
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Articles Open Access Publications by UMMS Authors 

2018-10-17 

Generation and characterization of monoclonal antibodies that Generation and characterization of monoclonal antibodies that 

recognize human and murine supervillin protein isoforms recognize human and murine supervillin protein isoforms 

Tara C. Smith 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Amino Acids, Peptides, and Proteins Commons, Cancer Biology Commons, Cell Biology 

Commons, Enzymes and Coenzymes Commons, Immunology and Infectious Disease Commons, and the 

Neoplasms Commons 

Repository Citation Repository Citation 
Smith TC, Saul RG, Barton ER, Luna EJ. (2018). Generation and characterization of monoclonal antibodies 
that recognize human and murine supervillin protein isoforms. Open Access Articles. https://doi.org/
10.1371/journal.pone.0205910. Retrieved from https://escholarship.umassmed.edu/oapubs/3628 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles 
by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://escholarship.umassmed.edu/oa
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/12?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1009?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/924?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1371/journal.pone.0205910
https://doi.org/10.1371/journal.pone.0205910
https://escholarship.umassmed.edu/oapubs/3628?utm_source=escholarship.umassmed.edu%2Foapubs%2F3628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


RESEARCH ARTICLE

Generation and characterization of

monoclonal antibodies that recognize human

and murine supervillin protein isoforms

Tara C. Smith1, Richard G. Saul2, Elisabeth R. Barton3, Elizabeth J. LunaID
1*

1 Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School,

Worcester, MA, United States of America, 2 Antibody Characterization Laboratory, Cancer Research

Technology Program, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD, United

States of America, 3 Applied Physiology & Kinesiology, College of Health & Human Performance, University

of Florida, Gainesville, FL, United States of America

* Elizabeth.Luna@umassmed.edu

Abstract

Supervillin isoforms have been implicated in cell proliferation, actin filament-based motile

processes, vesicle trafficking, and signal transduction. However, an understanding of the

roles of these proteins in cancer metastasis and physiological processes has been limited

by the difficulty of obtaining specific antibodies against these highly conserved membrane-

associated proteins. To facilitate research into the biological functions of supervillin, mono-

clonal antibodies were generated against the bacterially expressed human supervillin N-ter-

minus. Two chimeric monoclonal antibodies with rabbit Fc domains (clones 1E2/CPTC-

SVIL-1; 4A8/CPTC-SVIL-2) and two mouse monoclonal antibodies (clones 5A8/CPTC-

SVIL-3; 5G3/CPTC-SVIL-4) were characterized with respect to their binding sites, affinities,

and for efficacy in immunoblotting, immunoprecipitation, immunofluorescence microscopy

and immunohistochemical staining. Two antibodies (1E2, 5G3) recognize a sequence found

only in primate supervillins, whereas the other two antibodies (4A8, 5A8) are specific for a

more broadly conserved conformational epitope(s). All antibodies function in immunoblot-

ting, immunoprecipitation and in immunofluorescence microscopy under the fixation condi-

tions identified here. We also show that the 5A8 antibody works on immunohistological

sections. These antibodies should provide useful tools for the study of mammalian

supervillins.

Introduction

Cancer is the second leading cause of death in the United States and a major world-wide health

problem [1]. Since the signing of the National Cancer Act in 1971, significant advances have

been made in understanding how cancers arise and spread through the body, leading to novel

therapeutic approaches and significant improvements in treatment outcomes [2]. The onset

and metastatic spread of tumors involves the dysregulation of mechanotransduction, cell pro-

liferation, growth factor signaling, vesicle trafficking and actin filament-based motile
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processes, including cell adhesion, translocation, cytokinesis and invasion of the extracellular

matrix [3–8].

Isoforms of the membrane skeleton protein called supervillin are involved in each of these

tumor-associated cellular processes [9–23]. Supervillin co-activates transcription with the

androgen receptor [24–26], is up-regulated by estrogen [27], has been implicated in non-

BRC1/2 breast cancer [28], and regulates the survival of U2OS bone osteosarcoma cells by reg-

ulating the deubiquitination and stability of p53 [14]. Supervillin also associates with the +8a

isoform of the tumorigenic lysine-specific demethylase 1 (LSD1/KDM1A), an association that

regulates neuronal maturation by controlling the methylation state of histone 3 at lysine 9 [29].

Although the role of supervillin in tumorigenesis is currently unclear [28, 30], these interac-

tions suggest potential functions within the nucleus, as well as at the cytoplasm-membrane

interface.

Supervillin protein isoforms arise from differential splicing of the 35 coding exons in the

single human SVIL gene [12, 31, 32]. In nonmuscle cells, the most abundant splice-form is a

~205-kDa protein encoded by 31 exons [32–34]. This isoform was originally observed as an

actin-binding protein on blot overlays and referred to as p205 [34, 35]; this protein is now

called supervillin splice-form 1 or SV1 [14]. The largest supervillin isoform of ~250-kDa

(p250), now called archvillin or SV2, contains sequence from all 35 SVIL coding exons [14, 31,

32]. With respect to supervillin, archvillin contains two additional sequences inserted into the

supervillin N-terminus [31, 32]. Archvillin has so far been documented only in skeletal and

cardiac muscle, but one or more of its 4 differentially spliced, “muscle-specific” SVIL-encoded

exons are present in smooth muscle (SmAV or SV3) [15] and nonmuscle supervillin isoforms

(SV4, SV5) [10, 14].

Investigations of the localizations within tissues and endogenous binding partners of the

supervillin isoforms have been complicated by the difficulty of obtaining large amounts of spe-

cific antibodies. Mammalian supervillins are highly conserved, with consequently few anti-

genic sequences [31, 34, 36]. Affinity-purified rabbit polyclonal antibodies have been

generated against bovine SV1 amino acids 900–918 [34], human SV1 residues 1–340 [33] and

the large inserted sequence in human SV4 (residues 277–670) [37], but absolute specificity for

SVIL gene products is hard to obtain and variable among rabbits and bleeds (see below).

As part of the National Cancer Institute’s Antibody Characterization Program, we report

the generation and characterization of two murine and two rabbit monoclonal antibodies

against human SV1 amino acids 1 through 340. As a group, these antibodies are appropriate

for immunoblotting, immunoprecipitation, immunofluorescence and immunohistochemistry

of human and murine supervillin isoforms. These antibodies, as well as plasmids encoding

another three antibodies generated against the supervillin N-terminus, are being made avail-

able to the research community through the Developmental Studies Hybridoma Bank at the

University of Iowa.

Materials and methods

Antigen preparation

The construction of the pGEX-6P-1 vector containing the coding sequence for the first 340

amino acids of human supervillin (h340) has been described [33]. A soluble GST-h340 fusion

protein was obtained after expression in Rosetta2(DE3)pLysS bacteria (Novagen/EMD Milli-

pore, Billerica, MA). Transformed bacteria were grown to late log-stage, induced overnight at

30˚C with 0.2 mM isopropyl-β-D-1-thiogalactopyranoside, and purified on a column of gluta-

thione-Sepharose 4B (GE Healthcare Life Sciences, Piscataway, NJ). GST alone was produced

the same way to serve as a control in later assays. H340 protein was cleaved from GST-h340,
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using PreScission Protease (GE Healthcare Life Sciences) and dialyzed extensively against PBS

(150 mM NaCl, 19 mM NaH2PO4, 8.1 mM Na2HPO4, pH 7.4). Trace amounts of uncleaved

GST-h340 were removed with a second pass through glutathione-Sepharose 4B (GE Health-

care Life Sciences). H340 protein was sterilized by passage through a 0.22-μm syringe filter,

adjusted to 1 mg/ml in PBS, and stored as frozen aliquots until used as an immunogen for the

generation of polyclonal rabbit antisera and monoclonal murine hybridomas.

