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Abstract: Triple-negative breast cancer is a phenotype of breast cancer where the expression level of
estrogen, progesterone and human epidermal growth factor receptor 2 (HER2) receptors are low or
absent. It is more frequently diagnosed in younger and premenopausal women, among which African
and Hispanic have a higher rate. Cold atmospheric plasma has revealed its promising ant-cancer
capacity over the past two decades. In this study, we report the first cold plasma jet delivered by the
Canady Cold Plasma Conversion Unit and characterization of its electric and thermal parameters.
The unit effectively reduced the viability of triple-negative breast cancer up to 80% without thermal
damage, providing a starting point for future clinical trials.

Keywords: triple-negative breast cancer; cold atmospheric plasma; cold plasma device

1. Introduction

Breast cancer is the most common cancer diagnosed among US women (excluding skin cancers)
and is the second leading cause of cancer death among women after lung cancer [1]. Triple-negative
breast cancer refers to the breast cancer phenotype which has an absence or low level expression of
estrogen, progesterone, and HER2 receptors [2]. It is known for its poor clinical outcome and lack
of effective targeted therapy because women with triple-negative breast cancer do not benefit from
endocrine therapy or trastuzumab. Chemotherapy is currently the mainstay of systemic medical
treatment [3]. Patients with triple-negative disease have a lower three-year survival rate following
chemotherapy than patients with breast cancers of other subtypes [4].
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Cold atmospheric plasma (CAP) has been extensively studied for its biomedical use in various
fields such as surface decontamination [5], wound healing [6,7], dental treatment [8], allergen
destruction [9], HIV virus treatment [10] and among others [11]. In particular, the research of CAP as
a potential oncotherapeutic approach has thrived over the past decade and the mechanism is been
increasingly understood [12–16]. It is widely reported that CAP deactivated more than 20 types
of cancer in vitro by inducing apoptosis [17–19], cell cycle arrest [20–22], endoplasmic reticulum
stress [23,24] and DNA damage [25–27]. CAP has also been shown to significantly reduce tumor
volume in an in vivo murine model following s phase cell cycle arrest and apoptosis [28].

With such a promising anti-cancer capacity, there is as yet to be a commercialized clinical
applicable cold atmospheric plasma device reported. This study presents a new invention of
an integrated cold plasma and high-frequency plasma electrosurgical system (U.S. Patent No.
9.999,462) [29] allowing tumor removal and treatment of surgical margins in a single device,
and evaluates the response of triple-negative breast cancer to treatment with the device. Our study
demonstrates CAP, delivered by the Canady Cold Plasma Conversion System, as a potential adjuvant
for triple-negative breast cancer treatment.

2. Materials and Methods

2.1. Cell Culture, Treatment, and Viability Assay

All experiments were performed at the Jerome Canady Research Institute for Advanced Biological
and Technological Sciences, in Takoma Park, MD, USA. Human breast cancer cell line MDA-MB-231
was generously donated by Professor Michael Keidar’s group at The George Washington University.
Cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal
bovine serum and 1% Pen Strep in a 37 ◦C and 5% CO2 humidified incubator (Thermo Fisher Scientific,
Waltham, MA, USA). When cells reached approximately 80% confluence, cells were seeded at a
concentration of 105 cells/well into 12-well plates (USA Scientific, Ocala, FL, USA) or 5 × 103 cells/well
into 96-well plates (USA Scientific, Ocala, FL, USA). Helium flow was set to a constant 1 lpm at power
set 20 P or 40 P on the USMI SS-601 MCa (USMI, Takoma Park, MD, USA) or 3 lpm and power set to
40 P, 60 P, or 80 P. The plasma scalpel was placed 1.5 cm (at 1 lpm) or 2 cm (at 3 lpm) away from the
surface of the cell media. Well-plates were placed on a plate heater (Benchmark, New York, NY, USA)
which maintained temperature at 37 ◦C, providing a relatively warmer and gentle environment for the
cells during treatment. Thiazolyl Blue Tetrazolium Bromide (MTT) assay was performed on the cells
48 h after plasma treatment following the manufacturer’s protocol. All the MTT assay reagents were
purchased from Sigma-Aldrich (St. Louis, MO, USA). The absorbance of the dissolved compound was
measured by BioTek Synergy HTX (Winooski, VT, USA) microplate reader at 570 nm.

