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ARTICLE

Identification of a novel anoikis signalling pathway
using the fungal virulence factor gliotoxin
Florian Haun1,2,3, Simon Neumann1, Lukas Peintner 1, Katrin Wieland1, Jüri Habicht4, Carsten Schwan5,

Kristine Østevold5, Maria Magdalena Koczorowska1, Martin Biniossek1, Matthias Kist1, Hauke Busch 1,9,

Melanie Boerries1,6, Roger J. Davis 7, Ulrich Maurer 1,3,8, Oliver Schilling1,3,8, Klaus Aktories3,5,8 &

Christoph Borner1,3,8

Anoikis is a form of apoptosis induced by cell detachment. Integrin inactivation plays a major

role in the process but the exact signalling pathway is ill-defined. Here we identify an anoikis

pathway using gliotoxin (GT), a virulence factor of the fungus Aspergillus fumigatus, which

causes invasive aspergillosis in humans. GT prevents integrin binding to RGD-containing

extracellular matrix components by covalently modifying cysteines in the binding pocket.

As a consequence, focal adhesion kinase (FAK) is inhibited resulting in dephosphorylation

of p190RhoGAP, allowing activation of RhoA. Sequential activation of ROCK, MKK4/MKK7

and JNK then triggers pro-apoptotic phosphorylation of Bim. Cells in suspension or lacking

integrin surface expression are insensitive to GT but are sensitised to ROCK-MKK4/MKK7-

JNK-dependent anoikis upon attachment to fibronectin or integrin upregulation. The same

signalling pathway is triggered by FAK inhibition or inhibiting integrin αV/β3 with Cilengitide.

Thus, GT can target integrins to induce anoikis on lung epithelial cells.
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Detachment-induced apoptosis or anoikis is a crucial pro-
cess to eliminate aberrant cells in the outer layer of epi-
thelia1. Lack of anoikis is a hallmark of cancer progression

as cells that continue to survive in suspension are prone to
metastasise1. Originally described by Frisch et al.2, anoikis is
typically induced by detaching cells with trypsin and preventing
their re-attachment to polyHEMA-coated plates. However, this
system is artificial as trypsin inappropriately modifies adhesion
molecules leading to the activation of signalling pathways that
may not reflect physiological ways of anoikis.

Cells attach to the extracellular matrix via integrins. Integrins
consist of transmembrane α and β chains, which form at their
extracellular N termini an interaction interface with the Arg-Gly-
Asp (RGD) motif of matrix components such as fibronectin or
vitronectin3. On the intracellular side integrins recruit compo-
nents that link adhesion signals to cell survival, cell cycle control
and cytoskeletal rearrangement1,4,5. Key players are focal adhe-
sion kinase (FAK)6, integrin-linked kinase (ILK)7 and Src tyr-
osine kinase8. FAK is autophosphorylated at Y397 upon integrin
activation9 and subsequently phosphorylates adapter molecules
such as paxillin, vinculin and Rho-, Rac- and Cdc42 GTPase-
modulating proteins to regulate the actin cytoskeleton1,6,10. FAK
and ILK further activate PI3K/AKT, ERK/MAPK and JNK sig-
nalling pathways6,7,11–13.

Apoptosis can be induced by extrinsic death receptor signalling
where activated receptors of the tumour necrosis facto super-
family recruit and activate caspase-8 via FADD leading to
the cleavage and activation of effector caspase-314. Alternatively,
so called BH3-only proteins of the Bcl-2 family sense apoptotic
signals and convey them to Bax/Bak-mediated mitochondrial
outer membrane permeabilization15. The subsequent release
of cytochrome c induces the formation of the Apaf-1/caspase-9
apoptosome, which results in caspase-3 activation. Although
evidence was initially presented that death receptor signalling
via FasL16 and/or FADD17 plays a role in anoikis induction,
this could not be confirmed in other studies18–20. By contrast,
several cellular processes seem to block mitochondrial apoptosis
signalling in adherent cells19. Activation of AKT, elicited by
integrin engagement, leads to the phosphorylation of the BH3-
only proteins Bad21 and Bim22, which are sequestered and
inactivated by 14-3-3 proteins. AKT also inhibits Forkhead
transcription factors (FOXOs)23, which are responsible for the
transcriptional upregulation of the BH3-only proteins Bim, Puma
and Bmf24. Moreover, both ERK-25 and PI3K/AKT-mediated
phosphorylation24 of Bim lead to its proteasomal degradation.
However, it has been unclear if activation of these BH3-only
proteins during anoikis is indeed linked to AKT and/or ERK
inhibition.

