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SUMMARY

At the cellular level, a-tubulin acetylation alters
the structure of microtubules to render them me-
chanically resistant to compressive forces. How
this biochemical property of microtubule acetylation
relates to mechanosensation remains unknown,
although prior studies have shown that microtubule
acetylation influences touch perception. Here, we
identify the major Drosophila a-tubulin acetylase
(dTAT) and show that it plays key roles in several
forms of mechanosensation. dTAT is highly ex-
pressed in the larval peripheral nervous system
(PNS), but it is largely dispensable for neuronal
morphogenesis. Mutation of the acetylase gene or
the K40 acetylation site in a-tubulin impairs mechan-
ical sensitivity in sensory neurons and behavioral re-
sponses to gentle touch, harsh touch, gravity, and
vibration stimuli, but not noxious thermal stimulus.
Finally, we show that dTAT is required for mechani-
cally induced activation of NOMPC, a microtubule-
associated transient receptor potential channel,
and functions to maintain integrity of the microtubule
cytoskeleton in response to mechanical stimulation.

INTRODUCTION

Mechanosensation is a signal transduction process in whichme-

chanical forces are converted into the neuronal signals that

mediate hearing, balance, proprioception, and touch. In the pe-

ripheral nervous system (PNS), this conversion is mediated by

ion channels that are gated by mechanical stimuli (Coste et al.,

2010; O’Hagan et al., 2005; Walker et al., 2000). Mechanosensi-

tive ion channels appear to have evolvedmultiple times and, as a

result, several different channel families contribute to mechano-

sensation in animals, notably including transient receptor poten-

tial (TRP) channels, epithelial Na+ channel (ENaC)/degenerin

family channels, and piezos (Katta et al., 2015). Mechanical force

is thought to activate the channels by inducing conformational

changes, and two distinct models have been proposed to

explain how force gates these channels. In the force from lipids

model, plasma membrane deformation generates the tension

required for channel gating via direct interaction between the

mechanoreceptor and lipids of the plasma membrane (Christen-

sen and Corey, 2007; Kung, 2005). In the force from filaments

model, the channel is tethered to a non-compliant structure by

a gating spring, andmovement of themembrane-bound channel

relative to the immobile structure induces tension within the

spring to open the channel (Howard and Hudspeth, 1987; Jin

et al., 2017; Liang et al., 2013). In this model, the gating spring

is an elastic tether that connects the channel to extracellular

structures, such as the extracellular matrix, or intracellular com-

ponents, such as the cytoskeleton (Jin et al., 2017).

Our understanding about how tethered mechanoreceptors

interact with the cytoskeleton largely comes from recent studies

of mechanosensitive TRP channels. Notably, mammalian

TRPV1 and Drosophila TRPN/no mechanoreceptor potential C

(NOMPC) directly interact with microtubules (Cheng et al.,

2010; Prager-Khoutorsky et al., 2014). In mammalian osmosen-

sory neurons, TRPV1 binds a dense network of subcortical mi-

crotubules via cytoplasmic tubulin-binding motifs (Prager-Khou-

torsky et al., 2014). Under hypertonic conditions, cells shrink and

their membranes press against microtubules to generate an

elastic compression that opens the channel. NOMPC possesses

an elongatedN-terminal cytoplasmic domainwith 29 tandem an-

kyrin repeat (AR) domains that bind tomicrotubules (Cheng et al.,

2010; Zhang et al., 2015). NOMPC forms tetramers in

which the AR domains are organized into a quadruple bundle

of helical, spring-like structures (Jin et al., 2017). The AR do-

mains and microtubule interactions are necessary for NOMPC
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touch-evoked responses, leading to the model that the AR heli-

cal elements function as a gating spring (Howard and Bechstedt,

2004; Jin et al., 2017; Liang et al., 2013; Zhang et al., 2015).

Since direct interaction with the microtubule cytoskeleton is

necessary for TRPV1 and NOMPC to function as mechanore-

ceptors, modulating mechanical properties of microtubules

could be a control point for these channels.

Post-translational modifications of microtubules regulate their

function during mechanosensation in several model systems. In

C. elegans, the a-tubulin acetylase MEC-17 was identified in a

screen for mutations with impaired touch sensitivity (Chalfie

and Au, 1989). MEC-17 was the founding member of a family

of a-tubulin acetylases with conserved homologs in all of the

organisms that possess cilia (Akella et al., 2010). Depleting ze-

brafish MEC-17 produced a variety of developmental defects

in embryos, including reduced startle responses to touch (Akella

et al., 2010). In mice, mutants lacking the Atat1 homolog in sen-

sory neurons exhibited reduced mechanosensitivity and were

unresponsive in assays for touch and pain (Kalebic et al.,

2013b; Kim et al., 2013). These studies broadly implicate micro-

tubules as conserved elements in mechanosensation and high-

light a key regulatory role for acetylation.

Microtubule acetylation was discovered >30 years ago

(L’Hernault and Rosenbaum, 1985), yet understanding of its bio-

logical function was hindered until the recent identification of

a-tubulin acetylases. a-Tubulin acetylation occurs on lysine 40

(K40) in the microtubule lumen and has generally been associ-

ated with populations of long-lived microtubules. Recent

studies in which individual microtubules were mechanically

stressed by repeated cycles of bending showed that they could

be damaged, resulting in decreased microtubule stiffness and

localized material fatigue (Portran et al., 2017). K40 acetylation

enhanced microtubule flexibility and increased mechanical re-

silience by altering the lattice structure, allowing microtubules

to comply with deformative forces without breaking (Xu et al.,

2017) and suggesting that a-tubulin acetylation regulates the

mechanical resilience of microtubules. If the primary role for

K40 acetylation is to tune microtubule mechanical properties,

how might this biochemical activity relate to its requirement dur-

ing mechanosensation?

Here, we report the identification of Drosophila a-tubulin ace-

tylase (dTAT) and our characterization of its role in mechanosen-

sation. dTAT is broadly required for a-tubulin acetylation and is

enriched in the PNS. Blocking a-tubulin acetylation broadly

affected mechanosensation, but not several other sensory mo-

dalities, while causing minimal effects on dendrite morphogen-

esis in the PNS. Using calcium imaging, we found that mutation

of dTat or non-acetylatable alleles of a-Tubulin84B (aTub84B)

attenuated gentle touch responses of NOMPC-expressing

class III dendrite arborization (c3da) neurons. We further found

that dTAT is required for NOMPC-dependent mechanically

induced membrane depolarization. However, dTAT does not

regulate gentle touch responses via effects on NOMPC-microtu-

bule interactions or NOMPC localization. Instead, we found that

dTAT modulates mechanical stability and/or dynamics of micro-

tubules to control gentle touch responses and other forms of

mechanosensation. First, hyperacetylation or taxol-induced

microtubule stabilization sensitize larvae to gentle touch. Sec-

ond, taxol treatment rescues mechanosensory behavior defects

of dTat and non-acetylatable aTub84B mutants. Third, dTat

mutant sensory dendrites contain more microtubule plus ends

during development and in response to mechanical stimulation

than controls, reflecting an increase in mechanically induced

microtubule breakage or dynamics. Thus, modulation of micro-

tubule stability appears to be a critical control point formechano-

sensation. We also observed that, as in mice, cells lacking dTAT

exhibit greater cortical stiffness, although we do not know

whether this activity contributes to mechanosensation.

RESULTS

dTAT Is the Major Microtubule Acetylase in Drosophila

Five different acetylases are capable of modifying a-tubulin in

mammalian cells or Caenorhabditis elegans, including GCN5,

elongator protein 3 (ELP3), N-acetylase 10 (NAT10), the ARD1-

NAT1 complex, and a-tubulin acetylase (aTAT)/MEC-17 (Akella

et al., 2010; Conacci-Sorrell et al., 2010; Creppe et al., 2009;

Ohkawa et al., 2008; Shida et al., 2010). We tested Drosophila

homologs of these acetylases (see STAR Methods for details

on candidate identification) for roles in microtubule acetylation

by depleting each candidate in S2 cells with RNAi andmonitoring

acetylated a-tubulin (acTb) levels by immunoblot (Figure 1A).

Depletion of only one candidate, CG3967, resulted in loss of

acTb. We conclude that CG3967 is the major aTAT in S2 cells

and hereafter refer to it as dTAT.

Using the same strategy, we identified the a-tubulin deacety-

lase. In mammalian cells, both HDAC6 and Sirt2 deacetylate

microtubules (Hubbert et al., 2002; North et al., 2003). We tar-

geted Drosophila HDAC6 and the two Drosophila Sirt2-related

genes (Sirt1 and Sirt2) with RNAi and found that acTb levels

were only elevated by HDAC6 double-stranded RNA (dsRNA)

(Figure S1A). We corroborated these results by immunoblotting

samples from HDAC6KO, Sirt1KO, and Sirt2KO null mutants (Fig-

ure S1B). Taken together, our data indicate that Drosophila

a-tubulin acetylation is regulated by the antagonistic activities

of dTAT and HDAC6.

The dTat locus is predicted to generate a long (L) and a short

(S) isoform encoding 461 residue (50 kDa) and 291 residue

(30 kDa) proteins, respectively (Figure 1B). Both isoforms share

an N-terminal 201 residue catalytic domain but diverge in their

C-terminal tails, which lack predicted secondary structure. To

define the roles of the two isoforms, we synthesized GFP-tagged

versions of each isoform using alternate codons (dTatalt-L

and -S) to make them resistant to RNAi. Both isoforms rescued

microtubule acetylation in cells treated with dsRNA to deplete

endogenous dTAT (Figure 1C). In contrast, catalytically inactive

mutant versions of both isoforms (G133W, G135W; Topalidou

et al., 2012) failed to rescue microtubule acetylation.

