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SUMMARY

In Drosophila, the piRNAs that guide germline trans-
poson silencing are produced from heterochromatic
clusters marked by the HP1 homolog Rhino. We
show that Rhino promotes cluster transcript associ-
ation with UAP56 and the THO complex, forming
RNA-protein assemblies that are unique to piRNA
precursors. UAP56 and THO are ubiquitous RNA-
processing factors, and null alleles of uap56 and
the THO subunit gene tho2 are lethal. However,
uap56sz15 and mutations in the THO subunit genes
thoc5 and thoc7 are viable but sterile and disrupt
piRNA biogenesis. The uap56sz15 allele reduces
UAP56 binding to THO, and the thoc5 and thoc7
mutations disrupt interactions among the remaining
THO subunits and UAP56 binding to the core THO
subunit Hpr1. These mutations also reduce Rhino
binding to clusters and trigger Rhino binding to
ectopic sites across the genome. Rhino thus pro-
motes assembly of piRNA precursor complexes,
and these complexes restrict Rhino at cluster
heterochromatin.

INTRODUCTION

Transposable elements are ubiquitous genome constituents

with the potential to mobilize and trigger catastrophic genome

instability (Belancio et al., 2008; Hedges and Deininger,

2007; McClintock, 1950). The PIWI-interacting RNA (piRNA)

pathway is an adaptive genome immune system that silences

transposons and maintains genome integrity during germline

development (Aravin et al., 2007; Brennecke et al., 2007;

Ghildiyal and Zamore, 2009; Khurana et al., 2010; Siomi

et al., 2010, 2011). The 23–30 nucleotide long piRNAs, loaded

into PIWI clade Argonaut proteins, direct sequence-specific

transcriptional and post-transcriptional transposon silencing

(Brennecke et al., 2007; Girard et al., 2006; Gunawardane

et al., 2007; Lau et al., 2006; Malone et al., 2009; Vagin

et al., 2006).

In theDrosophila female germline, piRNAs are processed from

RNA polymerase II (RNA Pol II) transcripts of discrete genomic

domains called piRNA clusters, composed of nested transposon

fragments, which provide an archive of invading transposon se-

quences (Andersen et al., 2017; Bergman et al., 2006; Brennecke

et al., 2007; Chen et al., 2016; Mohn et al., 2014; Zhang et al.,

2012a, 2014). Transposition of an invading mobile element into

a cluster is proposed to trigger adaptation, and the system

must therefore have ability to process any inserted sequence

into piRNAs. Consistent with this flexibility, cluster transcripts

do not have well-defined sequence or secondary structure sig-

natures. This is in striking contrast to the precursors for small

interfering RNAs (siRNAs) and microRNAs (miRNAs), which

form double-stranded structures that are recognized by proprie-

tary processing machines (Brennecke et al., 2007; Ghildiyal and

Zamore, 2009; Iwasaki et al., 2015; Kim et al., 2009; Zhang et al.,

2012a, 2014). How transcripts from piRNA clusters are distin-

guished from bulk RNA Pol II transcripts, including pre-mRNAs

and mRNAs, remains an open question.

Germline piRNA clusters in Drosophila ovaries are uniquely

marked by the heterochromatin protein 1 (HP1) homolog

Rhino (Rhi), which associates with Deadlock (Del) and Cutoff

(Cuff) to form the RDC complex (Klattenhoff et al., 2009;

Mohn et al., 2014; Zhang et al., 2014). These three factors

are co-dependent for localization to cluster heterochromatin,

drive non-canonical transcription of piRNA clusters from

both genomic strands, suppress cluster transcript splicing

and polyadenylation, and promote piRNA biogenesis (Ander-

sen et al., 2017; Chen et al., 2016; Klattenhoff et al., 2009;

Mohn et al., 2014; Pane et al., 2011; Parhad et al., 2017;

Zhang et al., 2014). Like the founding member of the HP1

family, HP1a, Rhi binds to trimethylated lysine 9 of histone 3

(H3K9me3) through its C-terminal chromo domain (Le Thomas

et al., 2014; Mohn et al., 2014; Yu et al., 2015). However,

H3K9me3 is broadly distributed over heterochromatin, and

Rhi localizes specifically to piRNA clusters (Mohn et al.,
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2014). It is unclear how Rhi distinguishes between H3K9me3

marks on piRNA clusters and bulk heterochromatin.

UAP56 is a ubiquitously expressed DEAD box protein with

conserved functions in RNA processing and export, and null

uap56 alleles are lethal (Eberl et al., 1997; Gatfield et al., 2001).

However, the uap56sz15 point mutation, when combined with a

strong hypomorphic allele (uap5628) that produces low levels

of wild-type protein, is viable and supports normal gene expres-

sion but leads to sterility and disrupts piRNA biogenesis (Meignin

and Davis, 2008; Zhang et al., 2012a). We show that this point

mutation reduces UAP56 binding to the heteropentameric THO

complex (composed of Hpr1, Tho2, Thoc5, Thoc6, and Thoc7),

which interacts with UAP56 in the transcription and export

(TREX) complex (Chi et al., 2013; Gatfield et al., 2001; Reed

and Cheng, 2005; Rehwinkel et al., 2004; Viphakone et al.,

2012). Mutations in the thoc5 gene are sterile and disrupt piRNA

production and transposon silencing (Hur et al., 2016). We show

that this mutation, and a null allele of thoc7, destabilize the THO

complex and block UAP56 co-precipitation with Hpr1. We also

show that stable binding to both UAP56 and THO is unique to

cluster transcripts and that assembly of these pre-piRNA com-

plexes requires Rhi. Significantly, mutations in thoc7, thoc5,

and uap56 that disrupt transposon silencing also reduce Rhi

binding to major piRNA clusters and trigger ectopic Rhi binding

to heterochromatic and euchromatic H3K9me3 marks across

the genome. Rhi thus promotes assembly of pre-piRNA com-

plexes containing UAP56, THO, and cluster transcripts, and

these complexes restrict Rhi at piRNA clusters. We propose

that this feedforward system drives efficient and specific piRNA

biogenesis.