The mould Aspergillus fumigatus causes a severe pulmonary
disease termed invasive aspergillosis26. Under healthy conditions,
airborne conidia released by A. fumigatus are successfully elimi-
nated from the pulmonary cavities by alveolar macrophages,
neutrophils and leucocytes27. In immunosuppressed patients,
however, A. fumigatus germinates, invades the lung and causes
severe and often lethal systemic infections26,27. The breakage of
the epithelial barrier is the most likely cause for the invasive
property of A. fumigatus. Accumulating evidence suggests a
crucial role of the major virulence factor gliotoxin (GT) in this
process because fungi lacking GT production are much less
virulent than wild-type (WT) strains28. We previously showed
that GT induces a rapid detachment of human lung epithelial
cells and mouse fibroblasts before they undergo caspase-
dependent apoptosis29,30. GT-induced apoptosis requires a
JNK-mediated triple phosphorylation of Bim at S100/T112/S114,
which increases the pro-apoptotic activity of Bim30. Moreover,
both in vitro and in vivo, GT-induced cytotoxicity depended on

Bak29 indicating that epithelial barrier breakage and lung inva-
sion after A. fumigatus infection may be due to GT-mediated
anoikis.

Here we use GT to delineate for the first time an entire anoikis
signalling pathway in human lung epithelial cells that leads to the
direct activation of the pro-apoptotic family member Bim. GT
covalently modifies the RGD-binding domain of integrin α and β
chains, leading to rapid cell detachment followed by FAK inac-
tivation and subsequent activation of a RhoA-ROCK-MKK4/
MKK7-dependent signalling pathway, which activates JNK- and
Bim-mediated apoptosis.

Results
GT employs MKK4 and MKK7 to activate JNK-dependent
apoptosis. We previously reported that JNK is required for GT-
induced apoptosis30. We therefore sought to identify the kinase(s)
responsible for JNK activation. Possible candidates were the
mitogen-activated protein kinases MKK4 and MKK7. Indeed,
after 4–6 h of GT treatment of human bronchial epithelial cells
(BEAS-2B) both MKK4 and MKK7 were phosphorylated in their
activation loops (S257/T261 and S271/T275, respectively) as
detected by phosphospecific antibodies (Fig. 1a). This coincided
with the cleavage of the caspase-3 substrate PARP.

To determine if MKK4 and/or MKK7 were required for
GT-induced JNK activation and apoptosis, we analysed WT,
Mkk4−/−, Mkk7−/− and Mkk4−/−/Mkk7−/− mouse embryonic
fibroblasts (MEFs). While WT MEFs exhibited a marked increase
in caspase-3/7 activity (Fig. 1c) and cell death (Fig. 1d) after 6 h of
GT treatment, this was less the case for Mkk4−/− and Mkk7−/−

cells. MEFs deficient for bothMkk4 andMkk7 showed the highest
degree of protection against GT-induced caspase-3 activation and
cell death (Fig. 1c, d). Western blot analysis confirmed that
MKK4 and MKK7 were required for phosphorylation of JNK in
its activation loop (Thr183/Tyr185), JNK-mediated triple phos-
phorylation of Bim (pBim) and caspase-3 processing to the active
p17 form (cCasp-3) since all these effects were completely ablated
in GT-treated Mkk4−/−/Mkk7−/− MEFs (Fig. 1b). Thus, both
MKK4 and MKK7 link GT to JNK activation along the anoikis
signalling pathway (Fig. 1e).

