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Peptide Antigen Concentration Modulates Digital NFAT1
Activation in Primary Mouse Naive CD8+ T Cells as Measured by
Flow Cytometry of Isolated Cell Nuclei

Michael P. Gallagher, James M. Conley, and Leslie J. Berg
Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605

ABSTRACT

Circulating naive T cells exist in a quiescent state. After TCR contact with the cognate peptide presented by APCs in secondary

lymphoid structures, T cells undergo a period of rapid transcriptional changes that set the stage for fate-determining effector or

memory programming. We describe a novel method to analyze TCR signaling pathway activation in nuclei isolated from primary

mouse naive T cells after stimulation with natural peptide Ags. We prelabeled cells with cell tracking dye to easily distinguish CD8+

T cell nuclei from APC nuclei by conventional flow cytometry. Using this approach, we observed clear digital activation of NFAT1

transcription factor in OT-I T cells stimulated with OVA peptide presented by bulk splenocytes. OVA concentration had discrete

control over the fraction of the cells that translocated NFAT1, indicating that a distinct threshold amount of TCR signaling is required

to switch on NFAT1 in naive T cells. This behavior was cell contact dependent and qualitatively more exact than the NFAT1 response

in ionomycin-stimulated naive T cells. These data contribute to our understanding of the digital behavior of TCR signaling

components documented in other studies and indicate how T cells might discriminate log-fold changes in Ag availability during an

actual infection. Overall, these results highlight the potential of this coculture nuclei isolation protocol to address stimulation-

dependent translocation of proteins in primary lymphocytes. ImmunoHorizons, 2018, 2: 208–215.

INTRODUCTION

Following a virus infection, naive CD8+ T lymphocytes have the
ability to carefully discern differences in cognate Ag quality and
concentration and to use this information to generate the appro-
priate antiviral response. Themolecular details of the interactions
between peptide/MHC (pMHC) molecules and TCRs control the
initiation of multiple signaling pathways that induce activation-
dependent transcriptional programs. The strength of the TCR
stimulusvariesbecauseofdifferences incognatepMHCdensityon
APCs and in the affinity of each TCR for this pMHC complex. In
turn, this variability affects the amount of T effector or memory
gene products made in activated cells, but the mechanistic details

linking TCR signal strength to differential gene expression and
downstream cell fate decisions are not well understood (1–3).
Close examination of signaling pathway dynamics downstream of
the TCR in single cells will provide important information to
improveourunderstandingofhow individualCD8+Tcells commit
to effector or memory cell fates (1, 3, 4).

NFAT is a well-characterized family of factors known to be
critical for optimal T cell activation–associated transcription (5).
In naive resting T cells, NFAT1 is hyperphosphorylated and se-
questered in the cytoplasm. TCR stimulation induces strong
intracellular cytoplasmic calcium (Ca2+) elevation and activates
calcium-sensitive calcineurin, which dephosphorylates NFAT1
and permits translocation to the nucleus to bind target genes (6).
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Therefore, methods that measure NFAT1 nuclear translocation
reveal immediate effects of TCR stimulation.

In this study, we aimed to characterize the TCR-dependent
changes in NFAT1 localization in primary mouse naive CD8+

T cells responding to varying concentrations of pMHC. Because
the strength of TCR stimulation has been shown to tune the
expression of effector-associated transcription factors such as
IRF4, we predicted that TCR-proximal signaling pathways would
also produce graded responses to variable TCR stimulation (7). To
measure NFAT translocation in human T cell lines, others have
used imaging flow cytometry (8). However, the small size of
primary naive mouse lymphocytes restricts accurate measure-
ments using these methods. In another study, flow cytometry of
isolated human memory T cell nuclei displayed an “all-or-none”
(digital) NFAT1 response (9). During stimulation with phorbol
ester (PMA) and the calcium ionophore ionomycin, addition of a
calcineurin inhibitor reduced the fraction of the population that
had NFAT1 present in their nuclei at a given time. These findings
raised questions about the behavior of NFAT1 nuclear localization
in naive T cells in response to stimulation with natural pMHC
ligands to induce TCR signaling. To address these questions, we
developed a conventional flow cytometry–based assay to assess
NFAT1 nuclear localization in primary naive CD8+ T cells stim-
ulated with cognate pMHC on splenic APCs.