Prior studies have shown that aTAT interacts with microtu-

bules in vitro (Akella et al., 2010; Kalebic et al., 2013a; Shida

et al., 2010; Szyk et al., 2014). Likewise, GFP-tagged dTATalt-L

and dTATalt-S exhibited robust co-localization with microtu-

bules (Figures 1D and 1E). In contrast, catalytically inactive

dTATalt-LGG and dTATalt-SGG mostly localized in the cytoplasm,

suggesting that acetylase activity is required for microtubule

localization.
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To study dTat function in flies, we deleted the first four exons of

the gene to produce a null mutant (dTatKO) (Figure 1B). Immuno-

blotting confirmed that dTatKO homozygous mutants lacked

detectable acTb (Figure 1F). We conclude that dTAT is the major

aTAT in flies, as in S2 cells.

dTAT Is Highly Expressed in PNS Neurons
To define biological functions of dTAT, we first examined dTat

expression patterns. We fluorescence-activated cell sorting

(FACS) isolated different GFP-labeled cell types and subjected

the cell lysates to RNA-sequencing (RNA-seq) analysis (Fig-

ure 2A). Among the larval cell types that we surveyed, including

muscle, epithelia, glia, and neurons, dTat expression is the high-

est in neurons. PNS neurons, particularly da neurons that

mediate responses to mechanical, thermal, light, and proprio-

ceptive stimuli, highly express isoforms for both dTAT-S and

dTAT-L, suggesting that the PNS is likely an important functional

site for dTAT.

Next, we examined dTAT protein distribution in situ. Consis-

tent with our RNA-seq results, anti-dTAT immunoreactivity was

concentrated in neurons, particularly PNS-da neurons (Figures

2B and 2C). dTAT exhibited elevated accumulation in the
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Figure 1. dTAT Is the Major Microtubule Acetylase in Drosophila

(A) Western blots of lysates from S2 cells treated with dsRNA to the indicated genes (CAT [chloramphenicol acetyltransferase]; used as a negative control).

(B) Schematic of the dTat locus which encodes six documented transcripts and two polypeptides (dTAT-L and dTAT-S) with alternative 30 coding exons. Lines

depict introns, and boxes depict coding (shaded) and non-coding (empty) exons. The dTatKO allele deletes the first three coding exons shared by all dTat

transcripts and dTatGFP contains GFP coding sequences fused in-frame upstream of the start codon shared by all isoforms.

(C) Western blots of lysates from S2 cells treated with dTat or CAT dsRNA and additionally expressing RNAi-resistant versions of GFP-dTAT.

(D and E) Fluorescence microscopy of S2 cells expressing GFP-dTAT fusions showing the punctate, filamentous localization of GFP-dTAT-L (D) and co-

localization of GFP-dTAT with a-tubulin (E). Scale bar, 5 mm in (D), 15 mm in (E).

(F) Western blotting of wild-type and dTatKO mutant embryo lysates.

See also Figure S1.

Cell Reports 25, 1051–1065, October 23, 2018 1053



HRPdTAT

A B

dT
at

 e
xp

re
ss

io
n 

(T
P

M
)

muscle epi. glia PNS

All transcripts

dTAT-L transcripts
dTAT-S transcripts

wild type

D

GFP-dTAT

GFP-dTAT
HRP
acTb

dTatKO
H

bTcabTca PRHPRH

I

C

G

KJ

wild type wild type

dTatGFP

acTb

F dTatGFP

HRP

E dTatGFP dTatGFP

wild type dTatKO

acTb

dTatKO +
19-12>GFP-dTat

dTatKO +
19-12>GFP-dTat

dTatKO +
19-12>GFP-dTat

dTatKO +
19-12>GFP-dTat

L OM N

GFP-dTAT
acTb
GFP-dTAT acTb

glia

c3da c3da

0 

100 

200 

300 

400 

500 

ad-SNPavral CNS MNs

height [μm
]

0

4

10º º06º02 º09º03

acTb

QP Q

(legend on next page)

1054 Cell Reports 25, 1051–1065, October 23, 2018



soma, axon, and primary dendrites, and undetectable levels in

terminal dendrites of da neurons. Likewise, when we monitored

GFP-dTAT distribution in larvae homozygous for an allele

(dTatGFP) that produces a GFP-dTAT fusion protein expressed

from the endogenous dTat locus and supports microtubule acet-

ylation in vivo, we found that GFP-dTAT was expressed most

highly in PNS neurons (Figures 2D–2G), where it was enriched

in the soma, axons, and primary dendrites but largely absent

from terminal dendrites.

We next investigated patterns of acTb accumulation in wild-

type and dTatKO mutant larvae. Immunostaining with a mono-

clonal antibody to acTb revealed a dense network of acTb immu-

noreactivity in all of the cells of the larval body wall, including

prominent labeling of the PNS (Figures 2H and 2I). In contrast,

dTatKO mutant larvae lacked detectable acTb immunoreactivity,

demonstrating that dTat is required for tubulin acetylation (Fig-

ures 2J and 2K). Resupplying dTat selectively to mechanosen-

sory c3da neurons via Gal4-mediated expression of the dTat

long isoform containing an N-terminal GFP tag (UAS-GFP-

dTat-L) rescued microtubule acetylation in a cell-autonomous

manner, demonstrating that dTat expression in the PNS is suffi-

cient for tubulin acetylation (Figures 2L–2N). This rescue

assay allowed us to monitor acTb distribution in PNS neurons

because acTb is present only in dTat-expressing cells. Similar

to GFP-dTAT-L, acTb was enriched in the c3da soma, axons,

and primary dendrites but largely absent from terminal dendrites.

Thus, dTat is both necessary and sufficient for microtubule

acetylation, and acTb distribution mirrors dTAT distribution in

neurons.

In cultured mechanosensory dorsal root ganglion (DRG) neu-

rons, acTb appears to be concentrated in a submembrane

band (Morley et al., 2016). We therefore hypothesized that acTb

would be similarly concentrated in mechanosensory c3da neu-

rons. This is not what we found. Using expansion microscopy,

which yields a spatial resolution of �70 nm (Jiang et al., 2018),

we observed a dense network of acTb throughout the soma

that extended into axons and dendrites (Figure 2O). Although

acTb immunoreactivity was restricted to a thin band around

the nucleus of c3da neurons, the network of acTb coursed

throughout other regions of the soma (Figures 2P and 2Q).

dTAT Is Required for Larval Mechanosensitivity
The microtubule cytoskeleton is involved in mechanosensation,

particularly touch responses (Bounoutas et al., 2009; Tanner

et al., 1998; Zhang et al., 2015), and mutations in mouse aTAT1

and C. elegans mec-17 and atat-2 reduce mechanosensitivity

(Morley et al., 2016; Shida et al., 2010; Topalidou et al., 2012).

In Drosophila, gentle touch activates the TRP channel NOMPC,

which relies on microtubule interactions for gating (Zhang et al.,

2015), in c3da neurons to elicit stereotyped behaviors, including

backward locomotion and turning (Kernan et al., 1994).We there-

fore tested dTatmutants for touch sensitivity defects. dTatmuta-

tion led to a�67%decrease in gentle touch responses, with both

dTatKO homozygotes and dTatKO in combination with a defi-

ciency spanning the dTat locus (dTatKO/Df) exhibiting similar

defects (Figure 3A), suggesting that loss of dTat was the root

cause of the defects. Next, we assayed gentle touch responses

of mutants in which lysine 40 (K40) of the major a-tubulin isotype

aTub84B, which accounts for >90% of a-tubulin expression

in da neurons (Figure S2), is mutated to a non-acetylatable

residue (Jenkins et al., 2017). We found that aTub84BK40A and

aTub84BK40R mutants exhibited defects in gentle touch re-

sponses that were comparable to dTatKO mutants, strongly

suggesting that microtubule acetylation regulates gentle touch

responses (Figure 3A). Finally, dTatKO, aTub84BK40R double

mutant larvae exhibited comparable gentle touch defects to

either single mutant alone, suggesting that dTat and aTub84B

function in the same pathway for gentle touch responses.

To determine the site of action for dTat in control of gentle

touch responses, we next performed genetic rescue assays. Ex-

pressingUAS-GFP-dTat-L in c3da neurons rescued dTatmutant

gentle touch defects, demonstrating that dTat function in c3da

neurons is sufficient to support gentle touch responses (Fig-

ure 3B). Overexpressing UAS-GFP-dTat-L in c3da neurons

of wild-type but not aTub84BK40A mutant larvae significantly

enhanced gentle touch responses, suggesting that increasing

acTb levels potentiates mechanosensitivity in c3da neurons.

Consistent with this notion, HDAC6KO mutant larvae also ex-

hibited heightened gentle touch responses (Figure 3B).

We next asked whether dTat was involved in other forms of

mechanosensation, including harsh touch, vibration response,

Figure 2. dTAT Is Enriched in the Peripheral Nervous System

(A) RNA-seq analysis of dTat expression. Bars depict mean expression levels of dTat transcripts in the indicated cell types. TPM, transcripts per million. Error

bars, SDs. N = 4+ independent samples for each condition.

(B–G) Distribution of endogenous dTAT. Maximum intensity projections of larval body walls immunostained with antibodies to dTAT (B) and horseradish

peroxidase (HRP) to label sensory neurons (C).

(D–G) Maximum intensity projections of dTatGFP larval body walls stained with antibodies to GFP (D), HRP (E), and acTb (F).

(G) Overlay of dTAT-GFP, acTb, and HRP signals. We note high levels of dTAT-GFP and acTb in apodemes (red arrowheads), which are consistent with a prior

characterization of acTb distribution (Jenkins et al., 2017).

(H–K) dTat is required for acTb accumulation in vivo. Maximum intensity projections are shown for wild-type third-instar larvae (H and I) stained with antibodies to

acTb (H) and HRP (I) and dTatKO mutant third-instar larvae (J and K) stained with antibodies to acTb (J) and HRP (K).

(L–O) acTb distribution in sensory neurons. Maximum intensity projections are shown for dTatKO mutant third-instar larvae expressing UAS-GFP-dTat-L via

19-12-Gal4 and stained with antibodies to acTb (L) and GFP (M).

(N) Overlay of images from (L) and (M). Insets, zoomed images of cell bodies; arrowsmark the cell types (c3da neurons and peripheral glia) labeled by 19-12-Gal4.