GT triggers a Rho-dependent phosphorylation cascade. Since
GT causes rapid cell detachment associated with cytoskeletal
changes (Supplementary Fig. 1), we looked for an upstream
MKK4/MKK7 activator, which is linked to these events. Recent
evidence indicated that Rho-related small GTPases such as RhoA,
Rac1 and Cdc42 do not only control actin remodelling but also
the activity of the JNK cascade31. This prompted us to investigate
if the Rho-associated protein kinase (ROCK) was involved in
GT-induced MKK4/MKK7 activation and detachment-induced
cell death.

For that purpose, we treated BEAS-2B cells with two
pharmacological ROCK inhibitors, H-1152 and Y-27632, before
applying GT for 6 h. Both inhibitors completely abolished
GT-induced JNK phosphorylation and caspase-3 and PARP
processing (Fig. 2a) as well as Bim phosphorylation at T112/S114
(Fig. 2b). An in vitro JNK activity assay showed that GT-induced
c-Jun phosphorylation was ablated after H-1152 treatment
(Supplementary Fig. 2E and 2F). Importantly, the general caspase
inhibitor QVD did not affect GT-induced JNK phosphorylation
but expectedly blocked caspase-3 activation (Fig. 2a).

Similar results were obtained in MEFs. H-1152 diminished
MKK4 and JNK activation, Bim phosphorylation and caspase-3
processing after GT treatment (Fig. 2c). Consequently, both
ROCK inhibitors abrogated caspase-3/7 activity (Fig. 2d) and
apoptosis (Fig. 2e) to the same extent as the caspase inhibitor
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QVD indicating that GT-induced caspase-3 activation was caused
by increased ROCK activity.

To ensure that the observed effects of H-1152 and Y-27632
were due to ROCK inhibition, we effectively knocked down
ROCK1 by short hairpin (shRNA) in BEAS-2B cells (Supple-
mentary Fig. 2A). Depletion of ROCK1 prevented GT-induced
JNK phosphorylation and caspase-3 processing (Supplementary
Fig. 2D) as well as caspase-3/7 activity (Supplementary Fig. 2B)
and apoptosis (Supplementary Fig. 2C). Thus, ROCK links GT to
MKK4/MKK7 and JNK activation along the anoikis signalling
pathway (Fig. 2f).

We next examined the role of ROCK-activating Rho GTPases
in GT-induced anoikis signalling. For that purpose, we took
advantage of Rhotekin, a known binding partner and substrate
of RhoA and RhoC32. We performed GST-Rhotekin pulldowns
of untreated and GT-treated BEAS-2B cell extracts and
examined them for the abundance of active RhoA. As a positive
control, we used the bacterial toxin CNFy, which inhibits the
GTPase activity of Rho proteins, thereby keeping them in a

permanent GTP-bound active state (Fig. 3a)33. As shown in
Fig. 3a, the amount of active RhoA-GTP in the GST-Rhotekin
pulldowns started to increase after 40 min of GT treatment, a
time that conincided with GT-induced cell detachment (Supple-
mentary Fig. 1). To confirm that increased Rho activity was
crucial for GT-induced anoikis signalling, we treated BEAS-2B
cells with the bacterial toxin C3, which inhibits Rho activity by
ADP ribosylation34. Rho inhibition by C3 reduced GT-induced
phosphorylation of MKK4 and JNK (Fig. 3b) as well as the
phosphorylation of Bim at its T112/S114 JNK phosphorylation
sites (Fig. 3c).