In this study we outline a high-throughput method to analyze
transcription factor localization in isolated splenic OT-I TCR
transgenic T cell nuclei after stimulation with APCs pulsed with
OVA peptide. To distinguish OT-I nuclei from APC nuclei, we
labeled CD8+-enriched OT-I T cells with a fluorescent cell tracking
reagent prior to combinationwith APCs in coculture. After isolation
of cell nuclei, fluorescently labeled OT-I nuclei are distinguishable
from APC nuclei in flow cytometric analyses. Labeled, isolated cell
nuclei are of high purity and able to be stained with other
fluorescently conjugated Abs for conventional flow analysis. We
report rapid NFAT1 nuclear translocation in CD8+ OT-I cells
stimulated with cognate OVA peptide and demonstrate that this
response exhibits a strong digital behavior that is modulated by
peptide dose. LowerOVAconcentration reduces the fraction of cells
within the stimulated population that respond and shows slower
accumulationofNFAT1-positivenuclei. Peptide control overNFAT1
activation is also much more dynamic and discrete compared with
stimulationwithdifferent doses of ionomycin. Thismethod could be
extended to assessnuclear translocationofotherproteins andwill be
useful to address numerous research questions in the future.

MATERIALS AND METHODS

Mice and cell culture
OT-I TCR transgenic Rag22/2 mice and C57BL/6 mice were
purchased from Taconic Biosciences and were housed and bred
in a specific pathogen–free environment at the University of
Massachusetts Medical School facilities in accordance with Institu-
tional Animal Care andUseCommittee guidelines. OT-I splenocytes
were harvested and pooled from 8- to 12-wk-old gender-matched

littermatesandenrichedusingaCD8+magneticnegative selectionkit
(STEMCELL Technologies). Prior to coculture, OT-I cells were
labeled with CellTrace Violet (Thermo Fisher Scientific) reagent for
20 min in 13 PBS according to the manufacturer’s specifications.
Splenocytes from 8- to 12-wk-old C57BL/6 mice were pulsed with
OVA SIINFEKL peptide (21st Century Biochemicals) for 30 min in
RPMI 1640 with 10% FBS. In a 96-well round-bottom plate, bulk
splenocytes were mixed with dye-labeled, OT-I CD8+–selected
T cells 3:1 on ice (normally ;1 3 106 OT-I cells plus 3 3 106 bulk
splenocytes perwell),withmedia containing additionalOVApeptide
(during stimulations.1 h only). The 96-well plate containing the cell
mixture was briefly centrifuged to produce a loose pellet and was
then placed in a 37°CCO2 incubator. After the incubation, the plate
was immediately transferred to ice. For timecourse experiments,
individualwellswere transferred to a new 96-well plate sitting on
ice after a specified time.

Nuclei isolation
The base nuclei isolation protocol was adapted from online
sources (National Cancer Institute Experimental Transplantation
and ImmunologyBranchFlowCytometryCoreLaboratory; home.
ccr.cancer.gov/med/flowcore) and previously published reports
(9). In brief, the 96-well plate containing stimulated cellswas spun
at 3003 g and 4°C, and the pelletswere immediately resuspended
with 250 ml of ice-cold Buffer A containing 320 mM sucrose,
10 mM HEPES (Life Technologies), 8 mM MgCl2, 13 Roche
EDTA-free cOmplete Protease Inhibitor, and 0.1% (v/v) Triton
X-100 (Sigma-Aldrich). After 15 min on ice, the plate was spun at
2000 3 g and 4°C for 10 min. This was followed by two 250-ml
washes with Buffer B (Buffer A without Triton X-100) and
spinning at 2000 3 g and 4°C. After the final wash, pellets were
resuspended with 200 ml Buffer B containing 4% paraformalde-
hyde (electron microscopy grade; ElectronMicroscopy Sciences),
andnucleiwere restedon ice for30min forfixation, followedby two
washes and resuspension in 13 PBS with 2% FBS, centrifuging at
10003 g to sufficiently pellet nuclei. Nuclei were kept at 4°C until
flowcytometryanalysis.Adetailed, step-by-stepprotocoldescribing
both coculture and nuclei isolation is available upon request.