2.2. Cold Plasma Device Power and Temperature Measurement

Electric parameters of the cold plasma discharge were measured using Tektronix P6021A
(Tektronix, Beaverton, OR, USA) current probe with a frequency range of 120 Hz to 60 MHz and
PPE 6 kV high voltage probe (LeCroy, Chestnut Ridge, NY, USA) attached to a digital oscilloscope
Wavesurfer 3024 (LeCroy, Chestnut Ridge, NY, USA). Helium flow rates at 1 lpm and 3 lpm were
measured at different power settings. A thermal camera (Wilsonville, OR, USA) was used to collect
temperature data. The volume of the media in each well was 1 mL for 12-well plate and 0.1 mL for
96-well plate. The distance between the tip of the scalpel and the surface of the media was kept at
1.5 cm (at 1 lpm) or 2 cm (at 3 lpm). Temperature measurement of the CAP-treated media was also
performed with the plate heater set to 37 ◦C, which was consistent with cell viability experiments.
The temperature of the beam and treated media was measured every minute from 0 min (immediately
after the CAP was on) to 5 min.



Plasma 2018, 1 220

2.3. Statistics

All viability assays were repeated for at least three times with two replicates each time. Data was
plotted by Microsoft Excel 2016 (Redmond, WA, USA) as mean ± standard error of the mean. Student
t-test or one-way analysis of variance (ANOVA) were used to check statistical significance where
applicable. Differences were considered statistically significant for * p ≤ 0.05.

3. Results

3.1. The Canady Cold Plasma Conversion System

The system designed for cancer treatment in this study is reported in detail in a US patent [29].
Briefly, it is comprised of two units, namely the conversion unit (CU, USMI, Takoma Park, MD, USA)
and the cold plasma probe (CPP, USMI, Takoma Park, MD, USA). The CU is integrated with a USMI
SS-601 MCa, a high-frequency electrosurgical generator (ESU, USMI, Takoma Park, MD, USA) unit
and converts the ESU signal. The CPP is connected to the CU output. Plasma is produced at the end of
the CPP and is thermally harmless to living tissue, i.e., it is cold plasma. The connection schematics are
shown in Figure 1A. The CU is equipped with three connectors, namely a gas connector (to a helium
tank), an electrical connector (to ESU), and an electro-gas connector (to CPP). The CU utilizes a high
voltage transformer connected to the output from the ESU. The CU up-converts voltage up to 4 kV,
down-converts frequency to less than 300 kHz, and down-converts power to less than 40 W. The CPP
is connected to an electro-gas output connector of the CU and has a length of 0.5 m. Figure 1B shows
the assembly of the whole CAP generation system.
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Figure 1. (A) Schematics of a system for producing cold plasma by converting a high-frequency
electrosurgical unit; (B) Picture of the CAP generation system.

3.2. Power and Temperature Measurement of CAP

The electric parameters of the cold plasma discharge were measured and a schematic image of
the setup is shown in Figure 2A. Figure 2B shows the output voltage of the ESU (orange line) and
the CU (blue line). The ESU spray mode is a pulse modulated system. The ESU generated series of
high voltage bursts with peak amplitude of about 1 kV separated about 30 µs between the bursts.
Each voltage burst was filled with harmonic oscillations at a frequency of about 880 kHz. The CU
output waveform had a smaller resonate frequency about 140 kHz and amplitude about 1–1.5 kV.
That is to say, the CU is not a power generating device, but a frequency and voltage modulation device.
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Figure 2. Output power was measured across the plasma scalpel tip. (A) Schematic image of power
testing setup; (B) Output voltage of the ESU (orange line) and the CU (blue line); (C) Output voltage
and current signals from the CU; (D) Power measurement of the CU; (E) Beam length of the CAP jet.

The output voltage and current signals from the CU using 3 lpm are shown in Figure 2C. The blue
line indicates the voltage output from the CU and the orange line is the current dissipate through the
CPP, with the ESU set to 60 P. We observed a phase shift between voltage and current curve; the current
curve is about 80 degrees ahead of the voltage curve. In other words, the cold plasma system is acting
as neither a pure resistive nor a pure reactive impedance. Therefore, the real power delivered to
the discharge was calculated as follows. The power deposited into the cold plasma discharge was
calculated by the oscilloscope directly as 1

T
∫

T U · I dt for large integration time T = 2 ms (over 20 M
data points, more than 200 oscillations). The power deposited into the cold plasma discharge at 20 P,
40 P, 60 P, 80 P, 100 P, and 120 P for 3 lpm and 1 lpm was plotted in Figure 2D. The power settings of
20 P, 40 P, 60 P, 80 P, 100 P, and 120 P yield powers deposited into the cold plasma discharge of 5 W,
8 W, 11 W, 15.7 W, 22.3 W, and 28.7 W at 3 lpm respectively; 5 W, 6 W, 7 W, 8 W, 9W, and 11 W at 1
lpm respectively.