RESULTS

The uap56sz15 Allele Reduces Binding to the THO
Complex
UAP56 is a conserved DEAD box protein implicated in RNA pro-

cessing and export, and null mutations in Drosophila uap56 are

lethal (Eberl et al., 1997; Gatfield et al., 2001). However, the

uap56sz15 point mutation, combined with a strong hypomorphic

allele (uap5628) that produces low levels of wild-type protein, is

viable but sterile and disrupts germline piRNA biogenesis and

transposon silencing (Eberl et al., 1997; Zhang et al., 2012a).

We refer to this allelic combination as uap56 mutant in the bal-

ance of the text. UAP56 co-localizes with Rhi and binds to cluster

transcripts, while the UAP56sz15 protein does not co-localize

with Rhi and shows reduced binding to germline cluster tran-

scripts (Zhang et al., 2012a). These findings suggest that

uap56sz15 disrupts a protein-protein interaction that is essential

to piRNA biogenesis (Zhang et al., 2012a).

To identify proteins that show altered binding to the uap56sz15

gene product, we affinity-purified Venus-tagged UAP56 and

UAP56sz15 proteins from wild-type ovaries (Zhang et al., 2012a)

and assayed bound proteins by mass spectrometry. The relative

abundance of co-precipitating proteins was estimated using

iBAQ values (Schwanhäusser et al., 2011), normalized to the

Venus tag.We then calculated the average fold difference in pro-

tein binding to UAP56sz15venus relative to UAP56venus, from

three biological replicates. Figure 1A shows ranked fold differ-

ences in protein abundance, with highest fold reduction on the

left. All five subunits of the THO complex (labeled red in Fig-

ure 1A, inset) rank among the top proteins showing reduced

A B

C

D

Figure 1. UAP56-THO Complex Interactions

Are Required for piRNA Biogenesis

The uap56sz15 point mutation disrupts piRNA

biogenesis. We used IP-mass spectrometry to

identify proteins showing altered binding to

UAP56sz15 protein relative to wild-type.

(A) Rank-order plot of fold change in protein

abundance in UAP56sz15venus precipitates rela-

tive to UAP56venus controls. Average fold change

was calculated from three biological replicates.

The inset shows the top 20 proteins with the

highest reduction in binding to UAP56sz15venus.

THO subunits are labeled in red.

(B) Western blot for the THO complex protein Hpr1

in UAP56venus and UAP56sz15venus precipitates

from wild-type Drosophila ovary lysates. UAP56-

venus and UAP56sz15venus were detected using

rabbit anti-GFP, and Hrp1 was detected with rat-

anti-Hrp1. The blot was sequentially probed for

Hpr1 and GFP, which were detected with distinct

fluorescent secondary antibodies. A series of di-

lutions of each precipitated sample was analyzed.

(C) Plot showing Hpr1 signal normalized to the

corresponding Venus tag from four biological

replicates. The p values were calculated from t

tests.

(D) Schematic representation of TREX complex

integrity in wild-type and mutants (uap5628/sz15,

thoc5e/1, and thoc7d/Df), on the basis of IP-mass

spectrometry.

See also Figure S1 and Tables S1–S3.
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binding to UAP56sz15venus. We independently verified this

observation by quantitative western blotting for the THO subunit

Hpr1 in UAP56venus and UAP56sz15venus immunoprecipitates

(Figures 1B and 1C). For quantification, Hpr1 signal was

compared with signal for the Venus tag on the UAP56 fusions.

To control for non-linearity in the assay, blots were performed

on a series of dilutions of the precipitates. Figure 1C summarizes

quantification of four independent biological replicates, each as-

sayed at three different dilutions. These studies revealed a 3-fold

reduction in Hpr1 binding to UAP56sz15 relative to wild-type,

consistent with our proteomic data. The point mutation in

uap56sz15 thus reduces UAP56 binding to the THO complex

(Figure 1D).

THO interacts with UAP56 within the evolutionarily conserved

TREX complex and has been previously implicated in germline

piRNA biogenesis (Hur et al., 2016; Reed and Cheng, 2005).

UAP56 and THO also localize to Rhi nuclear foci (Hur et al.,

2016; Zhang et al., 2012a). To determine if THO localization de-

pends on UAP56, we labeled Tho2 in wild-type and uap56

mutant ovaries. In wild-type, Tho2 co-localizes with Rhi nuclear

foci throughout oogenesis (Figure S1A, top). In uap56 mutant

ovaries, Tho2 shows reduced localization to Rhi foci in early

stage egg chambers, and the signal breaks down in later stages

egg chambers (Figure S1A, middle). Wild-type interactions be-

tween UAP56 and THO are therefore required to maintain THO

localization to Rhi nuclear foci.

Intact THO Is Dispensable for Development but
Required for piRNA Production
The thoc5e/thoc51 allelic combination (referred to as thoc5

mutant), which disrupts piRNA biogenesis (Hur et al., 2016), ap-

pears to be hypomorphic. Low levels of Thoc5 could therefore

support zygotic development. By contrast, thoc7d05792 blocks

thoc7 splicing and produces no detectable Thoc7 protein, as as-

sayed by western blotting (Figure S1C) (Kim et al., 2011). Further-

more, homozygous thoc7d05792 and hemizygous thoc7d05792/

Df(3L)BSC128 combinations are phenotypically identical (Fig-

ure S1C and data not shown). The thoc7d/Df combination thus ap-

pears to be null (referred to as thoc7 mutant below). This allelic

combination is viable but sterile, disrupts transposon silencing,

and reduces germline piRNA production but does not lead to

global changes in gene expressions (Figures S1D–S1F). The

intact five-member THO complex thus appears to be dispensable

for Drosophila development but essential to piRNA production.