(O) Maximum intensity projection of expanded body wall tissue from dTatKO mutant third-instar larvae expressing UAS-GFP-dTat-L via 19-12-Gal4 stained with

acTb antibodies.

(P) Maximum intensity projection of c3da neuron from (O), with color marking the height within the specimen.

(Q) 3D rendering of acTb staining in the boxed portion of c3da neuron from (P) viewed en face or rotated as indicated.

Scale bars, 50 mm in (B–N), 20 mm in pre-expansion dimensions (O), and 2 mm in pre-expansion dimensions (P and Q).
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and gravitaxis. Harsh touch activates c4da nociceptive neurons

to elicit stereotyped nocifensive rolling responses (Zhong et al.,

2010), so we stimulated larvae with von Frey filaments andmoni-

tored touch-evoked rolling responses as a measure for dTat

function in harsh touch. dTatKO mutant larvae exhibited signifi-

cantly reduced nocifensive responses to stimuli ranging from

11 to 44 mN but not from 78 to 127 mN (Figure 3C), revealing

that harsh stimuli can bypass the requirement for acTb inmecha-

nosensory responses. These mechanonociceptive defects likely

reflect a cell-autonomous role for acetylation in c4da neurons, as
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Figure 3. dTat Regulates Drosophila Mechanosensation

(A and B) dTat is necessary for gentle touch responses. Gentle touch responses are shown for dTat and non-acetylatable aTub84Bmutant larvae (A) and in dTat

rescue and overexpression larvae (B). Boxplots depict larval behavioral responses of the indicated genotypes to gentle touch at 96 hr after egg laying (AEL). In this

and subsequent panels, boxesmark first and third quartiles, bandsmarkmedians, whiskersmark 1.53 interquartile range (IQR), and outliers are shown as points.

*p < 0.05, ***p < 0.001 compared to wild-type (WT); Kruskal-Wallis rank sum test with Dunn’s post hoc test and Bonferroni correction for multiple comparisons.

(C and D) dTat is necessary for harsh touch responses.

(C) Bars depict the proportion of wild-type or dTatmutant larvae responding to von Frey fiber stimulation delivering the indicated amount of force. dTatmutants

exhibit significant defects in response to 11, 22, and 44 mN stimulus. *p < 0.05, **p < 0.01, ***p < 0.001, compared to wild-type controls; unpaired t test with

Welch’s correction.

(D) Bars depict the proportion of larvae of the indicated genotype that exhibited nociceptive rolling in response to 44 mN von Frey fiber stimulation. ***p < 0.001

compared to wild-type; chi square test.

(E and F) Boxplots depict larval vibration responses (E) and adult gravitaxis (F) in the indicated genotypes. *p < 0.05, **p < 0.01, ***p < 0.001 compared to wild-

type; Kruskal-Wallis rank sum test with Dunn’s post hoc test and Bonferroni correction for multiple comparisons.

(G) Bars depict the proportion of larvae that exhibited nociceptive rolling responses to stimulus with a 39.5�C thermal probe. Responding larvae were grouped in

three bins according to response latency: 0–5 s (black), 6–10 s (gray), and 11–20 s (light gray). ***p < 0.001 compared to wild-type; chi square test.

(H) Boxplots depict the rate of larval locomotion for the indicated genotypes. dTat and aTub84Bmutants exhibited comparable rates of locomotion to wild-type

(Kruskal-Wallis rank sum test). The number of larvae or adults tested is shown for each condition.

See also Figure S2.
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dTatKOmechanonociception defects were phenocopied by non-

acetylatable aTub84BK40A mutants and rescued by c4da-spe-

cific GFP-dTat-L expression (Figure 3D).

Whereas da neurons mediate responses to gentle and harsh

touch, chordotonal (cho) neurons mediate vibration and gravity

responses (Kamikouchi et al., 2009; Zhang et al., 2013). To

determine whether dTat was required for mechanosensory re-

sponses in cho neurons, we assayed dTat mutants for defects

in larval vibration responses and adult gravitaxis. Wild-type

larvae exhibited a stereotyped startle response to vibration

delivered in the form of a sound stimulus (70 dB, 500 Hz

tone) that was compromised in dTatKO and non-acetylatable

aTub84BK40A mutants (Figure 3E). As with touch responses,

these defects likely reflect a neuronal requirement for dTat

as expressing UAS-GFP-dTat-L in cho neurons of dTatKO mu-

tants rescued the vibration startle defects. Finally, adult

gravitaxis behavior was impaired in dTatKO and non-acetylat-

able aTub84BK40A mutants, and gravitaxis defects could be

rescued by neuronal expression of UAS-GFP-dTat-L in dTatKO

mutants (Figure 3F). These results demonstrate that dTat and

microtubule acetylation are broadly required for Drosophila

mechanosensation.

These mechanosensory defects could reflect general defects

in sensory transduction or a more specific effect on mechano-

sensation. To differentiate between these possibilities, we as-

sayed for dTat functions in other sensory modalities. First, we

found that larval responses to noxious heat, which are mediated

by c4da neurons (the very same neurons that mediate harsh

touch responses) (Hwang et al., 2007), were unaffected in dTatKO

and non-acetylatable aTub84BK40A mutants (Figure 3G). Sec-

ond, application of the TRPA1 channel agonist allyl isothiocya-

nate (AITC), which directly activates c4da neurons to elicit

nocifensive escape responses (Kaneko et al., 2017), generated

comparable responses in wild-type and dTatKO larvae

(56.6% + 7.1% of control and 60.1% + 6.8% of dTatKO larvae

exhibit nociceptive rolling within 30 s of AITC application; n = 6

trials of 50 larvae each). Third, we found that wild-type controls,

dTatKO, and non-acetylatable aTub84BK40A mutants exhibited

comparable rates of larval locomotion (Figure 3H). These results

demonstrate that dTat and microtubule acetylation do not

broadly regulate sensory transduction but instead preferentially

affect mechanosensory responses.

dTAT Is Largely Dispensable for Dendrite
Morphogenesis
How might dTAT influence mechanotransduction? Knock down

of the ARD1-NAT acetylase, which reduces microtubule acetyla-

tion, and pharmacological inhibition of the microtubule deacety-

lase HDAC6, which increases acetylation, compromise dendrite

growth in hippocampal cultures (Ageta-Ishihara et al., 2013;

Ohkawa et al., 2008). Likewise, a-Tub84B K40 mutation affects

dendrite branching in Drosophila c4da neurons (Jenkins et al.,

2017). While each of these studies suggests a role for acetylation

in dendrite development, both ARD1-NAT and HDAC6 target

additional substrates, and a-tubulin K40 may have a structural

role and may be subject to additional modifications, including

methylation (Park et al., 2016). Thus, the roles of dTAT and

a-tubulin acetylation in dendrite development are still unclear.

We therefore examined whether defects in mechanosensory

neuron morphogenesis caused by dTatmutation may contribute

to mechanosensory defects. Using nompC-Gal4 (Petersen and

Stowers, 2011) to visualize c3da neurons, which mediate larval

responses to gentle touch, we found that dTat mutation had no

obvious effect on dendrite arborization (Figures 4A–4D). Simi-

larly, when we used antibody staining to label cho neurons,

which mediate larval response to vibration, we found that dTat

mutation had no obvious effect on cho neuron morphogenesis

(Figures 4E–4G). Thus, dTat is dispensable for dendrite morpho-

genesis in mechanosensory c3da and cho neurons.

Next, we monitored the effects of dTat mutation on dendrite

morphogenesis in c4da neurons using ppk-CD4-tdGFP (Han

et al., 2011) to selectively visualize c4da dendrite arbors. dTat

mutant c4da dendrites had no overt defects in the establishment

or maintenance of dendrite coverage (Figures 4H and 4I), in over-

all growth (Figure 4J), or in growth dynamics (Figure 4L). How-

ever, we noted a minor but consistent effect on the number and

position of dendrite branch points (Figures 4K and S3). Prior

studies suggested that microtubule acetylation regulates micro-

tubule susceptibility to katanin severing (Sudo and Baas, 2010),

butwe found thatdTatmutation had no effect on katanin-induced

dendrite arbor remodeling (FigureS3). These results demonstrate

that although dTat plays a minor role in c4da neuron dendrite

development, it is not broadly required for mechanosensory

neuron morphogenesis. Similarly, mouse Atat1 (Morley et al.,

2016) and C. elegans mec-17 (Akella et al., 2010; Shida et al.,

2010) are largely dispensable for sensory neuron morphogen-

esis, suggesting that thewide-ranging effects of dTATonmecha-

nosensation are likely caused by other mechanisms.

dTat Is Required for NOMPC-Dependent
Mechanotransduction
The dTat mutant mechanosensory defects could reflect

defects in mechanosensation or in transmission downstream

of mechanosensation. To differentiate between these possibil-

ities, we used calcium imaging to measure mechanosensory re-

sponses of c3da neurons in wild-type and dTat mutant larvae.

We immobilized semi-intact larval preparations expressing the

transgenic calcium sensor GCaMP6s in c3da neurons, provided

mechanical stimulus via focal body wall displacement, and

monitored calcium responses in c3da neurons using a confocal

microscope (Figure 5A). Consistent with previous reports (Yan

et al., 2013), we found that touch stimulus induced robust cal-

cium responses in c3da neurons (Figure 5B). In wild-type larvae,

increased stimulus strength led to a progressive increase in cal-

cium responses over a low range of stimuli (10–40 mm displace-

ment), beyond which responses reached plateau (Figure 5C).

dTatKO and aTub84BK40A mutants exhibited significant reduc-

tions in touch-induced calcium transients that were most pro-

nounced in the low force range. For example, 30 mm displace-

ment yielded half-maximal calcium responses in wild-type

larvae and negligible responses in dTatKO and aTub84BK40A

mutants. These defects were progressively attenuated with

increased stimulus strength, suggesting that the mechanosen-

sory requirement for dTat in c3da neurons can be overcome by

increasing stimulus strength, similar to what we observed in

c4da neurons (Figures 3C and 5C). These results further suggest
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that dTat functions in PNS neurons to regulate mechanosensory

responses.

