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SUMMARY

Huntington’s disease (HD) is a monogenic neurode-
generative disorder representing an ideal candidate
for gene silencing with oligonucleotide therapeutics
(i.e., antisense oligonucleotides [ASOs] and small
interfering RNAs [siRNAs]). Using an ultra-sensitive
branched fluorescence in situ hybridization (FISH)
method, we show that �50% of wild-type HTT
mRNA localizes to the nucleus and that its nuclear
localization is observed only in neuronal cells. In
mouse brain sections, we detect HttmRNA predom-
inantly in neurons, with a wide range of Htt foci
observed per cell. We further show that siRNAs and
ASOs efficiently eliminate cytoplasmic HTT mRNA
and HTT protein, but only ASOs induce a partial
but significant reduction of nuclear HTT mRNA. We
speculate that, like other mRNAs, HTT mRNA sub-
cellular localization might play a role in important
neuronal regulatory mechanisms.

INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant neurode-

generative disorder caused by a CAG repeat expansion within

exon 1 of the coding region of the huntingtin gene (The Hunting-

ton’s Disease Collaborative Research Group, 1993). The mono-

genic nature of HDmakes it an ideal candidate for gene silencing

with oligonucleotide therapeutics, such as antisense oligonucle-

otides (ASOs) and short interfering RNAs (siRNAs), which are

both involved in post-transcriptional gene silencing by reducing

the target mRNA levels (for review, Crooke et al., 2018). siRNAs

induce mRNA degradation by loading into the RNA-induced

silencing complex (RISC) in the cytoplasm, and ASOs promote

mRNA degradation via RNase H in both the nucleus and the

cytoplasm.

In the central dogma of cellular biology, the mRNAs are

predominantly localized in the cytoplasm in mammalian cells.

Therefore, both classes of therapeutics are highly efficient at

silencing mRNA expression, presumably due to the cytoplasmic

localization of mRNA. When studying HTT mRNA silencing in

different cell types, we observed that siRNA treatment fully

silenced HTT in HeLa cells (>95%) but only reduced Htt by

50%–70% in mouse primary neurons (Alterman et al., 2015).

To understand the reason(s) behind this discrepancy in the

degree of silencing in different cell types, we wanted to carefully

visualize the cellular distribution of Htt mRNA in individual cells.

We hypothesized that the differences in silencing efficacy were

due to a difference in cellular localization of Htt mRNA between

cell types.

In this study, we used a highly sensitive, branched fluorescence

in situ hybridization (FISH) technology—RNAscope (Wang et al.,

2012)—and confocal microscopy to observe and quantify the

intracellular distribution of HTT mRNA at high resolution in single

cells. We found that a significant fraction of HTT mRNA localizes

to the nucleus of neuronal cells, but not non-neuronal cells. This

cellular localization of HTT mRNA affects its silencing by thera-

peutic oligonucleotides both in vitro and in vivo: siRNAs and

ASOs nearly eliminated cytoplasmic HTT mRNA and only ASOs

partially reduced nuclear HTT mRNA levels. Our findings reveal

a new parameter for consideration in our understanding of the

role of HTT mRNA in neuronal regulatory mechanisms and oligo-

nucleotide therapeutic development.

RESULTS

Branched FISH Technology Enables Precise In Situ

Detection of Spliced Htt mRNA
Previously, CAG-specific probes have been used as a proxy

for HTT mRNA detection (de Mezer et al., 2011; Urbanek

et al., 2017). However, we observed intense CAG FISH staining

throughout the nucleus and cytoplasm, and a very low fraction

of the CAG-FISH signal co-localized with the FISH signal using

an HTT mRNA-specific probe set (Figures S1A and S1B). Thus,

we implemented and validated a highly sensitive and specific

branched FISH technology to detect Htt mRNA.

To ensure the specific detection of Htt mRNA by the FISH

assay, we developed a panel of probes that target different
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regions of Htt mRNA and independent targets and used

the following controls (Table S1; Figure S1): (1) co-targeting

of Htt mRNA and CAG repeat (Figures S1A–S1D); (2) co-tar-

geting the same Htt mRNA region (exons 27–35 [E27–35]) in

two different fluorescent channels (488 and 570 nm; Figures

S1E–S1H); (3) co-targeting of two different regions of Htt

mRNA (E1–7 and E27–35; Figures S1I–S1L); (4) co-targeting

exonic (E27–35) and intronic (I61) regions of Htt mRNA (Figures

S1M and S1N); and (5) co-targeting Htt mRNA and Herc2

mRNA (Figures S1O and S1P). To accurately estimate the

number of mRNA foci per cell and ensure that intracellular dis-

tribution (nucleus versus cytoplasm) does not affect mRNA

quantification, we quantified mRNA foci in three dimensions

throughout the volume of each cell (see STAR Methods for

details).

We observed up to 70% and 80% of FISH foci co-localization

using probe sets that target similar or different regions of the

Htt mRNA (Figures S1F and S1J) and no co-localization of Htt

mRNA foci with Herc2 mRNA foci (Figure S1P). Background

co-localization (calculated by rotating one channel 180�) did

not exceed 1% in most samples (Figures S1G, S1H, S1K,

and S1L). The exception was the CAG-specific probe set, which

resulted in�10%background co-localization, which is expected

for probes that stain hundreds of foci per cell (Figures S1C

and S1D). In addition, we observed that the majority of nuclear

Htt mRNA foci localized in the nucleus appeared to be spliced

(Figures S1M and S1N).