To define the role of Thoc7 in assembly of the remaining THO

complex components, we used IP-mass spectrometry to charac-

terize proteins that co-precipitate with Hpr1 and Thoc5GFP in

wild-type and thoc7 mutants (Tables S1 and S2, respectively). In

wild-type ovary extracts, all five THO subunits co-precipitate

with both Hpr1 and Thoc5GFP (Tables S1 and S2). In the thoc7

mutant ovaries, in contrast, Tho2 co-precipitates with Hpr1, but

UAP56 and other THO subunits are undetectable (thoc7d/Df in

Table S1). Similarly, Tho2 was the only subunit that co-precipi-

tated with Hpr1 from thoc5 mutant ovaries (thoc5e/1 in Table S1).

In addition, Thoc5was the only subunit detectedwhen Thoc5GFP

wasprecipitated from thoc7mutant ovaries (thoc7d/Df in TableS2).

Finally, no THOsubunits co-precipitatewithUAP56venus in thoc7

mutant ovaries (thoc7d/Df in Table S3). Consistent with these

biochemical observations, Tho2 and UAP56 do not co-localize

with Rhi in thoc7 mutant ovaries (Figures S1A and S1B). The re-

sults of these proteomic and localization studies are summarized

diagrammatically inFigure1Dand indicate that lossofThoc7 leads

to THO complex dissociation into single Thoc5 and Thoc6 sub-

units and a sub-complex containing Hpr1 and Tho2, which does

not stably interact with UAP56.

Hpr1 and Tho2 are the only THO subunits conserved from

yeast to humans (Reed and Cheng, 2005), and Drosophila

tho2-null alleles are lethal (Jagut et al., 2013). These find-

ings, with the data presented here, suggest that an Hpr1-

Tho2 sub-complex is sufficient for viability, but intact THO

and wild-type THO binding to UAP56 (forming TREX) are

essential for piRNA biogenesis. However, weak interactions

between UAP56 and THO subunits are unlikely to be pre-

served during immuno-precipitation and could support zy-

gotic development.

Stable Binding toUAP56 andTHO Is Specific toGermline
piRNA Cluster Transcripts
Previous studies indicate that germline cluster transcripts co-

precipitate with UAP56 and Thoc5, while mature mRNAs fail to

associate with either protein (Hur et al., 2016; Zhang et al.,

2012a). We have confirmed these observations by RNA im-

muno-precipitation (RIP) with deep sequencing and found that

cluster transcripts also co-precipitate with endogenous Hpr1

(Figure 2). To control specificity in these experiments, we ex-

pressed and immuno-precipitated GFP alone, performed

immuno-precipitation with a non-specific IgG, and quantified

enrichment in precipitates relative to input or control RIP. Nearly

identical results were obtained in both cases. To simplify presen-

tation, abundance in RIP relative to the corresponding input is

shown (Figure 2).

Consistent with previous studies, 42AB piRNA cluster tran-

scripts, but not mature mRNAs, bind to Hpr1, Thoc5GFP, and

UAP56venus (Figure 2A, 42AB and CG7747) (Hur et al., 2016;

Zhang et al., 2012a). However, direct visual inspection of our

data also revealed significant binding of intronic transcripts to

Hpr1 and Thoc5GFP but not with UAP56venus (Figure 2A, Doa).

The scatterplots in Figures 2B–2D confirm that this pattern ex-

tends across the transcriptome, with cluster transcripts uniformly

enrichedwith Hpr1, Thoc5GFP, andUAP56, intron transcripts en-

riched with Hpr1 and Thoc5GFP, but not UAP56, and mature

mRNAs showing only backgroundbinding to these three proteins.

To quantify intron co-precipitation, we computationally

defined introns used in ovaries, as previously described (Zhang

et al., 2014), and analyzed introns from protein-coding genes

with a minimum of 1 read per kilobase of transcript per million

mapped reads (RPKM) in the input. In Thoc5GFP and Hpr1

RIP, 18% and 29% of all introns were enriched by more than

2-fold, respectively, and 14% of all introns were enriched by

more than 2-fold with both Thoc5GFP and Hpr1. For this subset

of introns, the average fold enrichment (over input) with Hpr1 and

Thoc5GFPwas 7.5 ± 6.8 and 4.5 ± 3.5, respectively. By contrast,

the same set of introns showed an average fold enrichment of

only 1.7 ± 1.5 with UAP56venus.

The intronmapping sequences bound by THO could represent

unspliced pre-mRNAs or free lariats produced by splicing. To

Cell Reports 24, 3413–3422, September 25, 2018 3415



distinguish between these alternatives, we quantified enrich-

ment of RNA sequencing (RNA-seq) reads mapping across 50

splice sites, 30 splice sites, and spliced junctions. Consistent

with binding to unspliced introns, reads mapping across both

50 and 30 splice sites were highly enriched with Thoc5GFP and

Hpr1, but not UAP56venus, and splice junction mapping reads

were not significantly enriched with UAP56, Hpr1, or Thoc5GFP

(Figure S2). The THO complex, but not TREX, thus stably inter-

acts with a significant fraction of unspliced pre-mRNAs.

Our studies define three classes of ovarian RNA Pol II tran-

scripts (Figure 2A). Class I is composed of germline cluster tran-

scripts, which are stably bound by THO and UAP56. Class II in-

cludes unspliced pre-mRNAs, which are stably bound by THO

(defined by Thoc5GFP and Hpr1) but not UAP56. Class III tran-

scripts include mature mRNAs and uni-strand cluster tran-

scripts, which are not stably bound by THO or UAP56. Signifi-

A

B

C

D

Figure 2. UAP56 and THOBinding Is Unique

to piRNA Cluster Transcripts

(A) Genome browser views of Thoc5GFP, Hpr1,

and UAP56venus RIP-seq signal, with IP and input

controls, over the 42AB piRNA cluster (class I), a

large intron in the Doa gene (class II), and mature

spliced RNA from the CG7747 gene (class III).