Given that larval gentle touch responses require the NOMPC

channel, whose function depends on microtubule interactions,

we next conducted genetic epistasis analysis to determine

whether dTAT and NOMPC function in the same pathway. While

mutation in either dTat or nompC impaired larval gentle touch re-

sponses, nompC mutation had more severe effects (Figure 5D).

Expressing tetanus toxin in c3da neurons to block their synaptic

output resulted in an even stronger defect than nompCmutation

(Figure 5D), suggesting that nompC-independent pathways

contribute to gentle touch responses (Tsubouchi et al., 2012).

If dTat and nompC function in independent pathways, we

reasoned that nompC; dTat double mutants should have more

severe defects than either single mutant alone. Instead, gentle

touch defects of the double mutant and nompC mutants were

indistinguishable (Figure 5D), suggesting that dTat and nompC

function in the same genetic pathway for gentle touch.

We next tested whether dTat was required for NOMPC-medi-

ated mechanotransduction. For these experiments, we first

tested whether NOMPC expression could confer mechanosen-

sitivity to neurons that were normally unresponsive to mechani-

cal stimuli. Whereas many PNS neurons, including c1da, c3da,

c4da, and cho neurons, expressmechanosensitive ion channels,

we found that motor neurons (MNs) do not, although MNs do

exhibit high levels of dTat expression (Table S1; Figure 2A).

Consistent with these expression data, when we conducted

in vivo whole-cell recordings from leg MNs in the adult ventral

nerve cord (Figure 5E), we found that mechanical neuropil stim-

ulation did not produce a consistent response (Figures 5F and

5G). By contrast, when we expressed UAS-nompC-GFP in leg

MNs, mechanical neuropil stimulation reliably evoked depolariz-

ing responses. This mechanically evoked depolarization was

abrogated by dTat mutation. Thus, NOMPC expression is suffi-

cient to confer mechanosensitivity to MNs, and dTat is required

for NOMPC-dependent mechanotransduction.
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Figure 4. dTat Is Largely Dispensable for Dendrite Morphogenesis in Mechanosensory Neurons

(A and B) Representative images of (A) wild-type control and (B) dTatKO mutant c3da neurons labeled with nompC-Gal4, UAS-mCD4-tdGFP.

(C and D) Means and SDs are shown for (C) dendrite branch length and (D) number of branch points of the c3da neurons ddaA and ddaF.

(E and F) Representative images of cho neurons from (E) wild-type and (F) dTatKO mutant third-instar larvae labeled with anti-HRP antibodies.

(G) Bar graphs depict means and SDs for cho dendrite length of the indicated genotypes.

(H and I) Representative images of c4da neurons labeled with ppk-CD8-GFP are shown for (H) wild-type and (I) dTatKO mutant third instar larvae.

(J–L) Means and SDs are shown for (J) dendrite branch length, (K) number of branch points, and (L) dendrite dynamics measured over a 1-hr time lapse

(96–97 hr AEL).

***p < 0.001; ns, not significant compared to wild-type; unpaired t test with Welch’s correction. The number of neurons analyzed for each sample is indicated.

Scale bars, 50 mm.

See also Figure S3.
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We next tested hypotheses for how dTat regulates NOMPC

function. First, microtubule acetylation plays established roles

in intracellular transport (Bhuwania et al., 2014; Reed et al.,

2006); thus, we tested roles for dTat in NOMPC localization. We

found that dTat mutant c3da neurons exhibit normal NOMPC-

GFP distribution when NOMPC-GFP is ectopically expressed

(Figure 6A), suggesting that dTat regulates NOMPC function

instead of localization. Second, NOMPC-microtubule interac-

tions are critical to NOMPC function (Zhang et al., 2015);

thus, we investigated dTat effects on NOMPC-microtubule
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Figure 5. dTat Is Required for NOMPC-Mediated Mechanotransduction

(A) Calcium responses to mechanical stimulus delivered via a polished glass electrode (position marked in red in top left image) in larvae expressing UAS-

GCaMP6s in c3da neurons (nompC-Gal4).

(B) Representative trace of calcium response measured from the c3da soma.

(C) Means and SDs for calcium responses [DF/F0 = (Fpeak�F0)/F0] from larvae of the indicated genotypes in response to different mechanical stimuli. *p < 0.05,

**p < 0.01 compared to wild-type; two-way ANOVA followed by Bonferroni’s multiple comparisons test.

(D) Larval behavioral responses to gentle touch stimulus at 96 hr AEL are shown for the indicated genotypes. Bar graphs showmeans and SDs for Kernan scores.

*p < 0.05, ***p < 0.001; ns, not significant compared to wild-type; Kruskal-Wallis rank sum test for multiple independent samples with Dunn’s post hoc test and

Bonferroni correction for multiple comparisons. Brackets indicate pairs being compared.

(E) Schematic for recording preparation used in (F and G).

(F) Average traces (±SEM) from whole-cell patch-clamp recordings for wild-type MNs expressing UAS-GFP (Vglut > GFP, left), wild-type MNs expressing UAS-

GFP-nompC (Vglut > nompC, middle), and MNs from a dTatKO mutant larva expressing UAS-GFP-nompC (dTatKO + Vglut > nompC, right). Red lines depict

mechanical stimulus.

(G) Scatterplot depicting mean (line) and individual measurements (points) of maximum depolarization minus baseline resting potential for the indicated geno-

types. *p < 0.05, **p < 0.01; ns, not significant compared to wild-type; one-way ANOVA followed by Bonferroni’s multiple comparisons test.

The number of independent samples measured for each genotype is shown in each panel.

See also Table S1.
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interactions in S2 cells. When expressed in S2 cells, NOMPC-

GFP co-localizes with microtubules and is sufficient to confer

mechanosensitivity to this normally non-responsive cell line

(Yan et al., 2013). Althoughwe found that NOMPC-GFP co-local-

ized extensively with acTb (Figure 6B), neither eliminating micro-

tubule acetylation with dTatRNAi (Figure 6C) nor treating S2 cells

with the HDAC6 inhibitor tubacin or taxol to increase acTb levels

significantly reduced NOMPC-GFP co-localization with micro-

tubules, indicating that acTb is not a critical determinant of

NOMPC-microtubule interactions.

dTATRegulatesMicrotubule Breakage and/or Dynamics
to Promote NOMPC-Dependent Mechanotransduction
Recent reports have established a role for acTb in regulating

microtubule dynamics and in conferring microtubules with resis-

tance to mechanical breakage (Portran et al., 2017; Xu et al.,

2017). Because NOMPC interacts with microtubules via its AR

domain and this interaction is required for mechanosensation

(Cheng et al., 2010; Zhang et al., 2015), we speculated that

loss of dTatwould perturb the mechanical properties of microtu-

bules and/or microtubule dynamics to inhibit mechanosensa-

tion. This hypothesis was supported by three independent lines

of experimentation.

First, we examined microtubule plus end numbers and

dynamics by expressing a GFP-tagged version of EB1 (UAS-

EB1-GFP) in c3da neurons additionally expressing a mem-

brane-targeted red fluorescent protein (UAS-CD4-tdTomato).

In third instar larvae, dTat mutant c3da neurons exhibited a

�70% increase in EB1-GFP+ puncta (control, 1.74 ± 0.51; dTat

mutant, 2.99 ± 0.90) (Figures 7A–7E and S4). This increase in

the number of growing plus ends could be caused by an

increased rate of new microtubule nucleation events, destabili-

zation of existing microtubules leading to increased rescue

events, and periods of polymerization, or by increased frequency

of microtubule breakage leading to the production of new plus

ends (Goodwin and Vale, 2010). Next, we examinedwhetherme-

chanical stimulus could alter microtubule plus end numbers by

visualizing EB1-GFP puncta immediately before and after me-

chanical stimulus. We found that mechanical stimulus induced

a significant increase in EB1-positive puncta in dTat mutant

but not wild-type control c3da neurons (Figures 7F–7H). These

results indicate that microtubule mechanical stability and/or

dynamics are altered in dTat mutants compared to wild-type

controls and that mechanical stimulus can trigger changes in

the number of growing plus ends in the absence of microtubule

acetylation.

Second, we examined the localization of the MAP1B-like pro-

tein, futsch. Futsch is required during Drosophila development

for microtubule organization during axonal growth and synapto-

genesis (Hummel et al., 2000; Roos et al., 2000). As a microtu-

bule-associated protein, futsch has been used as a marker for

microtubule polymer and an indicator of microtubule stability

(Jenkins et al., 2017; Ruiz-Canada et al., 2004). Consistent with

a role for acTb in regulating microtubule dynamics or stability,

we observed a significant reduction in futsch immunoreactivity

in c3da neurons of dTatKO or aTub84B mutants compared to

wild-type controls (Figure S5); non-acetylatable aTub84B

mutants similarly reduce futsch immunoreactivity in other da

neurons (Jenkins et al., 2017). These results confirm that loss

of acTb alters composition of the microtubule cytoskeleton in

c3da neurons and potentially its stability.

Third, we examined whether taxol-mediated microtubule sta-

bilization could potentiate mechanosensory responses. We

found that acute taxol feeding led to dose-dependent increases

in gentle-touch sensitivity in third-instar larvae over a range of

0–60 mM taxol (Figure 7I) with no obvious effects on neuron

morphology (c3da neuron dendrite length, mean ± SD: 4.84 ±

0.76mm, DMSO fed; 4.69 ± 0.88mm, 60 mM taxol fed; n = 8 neu-

rons each). Mutation of nompC rendered taxol-fed larvae insen-

sitive to gentle touch as did c3da neuron-specific expression of
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Figure 6. dTat Is Dispensable for NOMPC-Microtubule Interactions

(A) Maximum intensity projections showing GFP-NOMPC distribution in c3da neurons wild-type control (left) and dTatKO mutant (right) larvae additionally ex-

pressing the membrane marker CD4-tdTomato.