Flow cytometry
Wholecellswerefixedwith4%paraformaldehyde in 13PBS.Both
fixed whole cells and fixed nuclei were permeabilized with 0.3%
Triton X-100 in 13 PBS and 2% FBS and stained with fluorescent
Abs for 15 min at room temperature followed by three washes in
13 PBS and 2% FBS. To sufficiently pellet nuclei, centrifugation
was performed at 1000 3 g. The following Abs were used for
staining:b-tubulin-AF647 (9F3,#3624;Cell SignalingTechnology),
CD3e-APC (145-2C11; BD Biosciences), NFAT1-AF488 (D43B1,
#14324; Cell Signaling Technology), and NF-kB (p65) (D14E12,
#8242; Cell Signaling Technology). Propidium iodide was sourced
from Thermo Fisher Scientific. Samples were collected on an LSR
II flow cytometer (BD Biosciences) and analyzed with FlowJo
10.4.2 (BD Biosciences/Tree Star). After gating on singlets, OT-I
nuclei were identified as CellTrace Violethi, b-tubulinlo. At least
10,000 OT-I nuclei events were recorded per sample.

https://doi.org/10.4049/immunohorizons.1800032
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Confocal imaging
For imaging, whole cells and nuclei were fixed and stained with
fluorescent Abs similarly to flow cytometry preparation. After
staining, pellets were resuspended in;10ml of PBS, pipetted onto
glass slides, and mounted with ProLong Gold Antifade Reagent
with DAPI (#8961; Cell Signaling Technology). Images were
collected on a Leica SP5 confocal microscope with a 633 oil
objective using Leica LAS AF software. Images were processed
andmergedusing ImageJ software (National Institutes ofHealth).

RESULTS

Nuclear isolation of naive CD8+ T cells
Common methods to measure protein localization such as
immunoblotting and confocal imaging do not allow for single-
cell analysis or suffer from limited throughput, respectively. To
observe single-cell NFAT1 translocation kinetics in a pMHC-

stimulated cell population, we modified existing nuclei isolation
methods and paired them with flow cytometry (9). In brief, stim-
ulated cells were centrifuged in buffer-containing sucrose and
nonionic detergent to disrupt the outer membrane. After centri-
fugation and washes with buffer without detergent, the resulting
nucleiwere immediatelyfixedwithparaformaldehyde and stained
with fluorescent Abs for analysis via flow cytometry. Mouse naive
CD8+Tcellnuclei isolatedusing thisprotocolweredistinguishable
from whole cells in forward and side scatter, appearing slightly
smaller in size (Fig. 1A). Also, proteins found in the cytosol and
membrane (e.g., b-tubulin and CD3e) have little fluorescence in
isolated nuclei when compared with the fluorescence of permea-
bilized whole cells, but the nuclei stained highly for the DNA-
intercalating dye propidium iodide (Fig. 1B). In resting naive CD8+

T cells, NFAT1 is sequestered in the cytoplasm, which was ob-
served as a ring of fluorescence using confocal imaging techniques
(Fig. 1C). After treatment with Ca2+ ionophore ionomycin, NFAT1
fluorescence shifted predominantly to the nucleus. Isolated nuclei

FIGURE 1. Isolation of stimulated OT-I nuclei and analysis via conventional flow cytometry.

(A) Representative forward scatter (FSC) and side scatter (SSC) plot of OT-I nuclei isolated and fixed in sucrose buffer compared with OT-I whole

cells. (B) Flow cytometry histograms comparing nuclei versus whole cells stained with indicated Abs or propidium iodide (P.I.). (C) Confocal images

displaying NFAT1 localization in isolated OT-I nuclei compared with whole cells after 30 min of stimulation with or without 1 mg/ml ionomycin.

https://doi.org/10.4049/immunohorizons.1800032
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lack the cytoplasmic NFAT1 signal seen in unstimulated whole-
cell samples andonly exhibitedNFAT1fluorescence in ionomycin-
treatedsamples.Adopting thismethod forusewithflowcytometry
easily permits analysis of thousands of single cells for NFAT1
activation and characterization of the responding stimulated
population.