More Than 50% of HttmRNA Is Localized to the Nucleus
in Mouse Primary Neurons
We assessed the intracellular distribution of Htt and

control mRNAs in mouse primary cortical neurons (Figures

S2A–S2E). Precise quantification of mRNA foci by FISH

showed �200 ActB, �25 Ppib, �30 Hprt, �37 Herc2, and

�20 Htt foci per cell (Figures S2A and S2B). Whereas most

housekeeping mRNAs localized primarily in the cytoplasm

(90% Ppib, �80% ActB, and �80% Hprt), 60% of Htt

mRNA localized in the nucleus. The nuclear enrichment of

Htt mRNA was not an artifact of mRNA length; we observed

only 40% nuclear localization of Herc2 mRNA, which is longer

than Htt mRNA (Table S1). As expected, the long non-coding

RNAs (lncRNAs) Neat1 and Malat1 were only detected in

the nucleus (Figures S2A and S2C). To confirm Htt mRNA

localization patterns observed by FISH and ensure that the

probe hybridization is similar in nucleus and cytoplasm, we

performed RT-qPCR to quantify nuclear and cytoplasmic

ActB, Herc2, and Htt mRNA fractions isolated from primary

neurons. The data showed that Htt mRNA is significantly

more enriched in the nuclear fraction than ActB or Herc2

mRNA (respectively, ***p < 0.001 and *p < 0.05; Figures S2D

and S2E). Thus, Htt mRNA shows an unusual enrichment in

the nuclei of mouse primary neurons.

To determine whether the non-dividing characteristic of neu-

rons affects Htt mRNA subcellular localization, we assessed

mRNA distribution in dividing cells of neuronal origin (Neuro2a

cells; Figure S2F). Precise transcript quantification showed an

average of �30 Htt, �115 Ppib, �75 Hprt, and �27 Herc2

mRNA foci per cell (Figure S2G). Whereas the control Hprt,

Ppib, and Herc2 mRNA foci were all predominantly cytoplasmic

(90%, 71%, and 64%), most HttmRNA foci were nuclear (68%).

As expected, almost all Neat1 lncRNA foci were nuclear (95%;

Figures S2G and S2H). Thus, nuclear enrichment of Htt mRNA

is observed in both dividing and non-dividing cells of neuronal

origin.

Htt mRNA Nuclear Localization Is Specific to Cells of
Neuronal Origin
To determine the effect of cell type on Htt mRNA localiza-

tion, we compared Htt mRNA distribution in non-neuronal

cells (i.e., HeLa, human primary fibroblasts, and mouse pri-

mary fibroblasts) to that observed in cells of neuronal origin

(i.e., mouse Neuro2a cells, cortical primary neurons, and

mouse brain tissue). Whereas �50% of Htt mRNA foci local-

ized to the nucleus in neuronal cells, only 10%–20% of

Htt mRNA foci were nuclear in non-neuronal cells (Figures

1A–1C). These findings agree with our observation that siRNA

can completely silence Htt mRNA in HeLa cells, but not in

primary neurons.

In both primary neurons and brain sections, we observed

significant cell-to-cell variability in both Htt mRNA expression

and subcellular localization. To evaluate Htt mRNA level and

distinguish between neuronal and non-neuronal cells in the

brain, we developed and optimized a dual FISH-immuno-

fluorescence approach that allows simultaneous detection of

mRNA and protein. NeuN and GFAP were, respectively, used

as markers for neurons (Figure 2) and glial cells (Figure S3).

Htt mRNA in the brain was almost entirely neuronal. Moreover,

the number of Htt mRNA foci varied widely between neurons:

undetectable in some neurons and as many as 60 foci

in others (Figures 2A, 2B, S3A, and S3B). On average, we

observed �17 Htt mRNA foci per cell, with �55% of foci

in the nucleus (Figures 2B, 2D, S3C, and S3D). These

data quantitatively confirm the previous findings that Htt

mRNA is predominantly expressed in neurons in vivo (http://

proteinatlas.org).

Human Fibroblast Reprogramming into Neuron-like
Cells Changes HTT mRNA Nuclear-Cytoplasmic
Distribution
Human adult fibroblasts, which express cytoplasmic Htt

mRNA, can be reprogrammed directly into neuron-like cells

by overexpressing miR-9 and miR-124 and several neuronal

transcription factors (Richner et al., 2015; Tang et al., 2013).

We therefore tested whether trans-differentiation of fibroblasts

into neuron-like cells affects HTT mRNA subcellular distribu-

tion (Figure 3). Upon the induction of miR-9 and miR-124

expression (Figure 3A), cells gradually acquired a neuronal

morphology characterized by reduction of the cytoplasm

and the development of neuronal projections (Fig-

ure 3B). Before trans-differentiation, �90% of HTT mRNA

foci were cytoplasmic. In trans-differentiated neuron-like cells,

�60% of HTT mRNA foci were nuclear (Figures 3C–3E). The

change in the nuclear-cytoplasmic ratio is accompanied

by a sharp decrease in the number of cytoplasmic foci, sug-

gesting that the rate of nucleo-cytoplasmic export of Htt

mRNA might differ in neuronal and non-neuronal cells. Thus,
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cell type, rather than origin, is crucial in defining HTT mRNA

cellular localization.

Nuclear Htt mRNA Is More Stable than Cytoplasmic Htt

mRNA
Several cellular processes might contribute to nuclear

retention of Htt mRNA in neuronal cells, including slow

nuclear-cytoplasmic export or rapid cytoplasmic mRNA

turnover. To determine the rate of Htt mRNA turnover, we

blocked RNA polymerase II (Pol II)-mediated transcription

and quantified mRNA levels at 2, 4, 6, 8, and 10 hr post-

transcriptional inhibition (Figures S4A–S4C). Cytoplasmic Htt

mRNA levels (4-hr half-life) decreased significantly faster

than nuclear Htt mRNA (10-hr half-life; ****p < 0.0001; Figures

S4A and S4B). By contrast, Herc2 mRNA turned over at the

same rate in both nuclear and cytoplasmic fractions (�6-hr

half-life; Figure S4C). The cytoplasmic Htt and Herc2 mRNAs

decreased at similar rates, and nuclear Htt mRNA decreased

at a significantly slower rate than Herc2 mRNA (Figures S4B

and S4C).