Finally, we wanted to know if the C3 toxin had any inhibitory
effect on GT-induced ROCK activation. We therefore monitored
the phosphorylation of a major substrate of ROCK, myosin-
binding subunit of myosin phosphatase (MYPT1)31 by western
blot analysis. As shown in Fig. 3d, e, while the phosphorylation of
MYPT1 gradually increased after GT treatment, this was not the
case when BEAS-2B cells were pretreated with the C3 toxin. Thus,
GT triggers Rho activation (particularly RhoA) to stimulate
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Fig. 1 MKK4 and MKK7 are required for GT-induced anoikis. a Western blot analysis of total extracts of human bronchial epithelial cells (BEAS-2B)
showing increased phosphorylation of MKK4 (Ser257/Thr261) (pMKK4) and MKK7 (Ser271/Thr275) (pMKK7) as well as PARP cleavage (PARP/cPARP)
after GT treatment for 4 and 6 h. b Western blot analysis showing increased phosphorylation of JNK (T183/Y185) (pJNK) and Bim (T112/S114) (pBim)
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ROCK-MKK4/MKK7-JNK-Bim-dependent anoikis signalling
(Fig. 3f).

GT disrupts the focal adhesion complex. Adherent cells treated
with GT rapidly detach before they die (Supplementary Fig. 1)30.
This suggests that disruption of focal adhesions might be an
early event of GT action. Paxillin is a scaffold protein at the
cytoplasmic side of focal adhesions responsible for recruiting
FAK, a crucial mediator of integrin signalling35. We used green
fluorescent protein (GFP)-labelled paxillin to monitor its sub-
cellular localisation before and after GT treatment by confocal
time-lapse microscopy. While in adherent healthy BEAS-2B cells,
GFP-paxillin was present in focal adhesions as well as in the
cytosol (Fig. 4a), it mainly localised to vesicular structures after
GT treatment before the cell rounded up and died (Fig. 4a
and Supplementary Movie 1). Co-transfection with the endoso-
mal marker mRuby-Endo-14 revealed that GFP-paxillin resided
on endosomal membranes after GT treatment (Fig. 4b).

Since GT changed the structure/composition of focal adhe-
sions, we sought to study the role of FAK in GT-induced
apoptosis. FAK is an interesting downstream target of GT because
it is known to regulate Rho GTPases during stress fibre formation
and focal adhesion turnover36. Moreover, it is known to
phosphorylate and activate p190RhoGAP, which negatively
regulates Rho activity in adherent cells36. We therefore
investigated (i) if FAK activity was regulated by GT and (ii) if
this affected the activity state of RhoA and therefore the RhoA-
ROCK-MKK4/MKK7-JNK-mediated anoikis signalling.

Within 30 min of GT treatment of BEAS-2B cells, the
activating phosphorylation of FAK at Y397 was lost (Fig. 5a).
Simultaneously, the phosphorylations of its substrates p190Rho-
GAP (Fig. 5c) and paxillin (Fig. 5b) diminished and paxillin was
degraded (Fig. 5b). Dephosphorylation of p190RhoGAP results in
a lower GAP activity towards Rho proteins, therefore favouring
their active GTP-bound state36. Indeed, we observed a higher
level of active RhoA (Fig. 3a) and phosphorylation of its
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downstream target JNK (Fig. 5b) at the time of FAK inactivation
(30–60 min). Thus, GT-induced RhoA and JNK activation
involves FAK and p190RhoGAP dephoshorylation/inactivation
(Fig. 5i).

Inhibition of FAK mimics GT-induced anoikis signalling. If
inactivation of FAK by GT triggered apoptosis via Rho-ROCK-
MKK4/7-JNK activation, pharmacological inhibition of FAK
should activate the same signalling pathway. We therefore used
the FAK inhibitor FAK14, which is highly specific for FAK
because it blocks recruitment of its downstream target Src at
Y39737. As shown for GT, FAK14 induced cell detachment
(Fig. 5d) and apoptotic cell death of BEAS-2B cells within 6 h at
low (3–10 μM) and high (50 μM) doses (Fig. 5e, f). In addition,
both doses of FAK14 caused the rapid dephosphorylation of FAK
at Y397, dephosphorylation and hence inactivation of p190Rho-
GAP, phosphorylation of MKK4 and JNK (Fig. 5g, h) and
phosphorylation of Bim at T112/S114 (Fig. 5g). Hence FAK
inhibition stimulated the same anoikis signalling pathway as GT
(Fig. 5i).