Monoclonal antibody production

Mouse monoclonal antibodies were produced by Precision Antibody, Inc. (Columbia, MD)

under the direction of the Antibody Characterization Lab (ACL) at Leidos Biomedical

Research, Inc. (Frederick, MD). The ACL is funded by the National Cancer Institute’s Clinical

Proteomic Technologies for Cancer initiative (CPTC) with the goal to provide reagents and

other critical resources to support protein/peptide measurement and analysis efforts and

thereby accelerate biomarker discovery and validation, cancer diagnostics development, and

therapeutics monitoring. The detailed protocol (SOP) used by Precision Antibody to immu-

nize mice and generate the monoclonal antibodies is available at http://antibodies.cancer.gov.

Briefly, Swiss Webster derived mice (SJL/J strain; females 5–7 weeks old) were immunized

with the target antigen (GST-h340) using a proprietary rapid, multiple immunization and

hybridoma development platform. After 17 days, target-specific Ab titers were determined by

ELISA (see below) against immobilized antigen by screening serial dilutions of the serum.

Once a sufficient titer was detected, splenocytes were harvested from immunized mice with

high serum titer to the target antigen and fused with a murine myeloma partner using a high

efficiency electrofusion procedure. Direct cloning was performed in a semi-solid, hypoxan-

thine-aminopterin-thymidine selection medium prior to screening, utilizing an automated

clone picking system. Supernatant from the resulting clonal hybridomas were subsequently

screened by ELISA (see below) against the target antigen (h340, GST-h340) and a counter-

screening antigen (GST). Positive clones with monoclonal antibodies specific to the target

antigen were expanded and cryopreserved. IgG isotypes were determined using 1/8000 dilu-

tions of ascites supernatants and Iso-Gold Rapid Mouse-Monoclonal Isotyping kits (Bioassay

Works, LLC, Ijamsville, MD). Culture supernatants were further tested for specificity and util-

ity in immunoblotting and immunofluorescence assays before final selection.

Clones 5A8 (CPTC-SVIL-3) and 5G3 (CPTC-SVIL-4) were grown in CELLine CL 1000 dis-

posable bioreactor flasks (INTEGRA Biosciences, Zizers, Switzerland) at Precision Antibody,

Inc. Secreted antibodies were purified by chromatography on affinity resins containing Protein

A (5A8) or Protein G (5G3). Clone 5A8 was eluted with 50 mM glycine, pH ~3; clone 5G3 was

eluted with 50 mM glycine, pH ~2.7. Both antibodies were neutralized by adding 1/10 volume

of 1 M Tris, 1.5 M NaCl, pH 8.0. After sterile filtration, these antibodies were stable for weeks

at 4˚C. For longer storage, the antibodies were diluted with equal volumes of sterile glycerol

and kept at -20˚C, or stored undiluted at -80˚C, with no obvious decline in efficacy.

ELISA and IgG concentration determinations

The ELISA method entailed coating 100 ng/well of GST-h340 antigen in sodium bicarbonate

buffer, pH 9.6, overnight at 4˚C on high-binding, polystyrene microtiter plates. Wells were

then rinsed with PBS and blocked for 1 h at room temperature with 3% milk, PBS. After wash-

ing plates 3 times with PBS, 0.05% Tween 20 (PBS-T), dilute mouse tail-bleed serum samples

(1:1000, 1:3000, 1:10000, 1:30000 and 1:100000) in 3% milk, PBS were applied to the plate for 1

h at room temperature as the primary antibody. The plate was then washed thrice with PBS-T

followed by the addition of secondary antibody (HRP goat anti-mouse IgG gamma chain

Monoclonal antibodies against supervillin
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specific) diluted 1:2000 and incubated for 1 h at room temperature. After washing plates 5

times with PBS-T, 3,3’,5,5’-tetramethylbenzidine substrate (100 μl) was added to each well and

allowed to develop for 15–20 min at room temperature. Plates were read at 620 nm.

Antibody concentrations in hybridoma supernatants were estimated using bio-layer infero-

metry (BLI). Monoclonal antibodies were captured with an anti-mouse IgG Fc biosensor

attached to the OctetR RED96 system (Pall ForteBio LLC, Fremont, CA). Signals were cali-

brated with a standard curve generated using total mouse IgG. Concentrations of purified anti-

bodies were estimated from absorbance measurements at 280 nm, as determined with a

Nanophotometer P300 spectrophotometer (Implen GmbH, Westlake Village, CA), and assum-

ing an extinction coefficient of 1.4.

Chimeric monoclonal antibody production

Hybridoma antibodies were sequenced from mouse hybridoma samples for clones 1E2, 2G3,

4A3, 4A8 and 5B8 using proprietary protocols. LakePharma (Belmont, CA) sequenced clones

1E2, 4A8 and 5B8; clones 2G3 and 4A3 were sequenced by Precision Antibody, Inc. PCR frag-

ments containing the variable region sequences were used as templates for molecular construc-

tion. The variable regions for clones 1E2 (CPTC-SVIL-1) and 4A8 (CPTC-SVIL-2) were PCR

amplified and cloned into pcDNA3.4 vectors, supplemented with rabbit IgG and rabbit kappa

constant sequences, to generate the final expression constructs (LakePharma). Each DNA con-

struct was scaled up for transfection and sequences were confirmed. A 0.1-liter transient pro-

duction was carried out in HEK293 cells (Tuna293TM Process) for each antibody. The

resulting monoclonal antibodies were purified by protein A affinity chromatography, eluted

with a low pH buffer, filtered through a 0.2-μm filter and stored in 100 mM HEPES, 100 mM

NaCl, 50 mM sodium acetate, pH 6.0.

Epitope mapping

Epitope mapping was carried out by PEPperPRINT GmbH (Heidelberg, Germany), using a

printed peptide microarray [38]. Each microarray contained 171 different peptides printed in

duplicate, representing the complete sequence of the h340 immunogen, with GSGSGSG link-

ers at the N- and C-termini to avoid truncated peptides. Linear 15-residue h340 peptides with

a peptide-peptide overlap of 13 amino acids were flanked by spots with a control HA peptide

(YPYDVPDYAG, 60 spots). Microarrays were blocked for 30 min with blocking buffer MB-

070 (Rockland Immunochemicals, Philadelphia, PA) and incubated preliminarily with second-

ary antibody (1:5000 goat anti-mouse IgG (H+L) DyLight680) to generate a secondary-only

background that was used as a blank for the specific signal. Specific interactions were gener-

ated by shaking microarrays at 140 rpm for 16 h at 4˚C with hybridoma supernatants diluted

1:10 and 1:1 in incubation buffer [90% PBS-T, 10% blocking buffer MB-070]. After washing,

slides were incubated 45 min with 1:5000 goat anti-mouse IgG (H+L) DyLight680 in incuba-

tion buffer, and signals were visualized using a LI-COR Odyssey Imaging System (LI-COR

Biosciences, Lincoln, NE), scanning offset 0.65 mm, resolution 21 μm, scanning intensities of

7/7. The HA peptides framing the peptide microarray were subsequently stained with 1:2000

mouse monoclonal anti-HA (12CA5) DyLight800 antibody as an internal quality control.

Microarray image analysis was performed using PepSlide Analyzer (PEPperPRINT) and aver-

aged spot intensities were calculated and plotted as a function of peptide localization in the

h340 sequence. The CLUSTAL Omega multiple sequence alignment tool [39] was used to

assess the relationships of the identified h340 epitopes and variable sequences with each other.

Monoclonal antibodies against supervillin
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KD determinations using BLI

Kinetic properties were measured by BLI using a label-free ForteBio Octet RED96e instrument

system (Pall Life Science, Port Washington, NY). All measurements were performed at 30˚C

in 96-well, black microplates (Greiner Bio-One, Monroe, NC; No. 655209) that were agitated

at 1000 rpm. All protocols were performed according to the manufacturer’s instructions.