Figure 1. Htt mRNA Is Highly Retained in the Nucleus in Cells of Neuronal Origin
(A) Htt mRNA (green) detected in cells of non-neuronal origin (HeLa, Hm, and Mm primary fibroblasts) and in cells of neuronal origin (Mm Neuro2a, Mm cortical

primary neurons, andMm brain section) by dual-color FISH. Nuclei are labeled with Hoechst (blue). Representative images of maximum Z projections of optical

sections through the nucleus are spaced 0.5 mm apart. 1003 oil objective is shown (scale bars, 5 mm).

(B) Scatterplot representing the absolute quantification of Htt transcript in each cell line. Each dot represents the number of nuclear and cytoplasmic foci for one

cell (n = 20–30 cells). Linear regression is shown for each transcript.

(C) Percentage of nuclear and cytoplasmic localization ofHttmRNA in different cell lines (n�20 cells; mean ± SEM; ****p < 0.0001; one-way ANOVA-Bonferroni’s

multiple comparisons test).

See also Figure S2.
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Nuclear Htt mRNA Resists Silencing by Both ASOs and
siRNAs
Our findings suggest that the neuronal-specific nuclear enrich-

ment of Htt mRNA could explain why siRNAs cannot fully

silence Htt mRNA in neuronal cells. We therefore directly tested

whether the subcellular localization ofHttmRNAaffects its ability

to be silenced by therapeutic oligonucleotides (Figures 4 and

S4E–S4K).

Mouse primary neuronswere treated for 7 dayswith either LNA

GapmeR ASO targeting position 3,209 in Htt exon 23 (ASOHTT)

(Hung and Leeds, 2007) or chemically stabilized, hydrophobic

siRNA targeting position 10,150 in Htt 30 UTR (siRNAHTT) (Alter-

man et al., 2015). Sequence and chemical composition of com-

pounds used are shown in Table S2. FISH analysis of treated

neurons showed that both chol-siRNAHTT and DHA-siRNAHTT

reduced cytoplasmic Htt mRNA foci by 90% (Figures S4E

and S4H), but not nuclear Htt mRNA foci. ASOHTT significantly

reduced the number of cytoplasmic and nuclear Htt foci

(by 80% and 40%; Figure S4E). There was no major impact of

both siRNAs and ASOs on Hprt and Herc2 mRNA foci level and

localization (Figures S4F and S4G). siRNA and ASO cytotoxicity,

measured using the alamar blue assay, showed that the primary

neurons’ viabilitywasnot alteredby the treatment at the indicated

concentrations (Figure S4H). To evaluate siRNAs’ and ASOs’

silencing efficiency, we measured the total cellular level of Htt

mRNA using the QuantiGene assay. We observed 60% Htt

mRNAsilencing in cells treatedwith 0.15 mMASOHTTor siRNAHTT

(Figure S4K), consistent with previous observations. At 1.25 mM

concentration, ASOHTT reduced total Htt mRNA by �85%,

whereas siRNAHTT only reduced total Htt mRNA by �75%,

consistent with the possibility that siRNAs mostly silence

cytoplasmic Htt mRNA and ASOs silence both nuclear and

cytoplasmic Htt mRNA. Consistent with efficient silencing

of cytoplasmic Htt mRNA, both therapeutic oligonucleotides

significantly reduced HTT protein levels (Figures S4I and S4J).

We evaluated the impact of Htt mRNA subcellular distribution

on oligonucleotide efficiency in vivo (Figure 4). When injected

directly in mouse striatum, DHA-siRNAs induced efficient Htt

mRNA silencing and had no measurable impact on neuronal

integrity or innate immune activation (Nikan et al., 2016).

Mice were directly injected with 4 nmol DHA-siRNANTC, DHA-

siRNAHTT (Nikan et al., 2016), ASONTC, and ASOHTT (Hung

and Leeds, 2007) in the right striatum (n = 3 animals per group;

Figure 4A). After 7 days, levels of nuclear and cytoplasmic Htt

mRNA foci were assessed by FISH (Figures 4B and 4C).

Consistent with the data obtained in vitro, we observed that

DHA-siRNAHTT reduced cytoplasmic Htt mRNA foci by 95%,

but not nuclear Htt mRNA foci. In contrast, ASOHTT significantly

reduced the number of both cytoplasmic and nuclear Htt foci

by 90% and 60%, respectively (Figure 4D). We did not detect

any significant impact by either siRNA or ASO on Hprt and

Herc2 mRNA foci level and localization (Figures 4E and 4F).

Figure 2. A Large Fraction of Htt mRNA Is Localized in the Nucleus of Striatal and Cortical Neurons in Mouse Brain

(A and B)HttmRNA (green) detected in neurons (NeuN-positive cells, red) and glia (NeuN-negative cells) in the (A) striatum and the (B) cortex. Nuclei labeled with

Hoechst (blue) are shown. Representative images are maximum Z projections of >20 optical sections spaced 0.5 mm apart. 1003 oil objective for neuronal type

cells is shown (scale bars, 5 mm).

(C and D) Scatter graph of nuclear and cytoplasmic Htt mRNA foci in (C) the striatum and (D) the cortex (n = 20–30 cells; mean ± SEM; *p < 0.05; **p < 0.01;

one-way ANOVA-Bonferroni’s multiple comparisons test).

See also Figure S3.
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DISCUSSION

The HD gene Htt is expressed throughout the body, but HD pa-

thology is primarily limited to neuronal tissues. Using branched

FISH, high-resolution confocal microscopy, and volumetric

quantification of mRNA foci, we show that wild-type Htt mRNAs

(with a normal number of CAG repeats) accumulate in the

nucleus of neuronal cells, but not in non-neuronal cells. A similar

Htt distribution pattern was demonstrated by the analysis of RNA

sequencing (RNA-seq) datasets from human embryonic stem

cell (HESC)-derived neurons (Blair et al., 2017; Figure S3E).