Plasma 2018, 1 222

The length of the CAP beam was also measured at different power settings for both flow rates and
plotted in Figure 2E. At 3 lpm, the length of the beam increases rapidly from 1.5 to 2 cm and to 2.3 cm
when the power is increased from 20 P to 40 P and to 60 P. After 60 P, the length remains constant at
2.4 cm as the power further increases up to 120 P. This trend also applies to 1 lpm. The length of the
beam increases from 0.7 to 0.8 cm when the power increases from 20 P to 40 P, and maintains a length
of 0.9 cm for 80 P, 100 P, and 120 P.

Thermal images of the CAP jet with flow rates of 3 lpm and 1 lpm are shown in Figures 3A
and 4A respectively. Cell culture media was warmed up to 37 ◦C beforehand and added to well
plates immediately before measurement. The environment temperature was about 23 ◦C during
the experiment. As shown in the graphs, for both flow rates the temperature of the treated media
(Figures 3B and 4B) as well as the CAP beam (Figures 3C and 4C) increases with power increasing
from 20 P to 120 P. The beam temperature of 3 lpm CAP is about 26 to 30 ◦C, whereas the treated area
of the 12-well plate is 15 to 21 ◦C. In the case of 1 lpm, the beam temperature is in the range of 25.5 to
31 ◦C, and the treatment area is roughly 23 to 36 ◦C.
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3.3. Cell Viability after CAP Treatment

Cells were treated by the Canady Cold Plasma Conversion System and viability was
quantified by MTT assay 48 h after CAP treatment. As shown in Figure 5A,B primary axis,
CAP treatment significantly reduced the proliferation of triple-negative cancer cells at various
conditions. CAP treatment of MDA-MB-231 significantly reduces viability at nearly all doses tested
using 3 lpm (Figure 5A). At 1 lpm flow rate, 90 to 120 s of CAP treatment was needed to significantly
reduce viability (Figure 5B).

The energy delivered by the CU to the CPP can be calculated as

E = P × t (1)

where E is the total energy of the CAP (J) delivered by the system; P is the power measured at the end
of the CPP (W), and t is the treatment time (s). The consumed energy of each CAP treatment condition
used in this study was plotted as the secondary axis of Figure 5A (3 lpm) and 5B (1 lpm). The reduction
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of cell viability matches the energy consumption for both flow rates and this trend is consistent across
all power and time settings tested. A picture of the cells treated by the CPP is shown in Figure 5C.Plasma 2018, 2, x FOR PEER REVIEW  7 of 11 
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Figure 5. Reduced viability of treatment on MDA-MB-231 measured by MTT assay (bar chart, primary
axis) and energy deposited in the corresponding CAP treatment (line chart, secondary axis) (A) Cells
were treated by CAP at 3 lpm in 12-well plates; (B) Cells were treated by CAP at 1 lpm in 96-well plates;
(C) Picture of 3 lpm CAP jet treating the cells in a 12-well plate. * P ≤ 0.05.

4. Discussion

Cold plasma can be generated in various forms including dielectric barrier discharge,
corona discharge, and plasma jets [30]. The Canady Cold Plasma Conversion Unit reported in
this study is the first cold plasma device that utilizes a high voltage transformer to up-convert the
voltage, down-convert the frequency, and down-convert the power of the high voltage output from an
electrosurgical unit (U.S. Patent No. 9.999,462) [29].

The plasma jet generated by the Canady Cold Plasma Conversion System is indeed “cold”.
The beam temperature for all conditions tested is within the range of 26 to 31 ◦C. It has a cooling
effect on the treated media when the flow rate is high and/or power is low. With a flow rate at 3 lpm,
the beam temperature is 26 to 30 ◦C for 20 P to 120 P, whereas the treated media in the 12-well plate is
about 15 to 21 ◦C respectively.