Briefly, each antibody (20 μg/ ml) in 10 mM sodium acetate, pH 5, was covalently immobilized

on amine-reactive second-generation sensors (AR2G; Pall ForteBio) via EDC/NHS coupling

chemistry for 10 min. Excess reactive esters were blocked with 1 M ethanolamine, pH 8.5.

After a brief acid conditioning with glycine buffer, pH 2.0, the antibody-coupled biosensors

were neutralized in PBS-T. Kinetic measurements consisted of equilibration of the antibody-

coupled biosensors in PBS-T for 600 seconds, followed by a baseline reading for an additional

600 seconds. The sensors were then dipped into wells containing the h340 antigen at concen-

trations of approximately 2, 4, 8 and 16 nM in PBS-T for 600 seconds to measure the associa-

tion rate (on-rate). The sensors were then dipped into wells containing PBS-T for 600 seconds

to measure the dissociation rate (off-rate). Rate constants for each antibody were calculated by

applying a 2:1 interaction model (global fit, full) using the ForteBio data analysis software

7.0.1.5. Curves that could not be reliably fitted with the software (mostly full R2 < 0.96), were

excluded from further analysis. Equilibrium dissociation constant (KD) values were calculated

as the ratio of off-rate values to on-rate values.

Cell culture, transfection and cell extracts

HeLa and U2OS cells were cultured using DMEM (high glucose, Life Technologies, Grand

Island, NY) with 10% fetal bovine serum, sodium pyruvate, and 2.0 mM L-glutamine, in a

humidified 37˚C chamber with 5% CO2. Human rhabdomyosarcoma RH30 cells (American

Type Culture Collection #CRL2061) were grown similarly in RPMI-1640 medium modified to

contain 2 mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4500 mg/L glucose, 1.5

g/L sodium bicarbonate (American Type Culture Collection #30–2001), supplemented with

10% heat-inactivated fetal bovine serum. C57BL/6 murine embryonic fibroblasts (MEFs) were

the generous gift of Dr. Stephen Jones (University of Massachusetts Medical School). Cover-

slips were coated with 5 μg/ml bovine fibronectin (Sigma-Aldrich Corp., St. Louis, MO)

for� 1 h before plating with U2OS cells. Transfection of EGFP-hSV1 [14], EGFP- or Flag-

hSV4 [14] or EGFP-tagged murine archvillin (mAV, mSV2) [31] was carried out using Lipo-

fectamine 2000 (Life Technologies), according to the manufacturer’s instructions. The trans-

fection complexes were removed after 4 h. In knockdown experiments, we used Stealth

dsRNAs (Life Technologies), as previously reported [18]. Briefly, the supervillin-specific

dsRNA (SVKD) targeted hSV1 nucleotides 6016–6040 in the 3’-UTR: 50-TATTAAGGTAGAAA
GGTTGATT CGC-30; the scrambled control sequence was 50-GAACUAUGAAGGACCACCAGA
GAUA. Plasmids encoding EGFP-tagged fragments of the bovine supervillin (bSV) N-terminus

[19, 40] were transfected into RH-30 cells, as above. Cells were fixed or extracted 24 h after

transfection with plasmids, or 48 h after transfection with dsRNAs.

Cell extracts were prepared as previously described [19]. Briefly, cells were rinsed with cold

PBS, pH 7.4, then incubated on ice for 15 min in extraction buffer [150 mM sodium chloride,

50 mM Tris, pH 8.0, 1% Igepal CA 630, 0.5% deoxycholic acid, 0.1% SDS, 2 mM PMSF, and a

protease inhibitor cocktail (#P8340, Sigma-Aldrich)] before collection and centrifugation at

15,000 x g for 15 min at 4˚C. Extracts used for immunoprecipitation were made using extrac-

tion buffer lacking the 0.1% SDS.

Monoclonal antibodies against supervillin
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Other antibodies and stains

The affinity-purified polyclonal rabbit IgG used as a positive control was prepared and affinity

purified on GST-h340, as described previously [31, 33]. A monoclonal mouse anti-actin

(Clone C4, EMD-Millipore) was used to normalize supervillin signals in knockdown experi-

ments. Monoclonal mouse anti-GFP (mix of clones 7.1 and 13.1), mouse anti-Flag (M2) and

mouse anti-vinculin (hVIN-1) were from Sigma-Aldrich. Rabbit anti-Flag was from Cell Sig-

naling Technology (Beverly, MA). Affinity-purified rabbit polyclonal anti-myosin IIA anti-

body (Poly19098, previously Covance Catalog #PRB-440P) and the non-specific mouse IgG2a

were from BioLegend (San Diego, CA). Polyclonal rabbit anti-laminin was from Thermo-

Fisher Scientific (FB-082-A). Goat anti-mouse or anti-rabbit HRP conjugated secondary anti-

bodies used for chemiluminescent detection on immunoblots were from Jackson

ImmunoResearch (West Grove, PA). Mouse monoclonal 5A8 was coupled to QDots-655

according to the manufacturer’s instructions (ThermoFisher Scientific, Waltham, MA). For

immunofluorescence and immunohistochemistry, actin was visualized using Alexa Fluor-350

or -488 conjugated phalloidin (Life Technologies). Sarcolemmal costameres were stained with

rabbit polyclonal antibody against the dystrophin C-terminus (ab15277, abcam, Cambridge,

MA, USA). Secondary antibodies were goat-anti-mouse or anti-rabbit antibodies conjugated

to either Alexa Fluor-488 or Alexa Fluor-568 (Life Technologies), as appropriate. Nuclei were

stained using 4,6-diamidine-2-phenylindole dihydrochloride (DAPI, Sigma-Aldrich).

Immunoblotting

Purified h340 immunogen and HeLa cell extract were resolved as curtain gels by SDS-PAGE

(12% and 5–15% acrylamide, respectively) [41], transferred to 0.45-μm porosity Whatman

Protran nitrocellulose (Whatman GmBH, Dassel, Germany), and cut into ~3 mm strips for

immunoprobing with each hybridoma supernatant. Specificity for supervillin staining was

tested using extracts from U2OS cells treated with either a supervillin-specific (SVKD) or con-

trol dsRNA resolved as adjacent lanes on 5–15% gradient gels, before transfer to nitrocellulose,

as above. The replicate immunoblot strips contained molecular weight markers (RPN800E,

GE Healthcare Life Sciences) and one lane each of SVKD and control extracts. Testing for

immunoreactivity to murine supervillin was done on replicate blot strips of mouse embryonic

fibroblast extract prepared as above. For immunoblotting, hybridoma supernatants were

diluted 1:500 in blocking buffer (5% milk, 10 mM Tris-HCl, pH, 7.5, 166.5 mM NaCl, 0.05%

Tween 20), and incubated with blot strips for 2 h at room temperature before secondary anti-

body probing. Affinity-purified polyclonal rabbit anti-supervillin h340 antibody was used at

1:5000 as a positive control and to evaluate the level of knockdown. Actin was used as a loading

control to calculate percent knockdown [11]. Detection was by ECL [SuperSignal West Pico or

Femto reagents (Thermo Scientific, Rockford, IL)], according to the manufacturer’s instruc-

tions, on a Chemidoc MP Imaging System, using ImageLab software, version 4.1 (Bio-Rad Life

Science Research, Hercules, CA) [20].

