. [CrossRef] [PubMed]

162. Ferrand, N.; Gnanapragasam, A.; Dorothee, G.; Redeuilh, G.; Larsen, A.K.; Sabbah, M. Loss of WISP2/CCN5
in estrogen-dependent MCF7 human breast cancer cells promotes a stem-like cell phenotype. PLoS ONE
2014, 9, e87878. [CrossRef] [PubMed]

163. Alfredo, V.-D.; Miriam Daniela, Z.E.; Jose, D.-B.; Eduardo, C.-S.; Mercedes, C.-G.; Miguel Angel, M.-C.;
Carlos, O.-P.; Napoleon, N.-T. Leptin induces partial epithelial-mesenchymal transition in a FAK-ERK
dependent pathway in MCF10A mammary non-tumorigenic cells. Int. J. Clin. Exp. Pathol. 2017, 10,
10334–10342.

164. Jolly, M.K.; Boareto, M.; Huang, B.; Jia, D.; Lu, M.; Ben-Jacob, E.; Onuchic, J.N.; Levine, H. Implications of the
hybrid epithelial/mesenchymal phenotype in metastasis. Front. Oncol. 2015, 5, 155. [CrossRef] [PubMed]

165. Saitoh, M. Involvement of partial EMT in cancer progression. J. Biochem. 2018, 164, 257–264. [CrossRef]
[PubMed]

166. Qi, L.-N.; Xiang, B.-D.; Wu, F.-X.; Ye, J.-Z.; Wang, Y.-Y.; Chen, Y.-Y.; Chen, Z.-S.; Ma, L.; Chen, J.;
Gong, W.F.; et al. Circulating tumor cells undergoing EMT provide a metric for diagnosis and prognosis of
patients with hepatocellular carcinoma. Cancer Res. 2018, 78, 4731–4744. [CrossRef] [PubMed]

167. Wu, S.; Liu, S.; Liu, Z.; Huang, J.; Pu, X.; Li, J.; Yang, D.; Deng, H.; Yang, N.; Xu, J. Classification of circulating
tumor cells by epithelial-mesenchymal transition markers. PLoS ONE 2015, 10, e0123976. [CrossRef]
[PubMed]

168. Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.;
Allard, W.J.; Terstappen, L.W. Circulating tumor cells, disease progression, and survival in metastatic breast
cancer. N. Engl. J. Med. 2004, 351, 781–791. [CrossRef] [PubMed]

169. Huang, R.; Zong, X. Aberrant cancer metabolism in epithelial–mesenchymal transition and cancer metastasis:
Mechanisms in cancer progression. Crit. Rev. Oncol. Hematol. 2017, 115, 13–22. [CrossRef] [PubMed]

170. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
[PubMed]

171. Morandi, A.; Taddei, M.L.; Chiarugi, P.; Giannoni, E. Targeting the metabolic reprogramming that controls
epithelial-to-mesenchymal transition in aggressive tumors. Front. Oncol. 2017, 7, 40. [CrossRef] [PubMed]

172. Wojtkowiak, J.W.; Verduzco, D.; Schramm, K.J.; Gillies, R.J. Drug resistance and cellular adaptation to tumor
acidic pH microenvironment. Mol. Pharm. 2011, 8, 2032–2038. [CrossRef] [PubMed]

173. Kato, Y.; Ozawa, S.; Tsukuda, M.; Kubota, E.; Miyazaki, K.; St-Pierre, Y.; Hata, R.I. Acidic extracellular pH
increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to
induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. FEBS J. 2007, 274, 3171–3183.
[CrossRef] [PubMed]

174. Fan, F.-T.; Shen, C.-S.; Tao, L.; Tian, C.; Liu, Z.-G.; Zhu, Z.-J.; Liu, Y.-P.; Pei, C.-S.; Wu, H.-Y.; Zhang, L.
PKM2 regulates hepatocellular carcinoma cell epithelial-mesenchymal transition and migration upon EGFR
activation. Asian Pac. J. Cancer Prev. 2014, 15, 1961–1970. [CrossRef] [PubMed]