The results showed that, relative to the total number of reads

in each sample, Htt transcript is detected more often in the

nuclear fraction than in the cytoplasmic fraction. These findings

suggest that Htt mRNA processing, export, or stability is differ-

entially regulated in neuronal cells both in vitro and in vivo.

Advances in oligonucleotide therapeutics have put effec-

tive treatments for HD within reach (Kordasiewicz et al.,

2012; http://www.ionispharma.com). Therapeutic oligonucleo-

tides cause gene silencing by directing mRNA destruction,

thereby preventing the expression of proteins involved in genetic

disease. Whereas ASOs target mRNAs in the nucleus and cyto-

plasm, siRNAs primarily target mRNAs in the cytoplasm (this

study and Castanotto et al., 2015). We have found that ASOs

partially but significantly reduce the nuclear fraction of Htt, and

siRNAs do not silence nuclear HttmRNA at the used concentra-

tions used. Regardless of the oligonucleotide used, nuclear Htt

Figure 3. A Large Fraction of Htt mRNA Is

Localized in the Nucleus of Fibroblast-

Derived Neuron-like Cells

(A) Scheme of fibroblasts conversion to neurons

showing the neuronal morphology acquisition

(adapted from Richner et al., 2015).

(B) Phase contrast images of human primary

fibroblasts transduced with miR-9/9*-124 and

CDM at post-induction dates (PIDs) 20.

(C) Htt mRNA (green) was detected by FISH in Hs

primary fibroblasts and Hs primary fibroblast-

derived neuron-like cells. Nuclei labeled with

Hoechst (blue) are shown. Representative images

are maximum Z projections of >20 optical sections

spaced 0.5 mm apart. 1003 oil objective for

neuronal type cells is shown (scale bars, 5 mm).

(D) Scatterplot of nuclear and cytoplasmic Htt

mRNA foci (n = 20–30 cells; mean ± SEM; ns,

not significant; ****p < 0.0001; one-way ANOVA-

Bonferroni’s multiple comparisons test).

(E) Percentage of nuclear and cytoplasmic

localization for Htt transcript (n = 20–30 cells;

mean ± SEM; ****p < 0.0001; one-way ANOVA-

Bonferroni’s multiple comparisons test).

mRNA is more resistant to silencing than

cytoplasmic Htt mRNA. The resistance

of nuclear HttmRNA to silencing by oligo-

nucleotides could be related to the

increased stability or retention of nuclear

Htt mRNA compared to cytoplasmic Htt

mRNA. Future studies are needed to

understand the compartmental efficiency of various oligonucle-

otides on wild-type and mutant Htt and for the development

and optimization of therapeutics to treat HD and other neurode-

generative diseases.

The investigation of Htt mRNA distribution in brain sections

revealed a high degree of variability in levels of Htt mRNA

expression between different cell types (neurons versus glia)

and within the same cell types. In general, neurons express

significantly more Htt mRNA than glia. Similarly, detection of

HTT mRNA in wild-type human brain by immunohistochemistry

showed higher level of HTT mRNA in neurons than in glia

(Landwehrmeyer et al., 1995). These data are consistent with

data from RNA-seq datasets performed on various cell pop-

ulation of mouse cerebral cortex and suggest Htt mRNA is

predominantly expressed in neurons compared to glia (Zhang

et al., 2014; Figure S3F).

Interestingly, as previously described, we also observed a

substantial variability of Htt mRNA level between individual

neurons, with neurons not expressing Htt mRNA and neurons

expressing as many as 60 copies per cell (Keeler et al.,

2016). Several studies have demonstrated that the cell to

cell variability is a biological phenomenon and could play

critical roles in determining biologically and clinically significant

phenotypes (for review, Patange et al., 2018). HTT mRNA

subcellular distribution, as well as expression variability, may

provide valuable information about HTT function in neuronal

regulatory mechanisms.
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Figure 4. In Vivo Htt mRNA Silencing in Striatal Neurons by Hydrophobically Modified siRNA and Antisense Oligonucleotides

DHA-siRNANTC, DHA-siRNAHTT, ASONTC, and ASOHTT (4 nmol in 2 mL; n = 3 animals per group) were administered by unilateral intrastriatal bolus microinjection.

Brains were collected after 7 days, and Htt mRNA foci subcellular levels were assessed by FISH.

(A) Schematic diagram of sagittal and coronal sections through the mouse striatum at the site of injection. The striatal region selected to acquire the images (red

box) is indicated.

(B andC) FISH detection ofHttmRNA (green) upon (B) DHA-siRNA and (C) ASO treatments. Nuclei labeledwith Hoechst (blue) are shown. Representative images

are maximum Z projections through the nuclear region spaced 0.5 mm apart. 1003 oil objective is shown (scale bars, 5 mm).

(legend continued on next page)
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Summary and Conclusion
Using branched FISH, we localize and quantify wild-type Htt

mRNA (non-expanded CAG repeat) in different cell types and

evaluate the differential silencing efficiency of ASOs and

siRNAs on nuclear versus cytoplasmic Htt mRNA. We show

that more Htt mRNA is nuclear in neuronal cells compared to

non-neuronal cells. Furthermore, we show that siRNAs and

ASOs differentially silence nuclear and cytoplasmic Htt

mRNA. This is the first detailed observation of a clear change

in Htt mRNA intracellular localization based on cellular identity

and the first investigation of the differential subcellular efficacy

of different oligonucleotide therapies. These results provide

insight into the characteristics of Htt mRNA, incite future

investigation into the subcellular distribution of mutant Htt

mRNA, and identify a new aspect for consideration in the

development of future oligonucleotide therapeutics targeting

HTT mRNA.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Anastasia

Khvorova (Anastasia.khvorova@umassmed.edu).