Immunoprecipitation

Cell extract was prepared, as above, from a single 10-cm dish of U2OS cells expressing EGFP-

hSV1 for 24 h, and aliquots were divided equally among each antibody or control. Immuno-

precipitations were carried out using protein A or G Dynabeads according to the manufactur-

er’s instructions (ThermoFisher Scientific). Briefly, 1 ml of hybridoma supernatant or control

blank medium was mixed with 50 μl pre-washed protein G-coated Dynabeads for 1 hour with

gentle rotation at room temperature. For IP of endogenous supervillin, 15 μg of antibody was

mixed with 50 μl pre-washed protein A (rabbit IgGs) or protein G (mouse IgGs) on

Monoclonal antibodies against supervillin
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Dynabeads, as above. The beads were magnetically separated and the supernatant removed,

then incubated in 200 μl of cell extract for 1 h at room temperature. After removal of the

unbound supernatant, the beads were washed twice with half-strength TBST before being

resolved on a 5%-15% SDS-PAGE gel, transferred to nitrocellulose, and probed with mouse

anti-GFP or the chimeric rabbit 1E2 IgG. Development of the EGFP signal with HRP-conju-

gated anti-mouse antibody visualized both EGFP-hSV1 and the murine monoclonal heavy

and light chains. Densitometric analyses were performed using ImageLab software (Bio-Rad).

The percentages of immunoprecipitated EGFP-hSV1 were calculated by ratio to the amount of

input EGFP-hSV1 and then normalized to the 5A8 clone via the immunoglobulin heavy chain

signals. Percentages of bound endogenous supervillin were calculated by ratio of Unbound to

Input signals.

Immunofluorescence microscopy

Cells on coverslips were rinsed with room temperature PBS before fixation. For most experi-

ments, fixation was with 4% paraformaldehyde (PFA) in CSK buffer (10 mM PIPES, pH 6.8,

300 mM sucrose, 100 mM sodium chloride, 3 mM magnesium chloride, 1 mM EGTA) [42] for

30 min on ice (CSK-PFA). The cells were then permeabilized at room temperature with 0.1%

Triton X-100 in CSK buffer for 15 min. Other fixation methods tested included ice-cold meth-

anol for 15 min (methanol), and 4% PFA in PBS for 10 min at room temperature [18]. Fixed

cells were permeabilized with 0.1% Triton X-100 in CSK buffer for 4 min before incubation in

blocking buffer (138 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.2 mM KH2PO4, 1% BSA,

0.5% Tween-20) for 30 min at room temperature. For staining, the hybridoma supernatants

were diluted 1:5 in blocking buffer overnight at 4˚C, or the purified monoclonal antibodies

were used at 100 μg/ml for 2 h at room temperature. The coverslips were rinsed three times

with blocking buffer before staining with appropriate secondary reagents and mounted onto

slides with either SlowFade or ProLong Gold (Life Technologies).

Micrographs were obtained with a Leica DMI 6000B inverted fluorescence microscope

with a 63X HC PL APO oil lens (N.A. 1.40) and a Leica DFC 365 FX camera, using Leica

Application Suite 6000 software (Leica Microsystems, Exton, PA). Images were uniformly

adjusted and assembled into figures using Adobe Photoshop (Adobe Systems Inc., San Jose,

CA) software.

Animals

Mice and rats were sacrificed by CO2 inhalation and cervical dislocation in accordance with

procedures approved by the Institutional Animal Care and Use Committees at the University

of Florida and the University of Massachusetts Medical School.

Immunohistochemistry

Ten-micrometer frozen cross-sections from rat soleus muscle samples or murine extensor

digitorum longus (EDL) muscles were fixed for 10 min with 4% PFA, washed and blocked, as

described previously [21]. Sections to be labeled with unconjugated primary antibody were

fixed as above, or in 4% PFA in CSK buffer on ice for 50 min, or in ice-cold methanol for 15

min, followed by permeabilization in 0.5% Triton X-100 in CSK buffer for 10 min. All tissue

sections were incubated in immunofluorescence blocking buffer containing 5% normal goat

serum (Jackson ImmunoResearch) for 30 min at room temperature. Mouse tissue sections

were subjected to an additional blocking step with 0.1 mg/ml of unconjugated AffiniPure F

(ab) fragment goat anti-mouse IgG (H+L) (Jackson ImmunoResearch) in blocking buffer for 1

h at room temperature. Primary antibodies were diluted to 0.1 mg/ml in blocking buffer with
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5% goat serum, and QDot655-coupled clone 5A8 was diluted 1/100 before incubation for

either 2 h at room temperature or overnight at 4˚C. Slides were rinsed three times with the

blocking buffer before incubation with the appropriate secondary reagents. Final rinsing was

three times with PBS-T before mounting.

For confocal imaging, longitudinally sliced rat soleus muscle was stained as described

above. Sarcolemmal costameres were imaged on a Leica SP5 (II) AOBS laser scanning confocal

microscope (Leica Microsystems, Exton, PA) with an HCX PL APO CS 40.0X oil UV lens (N.

A. 1.30), using Leica Confocal Software (Leica Microsystems). Thirty-three optical z-sections

of 0.29 μm were obtained sequentially for each color channel through 10 μm, processed using

maximum intensity projection and assembled using Adobe Photoshop.

Results

Seven murine monoclonal antibodies specific for the first 340 amino acids in human supervil-

lin (h340) were identified by ELISA, immunoblotting and immunoprecipitation. Hybridoma

supernatants were first screened in an ELISA format to confirm that they reacted preferentially

with the h340 immunogen, relative to a GST control (Table 1).

Efficacy in immunoblotting was then assessed using nitrocellulose strips containing either

electrotransferred h340 immunogen (Fig 1A) or extracts from human cervical adenocarci-

noma HeLa cells (Fig 1B), which contain primarily SV1 [14]. Ten of 16 tested hybridomas

detected the ~38-kDa h340 polypeptide (Fig 1A), but only the 7 antibodies in Table 1 also rec-

ognized the endogenous ~205-kDa human SV1 (Fig 1B, SV1). The 3 antibodies that recog-

nized only the h340 immunogen (not shown) were discarded without further testing. A recent

preparation of affinity-purified rabbit anti-h340 antibody (Rb-α-h340) served as a positive

control (Fig 1A–1D). The strongest signals were detected with the 1E2 and 5A8 clones, with

moderate signals from clones 2G3, 5B8 and 4A8, and weaker signals from clones 4A3 and

5G3. There was no obvious correlation between immunoblot signal intensity and the amounts

of IgG estimated by BLI (Table 1).

To confirm the specificities of these seven hybridoma supernatants, we examined their

reactivities with human hSV1 and hSV4 in extracts from U2OS cells treated with either a well-

documented supervillin-specific dsRNA (SVKD) or a scrambled control dsRNA in replicate

immunoblot strips (Fig 1C) [14, 18]. Knockdown of supervillin to ~67% of the amount in con-

trol lysates was confirmed using the Rb-α-h340 antibody [33], with actin as a loading control.

Both the SV4 and SV1 bands were reduced after treatment with the SVKD dsRNA, but the

intensity of a ~160-kDa molecular mass band was unaffected (Fig 1C, first two lanes). Impor-

tantly, this nonspecific ~160-kDa band was not recognized by any of the 7 tested hybridoma

Table 1. ELISA screen of anti-supervillin monoclonal antibodies.

Clone # h340 GST-h340 GST [IgG] (μg/ml) IgG isotype

1E2 > 3.000 > 3.000 2.208 14.7 IgG1

2G3 >3.000 >3.000 1.068 8.8 IgG1

4A3 2.64 2.544 0.61 13.6 IgG1

4A8 2.815 2.555 0.553 7.3 IgG1

5A8 2.939 > 3.000 1.063 14.7 IgG2a

5B8 >3.000 2.858 0.781 3.83 IgG2a

5G3 > 3.000 > 3.000 1.036 13.5 IgG1

NC 0.061 0.067 0.074 0.0

NC: negative control.

https://doi.org/10.1371/journal.pone.0205910.t001
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supernatants (Fig 1C). Although their signals in control lanes varied, all 7 hybridoma superna-

tants showed reduced staining for both SV1 and SV4 in extracts from SVKD cells (Fig 1C).