(B) S2 cells stably transfected with UAS-GFP-nompC were immunostained with antibodies to GFP and acTb or a-tubulin, as indicated. Images show cells in

interphase (left, middle) and during anaphase (right).

(C) S2 cells stably transfected with UAS-GFP-nompC were treated with control RNAi, dTat RNAi, taxol, or tubacin; immunostained using GFP and tubulin

antibodies; and the fraction of cells exhibiting NOMPC-microtubule co-localization was visually scored in a blind experiment. Chi-square tests revealed no

differences in NOMPC-microtubule co-localization among the different treatments. The number of cells analyzed is shown for each treatment.
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tetanus toxin (Figure S6), indicating that the increased responses

to gentle touch require nompC and reflect enhanced activity of

c3da neurons. To test whether mechanosensory defects of

dTatKO and non-acetylatable aTub84BK40A mutants reflect a

decrease in microtubule stability, we treated larvae with vehicle

or 60 mM taxol and measured behavioral responses to gentle

touch (Figure 7J). Remarkably, taxol feeding significantly

enhanced gentle touch responses of dTatKO and aTub84BK40A
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Figure 7. dTat Promotion of Microtubule Stability Modulates Mechanotransduction

(A–D) Representative images of c3da neurons from (A and B) wild-type (CD4-tdTomato, A; EB1-GFP, B) and (C and D) dTatKO mutant larvae expressing

CD4-tdTomato to label membranes (C) and EB1-GFP to label microtubule plus ends (D).

(E) Boxplot depicts the number of EB1+ puncta per 100 mm of dendrite length. **p < 0.01 compared to wild-type; unpaired t test with Welch’s correction.

(F–H)Microtubules of dTatKOmutants are prone tomechanically -induced breakage. Images of representative (F) wild-type and (G) dTatmutant c3da neurons that

were subjected to mechanical stimulus are shown. EB1-GFP labeling is shown immediately before (F’ and G’) and after stimulus (F’’ and G’’). Arrowheads mark

EB1 puncta.

(H) Boxplot depicting quantification of EB1+ puncta. Two-way ANOVA analysis revealed a significant interaction effect between mechanical treatment and

genotype on EB1 puncta number. F(2,12) = 7.539, p = 0.009. Simple main effects analysis showed a significant difference in EB1 puncta number between treated

and untreated dTatmutant larvae (p = 0.001), but not between treated and untreatedwild-type larvae (p = 0.184). **p < 0.01, ***p < 0.001. Raw images are shown in

Figure S4.

(I–M) Taxol-induced microtubule stabilization rescues mechanosensory defects of acetylation mutants.

(I) Boxplot depicting gentle touch response of larvae fed the indicated dose of taxol for 3 hr. *p < 0.05, **p < 0.01, compared to vehicle-fed controls; one-way

ANOVA with a post hoc Dunnett’s test.

(J) Boxplot depicting gentle touch response of dTat and aTub84b mutant larvae fed vehicle or 60 mM taxol for 3 hr.

(K) Bars depict the proportion of larvae of the indicated genotype that exhibited a nociceptive rolling responded to 44 mN von Frey stimulus.

(L andM) Boxplots depicting sound stimulus responses (L) and gravitaxis behavior (M) of wild-type, dTat, and aTub84Bmutant flies fed vehicle or 60 mM taxol for

12 hr.

***p < 0.001 compared to vehicle controls; unpaired t test with Welch’s correction for (J–M). The number of independent samples measured for each genotype is

shown in each panel.

See also Figures S4, S5, S6, and S7, and Table S2.
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mutants. Likewise, taxol feeding potentiated responses of wild-

type larvae to harsh touch and significantly enhanced harsh

touch responses of dTatKO and aTub84BK40A mutants (Fig-

ure 7K). Finally, although taxol feeding did not enhance vibration

responses or gravitaxis in wild-type controls, it did restore these

behaviors to wild-type levels in dTatKO and aTub84BK40A mu-

tants (Figures 7L and 7M).

dTAT Regulates the Rigidity of Cultured S2 Cells
Our studies thus far support a model in which microtubule acet-

ylation by dTat broadly regulates mechanosensation via effects

on microtubule stability. We next examined whether dTAT regu-

lates cellular rigidity, which could contribute to dTat mutant

mechanosensation defects. Loss of the microtubule acetylase

a-tubulin N-acetyltransferase 1 (ATAT1) results in increased

cellular rigidity of cultured mouse DRG neurons (Morley et al.,

2016). To test whether this biophysical function was conserved

in Drosophila, we used atomic force microscopy (AFM) to

examine the elastic moduli of dTAT-depleted S2 cells and

compared them to control-treated cells. We found that dTat

RNAi-treated cells exhibited a statistically significant increase

in cortical stiffness, with dTat RNAi cells exhibiting a 22% in-

crease in stiffness (Figure S7; Table S2). These results indicate

that the role of dTAT/ATAT1 in regulating themechanical proper-

ties of cells is conserved; whether this activity contributes to its

role in mechanosensation remains to be determined.

DISCUSSION

Microtubule acetylation is required for touch sensation in several

model systems (Akella et al., 2010; Morley et al., 2016); however,

the molecular mechanisms that underlie its role in mechanosen-

sation are poorly understood. In this study, we identified the

major aTAT in Drosophila, dTAT, and found that it is broadly

required for mechanosensation. In response to gentle touch,

dTat functions in the same pathway as the TRP channel nompC

and is required for NOMPC-dependent touch-evoked neuronal

responses. dTatmutation causes an increase in dendritic micro-

tubule plus ends in mechanosensory neurons, and taxol stabili-

zation of the microtubule cytoskeleton rescues mechanorecep-

tivity, suggesting that microtubule breakage and/or alterations

in microtubule dynamics underlie the loss of touch sensitivity.

We also observed that dTAT depletion in S2 cells altered their

mechanical properties to make them more rigid, an effect that

could alter NOMPC activation in neurons by increasing its

threshold for activation. Collectively, our results suggest that

K40 acetylation functions to stabilize the microtubule cytoskel-

eton and may tune cellular mechanics to promote NOMPC acti-

vation through its cytoplasmic microtubule-associated tension

gate. Our results demonstrating defects in vibration perception

and gravitaxis in dTat mutants reveal that microtubule acetyla-

tion plays a broader role in mechanosensation than was previ-

ously recognized. We speculate that microtubule acetylation

likewise promotes the activation of othermechanosensory chan-

nels by facilitating microtubule-mediated mechanotransduction.

The results of our genetic, electrophysiological, and cell bio-

logical experiments indicate that dTat is required for mechano-

sensation by the TRP channel NOMPC. This requirement is not

related to NOMPC trafficking and unlikely due to interactions

with microtubules. Instead, we observed an increase in EB1-

labeled microtubule plus ends in dTat mutant sensory dendrites

and showed that stabilizing the cytoskeleton by feeding mutant

animals taxol rescued touch sensitivity. In light of recent findings

that K40 acetylation weakened inter-protofilament interactions,

allowingmicrotubules to comply with deformative forces without

breaking (Portran et al., 2017; Xu et al., 2017), our results suggest

that in the absence of K40 acetylation, microtubules in

c3da neurons are mechanically damaged, thereby decreasing

NOMPC-microtubule interactions and attenuating the channel’s

ability to transduce mechanical stimuli. We cannot exclude the

possibility that regulation of microtubule dynamics is a major

functional role for acetylation in PNS neurons; further investiga-

tion into the influence of microtubule structure and dynamics on

NOMPC-microtubule interactions should help resolve whether

acetylation controls mechanosensation primarily via the regula-

tion of microtubule mechanical resilience or dynamics.

Loss of dTat does not phenocopy nompC null mutants in all re-

spects. NOMPC functions in proprioceptive c1da neurons to con-

trol larval locomotion (Cheng et al., 2010), but dTatmutant larvae

exhibit grossly normal locomotion. Although the absence of

obvious defects in our assay does not preclude the possibility

thatdTatexerts a subtle influenceon larval locomotion, theeffects

ofdTatmutation are significantly less pronounced than the�50%

decrease in larval crawling speed observed in nompC mutants

(Cheng et al., 2010). We speculate that this may be due to neuron

class-specific susceptibility to the loss of acTb. For example, the

microtubule network in c1da neurons may be more resistant to

loss of dTat than in c4da neurons. We also discovered that adult

gravitaxis is perturbed indTatmutants.While NOMPC is dispens-

able for gravitaxis, TRPA and TRPV family channels are required

for gravity sensing (Kamikouchi et al., 2009; Sunet al., 2009). Like-

wise, dTatmutants have defects in harsh touch responses, which

involve TRP, piezo, and Ppk/ENaC channels but not NOMPC, as

well as defects in larval hearing, which involve several TRP chan-

nels in addition to NOMPC. These results raise the possibility that

interactions between acTb and other channels may play impor-

tant roles in mechanosensation.

Prior studies of microtubule acetylation in touch perception

have arrived at molecular mechanisms that differ from our model

but are not mutually exclusive. In C. elegans touch receptor neu-

rons, sensory dendrites are packed with a cross-linked bundle of

long, specialized 15-protofilament microtubules specific to this

cell type (Chalfie and Sulston, 1981). Mutation of the aTATs

mec-17 and atat-2 resulted in the loss of these unique microtu-

bules and insensitivity to touch (Bounoutas et al., 2009). Thus,

K40 acetylation is required for the assembly of a specialized

population of microtubules involved in C. elegans mechano-

transduction. Although there is no evidence for specialized mi-

crotubules in Drosophila da neuron dendrites, the results from

worm touch receptors mirror our results in that microtubule acet-

ylation is required to maintain an intact microtubule network.

Further electron microscopy (EM) study of the cytoskeleton in

da neurons will be necessary to definitively determine whether

they possess specialized microtubule arrays.