Germline cluster transcripts fall into class I and

bind to UAP56 and THO complex subunits. A

subset of introns define class II and bind strongly

to THO but show weak binding to UAP56. Class III

includes mature mRNAs and somatic piRNA

cluster transcripts.

(B) Scatterplots showing normalized piRNA cluster

transcripts abundance (log10[RPKM + 0.1]) in

precipitates of Thoc5GFP, Hpr1, and UAP56ve-

nus, relative to input. The last panel on the right

shows the rank-ordered fold enrichment (RIP/

input) for each cluster in the experimental pre-

cipitates and in GFP and non-specific antibody

controls (as indicated in panel).

(C) Scatter and rank-order plot, as described in

(B), for exon mapping transcript enrichment. Co-

lor-coded contour lines reflecting data point den-

sity are overlaid on each scatterplot.

(D) Scatter with contour lines and rank-order plots

for intron mapping RNA-seq read RIP enrichment.

See also Figure S2.

cantly, our biochemical studies indicate

that piRNA biogenesis, but not mRNA

expression, requires wild-type interac-

tions between UAP56 and THO. Stable

binding by UAP56 and THO is therefore

specific to piRNA precursors, and wild-

type interaction between these factors is

required for piRNA biogenesis.

Rhi Promotes Stable Association of
UAP56 with Cluster Transcripts
TheDrosophilaHP1homologRhi anchors

a chromatin complex that promotes clus-

ter transcription (Andersen et al., 2017;

Mohn et al., 2014), suppresses cluster

transcript splicing (Zhang et al., 2014) and cluster transcript poly-

adenylation (Chenet al., 2016), and is essential to germlinepiRNA

biogenesis (Klattenhoff et al., 2009; Mohn et al., 2014; Zhang

et al., 2014). To determine if Rhi is required for cluster transcript

binding to UAP56 and THO, we performed RIP sequencing

(RIP-seq) with Thoc5GFP and UAP56venus in rhi2/KG mutant

ovaries. This null combination is referred to as rhi mutant in the

balanceof the text. This combination reducesoverall cluster tran-

scription, but clusters continue to be transcribed (Mohn et al.,

2014; Zhang et al., 2014). For example, low-level production of

unspliced transcripts continues over much of the left side of the

42AB cluster, and high-level transcription of spliced transcripts

from an adjacent partial gypsy12 transposon is induced (Figures

3A and 3B, input) (Zhang et al., 2014). In wild-type controls, tran-

scripts over this entire region bind to UAP56venus and

Thoc5GFP (Figure 3A). In rhi mutants, the unspliced transcripts

3416 Cell Reports 24, 3413–3422, September 25, 2018



stably associate with Thoc5GFP, but not with UAP56venus (Fig-

ures 3B andS3A), and spliced gyspy12 transcripts do not precip-

itate with either Thoc5GFP or UAP56venus (Figure 3B, high-

lighted on the right). In the absence of Rhi, unspliced cluster

transcripts thus mirror unspliced pre-mRNAs, spliced gypsy12

transcripts mimic mature mRNAs, and neither RNA is processed

into piRNAs. As shown in the scatterplots in Figure 3C, the rhimu-

tation essentially eliminates UAP56venus binding to all cluster

transcripts but has a relatively modest effect on cluster transcript

binding to Thoc5GFP (Figure 3C, rhi2/KG). In contrast, the rhimu-

tation does not affect Thoc5GFP binding to pre-mRNAs (Figures

3D and S3B, rhi2/KG). Rhi is therefore required for assembly of

piRNA precursor complexes containing cluster transcripts,

UAP56, and THO.

A B

C

D

Figure 3. Rhi Promotes UAP56 Binding to

Cluster Transcripts

(A and B) Genome browser view of the left end of

the 42AB piRNA cluster.

(A) RIP-seq signal for UAP56venus and Thoc5GFP

from wild-type ovaries.

(B) RIP-seq signal for UAP56venus and Thoc5GFP

from rhi2/KG ovaries.

The dashed boxes in (A) and (B) indicate a partial

gypsy12 element in 42AB that is spliced in rhi2/KG.

This region is expanded on the right side of each

panel. In wild-type, the unspliced transcripts from

this region bind to UAP56venus and Thoc5GFP. In

rhi2/KG, unspliced transcripts bind to Thoc5GFP

but not to UAP56venus, while the spliced tran-

scripts do not bind either UAP56venus or

Thoc5GFP.

(C) Scatterplots comparing cluster transcript

abundance (log10[RPKM + 0.1]) in Thoc5GFP RIP

(top row) and UAP56venus RIP (bottom row)

relative to the corresponding inputs, from rhi2/KG,

thoc7d/Df, and uap5628/sz15 ovaries. The box plot

summarizes cluster transcript fold enrichment

(RIP/input) in wild-type and mutants. The p values

were calculated using Wilcoxon rank-sum tests.

GFP RIP served as non-specific control.

(D) Scatterplots of intronic transcript abundance

(log10[RPKM + 0.1]) in Thoc5GFP RIP relative to

input, from rhi2/KG, thoc7d/Df, and uap5628/sz15

ovaries. The box plot summarizes the fold

enrichment (RIP/input) in the mutants for the 14%

of introns that are enriched by more than 2-fold in

both Hpr1 and Thoc5GFP in wild-type (Figure 3).

The p values were calculated using Wilcoxon

rank-sum tests. GFP RIP served as non-specific

control.

See also Figure S3.