Clones 5A8, 5B8 and to a lesser extent, 4A8 also recognized a high molecular mass supervil-

lin isoform on replicate immunoblot strips of murine embryonic fibroblasts (MEFs) (Fig 1D).

No signals were detected with the other 4 clones.

To confirm usefulness for immunoprecipitation, we tested the antibodies for their ability to

recover EGFP-tagged hSV1 from a U2OS cell lysate (Fig 1E). Hybridoma medium alone was

used as a negative control; the corresponding lane (medium) showed no sign of EGFP-hSV1

binding. All clones, except for 5G3, immunoprecipitated EGFP-hSV1 (Fig 1E). We noted that

different amounts of murine IgG heavy (HC) and light (LC) chains were present in the immu-

noprecipitates, as revealed by the goat anti-mouse secondary antibody at ~50 kDa and ~25

kDa, respectively. Those amounts did not correspond with the calculated IgG amounts in

Table 1 (1E2 and 5A8 should have equal amounts), suggesting variable affinities for the protein

G beads. We thus calculated relative immunoprecipitation efficiencies from the ratio of bound

EGFP-hSV1 to input EGFP-hSV1 (% IP, Fig 1E) and normalized to the amount of IgG heavy

Fig 1. Monoclonal antibody reactivities in immunoblots and immunoprecipitations. Seven new monoclonal

antibodies recognized human supervillin N-terminal sequences; three also recognized murine supervillin on

immunoblots; six are efficacious for immunoprecipitation. Results of immunoblotting curtain-blot strips containing

(A) the h340 immunogen resolved on a 12% SDS-gel, or (B) a HeLa whole cell lysate resolved on a 5–15% SDS-gel,

with each of the new mouse monoclonal antibodies. Rabbit polyclonal anti-h340 was used as a positive control (Rb-α-

h340); hybridoma medium as a negative control. Antibody reactivities are shown with equivalent exposure times after

probing with equivalent dilutions of hybridoma supernatants. (C) Replicate blot strips were produced of cell extracts

from human U2OS osteosarcoma cells transfected with either control (Control) or SVIL-specific (SVKD) dsRNA. The

percentage of supervillin remaining after knockdown was 60%, based on probing with Rb-α-h340; total actin served as

a loading control. (D) Curtain immunoblot strips of an extract from mouse embryonic fibroblasts (MEF extract),

showing recognition of murine supervillin by clones 4A8, 5A8, and 5B8. (E) Co-immunoprecipitation of EGFP-hSV1

from a U2OS cell lysate by each monoclonal antibody coupled to protein G Dynabeads. Immunoprecipitated protein

was visualized with mouse anti-GFP. An equal volume of hybridoma medium was the negative control (neg cntl). The

percentages of immunoprecipitated EGFP-hSV1 were calculated from the ratio of normalized sedimented-to-input

GFP signals, as described in Materials and Methods. HC, LC denote the locations of murine IgG heavy and light

chains, respectively. Molecular weight markers in kDa, as indicated.

https://doi.org/10.1371/journal.pone.0205910.g001
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chain (HC), using 5A8 as the baseline. The results suggest that all clones, except 5G3, will pre-

cipitate EGFP-hSV1 and that clones 1E2, 5A8 and 5B8 are the most efficient.

The locations of the epitopes within the immunogen were interrogated by epitope mapping

of each hybridoma supernatant with a printed microarray of 117 linear peptides [43, 44].

Clones 1E2, 2G3, 4A3 and 5G3 reacted with a range of avidities to overlapping peptides,

including IENQRRGQELSATRQ and ELSATRQAHDLSPAA (Fig 2A). Clone 1E2 showed the

Fig 2. Epitope mapping. Seven monoclonal antibodies recognize two antigenic sequences in the supervillin N-terminus. (A) Superimposed representative

intensity maps of signals from linear peptide microarrays showing that clones 1E2, 2G3, 4A3 and 5G3 recognize the consensus motif (SA)TRQAHDL, residues

215–223 in hSV1. Peptide overlap makes the requirement for the first two amino acids uncertain. (B) Amplification of the 5A8 intensity map suggests weak

binding of clone 5A8 to AERRRQLAEKYGLTL, amino acids 110–124 in hSV1. (C) Recognition on immunoblots of overexpressed, truncated GFP-tagged bovine

SV1 (bSV1) proteins in RH30 cell lysates shows that murine hybridoma supernatants (M) 5A8, 4A8 and 5B8 all recognize bSV1-174 and bSV1-127, but not bSV1-

101 (D) Alignments showing the sequence conservation of the (SA)TRQAHDL and AERRRQLAEKYGLTL epitopes in mammalian supervillins. Species

(reference sequence number): Human (NP_003165.2), African green monkey (ABA56494.1), cow (NP_776615.1), ferret (XP_012904085.1), rabbit

(XP_008266240.1), mouse (NP_001334378.1), rat (NP_001101886.2).

https://doi.org/10.1371/journal.pone.0205910.g002
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highest avidity, followed by clone 2G3, and then clones 4A3 and 5G3. Thus, all these clones

recognize a linear epitope; the predicted consensus motif is SATRQAHDL, which are residues

215–223 in hSV1. Clones 4A8 and 5B8 exhibited no detectable response to any of the tested

linear peptides, whereas clone 5A8 reacted weakly with the single peptide AERRRQLAE-

KYGLTL, which corresponds to amino acids 110–124 in hSV1 (Fig 2B). These results suggest

that the epitope(s) for clones 4A8, 5A8 and 5B8 are conformational, but may involve hSV1 res-

idues 110–124. We tested this possibility by probing immunoblots of EGFP-tagged bovine

supervillin (bSV1) truncation mutants [19] expressed in RH30 cells (Fig 2C). Anti-GFP recog-

nized residues 1–174, 1–101 and 1–127 with nearly the same intensity (Fig 2C, top), but clones

5A8, 4A8 and 5B8 recognized only bSV1-127 and, to a lesser extent, bSV1-174 (Fig 2C). Thus,

these 7 hybridomas fall into two groups (Fig 2D). Group 1 consists of clones that recognize the

SATRQAHDL sequence, which is not well conserved among mammalian species, whereas

Group 2 recognizes one or more conformational epitopes that require a highly conserved

sequence within hSV1 amino acids 101–127 (Fig 2D).

The protein sequences of five of the hybridoma clones also fell into two groups (Table 2, S1

Fig). When the hybridoma clones, except for 5A8 and 5G3, were lost in a freezer failure,

mRNA was extracted from vials of the lost clones, and the variable regions of the light and

heavy chains were obtained by PCR amplification and DNA sequencing (Table 2). The variable

heavy chain regions of the Group 1 clones 1E2, 2G3 and 4A3 were 91.4% identical, and the var-

iable regions of their light chains were 60.2% identical. Furthermore, the lengths were identi-

cal, except for a 1-amino acid insertion in the 4A3 variable light chain sequence (S1 Fig). The

variable sequences in 4A8 and 5B8 were divergent from the other clones and showed moderate

similarity with each other. The 4A8 and 5B8 variable heavy and light chain regions were 64.2%

and 55.0% identical, respectively, with a 9-amino acid insert in the 5B8 heavy chain variable

region and a 5-residue insert in the 4A8 variable light chain region (S1 Fig). Two chimeric

antibodies were then generated by cloning the 1E2 and 4A8 variable regions into pcDNA3.4

vectors containing sequences encoding rabbit IgG and rabbit kappa chain constant regions,

co-expressing heavy and light chains in HEK293 cells and purifying each antibody on a protein

A column. The resulting chimeric antibodies, one each from Group 1 and Group 2, are recog-

nized by antibodies against rabbit IgG constant regions and used in parallel with purified

murine monoclonal antibodies 5A8 and 5G3 in subsequent analyses.