175. Gao, X.; Wang, H.; Yang, J.J.; Liu, X.; Liu, Z.-R. Pyruvate kinase M2 regulates gene transcription by acting as
a protein kinase. Mol. Cell 2012, 45, 598–609. [CrossRef] [PubMed]

http://dx.doi.org/10.1053/j.gastro.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26582088
http://dx.doi.org/10.3892/or.2015.3783
http://www.ncbi.nlm.nih.gov/pubmed/25653024
http://dx.doi.org/10.1002/ijc.29923
http://www.ncbi.nlm.nih.gov/pubmed/26559373
http://dx.doi.org/10.1158/0008-5472.CAN-14-3076
http://www.ncbi.nlm.nih.gov/pubmed/25840984
http://dx.doi.org/10.1007/s12079-012-0158-2
http://www.ncbi.nlm.nih.gov/pubmed/22487979
http://dx.doi.org/10.1038/s41598-017-00916-z
http://www.ncbi.nlm.nih.gov/pubmed/28450698
http://dx.doi.org/10.1371/journal.pone.0087878
http://www.ncbi.nlm.nih.gov/pubmed/24498388
http://dx.doi.org/10.3389/fonc.2015.00155
http://www.ncbi.nlm.nih.gov/pubmed/26258068
http://dx.doi.org/10.1093/jb/mvy047
http://www.ncbi.nlm.nih.gov/pubmed/29726955
http://dx.doi.org/10.1158/0008-5472.CAN-17-2459
http://www.ncbi.nlm.nih.gov/pubmed/29915159
http://dx.doi.org/10.1371/journal.pone.0123976
http://www.ncbi.nlm.nih.gov/pubmed/25909322
http://dx.doi.org/10.1056/NEJMoa040766
http://www.ncbi.nlm.nih.gov/pubmed/15317891
http://dx.doi.org/10.1016/j.critrevonc.2017.04.005
http://www.ncbi.nlm.nih.gov/pubmed/28602165
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.3389/fonc.2017.00040
http://www.ncbi.nlm.nih.gov/pubmed/28352611
http://dx.doi.org/10.1021/mp200292c
http://www.ncbi.nlm.nih.gov/pubmed/21981633
http://dx.doi.org/10.1111/j.1742-4658.2007.05848.x
http://www.ncbi.nlm.nih.gov/pubmed/17540003
http://dx.doi.org/10.7314/APJCP.2014.15.5.1961
http://www.ncbi.nlm.nih.gov/pubmed/24716919
http://dx.doi.org/10.1016/j.molcel.2012.01.001
http://www.ncbi.nlm.nih.gov/pubmed/22306293


Int. J. Mol. Sci. 2018, 19, 3493 20 of 20

176. Arseneault, R.; Chien, A.; Newington, J.T.; Rappon, T.; Harris, R.; Cumming, R.C. Attenuation of LDHA
expression in cancer cells leads to redox-dependent alterations in cytoskeletal structure and cell migration.
Cancer Lett. 2013, 338, 255–266. [CrossRef] [PubMed]

177. Yang, L.; Hou, Y.; Yuan, J.; Tang, S.; Zhang, H.; Zhu, Q.; Du, Y.; Zhou, M.; Wen, S.; Xu, L. Twist promotes
reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways.
Oncotarget 2015, 6, 25755–25769. [CrossRef] [PubMed]

178. Bhowmik, S.K.; Ramirez-Peña, E.; Arnold, J.M.; Putluri, V.; Sphyris, N.; Michailidis, G.; Putluri, N.; Ambs, S.;
Sreekumar, A.; Mani, S.A. EMT-induced metabolite signature identifies poor clinical outcome. Oncotarget
2015, 6, 42651–42660. [CrossRef] [PubMed]

179. Blanquer-Rosselló, M.M.; Santandreu, F.M.; Oliver, J.; Roca, P.; Valle, A. Leptin modulates mitochondrial
function, dynamics and biogenesis in MCF-7 cells. J. Cell. Biochem. 2015, 116, 2039–2048. [CrossRef]
[PubMed]