To determine if UAP56 and THO sub-

units are interdependent for binding to

cluster transcripts, we performed

Thoc5GFP RIP-seq from uap56 and

thoc7 mutant ovaries and UAP56venus

RIP-seq from thoc7 mutant ovaries (Fig-

ure 3C). The thoc7 mutation completely

abrogates cluster transcript binding to

Thoc5GFP and significantly reduces

cluster transcript binding to UAP56venus (Figures 3C and S3A,

thoc7d/Df). The thoc7 mutation also blocks Tho5GFP binding to

unspliced introns (Figures 3D and S3B, thoc7d/Df). In uap56

mutant ovaries, in contrast, cluster transcript and intron binding

to Thoc5GFP show only modest reductions (Figures 3C, 3D, and

S3, uap5628/sz15). Stable THO subunit binding to RNA thus re-

quires an intact THO complex but does not require wild-type in-

teractions with UAP56.

UAP56 and THORestrict Rhi at piRNACluster Chromatin
The studies presented here, with extensive works from a number

of laboratories, indicate that Rhi has a central role in producing

piRNA precursors (Andersen et al., 2017; Hur et al., 2016; Klat-

tenhoff et al., 2009; Mohn et al., 2014; Zhang et al., 2012a,
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2014). The chromo domain of Rhi binds to H3K9me3, and this

mark is present at clusters but is also broadly distributed over

heterochromatin. Rhi localization to H3K9me3marks on clusters

is therefore critical to the specificity of piRNA biogenesis, but

how this is achieved is not understood.

Rhi forms distinct nuclear foci in thoc5, thoc7, and uap56

mutant ovaries (Figure S1) (Hur et al., 2016; Zhang et al.,

2012a), but cytological localization is not sufficient to determine

if these Rhi foci correspond to clusters. We therefore used

chromatin immuno-precipitation sequencing (ChIP-seq) to

directly determine Rhi localization in thoc7, thoc5, and uap56

mutants and in w1 controls. Because Rhi binds to H3K9me3,

we also profiled this histone modification in all four genotypes.

These studies revealed a striking genome-wide redistribution of

Rhi in all three mutants (Figure 4). Figure 4A shows Rhi ChIP-

seq signal over the right arm of Drosophila chromosome 2. In

wild-type ovaries, Rhi is highly enriched at the major germline

piRNA cluster 42AB (Figure 4A, gray dashed box). Note that

H3K9me3 is present at this cluster but is also widely distributed

over pericentromeric regions that do not have Rhi signal (Fig-

ure 4A, compare w1 red track with blue track). In the three

TREX component mutants, in contrast, Rhi shows reduced

binding to 42AB and ectopic localization to both pericentro-

meric heterochromatin and euchromatin (Figure 4A, compare

the red tracks in the mutants with the w1 control). Figure 4B

shows an enlarged view of the ChIP-seq profiles at 42AB. Rhi

is shown for w1 and all three mutants, with H3K9me3 distribu-

tion in wild-type. As shown in Figure S4B, the TREX mutants do

not significantly alter H3K9me3 at this cluster. We indepen-

dently confirmed the reduction in Rhi binding to 42AB by

ChIP-qPCR (Figure 4D). THO and UAP56 thus restrict Rhi to

germline piRNA clusters.

Figure 4. The TREX Complex Restricts Rhi

to H3K9me3 Marks on piRNA Clusters

(A–C) Genome browser view of chromosome 2R

(A), the piRNA cluster at 42AB (B), and ectopic

Rhi peaks at CG6470 (C). Red tracks are Rhi ChIP-

seq signal from w1, thoc7d/Df, thoc5e/1, and

uap5628/sz15. The blue track is H3K9me3 ChIP-seq

signal from w1. The annotated piRNA clusters are

highlighted in orange. The genomic positions of

computationally defined Rhi ChIP-seq peaks for

each genotype are color highlighted in the Rhi

domain track. In wild-type, Rhi is largely confined

to piRNA clusters. In thoc7d/Df, thoc5e/1, and

uap5628/sz15, cluster binding is reduced, and new

peaks are present across the chromosome arm.

(D) Rhi ChIP-qPCR for 42AB and CG6470, with

rp49, cluster2, and flam as controls. Arrowheads in

the gene models in (B) and (C) indicate the location

of qPCR primers. Significance of ChIP signal in the

mutants relative to w1 was determined using t test

from four biological replicates. *p < 0.05, **p <

0.001.

(E) Pie charts showing the number of Rhi domains

that overlapwith annotated piRNA clusters (orange

charts) and Rhi domains that overlap with

H3K9me3 domains in each genotype (blue charts).

(F) A speculative feedforward mechanism for

piRNA cluster heterochromatin assembly. We

propose that the RDC, through the Rhi chromo

domain, samples H3K9me3 marks throughout the

genome, but binding at transcriptional silent

chromatin is unstable (1). In contrast, RDC binding

to H3K9me3 marks at transcribed piRNA clusters

is followed by Cuff association with capped cluster

transcripts, which blocks cap binding by the cap

binding complex, stalling splicing and stabilizing

UAP56 and THO binding (pre-piRNP) (3). Within

this chromatin-bound protein-RNA complex, the

RDC does not exchange with the soluble pool,

driving the complex to H3K9me3marks on clusters

(4). Deadlock then recruits transcription factors

(TFIIA-S, Moonshiner, and TRF2) (Andersen et al.,

2017) to trigger capped non-canonical transcrip-

tion on both strands (5), which enhances pre-

piRNP assembly and RDC localization (6).