To confirm that inactivation of FAK was crucial for GT-
induced JNK activation and caspase-mediated apoptosis,
we overexpressed WT FAK or activated mutant forms of
FAK (myrFAK, superFAK (FAK K578E/K581E) and myr-
superFAK)38,39 in BEAS-2B cells by lentiviral transduction. All
variants of FAK were overexpressed to similar levels, were
phosphorylated at Y397 and triggered enhanced phosphorylation
of their substrate p130Cas38 confirming their high kinase
activities (Supplementary Fig. 3A and 3C). As a consequence,
GT-induced anoikis signalling, i.e., JNK and Bim phosphorylation
and caspase-3 processing and activation were delayed (Supple-
mentary Fig. 3A, 3B, 3D and 3E). However, anoikis signalling was
not fully blocked most likely because GT could still depho-
sphorylate and inactivate myrFAK, superFAK and myr-superFAK
(Supplementary Fig. 3A and 3C). This finding is consistent with
previous observations that the downstream signalling of super-
FAK still depends on integrin-mediated adhesion39.

ROCK has been reported to regulate focal adhesions via an
inside-out cytoskeletal signalling40. We therefore examined if
the ROCK inhibitor H-1152 or the RhoA inhibitor toxin C3 had
any effect on FAK phosphorylation and cell detachment.
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The inhibitors themselves did not detach BEAS-2B cells
(Supplementary Fig. 1) and H-1152 induced a minor FAK
dephosphorylation/inactivation without affecting JNK phosphor-
ylation (Supplementary Fig. 2G) as reported before40. In the
presence of GT, both H-1152 and C3 slightly delayed cell
detachment (Supplementary Fig. 1). This did however not
affect focal adhesions since FAK was similarly dephosphorylated
by GT irrespective of the presence of absence of H-1152
(Supplementary Fig. 2G). Only JNK and caspase-3 failed to be
activated in the presence of the ROCK inhibitor (Supplementary
Fig. 2G) confirming that ROCK is a downstream mediator of GT-
induced apoptosis and not a major inside-out signalling regulator
of cell detachment in this system.

GT can directly target integrins at the RGD binding site. Since
GT caused cell detachment and inactivation of the focal adhesion
complex, it may directly target integrins. GT contains an intra-
molecular disulphide bond essential for its cytotoxic activity28. It
may therefore covalently modify cysteine residues in integrin α
and β chains, which are critical for integrin activation and/or
their binding to extracellular matrix components41,42. For that
purpose, we incubated recombinant human integrin αVβ3 with
GT and determined peptides with possible GT-cysteine adducts
by mass spectrometry (MS) analysis. Two cysteines were found to

be modified by GT, Cys158 in the seven blade β-propeller domain
of αV and Cys258 in the ligand-binding β-I domain of β3
integrins (Supplementary Fig. 4A). Both cysteines are highly
conserved among the α and β chains of various integrins (Sup-
plementary Fig. 4B) and form intracellular disulphide bridges
(Cys158 with Cys138 in αV and Cys258 with Cys299 in β3)43,44

that determine efficient binding of integrins to the RGD motif
in fibronectin and vitronectin41,42. To provide further evidence
that GT modified integrins at cysteines in the RGD binding site,
we treated BEAS-2B cells with GT for 30 min and subjected a
total cellular extract to anti-GT immunoprecitations (IPs) fol-
lowed by anti-integrin αV or β1 western blot analysis. As shown
in Supplementary Fig. 5A and 5B, both integrin chains were
specifically detected in anti-GT as compared to control IgG1 IPs.
This was however not the case when the cells were pretreated
with an RGD peptide before GT addition, or the extract was
incubated with dithiothreitol (DTT) and iodoacetamide before
anti-GT IP (Supplementary Fig. 5A and 5B). Interestingly, GT
seemed to also interact with E-cadherin (Supplementary Fig. 5C)
but not with the epidermal growth factor receptor (EGFR)
(Supplementary Fig. 5D).