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit polyclonal anti-HTT Sapp et al., 2012 Ab1; RRID: N/A

rabbit polyclonal anti-RPB1 Cell Signaling Cat#2629; RRID: AB_2167468

mouse monoclonal anti-GAPDH Sigma Cat#MAB374; RRID: AB_2107445

chicken monoclonal anti-NeuN Millipore Cat#MAB377B; RRID: AB_177621

chicken polyclonal anti-GFAP Millipore Cat#AB5541; RRID: AB_177521

Chemicals, Peptides, and Recombinant Proteins

AlamarBlue Life Technologies Cat#DAL1025

Critical Commercial Assays

See Table S1 for the list and cat# of RNAscope probes ACDBio N/A

RNAscope Fluorescent Multiplex Assay ACDBio Cat#320850

QuantiGene 2.0 Assay Affymetrix Cat#QS0011

QuantiGene 2.0 Htt probe Affymetrix Cat#SB-14150

QuantiGene 2.0 Ppib probe Affymetrix Cat#SB-10002

Experimental Models: Cell Lines

Mouse: Neuro2a ATCC Cat#CCL-131

Mouse: embryonic day 16 cortical primary neurons N/A N/A

Mouse: primary fibroblasts N/A N/A

Human: HeLa ATCC Cat#CCL-2

Human: primary fibroblasts Coriell Cat#GM08399

Experimental Models: Organisms/Strains

Mouse: wild-type FVB/NJ (female) The Jackson Laboratory Cat#001800

Oligonucleotides

Chol-siRNAHTT Alterman et al., 2015 hsiRNA HTT10150

Chol-siRNANTC Alterman et al., 2015 hsiRNA NTC

DHA-siRNAHTT Nikan et al., 2016 DHA-hsiRNAHTT

DHA-siRNANTC Nikan et al., 2016 DHA-hsiRNANTC

ASOHTT Hung and Leeds, 2007; Exiqon ASO-3209 (IONIS)

ASONTC Exiqon ASO-ContA

Oligonucleotides This paper Table S2

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij/

GraphPad Prism GraphPad Software Inc. https://www.graphpad.com/

scientific-software/prism/

R The R Foundation https://www.r-project.org/

Other

RNaseq Blair et al., 2017 N/A

RNaseq Zhang et al., 2014 https://web.stanford.edu/group/

barres_lab/brain_rnaseq.html

Cell Reports 24, 2553–2560.e1–e5, September 4, 2018 e1

mailto:Anastasia.khvorova@umassmed.edu
https://imagej.nih.gov/ij/
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://www.r-project.org/
https://web.stanford.edu/group/barres_lab/brain_rnaseq.html
https://web.stanford.edu/group/barres_lab/brain_rnaseq.html


EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and Ethic Statements
Female wild-type FVB/NJ mice were purchased from The Jackson Laboratory and maintained in a specific pathogen-free facility.

All procedures were performed in accordance with the National Institutes of Health Guideline for Laboratory Animals (including

the timed pregnant mice used to obtain primary neurons) and were approved by the University of Massachusetts Medical School

IACUC (Protocol #A2411).

Human Primary Cells
Adult dermal fibroblasts from healthy control were acquired from the Coriell Institute for Medical Research. Therefore, in regard to

deidentified skin fibroblasts samples, we do not have access to the master list to reidentify subjects. This activity is not considered

to meet federal definitions under the jurisdiction of an institutional review board and is thus exempt from the definition of human

subject.

METHOD DETAILS

Cell Culture
HeLa and Neuroblastoma 2a (Neuro2a) cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (Cellgro #10-013CV)

supplemented with 10% fetal bovine serum (FBS; GIBCO #26140) and 100 U/ml Penicillin/Streptomycin (Invitrogen #15140) and

grown at 37�C and 5% CO2. Cells were split every 3-4 days.

The mouse primary fibroblasts were obtained from mouse dermal tissue following a method published by (Seluanov et al., 2010).

Mouse and human primary fibroblast weremaintained inMEM (GIBCO #11095) supplemented with 15% fetal bovine serum, 2%EAA

(GIBCO #11130), 2% NEAA (GIBCO #11140), 1% vitamins (GIBCO #11120), 100 U/ml Penicillin/Streptomycin and pH7.4 and grown

at 37�C and 5% CO2. Cells were split every 3-4 days.

For FISH, cells were plated at 2.5x105 cells per dish on 35 mm glass bottom dishes (MatTek #P35G-1.5-10-C) pre-coated for one

hour with poly-L-lysine (Sigma #P4707). Unless stated otherwise, the FISH procedure was performed at 2 days post-plating.

Conversion of Fibroblasts into Neuron-like Cells
The trans-differentiation of human primary fibroblasts into fibroblast-derived neurons was performed following the detailed protocol

developed by (Richner et al., 2015). Briefly, the lentiviral cocktail of rtTA, pTight-9-124-BclxL, CTIP2, MYT1L, DLX1 and DLX2 was

added to fibroblasts for 16 h, then cells were washed in PBS and cultured in fibroblasts medium (FM) containing 1 mg/mL doxycycline

(DOX). At post-induction day (PID) 3, cells were cultured in FM containing 3 mg/mL puromycin, 3 mg/mL blasticidin and DOX. At

PID 5 cells were replated onto sterile 24-wells glass-bottom plates (MatTek #P24G-1.5-10-F) pre-coated with polyornithine, fibro-

nectin and laminin and cultured in FM + DOX. On PID 6, FM was replaced by Reprogramming Neuronal Medium (RNM): NbActiv4

(Brainbits #Nb4-500) with 200 mM dibutyl cyclic AMP, 1 mM valproic acid, 10 ng/mL BDNF, 10 ng/mL NT-3 and 1 mM retinoic

acid, supplemented with DOX. Half-volume medium changes with RNM were performed every 4 days with addition of DOX every

2 days thereafter until PID 30–35. Addition of puromycin and blasticidin was terminated after PID 14.