See also Figure S4 and Table S4.
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In wild-type ovaries, Rhi overlaps with H3K9me3 marks at

piRNA clusters (Figures 4A and 4B, Figure S4B for H3K9me3

signal in the mutants) (Klattenhoff et al., 2009; Mohn et al.,

2014; Parhad et al., 2017). In thoc7, thoc5, and uap56 mutants,

ectopic Rhi peaks also correspond to H3K9me3 domains. In

wild-type, these domains are frequently marked by H3K9me3

but do not bind Rhi. Figure 4C shows an example of this class

of ectopic locus, which is marked by H3K9me3 in all genotypes

(Figure S4B for H3K9me3 signal in the mutants). We indepen-

dently confirmed Rhi binding at this site by ChIP-qPCR (Fig-

ure 4D). To extend this analysis genome wide, we used

MACS2 (Zhang et al., 2008) to computationally define high-con-

fidence Rhi domains from two independent biological replicates

from each genotype (STAR Methods). The genomic positions of

the high-confidence Rhi domains are shown in the ‘‘Rhino

domain’’ track in the genome browser views in Figures 4 and

S4A. In wild-type ovaries, approximately two-thirds of Rhi peaks

map to piRNA clusters (Figure 4E, orange pie chart). Each of the

mutants leads to an increase in Rhi peaks mapping outside

piRNA clusters (Figure 4E, orange pie charts). Intriguingly, these

mutants also increased the number of Rhi peaks mapping to

clusters, which reflects increased Rhi binding to a number of

minor clusters that normally show only weak Rhi accumulation

(Figure S4A), coupled with a general decline in peak intensity

at major clusters.

We then usedMACS2 (Zhang et al., 2008) to call H3K9me3 do-

mains in each genotype and determined the overlap betweenRhi

and H3K9me3 domains (Figure 4E, blue pie charts). Strikingly,

92%–94% of Rhi domains overlap with H3K9me3 marks in

wild-type and the TREX component mutants. The thoc7,

thoc5, and uap56 mutations thus trigger Rhi binding to

H3K9me3 domains outside piRNA clusters. In the example

shown in Figure 4C, these mutations lead to Rhi binding to a

site that is marked by H3K9me3 in all genotypes (H3K9me3 pro-

files in mutants shown in Figure S4B). However, each of the

TREX mutations produces a significant number of new

H3K9me3 domains, and Rhi binds to some of these genotype-

specific H3K9me3 sites (Table S4). However, 68%–80% of Rhi

peaks in the mutants correspond to H3K9me3 domains that

are present in control ovaries. Stable TREX is therefore required

to restrict Rhi to cluster chromatin and suppresses H3K9me3

modification of other chromatin domains.

Rhi promotes cluster transcription and piRNA biogenesis (An-

dersen et al., 2017; Klattenhoff et al., 2009; Mohn et al., 2014;

Zhang et al., 2014), raising the possibility that ectopic binding

may enhance transcription and trigger piRNA production from

ectopic loci. We observed a modest increase in steady-state

transcript accumulation at ectopic Rhi loci in the TREX mutants

(Figure S4C). However, this is not linked to enhanced piRNA pro-

duction (Figure S4D). These findings suggest that Rhi, presum-

ably acting through the RDC, triggers transcription at ectopic

sites (Andersen et al., 2017). However, in the absence of the

TREX, Rhi binding cannot induce piRNA production.

DISCUSSION

In Drosophila ovaries, primary piRNAs are derived from hetero-

chromatic clusters composed of nested transposon fragments

(Brennecke et al., 2007). These loci serve as an archive of

invading transposon sequences, and transposition of an

invading element into a cluster is proposed to trigger adaptation,

as the inserted sequences are incorporated into cluster tran-

scripts and processed into mature piRNAs (Bergman et al.,

2006; Brennecke et al., 2007; Muerdter et al., 2012). Clusters

are therefore proposed to determine piRNA pathway specificity

and adaptability. However, the mechanisms that specify cluster

location and differentiate cluster transcripts from gene tran-

scripts are not understood. We present evidence that cluster

chromatin promotes assembly of pre-piRNA complexes defined

by stable UAP56 and THO binding and that assembly of these

complexes restricts Rhi to clusters chromatin.

UAP56-THO Interactions Are Critical to piRNA
Biogenesis
UAP56 and the THO complex are conserved RNA splicing and

export factors (Reed and Cheng, 2005), and null alleles of uap56

and the core THO subunit tho2 are lethal (Eberl et al., 1997; Gat-

field et al., 2001; Jagut et al., 2013). However, the uap56sz15

allele and mutations in thoc5 and thoc7 are viable but sterile,

and disrupt piRNA biogenesis (Hur et al., 2016; Zhang et al.,

2012a). We show that the uap56sz15 mutation reduces UAP56

binding to THO and that the thoc5 and thoc7 mutations lead

to dissociation of the remaining THO subunits and block inter-

actions between UAP56 and the remaining subunits. High-affin-

ity interactions between UAP56 and the THO complex are

therefore required for piRNA biogenesis but dispensable for

viability. Intriguingly, Hpr1 binding to Tho2 is retained in viable

thoc5 and thoc7 mutants, and Hpr1 and Tho2 are the only

THO subunits conserved from yeast to humans (Reed and

Cheng, 2005). These observations suggest that an Hpr1-Tho2

heterodimer is sufficient to support basic cellular functions

and zygotic development, but this remains to be rigorously

tested.

Previous studies indicated that germline piRNA cluster tran-

scripts co-precipitate with UAP56 and the THO subunit Thoc5

(Hur et al., 2016; Zhang et al., 2012a). Here we show that germ-

line cluster transcripts are stably bound by UAP56 and THO, a

significant fraction of unspliced pre-mRNAs are stably bound

by THO but show only weak binding to UAP56, and mature

mRNAs and somatic piRNA cluster transcripts are not enriched

with UAP56venus, Hpr1, or Thoc5GFP. Significantly, rhi muta-

tions block stable UAP56 binding to germline cluster transcripts

but do not prevent THO binding to cluster transcripts or pre-

mRNAs. Rhi is therefore required for stable binding of UAP56

to cluster transcripts, generating complexes that are specific

to germline piRNA precursors.