NFAT1 nuclear translocation in peptide-stimulated naive
CD8+ T cells
Similar methods of nuclei isolation and flow cytometry have been
used previously in one study to track NFAT1 translocation in
primary human CD4+ T cells after stimulation with ionomycin
and PMA with or without a calcineurin inhibitor (9). To care-
fully quantify the NFAT1 activation response in naive CD8+ T cells
stimulated by natural peptide ligands, we used an experimental
approach that mixes wild-type C57BL/6 splenocytes pulsed with
SIINFEKL OVA peptide with splenic OT-I CD8+ T cells, followed

by nuclei isolation (Fig. 2A, 2B). Because nuclei have been stripped of
cell surfacemarkers, tools suchas congenicmarkers cannot beused to
distinguish OT-I CD8+ T cell nuclei from bulk splenocyte nuclei. To
resolvethis,OT-IcellswerelabeledwithCellTraceVioletproliferation
dye prior to stimulation by peptide-pulsed wild-type splenocytes.
Isolated OT-I nuclei retained CellTrace fluorescence and were
thus distinguishable from wild-type unlabeled cells (Fig. 2C).
Whenmixedwith 1 nMOVApeptide–pulsed bulk splenocytes for
30 min, OT-I cell nuclei displayed clear increases in NFAT1
fluorescence, whereas flow cytometry of whole cells from the
same stimulation conditions exhibited little difference in total
NFAT1 fluorescence (Fig. 1D).

Peptide concentration controls digital NFAT1 nuclear
localization within a population of naive CD8+ T cells
We wished to fully characterize NFAT1 activation in naive OT-I
cells presented with natural pMHC ligands. Flow cytometry of

FIGURE 2. CellTrace labeling of primary OT-I T cells allows for identification of OT-I nuclei after coculture.

(A) Overview of coculture experimental setup. OT-I splenocytes are enriched for CD8+ T cells by negative selection and then labeled with CellTrace

Violet dye. Wild-type splenocytes are harvested separately and pulsed with OVA peptide. Labeled OT-I cells are mixed (;1:3) with bulk splenocytes

for desired time. (B) Summary of the nuclei isolation protocol. After coculture stimulation, all mixed OT-I and wild-type cells are lysed in a sucrose

and detergent buffer, centrifuged, and washed twice prior to fixation with 4% paraformaldehyde. (C) Flow cytometry gating strategy to identify OT-I

nuclei after coculture stimulation. Fixed nuclei are stained with a fluorescent Ab against b-tubulin prior to analysis. OT-I nuclei are identified by

gating on singlets by side scatter height (SSC-H) and SSC width (SSC-W) and then on b-tubulinlo and CellTrace Violethi events. (D) Flow cytometry

comparison of isolated OT-I nuclei or whole cells (prelabeled with CellTrace Violet) after 30 min of coculture with 1 nM OVA peptide–pulsed bulk

C57BL/6 splenocytes. Gated on CellTrace Violethi and b-tubulinlo events.

https://doi.org/10.4049/immunohorizons.1800032
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nuclei revealed a bimodal NFAT1 response to OVA peptide
stimulation within the OT-I population. When analyzed over a
60-min timecourse, stimulation with 10 pM of OVA peptide
produced a progressive increase in the fraction of NFAT1-positive
nuclei (Fig. 3A). Stimulated populations lacked nuclei with
intermediate levels of NFAT1 fluorescence and instead exhibited
a digital or all-or-none NFAT1 response to TCR signaling. This
finding indicates there may be a threshold of peptide-mediated
TCR stimulation that triggers maximal NFAT1 translocation on a
per-cell basis. Importantly, we also found that the concentration of
peptide controlled the proportion of NFAT1-positive nuclei within
thepopulationatagiventimepoint (Fig.3B).Specifically,higherdoses

ofOVApeptide (1 nM) inducedNFAT1 activation in 87%of theOT-I
cells after 45 min, whereas only 41% of nuclei were NFAT1-positive
when stimulated with 10 pM OVA for the same duration.
Compilation of peptide titration experiments indicated that OVA
peptide concentration controlled the maximum percentage of
OT-I cells that translocated NFAT1 within 2 h (Fig. 3C). A low dose
of OVA (10 pM) produces a maximum of ;55% of OT-I cells
responding, whereas 80% of OT-I cells respond to a 100-fold–higher
dose of peptide (1000pM). Broadly, a greater concentration of peptide
more rapidly induced a larger proportion of NFAT1 responders.

Addition of the calcium ion chelating agent EGTA to media of
activated T cells causes the immediate cessation of calcium influx

FIGURE 3. Peptide concentration controls digital NFAT1 nuclear translocation kinetics in a responder fraction of stimulated naive OT-I cells.