Inmouse peripheral sensory neurons, acetylatedmicrotubules

are enriched in a submembranous band in the soma that is
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distinct from the cytoplasmic microtubule network (Morley et al.,

2016). This submembranous band appears to confer rigidity to

the plasma membrane, and cultured DRG neurons from Atat1

knockout mice exhibited increased membrane stiffness (Morley

et al., 2016). The authors proposed that in this system, microtu-

bule acetylation tunes the mechanical properties of the mem-

brane and, in its absence, cells are less elastic and require

more force to trigger mechanosensitive channels. Our results in

S2 cells indicate that regulation of cellular stiffness is a conserved

function for microtubule acetylases. However, the molecular

mechanism linking microtubule acetylation to cellular stiffness

and the extent to which this alteration of cellular stiffness contrib-

utes to mechanosensation are unknown. To address these

important outstanding issues, it will be necessary to identify the

molecular components that link microtubules to the mechanical

properties of the cell cortex and examine their contribution tome-

chanosensation independently ofmicrotubule function. Although

we have found no evidence for a specialized submembranous

network of acetylated microtubules in Drosophila PNS neurons,

it will be interesting to determine whether dTat regulates cellular

elasticity in these cells as well. It is therefore possible that micro-

tubule acetylation regulates mechanosensitivity throughmultiple

mechanisms: by regulating microtubule structure and by tuning

the mechanical properties of neurons.
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Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and

axonal development. Neuron 26, 357–370.

Hwang, R.Y., Zhong, L., Xu, Y., Johnson, T., Zhang, F., Deisseroth, K., and

Tracey, W.D. (2007). Nociceptive neurons protect Drosophila larvae from

parasitoid wasps. Curr. Biol. 17, 2105–2116.

Jenkins, B.V., Saunders, H.A.J., Record, H.L., Johnson-Schlitz, D.M., and

Wildonger, J. (2017). Effects of mutating a-tubulin lysine 40 on sensory

dendrite development. J. Cell Sci. 130, 4120–4131.

Jiang, N., Kim, H.-J., Chozinski, T.J., Azpurua, J.E., Eaton, B.A., Vaughan,

J.C., and Parrish, J.Z. (2018). Superresolution imaging of Drosophila tissues

using expansion microscopy. Mol. Biol. Cell 29, 1413–1421.

Jiang, N., Soba, P., Parker, E., Kim, C.C., and Parrish, J.Z. (2014). The micro-

RNA bantam regulates a developmental transition in epithelial cells that

restricts sensory dendrite growth. Dev. Camb. Engl 141, 2657–2668.

Jin, P., Bulkley, D., Guo, Y., Zhang, W., Guo, Z., Huynh,W., Wu, S., Meltzer, S.,

Cheng, T., Jan, L.Y., et al. (2017). Electron cryo-microscopy structure of the

mechanotransduction channel NOMPC. Nature 547, 118–122.

Kalebic, N., Martinez, C., Perlas, E., Hublitz, P., Bilbao-Cortes, D., Fiedorczuk,

K., Andolfo, A., and Heppenstall, P.A. (2013a). Tubulin acetyltransferase

aTAT1 destabilizes microtubules independently of its acetylation activity.

Mol. Cell. Biol. 33, 1114–1123.

Kalebic, N., Sorrentino, S., Perlas, E., Bolasco, G., Martinez, C., and Heppen-

stall, P.A. (2013b). aTAT1 is the major a-tubulin acetyltransferase in mice. Nat.

Commun. 4, 1962.

Kamikouchi, A., Inagaki, H.K., Effertz, T., Hendrich, O., Fiala, A., Göpfert, M.C.,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Tubulin (clone DM1A) Sigma-Aldrich Cat# T9026; RRID: AB_477593

Mouse monoclonal anti-Tubulin (clone 6-11B-1) Sigma-Aldrich Cat#T7451, RRID: AB_609894

Mouse monoclonal anti-Tubulin (clone DM1A); FITC conjugate Sigma-Aldrich Cat# F2168, RRID: AB_476967

Mouse monoclonal anti-Myc (clone 9E10) Developmental Studies

Hybridoma Bank (DSHB)

Cat# 9E 10, RRID: AB_2266850

Mouse monoclonal anti-Futsch (clone 22C10) DSHB Cat# 22c10, RRID: AB_528403

Rabbit polyclonal anti-GFP antibody Fisher Cat# A-11122, RRID: AB_22159

Rabbit polyclonal anti-dsRed antibody Clontech Cat# 632496, RRID: AB_10013483

Rabbit polyclonal anti-dTat antibody This study N/A

Chemicals, Peptides, and Recombinant Proteins

Paclitaxel Sigma-Aldrich T7402

Tubacin Sigma-Aldrich SML0065

Deposited Data

D. melanogaster larval PNS RNA-Seq data Williams et al., 2016 NCBI-SRA GSE72884

D. melanogaster whole larva RNA-Seq data Boiko et al., 2017 NCBI-SRA GSE99711

D. melanogaster larval cell type RNA-Seq data This study NCBI-SRA GSE120305

Experimental Models: Cell Lines

D. melanogaster: Cell line S2 Derosophila Genomics

Resource Center

S2-DGRC

Experimental Models: Organisms/Strains

w[1118] ; dTat[KO] This study NA

w[1118] ; dTat[GFP] This study NA

w[1118] ; UAS-GFP-dTat-L This study NA

y[1] M{vas-Cas9.RFP-}ZH-2A w[1118]/FM7a, P{w[+mC] = Tb[1]}FM7-A Bloomington Drosophila

Stock Center (BDSC)

55821

y[1] w[67c23] P{y[+mDint2] = Crey}1b; sna[Sco]/CyO; Dr[1]/TM3, Sb[1] BDSC 34516

w[1118] BDSC 6326

w[1118] ; ppk-Gal4 BDSC 32079

y[1] w[*] HDAC6[KO] BDSC 51182

nompC[1] cn[1] bw[1]/CyO BDSC 42268

nompC[3] cn[1] bw[1]/CyO BDSC 42258

w[1118]; P{w[+mC] = AyGAL4}17b BDSC 4413

y[1] w[*]; PBac{y[+mDint2] w[+mC] = nompC-GAL4.P}VK00014;

Df(3L)Ly, sens[Ly-1]/TM6C, Sb[1] Tb[1]

BDSC 36361

w[*]; P{w[+mC] = UAS-TeTxLC.tnt}R3 BDSC 28997

w*; P{UAS-HsapyKCNJ2.EGFP}7 BDSC 6595

w[*]; M{w[+mC] = UAS-Kat60.M}ZH-51D/CyO BDSC 64117

w[1118]; P{w[+mC] = UAS-Eb1.EGFP.H}G BDSC 36861

y[1] w[*]; P{w[+mC] = UAS-CD4-tdTom}7M1 BDSC 35841

w[1118]; P{w[+mC] = ppk-CD4-tdTom}10a/TM6B, Tb[1] BDSC 35845

w[1118]; Df(3L)BSC113/TM6B, Tb[1] BDSC 8970

w[1118], ppk-mCD8-GFP Jiang et al., 2014 NA

w[1118] ; aTub84B[K40A] Jenkins et al., 2017 NA

w[1118] ; aTub84B[K40R] Jenkins et al., 2017 NA

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jay Par-

rish (jzp2@uw.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly husbandry
Flies were maintained on standard cornmeal-molasses-agar media and reared at 25�C under 12 h alternating light-dark cycles.

Fly stocks
Alleles used in this study are listed in the Key Resources Table below and a complete list of experimental genotypes is available in

Table S3.

Cell Culture
Culture and RNAi of Drosophila S2 cells were performed as previously described (Rogers and Rogers, 2008). S2 cells (Drosophila

Genomics Resource Center, Bloomington, IN) were cultured in SF900II medium supplemented with 100x antibiotic-antimycotic

(Invitrogen, Carlsbad, CA).

METHOD DETAILS

Generation of dTat alleles
The dTatKO and dTatGFP alleles were engineered using CRISPR/Cas9 mediated gene editing (Gratz et al., 2014). Target sites were

selected upstream of the first coding exon and in the second intron of dTat using the CRISPR Optimal Target Finder (http://tools.

flycrispr.molbio.wisc.edu/targetFinder/). chiRNA plasmids were generated by annealing sense and antisense gRNA oligos, digesting

with BbsI, and ligating into the pU6-BbsI-chiRNA expression vector. Donor vectors were generated by cloning homology arms into

pHD-DsRed. For dTatKO, homology arms were designed to delete an 869 base pair fragment spanning the first three coding exons,

beginning 16 base pairs upstream of the start codon. The donor vector for dTatGFP was generated as follows: pHD-dsRed was di-

gested with EcoRI and the 50 homology arm corresponding to sequences immediately upstreat of the dTat start codon, GFP and dTat

PCR fragments were cloned into the backbone by Gibson assembly (NEB Gibson Assembly Kit) with GFP fused in-frame with the

N terminus of dTat and the LoxP-flanked 3xP3-dsRed marker within the second intron. The newly assembled plasmid was then

digested with XhoI and the 30 homology arm was inserted using Gibson assembly. All primer sequences are available in Table S4.

chiRNA and pHD-DsRed plasmids were co-injected into embryos expressing Cas9 in the germline (BL55821: y[1] M{vas-

Cas9.RFP-}ZH-2A w[1118]/FM7a, P{w[+mC] = Tb[1]}FM7-A), stocks were established from RFP-positive founder males, and

3xP3-RFP markers were removed using Cre-mediated reduction (BL34516: y[1] w[67c23] P{y[+mDint2] = Crey}1b; sna[Sco]/CyO;

Dr[1]/TM3, Sb[1]) as previously described (Gratz et al., 2014).