How does Rhi promote assembly of these RNA-protein com-

plexes? Rhi interacts with the linker protein Del and the DXO ho-

molog Cuff, forming the RDC complex, which promotes cluster

transcription and suppresses cluster transcript splicing and pol-

yadenylation (Chen et al., 2016; Mohn et al., 2014; Parhad et al.,

2017; Zhang et al., 2014). A number of observations suggest that

Rhi, functioning through Cuff, may indirectly promote UAP56

binding to cluster transcripts. Recent studies indicate that Rhi re-

cruits transcription initiation factors that drive RNA Pol II tran-

scription from both genomic strands (Andersen et al., 2017).
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The resulting ‘‘non-canonical’’ transcripts are capped, and cap

binding by the nuclear cap binding complex (CBC) promotes effi-

cient splicing and polyadenylation (Proudfoot et al., 2002). How-

ever, cluster transcripts are not spliced or polyadenylated (Chen

et al., 2016; Zhang et al., 2014). Cuff is a homolog of the decapp-

ing enzyme DXO, but the catalytic pocket is not conserved, and

residues that interact with the RNA backbone are retained

(Zhang et al., 2014). These observations suggest that Rhi local-

izes Cuff to clusters, where it binds nascent capped transcripts,

blocking access to the CBC. This may indirectly suppress

splicing and polyadenylation, generating complexes with stably

bound THO and UAP56. By contrast, UAP56 appears to only

transiently associate with pre-mRNAs, reflected in the weak

enrichment observed in our native RIP-seq assays. Supporting

this model, cuff mutations that block piRNA production also

lead to a pronounced increase in cluster transcript splicing

(Zhang et al., 2014).

Rhi binds to H3K9me3 in vitro and co-localizes with H3K9me3

at piRNA clusters (Le Thomas et al., 2014; Mohn et al., 2014; Yu

et al., 2015). However, clusters represent only a small fraction of

the chromatin marked by H3K9me3 (Mohn et al., 2014), and it is

unclear how Rhi is restricted to these specialized domains. Here

we show that mutations that disrupt the TREX significantly

reduce Rhi association with major piRNA clusters and trigger

ectopic Rhi localization to euchromatic and heterochromatic

sites that are marked by H3K9me3. Stable interactions between

UAP56 and an intact THO are therefore required to restrict Rhi to

H3K9me3 marks on piRNA clusters.

A Feedforward Model for Cluster Chromatin Assembly
Knock down of cuff or del essentially eliminates nuclear Rhi foci,

and ChIP-seq indicates that Rhi does not bind to clusters or

ectopic sites (Mohn et al., 2014). In contrast, Cuff and Rhi still

form foci in TREX mutants (Hur et al., 2016; Zhang et al.,

2012a), and our Rhi ChIP-seq studies indicate that many of

these foci do not correspond to clusters. On the basis of these

observations, and the data presented here, we propose that

Rhi, within the RDC, samples H3K9me3 marks throughout the

genome. However, most of these domains are transcriptionally

silent, and RDC binding is unstable (Figure 4F, step 1). piRNA

clusters, in contrast, are transcribed and marked by

H3K9me3. At these sites, the RDC binds to H3K9me3 through

Rhi, and we speculate that capped nascent transcripts are

bound through Cuff, which blocks CBC binding, suppressing

splicing and polyadenylation (Chen et al., 2016; Zhang et al.,

2014) and triggering stable UAP56 binding (Figure 4F, steps 2

and 3). Assembly into these higher order pre-piRNA complexes

prevents RDC exchange with the soluble pool (Figure 4F, step

4). Through Del and Moonshiner, the RDC also triggers non-ca-

nonical transcription from both genomic strands (Figure 4F,

step 5) (Andersen et al., 2017), enhancing RDC binding (Fig-

ure 4F, step 6). We note that some cluster transcription persists

in rhi mutants, often from one genomic strand, and several

major piRNA clusters have flanking canonical RNA Pol II pro-

moters. We speculate that RDC binding to these transcripts ini-

tiates this feedforward system, which drives Rhi binding to clus-

ter heterochromatin and promotes piRNA precursor complex

assembly.
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ANTI-FLAG M2 Agarose Affinity Gel Sigma Aldrich Cat# A2220
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Deposited Data

Scaffold files for Mass Spec results This study https://doi.org/10.17632/j4yktssk9g.1

High throughput Sequencing This study SRP151054
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D. melanogaster/uap5628 Zhang et al., 2012a N/A

D. melanogaster/uap56sz15 Zhang et al., 2012a N/A
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D. melanogaster/uap56 promoter > UAP56Venus Zhang et al., 2012a N/A

D. melanogaster/uap56 promoter >

UAP56sz15Venus

Zhang et al., 2012a N/A

D. melanogaster/thoc5 promoter > Thoc5-GFP Moon et al., 2011 N/A

D. melanogaster/vasa promoter > GFP-nls Zhang et al., 2014 N/A

D. melanogaster/nanos promoter > Gal4 William Theurkauf lab N/A

D. melanogaster/w1 William Theurkauf lab N/A

Oligonucleotides

Random primers ThermoFisher Scientific Cat# 48190011

Primers for ChIP-qPCR, see Table S5 Klattenhoff et al. and This study N/A

Software and Algorithms

Prism 7 GraphPad Prism https://www.graphpad.com/

Image Studio Lite LI-COR https://www.licor.com/bio/products/software/

image_studio_lite/

RStudio N/A https://www.rstudio.com/

ImageJ N/A https://imagej.nih.gov/ij/

Scaffold Proteome Software http://www.proteomesoftware.com/products/

scaffold/

UCSC Genome Browser Kent et al., 2002 https://genome.ucsc.edu/cgi-bin/hgGateway

Bowtie Langmead et al., 2009 N/A

BEDTools Quinlan and Hall, 2010 N/A

TopHat Trapnell et al., 2009 N/A

BWA Li and Durbin, 2009 N/A

MACS2 Zhang et al., 2008 N/A

Picard Tools N/A http://broadinstitute.github.io/picard/
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All flies were raised at 25�C on cornmeal medium. All experiments were performed on ovaries from 2-4 days old female Drosophila

melanogaster raised in the presence of yeast paste. Ovaries were dissected at room temperature in Robb’s buffer (100 mM HEPES

ph 7.4, 100 mM sucrose, 55 mM Potassium Acetate, 40 mM Sodium Acetate, 10 mM glucose, 1.2 mM MgCl2, and 1 mM CaCl2).