(A) Representative flow cytometry histograms displaying a timecourse of NFAT1 staining in OT-I nuclei after coculture with bulk splenocytes pulsed

with 10 pM of OVA peptide. (B) Representative flow cytometry histograms of NFAT1-positive OT-I nuclei after 45 min of coculture with bulk

splenocytes pulsed with indicated dose of OVA peptide. (C) Plots depicting compiled timecourse results from two experiments measuring NFAT1

localization in OT-I nuclei after coculture with bulk splenocytes pulsed with the indicated dose of OVA peptide. (D) Representative histograms of

three experiments performed show that EGTA addition causes NFAT1 to exit OT-I nuclei. OT-I cells were cocultured with bulk splenocytes pulsed

with 100 pM of OVA peptide. After stimulation for 30 min to allow for nuclear translocation of NFAT1, 5 mM EGTA was added to culture, and samples

were harvested after 0, 30, 60, or 90min. (E) Line plots depicting median fluorescence intensity (m.f.i.) of NFAT1 in isolated OT-I nuclei stimulated similarly

to (D). After 30 min of stimulation with OVA peptide, either 5 mM EDTA, 5 mM EGTA, or 100 nM FK506 was added to culture media where indicated.

Samples were collected 0, 15, 30, 60, and 90 min after adding inhibitors. In (A)–(E), OT-I nuclei were identified as CellTrace Violethi b-tubulinlo.
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into the cells, leading to the rapid loss of calcineurin activity and
the return of NFAT1 to the phosphorylated, cytoplasmic inactive
state (5, 6, 10).WhenEGTAwas added to ourOT-I cultures 30min
after stimulation, we observed a gradual loss of NFAT1 fluores-
cence from nuclei, indicating NFAT1 export to the cytoplasm
(Fig. 3D, 3E). Similar NFAT1 export behavior was observed when
the divalent ion chelator EDTA or the calcineurin inhibitor
FK506 were added to the culture media (Fig. 3E). The rate at
which cells lost nuclear NFAT1 are consistent with previous
studies performed using direct biochemical measurement of
activated NFAT1 or as assessed by confocal microscopy (11).
Interestingly, these data revealed the presence of an NFAT1-
intermediate population after inhibitor addition, indicating that
NFAT1 nuclear export is not regulated digitally as is the process
inducingNFAT1nuclear entry followingTCRstimulation.Overall,
these findings support the conclusion that the OVA peptide
concentrationdetermines the percentage of cells in the population
that activate NFAT in response to TCR stimulation as well as the

kinetics of this response. In contrast, our data do not support a
model inwhich the respondingpercentageof cells and thebimodal
population response result from a process of rapid nuclear NFAT1
import/export equilibrium in stimulated cells.

Digital NFAT1 activation threshold in naive OT-I cells is a
characteristic of TCR signaling
Todeterminewhether the bimodal population response ofNFAT1
activationwas a specific feature ofTCRsignalingor amoregeneral
feature of NFAT1 activation in T cells, we performed a titration of
the calcium ionophore ionomycin. Unlike the response observed
with increasing doses of OVA peptide presented on splenic APCs,
titration of ionomycin concentration does not produce a clear
bimodal response ofNFAT1 activation in naiveOT-I cells (Fig. 4A,
4B). Instead, lower doses of ionomycin a create less precise,
intermediate amount of nuclear NFAT1 in OT-I cells that was
more prevalent after longer stimulation. As expected, addition of
10 ng/ml PMA in the culture media did not appear to alter the
behavior ofNFAT1 translocationbecause of ionomycin (Supplemental
Fig. 1A, 1B). Because ionomycin activation of Ca2+ signaling is TCR
independent, these data imply that dynamic control of theNFAT1
activation threshold in naive cells, producing a digital NFAT1
response, is likely tobedependentonpMHC–TCR interactions or
the TCR-proximal downstream signaling mechanisms.