180. Robey, R.B.; Weisz, J.; Kuemmerle, N.B.; Salzberg, A.C.; Berg, A.; Brown, D.G.; Kubik, L.; Palorini, R.;
Al-Mulla, F.; Al-Temaimi, R. Metabolic reprogramming and dysregulated metabolism: Cause, consequence
and/or enabler of environmental carcinogenesis? Carcinogenesis 2015, 36 (Suppl. 1), S203–S231. [CrossRef]
[PubMed]

181. Zaidi, N.; Lupien, L.; Kuemmerle, N.B.; Kinlaw, W.B.; Swinnen, J.V.; Smans, K. Lipogenesis and lipolysis: The
pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 2013, 52, 585–589. [CrossRef]
[PubMed]

182. Blanquer-Rosselló, M.M.; Oliver, J.; Sastre-Serra, J.; Valle, A.; Roca, P. Leptin regulates energy metabolism in
MCF-7 breast cancer cells. Int. J. Biochem. 2016, 72, 18–26. [CrossRef] [PubMed]

183. Wang, T.; Fahrmann, J.F.; Lee, H.; Li, Y.-J.; Tripathi, S.C.; Yue, C.; Zhang, C.; Lifshitz, V.; Song, J.;
Yuan, Y. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal
and chemoresistance. Cell Metab. 2018, 27, 136–150. [CrossRef] [PubMed]

184. Cheng, C.; Geng, F.; Cheng, X.; Guo, D. Lipid metabolism reprogramming and its potential targets in cancer.
Cancer Commun. 2018, 38, 27. [CrossRef] [PubMed]

185. Kuemmerle, N.B.; Rysman, E.; Lombardo, P.S.; Flanagan, A.J.; Lipe, B.C.; Wells, W.A.; Pettus, J.R.;
Froehlich, H.M.; Memoli, V.A.; Morganelli, P.M. Lipoprotein lipase links dietary fat to solid tumor cell
proliferation. Mol. Cancer Ther. 2011, 10, 427–436. [CrossRef] [PubMed]

186. Nath, A.; Li, I.; Roberts, L.R.; Chan, C. Elevated free fatty acid uptake via CD36 promotes
epithelial-mesenchymal transition in hepatocellular carcinoma. Sci. Rep. 2015, 5, 14752. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.canlet.2013.03.034
http://www.ncbi.nlm.nih.gov/pubmed/23583676
http://dx.doi.org/10.18632/oncotarget.4697
http://www.ncbi.nlm.nih.gov/pubmed/26342198
http://dx.doi.org/10.18632/oncotarget.4765
http://www.ncbi.nlm.nih.gov/pubmed/26315396
http://dx.doi.org/10.1002/jcb.25158
http://www.ncbi.nlm.nih.gov/pubmed/25752935
http://dx.doi.org/10.1093/carcin/bgv037
http://www.ncbi.nlm.nih.gov/pubmed/26106140
http://dx.doi.org/10.1016/j.plipres.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/24001676
http://dx.doi.org/10.1016/j.biocel.2016.01.002
http://www.ncbi.nlm.nih.gov/pubmed/26772821
http://dx.doi.org/10.1016/j.cmet.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/29249690
http://dx.doi.org/10.1186/s40880-018-0301-4
http://www.ncbi.nlm.nih.gov/pubmed/29784041
http://dx.doi.org/10.1158/1535-7163.MCT-10-0802
http://www.ncbi.nlm.nih.gov/pubmed/21282354
http://dx.doi.org/10.1038/srep14752
http://www.ncbi.nlm.nih.gov/pubmed/26424075
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Signaling Pathways Induced by Leptin during Epithelial(-)Mesenchymal Transition in Breast Cancer
	Let us know how access to this document benefits you.
	Repository Citation

	Introduction 
	Leptin Signaling 
	Epithelial–Mesenchymal Transition (EMT) 
	EMT-Related Transcription Factors 
	Snail 
	Slug 
	Zeb 
	Twist 
	-Catenin 

	Expression of Leptin and ObR in Breast Cancer 
	Studies in Humans 
	In Vitro Models 

	Role of Leptin in EMT in Breast Cancer 
	Relation between Leptin and Metabolic Reprogramming during EMT in Breast Cancer 
	Conclusions 
	References