Preparation of Primary Neurons
Primary cortical neurons were prepared and maintained as described in (Alterman et al., 2017). The procedure was performed using

sterile standard dissection tools.

Primary cortical neurons were isolated from E16-17 mouse embryos of wild-type FVB/NJ mice. Pregnant females were anesthe-

tized by intraperitoneal injection of Avertin at 250 mg per kg body weight (Sigma, #T48402) followed by cervical dislocation. Embryos

were removed and transferred to ice-cold DMEM/F12 medium (Invitrogen #11320). Brains were removed and meninges were care-

fully detached. Cortices were isolated and transferred into pre-warmed papain solution for 25 min at 37�C, 5% CO2 to dissolve the

tissue. Papain (Worthington #54N15251) was dissolved in 2 mL Hibernate E (Brainbits #HE) and 1 mL EBSS (Worthington

#LK003188), and supplemented with 0.25 mL of 10 mg/ml DNase1 (Worthington #54M15168) in Hibernate E. After the 25-30 min

incubation, the papain solution was gently removed and 1 mL NbActiv4 (Brainbits #Nb4-500) supplemented with 2.5% FBS was

added to the tissue. Tissues were then dissociated by gentle trituration through a fire-polished, glass Pasteur pipet. Neurons

were counted, diluted at 13 106 cells/ml and plated as required for each experiment as described below. After overnight incubation

at 37�C, 5% CO2, an equal volume of NbActiv4 supplemented with anti-mitotics, 2.4 mg/ml 5-Fluoro-20-deoxyuridine monophos-

phate (Sigma #F3503) and 4.8 mg/ml Uridine triphosphate (Sigma #U6625) to prevent the growth of non-neuronal cells, was added

to neuronal cultures. Half of the volume of media was replaced with fresh NbActiv4 containing anti-mitotics every 48 hours until the

experiments were performed.

FISH experiments

23 105 cells were plated in the glass center of 35 mm glass-bottom dishes (MatTek #P35G-1.5-10-C) pre-coated with poly-L-lysine

(Sigma #P4707). Cells were fixed and processed for FISH five days post-preparation.
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In vitro silencing and cell viability assays

1 3 105 neurons per well were plated on 96-well plates pre-coated with poly-L-lysine (BD BIOCOAT #356515) as described in

(Alterman et al., 2017). Cells were processed 7 days post-treatment.

RT-qPCR

Experiments were performed with 2x106 cortical primary neurons plated on 6 cm plates, pre-coated with poly-D-lysine.

Oligonucleotides
Sequences and chemical modification patterns of siRNAHTT and ASOHTT are described in Table S2. All siRNAs design, synthesis and

quality control have been performed in house and are available upon request. ASOs, designed by IONIS Pharmaceuticals (Hung and

Leeds, 2007), have been purchased from Exiqon.

RNA Polymerase II Inhibition
Triptolide was dissolved in DMSO to a 10mMstock concentration. Primary cortical neurons were treated with a final concentration of

25 mM triptolide (MedChemExpress #HY-32735) for indicated amount of time. Cells were fixed directly after treatment and processed

for FISH experiment.

Cell Viability Assay
The oligonucleotide cytotoxicity was assessed in vitro in primary neurons in 96-well plates using alamarBlue� reagent (Life

Technologies #DAL1025) as recommended by manufacturer instruction. Briefly, 20 ml of alamarBlue� reagent were added in

200 ml primary neurons culture medium and incubated for 4 hours. Resofurin fluorescence was measured at 550 nm excitation

and 600 nm emission wavelengths.

Animal Stereotaxic Injections of Oligonucleotides
All mice used were wild-type female adults FVB/NJ, 14 weeks old at the time of the injection (The Jackson Laboratory). Prior to

injection, mice were deeply anesthetized with 1.2% Avertin (Sigma #T48402). 4 nmol DHA-siRNANTC, DHA-siRNAHTT, ASONTC or

ASOHTT (n = 3mice per treatment group), diluted at 2 nmol/ml in aCSF, were administered by direct bollus microinjection into the right

striatum by stereotaxic placement; coordinates (relative to bregma) were +1.0 mm anterio-posterior, +2.0 mm medio-lateral,

and +3.0 mm dorso-ventral. All injection surgeries were performed using sterile surgical techniques and were accomplished using

standard rodent stereotaxic instrument and an automatedmicroinjection syringe pump (Digital Mouse Stereotaxic Frame;World Pre-

cision Instrument #504926). Mice were euthanized 7 days post-injection and brains were harvested.

Preparation of Mouse Brain Sections
Mice were sacrificed according to our institutional IAUCUC protocol (#A2411). Brains were removed, placed with eye bulbs facing

upward in disposable cryomold (Polysciences, inc #18986-1), and frozen in O.C.T. embedding medium (Tissue-Tek #4583) in a dry

ice/methanol bath. Brains were stored in �80�C and transferred at �20�C 24 hours prior sectioning. Brains were sliced into 20 mm

brain sections using a cryostat (temperatures: sample holder �13�C, blade �12�C) (ThermoFisher CryoStar NX70) and mounted on

superfrost slides (Fisher #1255015). Slides were stored at �80�C until further experiment.

Fluorescent In Situ Hybridization
FISH allows to perform single-cell detection of transcripts in situ and accurately quantify and report the relative levels of mRNA

expression. Therefore, we compared the expression level of Htt mRNA with the expression level of housekeeping genes rather

than normalize Htt mRNA level with any other control gene. mRNAs vary in sequence and length which may affect their subcellular

localization. Thus, we investigated the cellular distribution of Htt mRNA with multiple transcripts: 1) the conventional housekeeping

mRNAs ActB, Ppib and Hprt; 2) Herc2 mRNA, selected because it is a transcript longer than Htt mRNA; 3) Neat1 and Malat1 long

non-coding RNAs (lncRNAs) exclusively localized in the nucleus. The comparison of Htt mRNA level with multiple genes provided

a more accurate and unbiased analysis of Htt transcript subcellular localization. See ‘‘Key Resources Table’’ for the detailed list

and description of the genes assessed in this study.