DISCUSSION

Wepresent an easily accessible and adaptable method to measure
localization of transcription factors in nuclei from stimulated
single naive CD8+ T cells. Importantly, our innovations allow for
measurement of CD8+ T cell nuclei after stimulation in cocultures
with peptide-pulsed APCs. Stimulation of TCR transgenic CD8+

T cells by bulk splenocytes is commonly used to measure gene
expression after 24 h (ormore) of stimulation (12, 13). Using these
established approaches, activated T cells are identified via flow
cytometry with Abs against T lineage markers (CD8, CD3),
activation markers (CD69, CD25), and congenic markers (e.g.,
CD45.1/2). However, identification via surface markers is not
possible when analyzing isolated nuclei. Thus, we employed
CellTrace labeling prior to stimulation, which allows for easy
discrimination of OT-I T cell nuclei from nuclei of other
cocultured cells. We first validated our assay and then used it to
profile the translocation behavior of NFAT1 in OT-I T cells
responding to varying concentrations of OVA peptide on APCs.
This method is readily adaptable to measurements of additional
nuclear proteins in a wide range of cells and coculture conditions.

Alternative methods currently exist to measure nuclear
translocation of selected proteins in T cells (8, 9, 14). In compar-
ison, we find ourmethod ismore adaptable to larger cell numbers,
more amenable to quantification, and better suited for analyses of
mouse primary naive T cells. We first attempted to use imaging
flow cytometry tomeasure NFAT1 localization in APC-stimulated
T cells, as others have had success with this approach in human
Jurkat tumor cells (8). Naive T cells present a more difficult

FIGURE 4. Titrated doses of ionomycin does not accurately induce

a digital NFAT1 response in OT-I cells.

(A) NFAT1 localization in OT-I nuclei after different doses of ionomycin

over the course of 240 min. Representative histograms displaying

NFAT1-positive nuclei with indicated dose of ionomycin present in the

coculture media. Nuclei were identified as CellTrace Violethi b-tubulinlo.

(B) For comparison, results of NFAT1-positive OT-I nuclei during coculture

with bulk splenocytes pulsed with indicated dose of OVA peptide.

https://doi.org/10.4049/immunohorizons.1800032

ImmunoHorizons MEASURING DIGITAL NFAT1 IN ISOLATED NAIVE T CELL NUCLEI 213

 by guest on O
ctober 8, 2018

http://w
w

w
.im

m
unohorizons.org/

D
ow

nloaded from
 

http://www.immunohorizons.org/lookup/suppl/doi:10.4049/immunohorizons.1800032/-/DCSupplemental
http://www.immunohorizons.org/lookup/suppl/doi:10.4049/immunohorizons.1800032/-/DCSupplemental
https://doi.org/10.4049/immunohorizons.1800032
http://www.immunohorizons.org/


challenge to analyze by imaging because they are substantially
smaller than cultured tumor cells (,10 mm) and have a minimal
amount of cytoplasm. These properties confounded the analysis,
and in our hands, imaging flow cytometry could not discern
cytoplasmic versus nuclear signal with sufficient resolution to
allow for accurate quantificationof the responses to signaling (data
not shown). In contrast, our conventional flow cytometry–based
method used to analyze isolated nuclei avoided these difficulties.

The analysis of OT-I nuclei revealed clear digital (all-or-none)
behavior of NFAT1 activation in single cells responding to pMHC
stimulation (Fig. 3A, 3B). These results validate the observations of
Podtschaske et al. (9), who demonstrated that digital NFAT1
translocation was regulated in part by calcineurin. We have ex-
panded upon this concept and shown that direct TCR stimulation
with cognate peptide Agmodulates a digital NFAT1 response. The
concentration of OVA peptide sets the maximum percentage
of NFAT1 responders when cells were analyzed for up to 4 h
following initial APC contact (Fig. 3C). In naive T cells, NFAT
activation is downstream of store-operated calcium entry events
(15). Single-cell calcium imaging of OT-I T cells stimulated with
varying doses of OVA peptide on B cell APCs show that reducing
the peptide dose increases the proportion of nonresponding cells
in the population but, importantly, has no effect on the magnitude
of the peak calcium signal in the responding subset (16). Bone
marrow–derived macrophages pulsed with varying doses of OVA
peptide also induce calciumresponders andnonresponderswithin
a stimulated naive OT-I cell population (17). These data are con-
sistent with our NFAT1 translocation data and together indicate
that the all-or-none calcium response in turn produces an all-or-
none response of NFAT1 activation.