RNA-Seq of larval cells
Four to seven samples of one hundred cells each were isolated and RNA-Seq libraries were prepared as described previously (Boiko

et al., 2017). Briefly, third instar larvae expressing UAS-Red Stinger in the target cell type (epithelia, a58-Gal4; muscles, mef-Gal4;

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

w[1118] ; aTub84B[D] Jenkins et al., 2017 NA

w[1118]; P{w[+mW.hs] = GawB}21-7 Song et al., 2007 NA

w[1118]; P{w[+mW.hs] = GawB}19-12 Xiang et al., 2010 NA

Oligonucleotides

Oligonucleotide sequences used in this study are listed in Table S4. This study NA

Recombinant DNA

pBID-UAS-GFP-dTat-L This study NA

pET28a dTat (1-196) This study NA

pMT B V5/His dTat(alt)-S This study NA

pMT B V5/His dTat(alt)-S GG (G133Y, G135Y) This study NA

pMT B V5/His dTat(alt)-S This study NA

pMT B V5/His dTat(alt)-L GG (G133Y, G135Y) This study NA
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peripheral neurons, elav-Gal4; central neurons, elav-Gal4; motor neurons, ok371-Gal4; central glia, repo-Gal4) were dissected to

isolate the tissue of interest. Bodywalls or brains were dissociated and Red-Stinger-labeled cells were isolated by flow cytometry

into RNAqueous lysis buffer. Samples were sequenced as 51 base single end reads on a HiSeq 2500 running in high-output

mode at the UCSF Center for Advanced Technology, with read depths ranging from 1.5 to 18.4 million reads. Reads were demulti-

plexed with CASAVA (Illumina) and read quality was assessed with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). Reads were aligned to the D. melanogaster transcriptome, FlyBase genome release 6.10, using STAR version 2.5.2b (Dobin

et al., 2013) with the option ‘–quantMode TranscriptomeSAM’. Transcript expression was modeled from these STAR alignments us-

ing Salmon (Patro et al., 2017) in alignment-based mode. The raw sequencing reads and gene expression estimates are available in

the NCBI Sequence Read Archive (SRA) and in the Gene Expression Omnibus (GEO) under accession number GSE120305. The da

neuron and whole larvae datasets were previously described and published and are available from SRA and GEO under accession

numbers GSE72884 and GSE99711, respectively.

Plasmid Constructs
Expression constructs for dTAT were generated using PCR from a synthetic template (dTATalt) in which the wobble position of each

codon was conservatively replaced, making them refractory to RNAi (Blue Heron Biotech). The GFP-dTATalt fusions were cloned by

50 overlapping extension PCR using primers listed in Table S3. GFP-dTATalt inserts were cloned into the KpnI/ApaI sites of pMT B

V5/His (Invitrogen) for copper-inducible expression in S2 cells or into the EcoRI/NotI sites in pBID-UASC (Addgene) for generating

transgenic fly lines. The catalytically inactive version of dTAT was generated by mutating two glycine residues (G133 and G135)

to tryptophan to disrupt acetyl CoA binding (Topalidou et al., 2012).

Identification of candidate Drosophila acetylases
Drosophila homologs of GCN5, ELP3, ARD1, and NAT1 have been studied in other contexts, but their roles in microtubule acetylation

have not been characterized. We additionally identified the GNAT domain-containing lethal(1)G0020/CG1994 as the likely NAT10 ho-

molog (53.8% identity) and CG3967 and CG17003 as potential aTAT/MEC-17 homologs (CG3967, 38.8% identity; CG17003, 34.7%

identity)

S2 cell culture, RNAi, and immunofluorescence
Culture and RNAi of Drosophila S2 cells were performed as previously described (Rogers and Rogers, 2008). S2 cells (Drosophila

Genomics Resource Center, Bloomington, IN) were cultured in SF900II medium supplemented with 100x antibiotic-antimycotic

(Invitrogen, Carlsbad, CA). DNA templates for dsRNA synthesis were obtained by PCR amplification of the pFastBacHT-CAT expres-

sion plasmid (Invitrogen), BDGP cDNA clones, or S2 cell genomic DNA using the gene-specific primer sequences (Table S4). As a

negative control, a sequence from chloramphenicol acetyltransferase (CAT) was amplified and transcribed into dsRNA. In vitro tran-

scription reactions were performed with T7 RNA polymerase purified in house. Cells were transfected using Fugene HD (Promega)

according to the manufacturer’s instructions. Stable cell lines were selected by supplementing culture medium with 10 mg/mL blas-

ticidin or 500 ug/mL hygromycin (Invitrogen). Immunofluorescence was performed by plating cells into fabricated 35 mm glass bot-

tom culture dishes pre-coated with concanavalin A in serum-free Schneider’s medium (Sigma). After cells had attached and spread

for 1 hour, they were fixed with 10% formaldehyde (EM Sciences) in HL3 buffer (70 mM sodium chloride; 5 mM potassium chloride;

20 mMmagnesium chloride hexahydrate; 10 mM sodium bicarbonate; 5 mM trehalose; 115 mM sucrose; 5 mM HEPES; pH 7.2) for

10 minutes. Cells were permeabilized and blocked with 5%bovine serum albumin in TBST (TBS + 0.1% Triton X-100) before staining

with primary and secondary antibodies. Cells were imaged on an Eclipse Ti-Emicroscopewith a 100x oil NA-1.45 objective, driven by

NIS Elements software. Images were captured with a cooled charge-coupled device camera (CoolSNAP HQ, Roper Scientific).

Antibodies
The following antibodies were used in this study: anti-acTb (6-B11-1, Sigma), anti-a-tubulin (DM1a, Sigma), FITC-labeled DM1a

monoclonal antibodies (Sigma), anti-GFP (A-11122, Fisher), anti-DsRed (632496, Clontech), Anti-Myc (9E11, DSHB), Anti-Futsch

(22C10, DSHB), Cy5-conjugated anti-HRP (Jackson immunoresearch), and Alexa Fluor conjugated secondary antibodies (Fisher).

In order to generate antibodies against dTAT, we used PCR to amplify the catalytic domain (residues 1 to 196) and cloned this frag-

ment into the NheI/ XbaI sites of pET28a or the BamHI/NotI sites of pGEX6P2. Recombinant dTAT 1-196 was expressed in E. coli and

purifiied on NiNTA resin (QIAGEN) and glutathione-Sepharose, respectively. Purified 6xhis-dTAT1-196 protein was used to generate

polyclonal antibodies in rabbits (Pocono Rabbit Farm) and the antibodies were further affinity-purified on GST-dTAT 1-196 bound to

amino-link resin (Thermo Fisher Scientific). Secondary antibodies for immunofluorescence were purchased from Jackson Immunor-

esearch. HRP-conjugated secondary antibodies for immunoblots were purchased from Sigma.

Imaging of larval samples
Live imaging

Larvae were mounted in 90% glycerol under No. 1 coverslips and imaged using a Leica SP5microscope with a 403 1.2 NA lens. For

time-lapse analysis, larvae were imaged at the indicated time, recovered to yeasted agar plates with vented lids, aged at 25�C, and
imaged again.
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EB1 assays

Larvae were carefully mounted and imaged, then immediately placed in a small plastic Petri dish and stimulated with forceps pinches

to segments A2, A3, and A4 and re-imaged under the same conditions. Maximum projections of confocal z stacks (1 mm z step size)

were set to identical threshold levels to eliminate non-punctate signals and quantified in Fiji (Schindelin et al., 2012).

Immunostaining

Larval immunostaining was performed as described (Jiang et al., 2018) with the exception of fixation in freezing methanol for 15 min

for AcTb staining. Antibody dilutions were as follows: acTb, 1:1000; GFP, 1:100; 22c10 (1:200); HRP-Cy5 (1:100), secondary anti-

bodies (1:200).

Expansion microscopy

Following immunostaining with Mouse anti-GFP, clone 3E6 (Invitrogen #A11120, 1:100) and Goat anti-Mouse Alexa488 (Thermo-

fisher A31561, 1:100) as previously described (Jiang et al., 2018), samples were mounted on lysine-coated #1.5 cover glass in poly-

dimethylsiloxane wells and incubated in monomer solution (2 M NaCl, 8.625% Sodium Acrylate, 2.5% Acrylamide, 0.15% Bisacry-

lamide in PBS) for 1 h at 4�C prior to gelation. A stock of 4-hydroxy-2,2,6,6-tetramenthylpiperidin-1-oxyl (4-hydroxy-TEMPO) at 1%

(wt/wt) in water was added to the incubation solution and diluted to concentration of 0.01%. Concentrated stocks of tetramethyle-

thylenediamine (TEMED) and ammonium persulfate (APS) at 10% (wt/wt) in water were added sequentially to the incubation solution

and diluted to concentrations of 0.2% (wt/wt). The tissues were then incubated at 37�C for 3-4 h. After gelation, the gels were cut and

placed in a small 12-well chamber and 1mg/ml of Chitinase in PBS (pH 6.0) was used to digest the cuticles for �4 d at 37�C. Chiti-
nase-treated samples were incubated with 1000 units/ml collagenase solution (prepared with buffer 1x HBSS lacking calcium, mag-

nesium, and phenol red) with 0.01 M CaCl2 and 0.01 M MgCl2 overnight in a 37�C shaking incubation chamber. Samples were then

rinsed with PBS twice for 5 min and digested in 8 units/ml proteinase K solution in digestion buffer (40 mM Tris pH 8.0, 1 mM EDTA,

0.5% Triton, 0.8 M Guanidine HCl) for 1 h at 37�C. Subsequently, samples were removed from the digestion solution and were al-

lowed to expand in excess water overnight. After expansion, the expanded gel was trimmed to fit onto the coverglass, excess water

was removed, and the gel was mounted on a lysine-coated cover glass for imaging. Confocal microscopy was performed on a Leica

SP5 inverted confocal scanning microscope using a 63 3 1.2 NA water lens.

Calcium imaging

Third-instar larvae were dissected in calcium imaging solution (310mOsm, pH7.2) containing (in mM): NaCl 120, MgCl2 4, KCl 3,

NaHCO3 10, Glucose 10, Sucrose 10, Threalose 10, TES 5, HEPES 10. Larvae were pinned ventral side up on Sylgard� 184 silicone

elastomer plates. After opening the larval body from the ventral side, internal organs were removed, and the muscle covering the

dorsal c3 da neuron (ddaF) was also gently removed to facilitate imaging of ddaF in segments A4 to A6.