Sample preparation

Cultured adherent cellswere prepared as described by themanufacturer protocol for cultured adherent cells. Briefly, cells were fixed

in 10% formalin for 20-30 min at 4�C and washed three times in PBS. Cells were dehydrated by sequential incubation in 50%, 70%

and 100% ethanol for 1 min and incubated at least overnight and up to 6 months in 100% ethanol at �20�C. The day of FISH

experiment, cells were re-hydrated by sequential incubation in 70% and 50% ethanol for 1 min followed by incubation in PBS for

10 min. Cells were incubated for 10 min in protease solution (Pretreat III) at room temperature. Cells were washed twice in PBS

and processed for FISH.

Brain sections obtained on a cryostat were prepared as described by the manufacturer protocol for fresh frozen tissue (ACDBio

#320513). Briefly, sectionswere fixed in 10% formalin for 15-20min at 4�Candwashed three times in PBS. Sections were dehydrated

by sequential incubation in 50%, 70% and 100% ethanol for 5 min at room temperature and air-dried for 5 min at room temperature.
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During this time the hydrophobic barrier around the sections can be drawn. Sections were incubated for 20-30 min in protease

solution (Pretreat IV) at room temperature. Sections were washed twice in PBS and processed for FISH.

FISH experiments

FISH were performed using the RNAscope� Fluorescent Multiplex kit (ACDBio #320850) following the manufacturer instruction

(ACDBio #320293). Prior any experiment, we ensured that the probes were prewarmed at 40�C and cooled to room temperature

to dissolve any crystal formed in the probe solution during storage at 4�C. Following sample preparation, samples were incubated

with the target probe in the HybEZ oven at 40�C for 3 hours. The signal was amplified by incubation with the pre-amp, amp and

label probes for 30 min each at 40�C. Between each incubation, samples were incubated in wash buffer twice for 2 min at room

temperature. Following signal amplification, sample nuclei were stained with Dapi solution for 1 min, mounted in ProLong Gold

antifade medium (ThermoFisher #P36930) and dried at room temperature overnight.

FISH-IF

Detection of NeuN and GFAP by immuno-fluorescence (IF) were performed following FISH experiment. Briefly, FISH procedure was

performed as previously described by the manufacturer protocol followed directly by IF. Brain sections were incubated for 1 hour in

blocking solution (2%Normal goat serum, 0.01%Triton-X in PBS) at room temperature. Slides were washed 3 times for 5min in PBS.

Brain sections were incubated in primary antibodies diluted in PBS (chicken monoclonal anti-NeuN 1:1000, Millipore #MAB377B;

chicken polyclonal anti-GFAP 1:1000, Sigma #AB5541) overnight at room temperature. Slides were washed 3 times for 5 min in

PBS and incubated for 1 hour at room temperature in secondary antibodies diluted in PBS. Slides were washed 3 times for 5 min

in PBS, mounted in ProLong Gold antifade medium and dried at room temperature overnight.

Confocal Imaging
Images were acquired with a CSU10B Spinning Disk Confocal System scan head (Solamere Technology Group) mounted on a

TE-200E2 inverted microscope (Nikon) with a 100x Plan/APO oil-immersion objective and a Coolsnap HQ2 camera (Roper Technol-

ogies). Z stacks were acquired using Micro-Manager by imaging at 0.5 mm intervals throughout the samples (brain section or cells).

Consistent laser settings were used for all imaging sessions: 350 nm laser, 100 ms; 488 nm laser, 300 ms; 543 nm laser, 300ms; gain

500. Images were processed using ImageJ software.

Cell Fractionation, RNA Isolation and qRT-PCR
Fractionation

At DIV8, neurons were lysed with 200 ml ice cold hypotonic lysis buffer (20 mM Tris-HCl pH7.5; 15 mM NaCl; 10 mM EDTA; 0.5%

NP-40; 0.1% Triton X-100). Lysate was scraped from the plate and centrifuged at 1,200 x g for 10 min at 4�C to pellet nuclei.

Cytoplasmic fractions were flash frozen and nuclear pellets were washed 2X in ice cold hypotonic lysis buffer and then flash frozen.

RNA extraction

Nuclear and cytoplasmic lysates were incubated in hypotonic lysis buffer/10% SDS/200 mg/ml proteinase K (ThermoFisher

#AM2548) for 1 hour at 42�C, followed by acid phenol chloroform extraction, chloroform extraction, and ethanol precipitation.

RNA was treated with Turbo DNase (ThermoFisher #AM9720), followed by cleanup with RNA Clean and Concentrator Kit (Zymo

Research #R1015). Due to residual DNA contamination, nuclear fractions were DNase treated twice.

RT-qPCR

2 mg of cytoplasmic RNA or 1 mg of nuclear RNA was reverse transcribed using random hexamer priming and Superscript IV Reverse

Transcriptase (ThermoFisher #18090010). cDNA was purified using Ampure beads (Agencourt #A63880) and amplified using Type-it

Fast SNP Probe PCR Kit (QIAGEN #206045) and TaqMan MGB probes (ThermoFisher #4316034). Primer sequences are: Htt Exon 5

F-TGGTGCTCCTCGAAGTTTGC, R-TCCTCCGGTCTTTTGCTTGT; Herc2 F- AGCCTTCTGCATCCTTGGTC, R-CGGAAGTCAGCAA

TGGTCCT; ActB F-CTGTCGAGTCGCGTCCACC, R-CGCAGCGATATCGTCATCCA.