Based on our results, we suggest that higher densities of
peptide on the APC surface increase the probability that any
individual naive T cell will digitally activate calcium and then
NFAT. The single-cell calcium imaging study also reported that
lower doses of peptide stimulation produced delayed and less
synchronizedCa2+ activation in the population of responding cells
(16). These data agree with our observations of NFAT1 trans-
location, in which within the first 45 min of stimulation, lower
concentrations of OVA-APC stimulation slowed the rate at which
individual nuclei became NFAT1-positive compared with cells
stimulated with a higher dose of APC peptide (Fig. 3C). In the
same study, when T cells were restimulated after APC peptide
stimulation, individual cells were likely to repeat the same pattern
of Ca2+ signaling observed during the primary APC peptide
stimulation, indicating a cell-intrinsic heterogeneity among the
naive OT-I T cell population. Therefore, assuming all OT-I cells
have equal access to Ag, the bimodal NFAT1 response we observe
is also likely indicative of some heterogeneity.

Ionomycin titration did not reliably elicit digital NFAT1
activation in naive OT-I cells but instead translocated graded
amounts ofNFAT1 (Fig. 4). Phosphorylation of kinases in the TCR
complex and downstream pathways causes accumulation of the
second messenger IP3. Once a threshold level of IP3 is reached,
endoplasmic reticulumCa2+ releases, resulting in digital activation
of Ca21 release–activated channels (CRAC) (15, 18, 19). Ionomycin

induces Ca2+ pathway responses by directly causing Ca2+ influx,
bypassing the TCR machinery; thus, it is possible that low levels
of ionomycin produce graded Ca2+ influx patterns that are not
identical to those inducedby theTCRmachinery.Ourexperiments
help showcase how T cell populations discern and respond to a
wide range of peptide concentrations through digital activation of
individual cells.

Most experiments exploring other TCR signaling pathways
also observe digital switch–like behavior when naive T cells are
activated (20, 21). For example, a minimal number of OVA-bound
MHC molecules on an APC line induce a responder fraction of
OT-I cells with activatedMAPK signaling (22). A later study with
human Jurkat T cells discovered that this sharp threshold inTCR-
induced MAPK signaling was due to a feedback loop in Son of
Sevenless signaling that amplifies Ras activation (23). Our results
support the notion thatTCR-inducedNFATsignaling behaves like
a digital switch.However, it is challenging to understandhowsuch
behavior in individualnaiveTcells translates todynamic andfinely
tuned gene responses hours after activation.

Unlike our experiments using monoclonal TCR transgenic
T cells in culture, naive T cells in vivo face numerous obstacles
influencing their fate. Ag may be disproportionally presented
within secondary lymphoid structures, naive cells must compete
with other clones for limitedAg, andAPCsmayhave varying levels
of activation status (20, 21, 24–26). Although digital NFAT
signaling does seem to correlate with digital activation of some
select genes (IL-2 and IFN-g) in cells stimulated in vitro (9),
currentmodels propose that invivo, T cells integrate digital signals
over longer periods of time after numerous successive contacts
withAPCs (11, 20, 21, 25, 27). It is unclearwhethergene expression
24 h after Ag encounter in vitro is the result of many successive,
separate contacts with APCs. However, the NFAT1 translocation
we measure is likely cell contact dependent, as NFAT1 exits OT-I
nuclei after addition of EGTA or other inhibitors that immediately
arrest calcium influx (Fig. 3D, 3E). Interestingly, others have
documented that NFAT-dependent transcription for privileged
genes (Egr2 but not Ifng) continues after breaking contacts
between T cells and APCs (11). This outlines onemannerwhereby
digital signaling events may contribute to differential gene
expression programs. Serial, digital activation of factors like
NFAT1maydrive theaccumulationof target geneproducts at early
times after initial activation. For instance, the amount of the cell
cycle regulator c-Myc that accumulateswithin an early time frame
after initial T cell activation dictates the total number of cell
divisions effector T cells undergo during clonal expansion (28).
TCR signal strength determines the initial frequency of digital
c-Myc expression within a stimulated OT-I population, but
continued c-Myc expression is dependent on the expression level
of IL-2, a well-characterized NFAT target gene (6, 29). Thus,
successive digital NFAT responses may be integrated to influence
clonal scaling and other graded effector gene expression patterns
through this type of mechanism.

In summary, we describe a powerful and easily adaptable
conventional flow cytometry approach for examination of the
nuclear localization of specific proteins in single cells present in
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coculture assays. This method is amenable to exploring the
dynamics of other T cell transcription factors in response to
variable quantity or quality of Ag stimulation, including but not
limited to both naive andactivated states of CD8+ orCD4+ primary
T cells.
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