We used BLI association and disassociation curves to determine the kinetic binding proper-

ties of chimeric (rabbit Fc) 1E2 and 4A8 antibodies and murine monoclonal 5A8 and 5G3

antibodies (Fig 3, Table 3). Both chimeric antibodies (1E2, 4A8) bound to the h340 immuno-

gen with nanomolar KDs, confirming that the correct antibody variable regions had been

cloned in each case (Fig 3A and 3B). The highest peak responses were observed for antibodies

1E2 and 5A8, with ~4 nM of each generating responses of 0.1336 and 0.1218, respectively (Fig

Table 2. Accession numbers of sequenced clones.

Accession Numbers

Clone ID Group LC Variable Region HC Variable Region

1E2 1 MH114969 MH114970

2G3 1 MH114971 MH114972

4A3 1 MH114973 MH114974

4A8 2 MH114975 MH114976

5B8 2 MH114977 MH114978

LC, light chain; HC, heavy chain. Immunoglobulin variable regions, partial CDS

https://doi.org/10.1371/journal.pone.0205910.t002
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3A and 3C). Antibodies 4A8 and 5A8 exhibited the tightest, subnanomolar binding constants

(Fig 3B and 3C; Table 3). Surprisingly, given the differences in their relative reactivities on

immunoblots and in immunoprecipitations (Fig 1), binding properties for h340 were similar

for antibodies 1E2 and 5G3 (Fig 3A and 3D; Table 3). These subnanomolar and nanomolar

KDs support the utility of each of these four antibodies for immunological applications.

We determined conditions for detecting the known isoforms of human and murine super-

villins using an immunofluorescence microscopy screen and found that the new antibodies

have distinct fixation requirements (Figs 4–7). To create cells with and without high

Fig 3. Kinetic binding curves. Binding to surface-bound h340 immunogen by (A) 4, 8 and 16 nM chimeric (rabbit Fc)

monoclonal 1E2, R2 = 0.983, (B) 7.8 and 15.6 nM chimeric monoclonal 4A8 antibody, R2 = 0.965, (C) 1.95, 3.9 and 7.8

nM murine monoclonal 5A8, R2 = 0.997, and (D) 4, 8 and 16 nM murine monoclonal 5G3 antibody, R2 = 0.993.

Calculated binding and dissociation curves are shown in red, as is the time of peak response. The calculated values for

KD, kON and kOFF are summarized in Table 3.

https://doi.org/10.1371/journal.pone.0205910.g003

Table 3. Binding constants to h340 of anti-supervillin antibodies.

Clone Isotype Epitope Group KD (nM) KON (1/Ms) KOFF (1/s)

(x 10−5) (x 104)

1E2 Rb IgG 1 4.21 1.18 4.96

4A8 Rb IgG 2 0.73 4.07 2.96

5A8 M IgG2a 2 0.53 7.28 3.87

5G3 M IgG1 1 3.22 1.50 4.85

Ms, moles/l • time (sec); Rb, rabbit IgG constant regions; M, mouse IgG constant regions.

https://doi.org/10.1371/journal.pone.0205910.t003

Monoclonal antibodies against supervillin

PLOS ONE | https://doi.org/10.1371/journal.pone.0205910 October 17, 2018 12 / 24

https://doi.org/10.1371/journal.pone.0205910.g003
https://doi.org/10.1371/journal.pone.0205910.t003
https://doi.org/10.1371/journal.pone.0205910


concentrations of defined supervillin isoforms, we transfected U2OS osteosarcoma or RH30

rhabdomyosarcoma cells with plasmids encoding EGFP-hSV1, EGFP- or Flag-tagged hSV4, or

GFP-mSV2 (murine supervillin, isoform 2; archvillin; MAV) [14, 31]. We used phalloidin

staining as a marker for actin filaments as a reference for known supervillin localizations along

stress fibers and at focal adhesions in PFA-stained cells and as a marker for cytoplasm after fix-

ation with methanol. We looked for corresponding cell-to-cell differences in staining intensi-

ties and for the alignment of the EGFP or Flag reactivity with each anti-supervillin monoclonal

antibody. We tested two cell-fixation methods: (1) -20˚C methanol and (2) 4% PFA in either

PBS or CSK buffer [42]. Images were obtained at optimal exposure times for each antibody.

Sample images are shown in Figs 4 through 7, and the results from these screens and from

experiments with endogenous supervillin are summarized in Table 4 below.

We found that the chimeric 1E2 antibody, which recognizes Epitope 1, visualized both

hSV1 and hSV4 under both fixation conditions (Fig 4). Recognition of hSV1 was strong after

cells were fixed with either CSK-PFA (Fig 4A, a-c) or methanol (Fig 4A, d-f). The 1E2 signals

co-localized almost perfectly with the EGFP fluorescence (Fig 4A, b and e vs. Fig 4A, a and d;

arrowheads), suggesting specificity. Recognition of the 1E2 epitope at hSV1 amino acids 215–

223 (Fig 2D) was unaffected by the insertion of the additional amino acid sequences after

hSV1 residue 276 that characterize hSV4 and other supervillin splice-forms [10, 14, 15, 31]

Fig 4. Representative immunofluorescence micrographs with chimeric rabbit 1E2 antibody (Rb 1E2). Co-

localization of Rb 1E2 with (A) EGFP-hSV1 and (B) flag-hSV4 after overexpression in RH30 cells and fixation with

either (a-c) CSK-PFA or (d-f) methanol. Cells transfected with the indicated supervillin isoform (panels a, d) were

immunostained with the chimeric (rabbit Fc) monoclonal antibody 1E2 (panels b, e) and counterstained with

phalloidin (panels c, f). Size bars, 20 μm. Note the close correspondence of the 1E2-staining with that of the EGFP or

Flag tag on both hSV1 and hSV4 (arrowheads).

https://doi.org/10.1371/journal.pone.0205910.g004
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(Fig 4B). Thus, the chimeric 1E2 antibody should recognize Epitope 1 in all these splice-forms

of human and primate supervillins.

The chimeric 4A8 antibody, which requires sequences around the highly conserved Epitope

2 for binding (Fig 2C and 2D), recognizes mSV2, as well as hSV1 and hSV4 (Fig 5), suggesting

utility across mammalian supervillins. However, our experiments suggest that methanol fixa-

tion is preferable for this antibody (Fig 5A, 5B and 5Cb) because PFA fixation frequently

resulted in a weak or nonspecific signal (Fig 5Ce).

The 5A8 mouse monoclonal antibody, which also recognizes Epitope 2 (Fig 2), predictably

recognizes both human and murine supervillin proteins (Fig 6). In contrast to observations

with the chimeric 4A8 antibody, the 5A8 antibody recognized supervillin only after PFA fixa-

tion (Fig 6); no immunofluorescence signals were observed with methanol-fixed cells (not

Fig 5. Representative immunofluorescence micrographs with chimeric rabbit 4A8 antibody (Rb 4A8). Co-

localization of Rb 4A8 with (A) hSV1, (B) hSV4 and (C) mSV2 (murine archvillin) overexpressed in RH30 cells fixed

with -20˚C methanol. Cells transfected with an EGFP-tagged supervillin protein (panels a, d), as shown, were

immunostained with the chimeric (rabbit Fc) monoclonal antibody 4A8 (panels b) and counterstained with phalloidin

(panels c). Size bars, 20 μm. Note the close correspondence of the 4A8 staining with that of EGFP on each supervillin

protein tested (arrowheads). After PFA fixation, little or no specific signal was observed (C, panels d-f, arrows).

https://doi.org/10.1371/journal.pone.0205910.g005
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shown). Thus, the 5A8 and 4A8 antibodies may be complementarily useful for immunofluo-

rescence of murine supervillin isoforms, with epitopes differentially sensitive to fixation tech-

nique. Because 4A8 is recognized by anti-rabbit secondary antibodies, whereas 5A8 is a

murine monoclonal (Table 3), these antibodies also provide the capability to co-localize mam-

malian supervillins with proteins recognized by either anti-mouse or anti-rabbit primary

antibodies.