METHOD DETAILS

Immunofluorescent staining and image analysis
Fixation and immuno-staining ofDrosophila ovaries was performed with Buffer A protocol as described previously (Theurkauf, 1994).

The images were acquired with Leica TCS SP8 confocal microscope. The line scan analyses were done in ImageJ (Schneider et al.,

2012).

Immuno-precipitation, western blotting, proteomics, and RNA IP
Immuno-precipitation (IP) from ovary lysate was performed as described previously (Parhad et al., 2017). For GFP or Venus tagged

proteins IP, GFP-Trap A agarose beads (ChromoTek) and ANTI-FLAG M2 agarose beads (Sigma-Aldrich) were used, respectively.

For antibody based IP, the antibody was first conjugated to Magnetic Dynabeads protein A/G (Invitrogen) in Citric phosphate buffer

(7.10 g Na2HPO4, 11.5g Citric acid in 1 l water, ph 5.6) for 2 hours at room temperature with rotation. For RNA isolation, beads were

resuspended in RTL buffer and the supernatant was processed using the RNeasy mini kit (QIAGEN). The proteomics samples were

prepared and processed as described previously (Parhad et al., 2017). The western blots were detected by LI-COROdyssey Infrared

Imaging System. The fluorescent band intensities were quantified using Image Studio Lite (LI-COR).

High-throughput sequencing
Strand specific RNA-seq libraries were constructed as described previously (Zhang et al., 2012b) with modification in the rRNA

depletion procedure using enzymatic digestion of rRNA by HybridaseTM Thermostable RNase H (Epicenter) with a comprehensive

mixture of antisense rRNA oligos (Fu et al., 2018). The small RNaseq library is constructed as detailed previously (Li et al., 2009)

with 2S rRNA depletion as described in (Zhang et al., 2011). The ChIPseq libraries were prepared as described previously (Zhang

et al., 2014), with ovaries from 120 females per ChIP. RNaseq and ChIPseq libraries were paired-end sequenced, and small RNaseq

libraries were single-end sequenced on the Nextseq 500 platform (Illumina).

ChIP-qPCR
The qPCR was performed using the QuantiTect SYBR Green PCR Kit (QIAGEN) in Step ONE plus real time PCR system (Applied

Biosystem). PCR primer sequences were described previously (Klattenhoff et al., 2009; Zhang et al., 2012a) and presented in Table

S5. Raw fluorescent amplification intensity from ChIP qPCR was used in DART-qPCR to estimate relative abundance (Peirson et al.,

2003). Fold enrichment for precipitates was relative to input, and statistics and graphing was performed using Prism 7 (GraphPad).

Bioinformatics Analysis
The bioinformatics analysis was performed as described previously (Li et al., 2009; Parhad et al., 2017; Zhang et al., 2014). RNA-seq:

The raw RNaseq reads were mapped to Drosophila genome (dm3) using TopHat 2.0.8 (Trapnell et al., 2009) with default parameters.

The gene annotation was obtained from Flybase r5.50. The piRNA clusters annotation was described previously (Brennecke et al.,

2007). The transcript abundance (rpkm: Reads Per Kilobase per Million mapped reads) was counted by BEDTools (Quinlan and Hall,

2010) and normalized to total number of mapped reads, after excluding rRNAmapping reads. The transposon family expression was

calculated by proportionally collecting the reads that were aligned to the genomic annotation of transposons. We did differentially

expression analysis of transposons and protein-coding genes with edgeR (Robinson et al., 2010) between thoc7d/Df and wild-type

from two biological replicates. The replicated RNaseq from wild-type were published previously and deposited in NCBI Sequence

Read Archive: SRP111075 (Parhad et al., 2017). The raw small RNaseq reads were mapped to Drosophila genome (dm3) using bow-

tie (Langmead et al., 2009) by allowing no mismatches after removing the 30 end linker sequence. We counted unique mapped reads

for piRNA clusters. The read counts for piRNA clusters were normalized to the number of reads mapping to miRNA.

The rawChIPseq reads weremapped toDrosophila genome (dm3) using by BWA 0.6.2 (Li and Durbin, 2009). The duplicated reads

were discarded as PCR duplication by Picard tools (http://broadinstitute.github.io/picard). We called Rhi domains in each genotype

from uniquely mapped ChIPseq reads using MACS2 (Zhang et al., 2008) with following parameters: macs2 callpeak -q 0.01 –ratio 2.

For each replicate, Rhi domains within one kilo base pairs were merged. The Rhi domains present in both biological replicates were

kept as high confidence Rhi domains for further analysis. Rhi domainsmapping tomitochondrial genomewere discarded. To quantify

the long RNA and small RNA abundance in the Rhi domains across genotypes, the Rhi domain from each genotype are merged and

assigned back to each genotype, which is used to quantify the long RNA and small RNA abundance.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical method and sample size are reported in the Figures and corresponding legends. The statistical tests for quantitative

western and ChIP-qPCR were t test for at least three biological replicates. The statistical tests for deep sequencing data were

Wilcoxon Rank-Sum test. The minimal p-value reported was 2.2e-16. We used R and Prism 7 (GraphPad) to do the statistical test.

DATA AND SOFTWARE AVAILABILITY

High-throughput sequencing data was deposited in the NCBI Sequence read archive (SRA: SRP151054). The scaffold files for Mass

spectrometry analysis were deposited in Mendeley Data (https://doi.org/10.17632/j4yktssk9g.1)
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