Htt mRNA Silencing Quantification
HttmRNAsilencingwas performed as described in (Alterman et al., 2017).mRNA levelswere assessed using theQuantiGene 2.0 Assay

(Affymetrix #QS0011) andHttmRNA level was normalized toPpibmRNA (housekeeping control). Cellswere lysed in 250 mL diluted lysis

mixture per well (Affymetrix #13228) supplemented with 0.167 mg/ml proteinase K (Affymetrix #QS0103) for 30 min at 55�C. Cell lysates
were mixed thoroughly and 40 mL (�16,000 cells) each lysate was added to the capture plate along with 40 mL additional diluted lysis

mixture without proteinase K. Probe sets were diluted as specified in the Affymetrix protocol. 20 mL of mouse Htt or Ppib probe sets

(Affymetrix #SB-14150, #SB-10002) was added for a final volume of 100 mL per sample well. The samples were incubated overnight

at 55�C. The next day, the signal was amplified according to the Affymetrix QuantiGene protocol by incubating the samples with

each probe for 1 hour: pre-amp and amp probes at 55�C and label probes at 50�C. Between each incubation, samples were washed

three times in wash buffer at room temperature using a plate washer (Biotek ELX-405). Luminescence was detected on a Veritas

Luminometer (Promega). The average of the three technical replicates represents the mRNA expression value per sample.

Western Blot
Western blots were performed as described in (Keeler et al., 2016). Briefly, 10ug of primary neuronal lysates were separated by

SDS-PAGE using 3%–8% Tris acetate gels (Life Technologies #EA03785BOX), transferred to nitrocellulose, blocked in 5%
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milk/TBS + 0.1% Tween 20, incubated in primary antibody overnight at 4�C then secondary antibody 1 hour at room temperature.

Signal was detected using Super Signal West Pico Chemiluminescent kit (Pierce #34080) and a CCD imaging system (Alpha Inno-

tech) or Hyperfilm ECL (GE Healthcare #28906839) and densitometry was determined using ImageJ software (NIH). Primary

antibodies were rabbit polyclonal anti-HTT antibody Ab1 (Sapp et al., 2012) (1:2000 in blocking buffer) and mouse monoclonal

anti-GAPDH antibody (1:2000 in blocking buffer; Sigma #MAB374). Secondary antibodies were peroxidase-labeled anti-rabbit

IgG (1:2500 in blocking buffer, Jackson Immunoresearch #711035152) or anti-mouse IgG (1:5000 in blocking buffer, Jackson Immu-

noresearch #715035150).

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcripts Localization and Quantification
Nuclear versus cytoplasmic localization analysis of RNA foci was performed with ImageJ (v1.51n) using a macro designed in house

(Lawrence J. Hayward). Briefly, the 3D ROI Manager of Thomas Boudier (Ollion et al., 2013) was used to define individual fluorescent

foci as 3D objects and to quantitate the integrated intensity of voxels within each object. Hoechst images were used to segment the

nuclear regions in 3D. Distinct foci were segmented in 3D using radial Gaussian local thresholding from background-subtracted and

filtered images, and the raw intensities within each 3D object were then integrated to obtain the total fluorescence signal. Following

mRNA foci quantification in Htt mRNA silencing experiments, Htt mRNA levels were normalized to Herc2 mRNA in vitro and Hprt

mRNA level in vivo.

Co-Localization Quantification
Co-localization analysis was performed in ImageJ v1.51n (Schneider et al., 2012). To detect RNA foci, image stacks were convolved

using a difference of Gaussians (DOG)method by using the 2DGaussian filter (sigma = 134 nm, an approximation of a near-diffraction

limited spot) and subtracting the same image stack with a larger Gaussian filter (sigma = 268 nm). The processed images were then

thresholded using the Triangle method (Zack et al., 1977) thereby generating a binary image for each channel. Foci were converted

to objects using the 3D objects counter plugin (Bolte and Cordelières, 2006) and co-localization was determined by calculating

the fraction of overlapping objects in different channels. Co-localization values are reported as the percent of objects that are

co-localized with a given label. To distinguish nuclear versus cytoplasmic RNA, the DAPI channel was convolved with a Gaussian

filter (sigma = 670 nm) and thresholded using the Otsu method (Otsu, 1979). RNA foci overlapping the processed DAPI channel

were considered nuclear and non-overlapping foci were considered cytoplasmic. Additionally, non-specific co-localization was

calculated by rotating one of the channels over both the X- and Y-axes and re-calculating the co-localization using the samemethod.

This allowed us to determine that co-localization was genuine and not simply due to random signal.

RNA-seq Data Analysis
Analyses of RNA-seq data were performed using the R statistical software environment.

Processed nuclear and cytoplasmic RNA-seq datasets across neuronal differentiation from (Blair et al., 2017) were downloaded

from the Gene Expression Omnibus (GSE100007) and TPM values for Htt mRNA (ENSG0000197386) were extracted for plotting.

Expression of HttmRNA across neuronal cell types was assessed on an interactive web browser (http://web.stanford.edu/group/

barres_lab/brain_rnaseq.html) with data from (Zhang et al., 2014).

Statistical Analysis
Data analyses were performed using GraphPad Prism 7 software (GraphPad Software Inc.). Statistical parameters including the

exact value of n, dispersion and precision measures (mean ± SEM) and statistical significance, denoted by asterisks (*, p < 0.05;

**, p < 0.01; ***, p < 0.001; ****, p < 0.0001) are reported in the figures and figure legends. Data were analyzed using unpaired

two-tailed t test, unpaired one-way or two-way ANOVA test with Bonferroni test for multiple comparison as specified in the figure

legends. Differences in all comparisons were considered significant at p < 0.05. Randomization and investigator blinding were not

considerations for this study design.
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