The mouse monoclonal 5G3 antibody, like the chimeric 1E2 antibody, recognizes Epitope

1, which means that its efficacy is limited to supervillins from humans or other primates (Fig

2). We find that, also like the chimeric 1E2 antibody (Fig 4), the 5G3 antibody recognizes both

hSV1 and hSV4 after fixation with PFA in CSK buffer (CSK-PFA, Fig 7A, a-c; 7B, a-c), hSV1

fixed with PFA in PBS (PBS-PFA, Fig 7A, d-f), or hSV1 fixed with ice-cold methanol (Metha-

nol, Fig 7A, g-i). Despite its poor showing in immunoblotting (Fig 1), the 5G3 antibody effec-

tively recognized human supervillin isoforms in immunofluorescence and can be used for

experiments involving primate supervillins when a murine secondary antibody is preferable.

To determine antibody efficacy with endogenous levels of supervillin isoforms, we first

tested each antibody for the ability to immunoprecipitate endogenous protein from human

RH30 cells (Fig 8). Antibodies 1E2, 4A8, 5A8 and 5G3 all efficiently immunoprecipitated

endogenous supervillin, leaving little in the unbound fraction (Fig 8A, lanes 3, 4, 6, 7). By

Fig 6. Representative immunofluorescence micrographs with murine monoclonal 5A8 antibody (M 5A8). Co-

localization of M 5A8 with EGFP-tagged, overexpressed (A) hSV1, (B) hSV4 and (C) mSV2 (murine archvillin) in

U2OS cells fixed with CSK-PFA. No specific signal was detected after fixation with -20˚C methanol. Cells transfected

with an EGFP-tagged supervillin protein (panels a), as noted, were immunostained with the 5A8 antibody (panels b)

and counterstained with phalloidin (panels c). Size bars, 20 μm. Note the close correspondence of the 5A8-specific

staining with that of EGFP on each supervillin protein tested (arrowheads).

https://doi.org/10.1371/journal.pone.0205910.g006
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contrast, essentially no supervillin was recovered with either the rabbit IgG (Rb-IgG, Fig 8A,

lane 2) or with murine IgG2a (Fig 8A, lane 5) used as negative controls.

The best staining of endogenous supervillin in human U2OS cells by immunofluorescence

microscopy was obtained with the chimeric 1E2 clone (Fig 9). Each antibody was tested for the

ability to recognize endogenous supervillin at focal adhesions (marked by vinculin) and along

stress fibers (marked by myosin IIA) in U2OS cells plated on fibronectin and fixed with

CSK-PFA. We looked for co-localizations along actin filament bundles (Fig 9, panels c), which

were likely stress fibers based on the myosin II signal in these cells (Fig 9Aa, arrow; Fig 9Ba),

Fig 7. Representative immunofluorescence micrographs with murine monoclonal 5G3 antibody (M 5G3). Co-

localization of M 5G3 with EGFP-tagged, overexpressed (A) hSV1 and (B) hSV4 in U2OS cells fixed with CSK-PFA,

PBS-PFA or methanol, as indicated. The 5G3 antibody recognizes the Group 1 epitope, which is absent from non-

primate supervillins. Cells expressing EGFP-hSV1 or EGFP-hSV4 (panels a, d) were immunostained with the murine

monoclonal 5G3 antibody (panels b, e) and counterstained with phalloidin (panels c, f). Size bars, 20 μm. Note the

close correspondence of the 5G3-specific staining (M 5G3) with that of EGFP on hSV1 and hSV4 (arrowheads).

https://doi.org/10.1371/journal.pone.0205910.g007

Table 4. Summary of antibody reactivities in immunofluorescence microscopy.

Clone cPFA

GFP-hSV1

Methanol

GFP-hSV1

GFP/flag-hSV4 GFP-mSV2 Endogenous signal

Rb 1E2 Yes Yes Yes No Yes

Rb 4A8 Weak Yes Yes� Yes� Weak or No

M 5A8 Yes No Yes Yes Yes

M 5G3 Yes Yes Yes n.d. Weak or No

Rb, rabbit IgG constant regions; M, mouse constant regions; cPFA, paraformaldehyde fixation in CSK buffer; methanol, fixation with -20˚C methanol

�, methanol-fix only; n.d., not determined (epitope not in mSV2).

https://doi.org/10.1371/journal.pone.0205910.t004
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and for foci at the ends of these structures (Fig 9Aa, arrowheads) that are presumptive focal

adhesions, based on vinculin signals [45, 46]. Both of these cellular structures are known to

contain supervillin [23, 47]. Consistent with its colocalization with overexpressed hSV1 and

hSV4 (Fig 4), 1E2 co-stained some vinculin foci (Fig 9Aa-b, Fig 9Bb, arrowheads) and local-

ized along interior actin filaments associated with vinculin foci, presumably stress fibers (Fig

9Aa, arrow). These signals were not observed with either the rabbit or murine IgG controls

(Fig 9Ca and 9Cb). Staining with the other three clones was not distinctive (not shown), but

their efficacies with overexpressed supervillin isoforms suggests either a problem of antigen

abundance or availability when incorporated into complex structures. These results suggest

that while each antibody may be useful for immunostaining of endogenous supervillin in some

experimental contexts, 1E2 is preferable for endogenous human supervillin, with 5A8 or 4A8

required for staining in non-primate species.

Table 4 summarizes the results from Figs 4 through 7 and Fig 9. We found that chimeric

rabbit (Rb) 1E2 or mouse (M) monoclonal 5A8 were the best choices for most immunofluores-

cence experiments. Both are excellent reagents for human supervillin proteins; together, they

provide flexibility in double-labeling experiments with other desired antibodies. Mouse mono-

clonal 5A8 is the best choice for PFA-fixed non-human samples. The chimeric rabbit 4A8 is

the only antibody that will visualize non-primate supervillins after methanol fixation.

The last application tested was immunohistochemistry. Both murine-reactive clones

(mouse 5A8 and rabbit 4A8) were tested on rat and mouse skeletal muscle cross-sections fixed

with PFA (Fig 10). Skeletal muscle is known to be enriched in the SV2 / archvillin isoform

mRNA and protein, as compared to other tissues, and the localization of archvillin with dys-

trophin at the sarcolemmal membrane is well documented [21, 31, 32]. In an attempt to avoid

non-specific staining with secondary antibodies, the 5A8 antibody was labeled directly with

Qdot655 (Fig 9A), and its localization examined in reference to nuclei and phalloidin staining.

Sections showed intense puncta surrounding the muscle fibers at the sarcolemma. Because

Qdot penetration into cells can be an issue [48], we also stained rat (Fig 10B) and mouse mus-

cle sections (Fig 10C) with unlabeled 4A8 and 5A8 antibodies and compared the resulting sig-

nals with those from sections stained with non-specific primary antibodies of the same

isotype. Unfortunately, the signal from the rabbit 4A8 clone was indistinguishable from the

control antibody on muscle sections fixed with methanol (not shown). In contrast, the signal

from the mouse 5A8 antibody (Fig 10B, 10C) was similar to that of the QDot655 labeled 5A8

(Fig 10A), which resembled a subset of the previously observed sarcolemmal staining [31].

Longitudinal sections of unfixed rat muscle showed both linear and punctate sarcolemmal

staining with 5A8 (Fig 10D and 10E). This 5A8 staining co-localized with dystrophin at costa-

meres (Fig 10E, arrows), supporting its effectiveness for immunohistochemical staining of

supervillin isoforms.