Stimulation electrodes (sealed/polished with a diameter of �10 mm) were mounted in contact with the internal side of the larval

body wall within the dendritic filed of the target c3 da neuron. The tip position was set to avoid direct contact with dendritic tips

for potential damage. Following 20ms transient vertical stimulations, each with increasing displacements (10, 20, 30, 40, 50 and

60 mm; applied with a Sutter MP-285 micromanipulator), the electrode was returned to the starting position. GCaMP6s fluorescence

was excited with a 488nm solid-state laser and GCaMP fluorescence was imaged at a 0.97Hz frame acquisition rate using aW Plan-

APOCHROMAT 203 /1.0 objective lens and a Zeiss LSM 700 confocal microscope. Changes in calcium levels in the cell body were

measured using the following formula:

DF=F0 = ðFpeakF0Þ
�
F0

where F0 is the average fluorescence in 30 s right before vertical mechanical stimulation. Fpeak is defined as the maximum fluores-

cence upon stimulation.

Behavior assays
Gentle touch

Each larva was stimulated with an eyelash stroke on thoracic segments while in a bout of linear locomotion. The stimulus was applied

and scored four times per larva, with responses scored as previously described (Kernan et.al 1994). Tests were performed with the

experimenter blind to genotype in this and all other behavior assays.

Harsh Touch

Larvae were placed in a plastic Petri dish with enough water, so larvae remained moist, but not floating in the dish. Von frey filaments

made from fishing line and affixed to glass capillaries were applied to the dorsal side of the larvae between segments A3-A6 until the

filament buckled, exhibiting a pre-determined force. Forces of 44mN, 78mN and 98mN were used in this study. A positive response

was scored if one complete nocifensive roll occurred after the first mechanical stimulus.

Sound/vibration

Wandering third instar larvae were picked from a vial and washed with PBS. 10 larvae were placed on a 1% agar plate on top of a

speaker and stimulated as previously described (Zhang et al., 2013). A 1 s 70dB, 500Hz pure tone was played 10 times with 4 s of

silence in between. Video recordings captured larval behavior, with the number of times out of 10 each larva exhibited sound startle

behavior as its individual score. 3 separate trials were performed for each genotype. Videos were recorded with AmScope MU300

Microscope digital camera. Larval startle behavior was scored as responsive with the following behaviors: mouth-hook retraction,

pausing, excessive turning, and/or backward locomotion.

Cell Reports 25, 1051–1065.e1–e6, October 23, 2018 e4



Gravitaxis

A RING apparatus was assembled as described (Kamikouchi et al., 2009) using 2.3 cm diameter, 9.5 cm polypropylene Drosophila

vials. 25 flies were collected, aged until all the flies were 5-8 days old, and transferred to a gravitaxis vial sealed with parafilm. The

apparatus was rapped on a table five times in rapid succession to initiate the gravitaxis response. Videos of the flies were captured

and position of each fly in the tube was determined 4 s after the response initiation. Flies were allowed to rest 1 minute, and this was

repeated for 5 total trials, for n = 1. Assays were repeated for each genotype for total n = 3

Thermal Nociception

Local heat probe assays were performed as previously described (Chattopadhyay et al., 2012). Washed larvae were placed on a

piece of vinyl and stimulated on their dorsal midline at segment A4 with a thermal probe maintained at 38c�C for a maximum of

20 s or until completion of a rolling nocifensive response.

Larval locomotion

Larvae were washed and placed on an agar plate with a paint brush, allowed to habituate for 1 minute, and subsequently 10 s videos

of individual crawling larvae were recorded in LAS as uncompressed avi files. Files were converted to flymovieformat with any2ufmf

and analyzed in Ctrax (Branson et al., 2009). Videos were recorded on Leica DFC310 FX camera on an AmScope FMA050 mount.

Taxol Feeding

Third instar larvae were transferred to 35 mM dishes of cornmeal-molasses food containing DMSO (vehicle) or 60uM taxol (unless

otherwise indicated) for 3 hours and then subject to behavior analysis. Adult flies were starved overnight (16 hours) and then fed a

5% sucrose solution containing DMSO or 60uM taxol for 5 hours prior to behavioral analysis.

Electrophysiology
We adapted the methods of (Gong et al., 2013) to record NOMPC-mediated mechanically evoked responses from central neurons in

the Drosophila ventral nerve cord (VNC). Adult physiology preparations were as previously described with some modification (Tuthill

and Wilson, 2016). Flies were cold-anesthetized and fixed with their ventral side facing up to the underside of a custom-milled steel

platform using UV-cured glue (KOA 300, KEMXERT). The ventral head and anterior thorax were partly inserted through a hole in the

platform. The top side of the platform, and thus also the exposed parts of the head and thorax, were continually perfused with

oxygenated saline. All six legs were glued to the holder with UV-cured glue. A small hole was manually dissected in the cuticle of

the ventral thorax to expose the prothoracic neuromeres, and the perineural sheath was gently removed with fine forceps to expose

neuronal cell bodies.

The preparation was perfused at �2-3 ml/min with saline (103 mM NaCl, 3 mM KCl, 5 mM TES, 8 mM trehalose, 10 mM glucose,

26mMNaHCO3, 1mMNaH2PO4, 1.5mMCaCl2, and 4mMMgCl2; pH 7.1, osmolality adjusted to 270-275mOsm) bubbled with 95%

O2/5%CO2. Recordings were performed at room temperature. Cell bodies were visualized using an infrared LED (Smartvision) and a

40 3 water-immersion objective on an upright compound microscope equipped with a fluorescence attachment (Sutter SOM).

Whole-cell patch-clamp recordings were targeted to GFP-labeled cell bodies in the prothoracic region of the VNC. The internal patch

pipette solution contained (in mM): 140 potassium aspartate, 10 HEPES, 1 EGTA, 4 MgATP, 0.5 Na3GTP, 1 KCl, and 13 biocytin hy-

drazide (pH 7.2, osmolarity adjusted to �265 mOsm). We distinguished MNs from other glutamatergic neurons by the characteristic

and reliable positions of their cell bodies (Baek and Mann, 2009; Brierley et al., 2012), as well as their intrinsic properties (input resis-

tance, resting membrane potential, and spike waveform).

All recordings were made in current-clamp mode using an Axopatch 700A amplifier. Data were low-pass filtered at 5 kHz before

theywere digitized at 10 kHz by a 16 bit A/D converter (National Instruments, USB-6343), and acquired inMATLAB. Stable recordings

were typically maintained for�1 hour. A small hyperpolarizing current (approximately�5 to�10 pA) was injected to compensate for

the depolarizing seal conductance (Gouwens and Wilson, 2009). Analysis of electrophysiology data was performed with custom

scripts written in MATLAB and Python.

Motor neurons weremechanically stimulated with a closed-loop piezoelectric actuator (Physik Instrumente P-841.60, 90 mm travel

range, with E-509.S1 sensor/piezo servo-control module). Mechanical stimuli were generated inMATLAB and sent to the amplifier at

5 kHz using an analog output DAQ (National Instruments 9263). Mechanical stimuli were generated inMATLAB and sent to the ampli-

fier at 5 kHz using an analog output DAQ (National Instruments 9263). The stimulating pipette was positioned next to the ipsilateral

VNC neuromere under visual control. A 12 mm square wave was used to indent the neuropil. Because the MN cell bodies are

segregated from the VNC neuropil, the mechanical stimuli had no visible effect on the cell body and patch pipette. Stimulation of

the contralateral neuromere failed to evoke a response.

Atomic force microscope measurements
The elastic moduli of control- and dTat RNAi-treated cells were measured using an MFP-3D Bio AFM (Asylum Research, Santa

Barbra, CA). The AFM head was mounted on an Olympus IX71 inverted optical microscope to aid in accurately positioning the canti-

lever probe directly above a single cell. Cells were probed using a Novascan silicon nitride AFM cantilever of nominal spring constant

0.03N/m with a 4.5um polystyrene bead attached. Before force measurements were made on each sample, the cantilever spring

constant was calibrated using the built-in thermal tune method in the IGOR/Asylum Software. These calibrations ranged from

0.039-0.042N/m.
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S2 cell RNAi was performed for seven days as described above; we then treated with dsRNA every other day to maintain protein

depletion. On the day of an experiment, confluent cells from each population (control or dTatRNAi) were plated on cleaned glass poly

L-lysine-coated coverslips such that adherent cells were spaced about 2-3 cell diameters apart once attached. Stiffness measure-

ments were acquired 45 min to 120 min after plating at room temperature. Parallel samples of control or dTat RNAi cells were plated

and an approximately equivalent number of data points were acquired during each trial. The order of data acquisition was varied for

each experiment.

For force versus indentationmeasurements the cantilever wasmoved at a velocity of 5 mm/s toward the cell until a force of 3 nNwas

reached. The cantilever was then retracted at the same rate. For most cells, this was equivalent to an indentation of 3-4 mm. For each

cell, two force curves were collected and one was chosen, based on clearly defined points of contact and flat baseline approaches.

The first curve was picked in approximately 80% of all cells. Force measurements were acquired for �300 cells of each type over a

period of three days of experiments.

Calibrated cantilever deflection and piezo displacement data collected were converted to produce force versus indentation curves

(Figure S7). Using a custom MATLAB code, force-indentation data were fit to the Hertzian contact mechanics model to determine

elastic moduli (stiffness) for each cell (Beicker et al., 2018; Cribb et al., 2016). The force versus indentation data were fit up to inden-

tations of 750nm which corresponded to less than 10% of the cell height. The entire dataset was screened for relative RMS fitting

errors greater than two sigma above the mean. Then, elastic moduli values that were above or below two sigma of the mean

were excluded within each trial (Grubbs, 1950).

QUANTIFICATION AND STATISTICAL ANALYSIS

Datasets were tested for normality using Shapiro-Wilks goodness of fit tests. Details on statistical tests are provided in figure legends

and the corresponding methods sections.

DATA AND SOFTWARE AVAILABILITY

D. melanogaster larval cell type RNA-Seq data are available from SRA and GEO under the accession number GEO: GSE120305.
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