The beam temperature of 1 lpm CAP is 25.5 to 31 ◦C for 20 P to 120 P, which is very close to that
of 3 lpm. Although the power parameters of CAP are higher at 3 lpm than 1 lpm, as shown above
in the Results Section, the similar temperature could be resulted from better heat convection of the
higher flow. For a lower power setting of 20 P to 60 P, the temperature of the CAP-treated media in the
96-well plate at 1 lpm, 24 to 29 ◦C, is lower or close to the CAP beam temperature. However, for the
higher power setting of 80 P to 120 P, the temperature of the treated media in the 96-well plate, 32 to
36 ◦C, is 3 to 5 degrees higher than the beam temperature. Theoretically, the media temperature should
only increase to the beam temperature based on the principle of heat transfer. However, during the
experiments we observed that the CAP jet was intensified, which could be caused by the energy
dissipating to the wall of the 96-well plate due to the high power as well as the turbulence resulting
from a small well size. The increased intensity of the CAP jet is demonstrated as high brightness in the
thermal images in Figure 4A Row 4 to Row 6 (80 P to 120 P). The length of the CAP beam also presents
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evidence of increased intensity. As shown above in Figure 2C, the beam is only 0.9 cm at 80 P to 120 P
for 1 lpm when measured in open air, while the thermal images in Figure 4A were captured with
1.5 cm gap distance between the CPP tip and the media. This disparity is because when treating in the
well, even at lower power settings, the beam is able to reach 1.5 cm and contact the media. The 3 lpm
CAP jet does not present this issue because the diameter of a 12-well plate is significantly larger than
the CAP jet.

When applied to cells, power settings of 20 P to 80 P for 3 lpm and 20 P to 40 P for 1 lpm were
chosen to ensure the integrity of the CAP delivered to the cells. The temperature of the treatment
area is between 15 to 30 ◦C for all treatment conditions at all times, suggesting no thermal damage to
the cells.

The CAP generated by the Canady Cold Plasma Conversion System affects triple-negative breast
cancer in a power- and time-dependent manner which corresponds with the increased output power
and beam length shown in Figure 2C. The CAP reduced the viability of triple-negative breast cancer
up to 80% at the highest power for both flow rates. To further illustrate the correspondence between
cell viability and CAP power and treatment time, we calculate the energy delivered by the system;
E. The close correlation between energy consumption and reduction in viability may be important for
comparing results between different CAP devices. Difference cell types may also respond differently
to CAP treatment, therefore more studies have been performed to confirm the efficacy of the CAP
system on other solid tumor cancer cell lines [31] as well as the safety of the unit on normal tissue [32].
Future animal studies are needed to determine the optimal dosage for cancer elimination while
remaining safe for normal tissue.

Although at 3 lpm, the CAP jet delivers higher energy than 1 lpm with the same power and time
setting, the MTT assay shows a similar reduction in viability (Figure 5A,B). Thus, direct comparison
of the cell viability cannot be made between 3 lpm and 1 lpm despite the same power setting and
treatment time due to different beam length, well size, medium volume, and cell number between the
two conditions. This was also reported repeatedly by other researchers worldwide [33,34]. This study
intends to focus on the introduction of the Canady Cold Plasma Conversion System and its efficacy on
the treatment of triple-negative breast cancer for both flowrates.

To better understand the strength of each cold plasma dosage and evaluate the efficiency of the
cold plasma beam during treatment, cell viability reduction rate (CVRR) was introduced in this paper.
CVRR was calculated based on the cell viability rate versus the time at a constant ESU power setting
(%/s). Figure 6 shows the CVRR values and averaged CVRR corresponding to 40 P, 60 P and 80 P
ESU power setting at 3 lpm. There is little difference when comparing the CVRR between treatment
times and the average only increases slightly with increased power. In other words, the average CVRR
value could represent the overall performance of the CAP for that power setting. More importantly,
one could establish a treatment projected solution based on the average CVRR value, and in that sense,
CVRR is an ideal parameter to calculate the CAP dose.

The poor prognosis and low overall survival rate of triple-negative breast cancer demands a novel
and safe treatment. The high-frequency converted cold plasma system integrates coagulation and
CAP in a single device, making it more practical for medical applications. After the surgeon removes
the cancerous tumor, CAP is subsequently sprayed at the surgical margins to ablate any remaining
cancerous tissue or cells, thus reducing the chances of cancer recurrence. CAP treatment acts as an
important adjunct to the current treatment protocol for solid cancerous tumors. This new plasma
system will change the landscape of electrosurgery and cancer therapy as well as offer cancer patients
new hope in the very near-future.
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5. Conclusions

This study reports the first cold plasma jet delivered by the Canady Cold Plasma Conversion Unit,
which was characterized and tested on triple-negative breast cancer cells. Viability of these cells was
effectively reduced in a time- and power-dependent manner. Our CAP device, a direct conversion from
a high-frequency electrosurgical unit, allows for the removal of a tumor and the following treatment
by CAP for ablating cancer cells using a single device, and this study will contribute to the dosage
estimation for patients in future clinical applications.
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