Discussion

We describe here the generation and characterization of four new monoclonal antibodies reac-

tive with N-terminal sequences shared among supervillin isoforms. Two antibodies (1E2/

CPTC-SVIL-1; 5G3/CPTC-SVIL-4) recognize a primate-only sequence in hSV1 amino acids

215–223, whereas the other two antibodies (4A8/CPTC-SVIL-2; 5A8-CPTC-SVIL-3) recog-

nize an evolutionarily conserved conformational epitope that requires hSV1 residues 101 to

127. One antibody in each pair is a murine monoclonal, and the second is a chimeric monoclo-

nal antibody recognized by anti-rabbit secondary reagents. All four antibodies work for immu-

noblotting and immunoprecipitation of endogenous supervillin. Three antibodies (1E2, 4A8,

5A8) are effective in immunofluorescence microscopy under conditions identified here, and
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the 5A8 antibody recognizes endogenous protein in immunohistological sections of mouse

and rat muscle.

Especially in pairs, these antibodies will be useful for most investigations involving supervil-

lin. The chimeric rabbit 1E2 antibody and the murine 5A8 antibody performed the best in

experiments with human or other primate supervillin isoforms. Each antibody specifically rec-

ognizes one of the two identified antigenic sequences in the supervillin N-terminus, which is

shared among supervillin isoforms, and each was efficacious in all tested assays with human

supervillins. For murine or rat samples, chimeric rabbit 4A8 and murine 5A8 are the best

choices. Each of these antibody pairs gives the investigator the choice of using an anti-rabbit or

an anti-mouse secondary reagent, which can be useful for co-immunolocalization experiments

with other antigens. Another consideration for immunofluorescence co-localizations is that

the chimeric rabbit 4A8 antibody works most consistently after methanol fixation, whereas the

murine 5A8 clone works best after PFA fixation in CSK buffer.

Although less effective than the other three antibodies in all tested assays, the murine 5G3

antibody does immunoprecipitate endogenous supervillin and recognize overexpressed

human supervillin in immunofluorescence microscopy. The 5G3 binding affinity for the h340

antigen is comparable to that of the chimeric rabbit 1E2, so the reasons for the differences in

efficacy in immunoblotting, immunofluorescence and immunoprecipitation, e.g. Fig 1E vs.

Fig 8, are unclear. One possibility is that N-terminal EGFP or various supervillin interactors

differentially block access to the 5G3 epitope. Nevertheless, the mouse monoclonal 5G3 clone

could be useful in experiments that require two different anti-supervillin antibodies, such as

for immunoprecipitation of complexes containing human supervillin with one antibody and

probing for supervillin in the precipitates by immunoblotting with the other.

The differences in efficiencies among these antibodies could have interesting underlying

causes. For instance, the highly conserved Epitope 2 is very close to the sequence in supervillin

that binds to the nonmuscle myosin II heavy chain [19]. Shielding of the epitope by binding to

Fig 8. Each of the new monoclonal antibodies immunoprecipitates endogenous human supervillin. Bound and

unbound supervillin from an RH30 cell lysate are shown after immunoprecipitations with the antibodies indicated at

the top of the figure, SDS-PAGE and immunoblotting with Rb 1E2 antibody. Large amounts of supervillin (>90%) co-

pelleted with each specific antibody in the bound fractions (top). Input (lane 1) is shown with the unbound fractions,

all of which showed signal depletion after incubation with supervillin-specific (lanes 3, 4, 6, 7), but not with control

(lanes 2, 5) antibodies. The percentage of the unbound intensity relative to Input is shown at the bottom of each lane.

This blot is representative of two independent experiments.

https://doi.org/10.1371/journal.pone.0205910.g008
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myosin II or the covalent modification of residues in this epitope by cytosolic enzymes or a

chemical fixative could decrease the ability of the 4A8 and 5A8 antibodies to recognize their

epitope(s). Alternatively, the conformationally dependent 4A8 and 5A8 epitopes might exist

only in supervillin molecules that are bound to myosin II or to one of the other supervillin N-

terminal interactors [18–23, 41]. This region of supervillin is part of a large intrinsically disor-

dered protein sequence [49], sequences characteristic of signaling proteins capable of multiple

conformations that are often regulated by their binding partners [50–54]. Differential epitope

Fig 9. Representative immunofluorescence staining of endogenous human supervillin by chimeric Rb 1E2. (A) U2OS osteosarcoma cells cultured on fibronectin

for 24 h were fixed with CSK-PFA and stained with the chimeric rabbit monoclonal antibody 1E2 (panel a) and monoclonal anti-vinculin (panel b). (B) Similarly-

cultured U2OS cells were stained with rabbit polyclonal anti-myosin IIA antibody (panel a) to show that the linear elements seen in panel Aa are probably stress fibers

(panel Aa, arrows), whereas staining with monoclonal anti-vinculin (panel b) shows the presence of focal adhesions (panel Ab, arrowheads) at the membrane-

proximal ends of these actin filament bundles. Phalloidin staining (panels c) also visualized these supervillin-associated structures. (C) Neither stress fibers nor focal

adhesions are stained with control rabbit IgG (panel a) or non-specific murine IgG2a (panel b). Size bar, 20 μm.

https://doi.org/10.1371/journal.pone.0205910.g009

Monoclonal antibodies against supervillin

PLOS ONE | https://doi.org/10.1371/journal.pone.0205910 October 17, 2018 19 / 24

https://doi.org/10.1371/journal.pone.0205910.g009
https://doi.org/10.1371/journal.pone.0205910


accessibility also could explain the incomplete circumferential staining observed around the

periphery of muscle fibers stained with the 5A8 antibody (Fig 10), as compared with the previ-

ously observed complete circumferential staining observed with affinity-purified rabbit anti-

h340 antibody [31]. Importantly, colocalization with dystrophin at costameres is visualized

with both 5A8 (Fig 10E) and anti-H340 [31].

Fig 10. Immunohistochemical staining of rat and mouse muscle sections. Specific staining of archvillin in rat soleus

and mouse EDL muscles with murine monoclonal antibody 5A8 (5A8). (A) Cross-sections of PFA-fixed rat soleus

muscle were stained using QDot655 labeled 5A8 (a, red in merge), phalloidin (b, green in merge) and DAPI (c, blue in

merge). Color merge shown in (d). Bar, 50 μm. (B) PFA-fixed rat soleus muscle probed with clone 5A8 (a) or with a

non-specific mouse isotype-matched control IgG2a (e), both red in merge. The slide also was stained for phalloidin (b,

f, green in merge) and DAPI (c, g, blue in merge). Merges are shown in panels d, h. Bar, 20 μm. (C) Mouse EDL muscle

fixed and stained as in (B) with either the monoclonal 5A8 (a) or the IgG2a isotype control (d) and phalloidin (b, e,

green in merge). Merges shown in panels c, f. Bar, 20 μm. (D, E) Unfixed rat soleus muscle after longitudinal cryo-

sectioning and staining with anti-dystrophin (a, red in merge), 5A8 (b, green in merge), and DAPI (c, blue in merge)

and visualization by wide-field immunofluorescence microscopy (D) or maximum point projection after confocal

imaging (E). Merges shown in panels D and E. Bar in D, 50 μm; bar in E, 5 μm.

https://doi.org/10.1371/journal.pone.0205910.g010
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In conclusion, the antibodies characterized here should meet the needs of most investiga-

tions involving supervillin isoforms in mammalian cells and tissues. The 1E2 and 5A8 clones,

in particular, hold great promise for the investigation of supervillin isoforms, localizations and

functions during tumorigenesis and normal cell functioning. Each of the four antibodies

extensively characterized here can be reproducibly generated in large quantities from hybrid-

omas or by recombinant expression, and each will be available to the research community

through the Clinical Proteomic Tumor Analysis Consortium’s Antibody Portal (antibodies.

cancer.gov) and the Developmental Hybridoma Studies Bank (dshb.biology.uiowa.edu).
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