To confirm that integrin binding to extracellular matrix
components is indeed perturbed by GT, we determined
integrin-binding capacity of untreated and GT-treated BEAS-2B
cells by fluorescence-activated cell sorting (FACS) analysis using a
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Fig. 4 Paxillin translocates from focal adhesions to early endosomes. a GT-induced cell detachment was studied by confocal video time-lapse microscopy.
In response to 1 µM GT, GFP-paxillin stably transfected into BEAS-2B cells translocates from focal adhesions at the plasma membrane (0min) to vesicles
(7 min), which move into the cell (7–18 min) (also see Supplementary Movie 1). This is followed by cell rounding and detachment (14–18 min).
b Co-transfection of BEAS-2B cells with GFP-paxillin and mRuby-Endo-14 to visualise endosomes. Paxillin partially localised at endosomal membranes
(see insets at higher digital magnification). Scale bar= 10 µm
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fluorescently labelled RGD peptide (Cyclo-RGD-5-FAM). As
shown in Fig. 6a, integrin binding to RGD-FAM rapidly
diminished 30 min to 2 h after GT treatment. This kinetic
coincided with the time course of FAK and p190RhoGAP
inactivation (Fig. 5a, c), paxillin translocation (Fig. 4a) and cell
detachment (Supplementary Fig. 1). By confocal immunofluor-
escence analysis using antibodies against pFAK and the
endosomal protein EEA1 as well as GFP-paxillin overexpression
we further showed that phosphorylated FAK (pFAK) colocalized
with paxillin in focal adhesions in untreated cells (Supplementary
Fig. 6B). In response to GT paxillin is endocytosed (Supplemen-
tary Fig. 6B and Fig. 4a) but rarely any pFAK is found on
endosomes (Supplementary Fig. 6A). This confirms that after
GT treatment FAK gets rapidly dephosphorylated in the focal
adhesion plaques at the plasma membrane before it is taken up
into the cell together with paxillin.

Integrins are also endocytosed after cell detachment and
recycle back to the plasma membrane45. We therefore monitored
the fate of integrin β3 surface expression on BEAS-2B cells
(Fig. 6b) and integrin β1 surface expression on MEFs (Fig. 6c)

after GT treatment by FACS analysis using β chain-specific
antibodies. Both integrin chains were removed from the cell
surface (Fig. 6b, c). This however occurred only after 2 h of
GT treatment suggesting that the primary action of GT was
to inactivate RGD binding (Fig. 6a) before integrins were
endocytosed.

GT-induced anoikis does not occur in suspension cells. Sus-
pension cells do usually not express active integrins on their
surface and hence do not form mature focal adhesions. Therefore,
these cells should not be killed by GT if the toxin specifically
targets focal adhesions in adherent cells. Indeed, while BEAS-2B
cells effectively underwent apoptosis in response to GT, three
different human and mouse suspension cell lines, BAF3, Jurkat
and FL5.12, were insensitive to GT-induced apoptosis (Fig. 6d).
Consistent with this finding, neither MKK4 nor JNK was phos-
phorylated/activated (Fig. 6e) and caspase-3 was not processed
(Supplementary Fig. 8D). All cell lines expressed integrins β1 and
β3 on their surface (Fig. 6a–c, Supplementary Fig. 7A and 7B). On

Gliotoxin

pMKK4

pMKK4

46

4 
h

2 
h

2 
h

30
′

1.
5 

h
1 

h

1 
h

N
T

N
T2 h 6 hNT

pFAK 130
100

130
100

55

55

55

170

170

55

55

40

40

70

70

FAK

JNK

pJNK

Tubulin

Tubulin

Tubulin

P190

pP190

pPax

Pax

0.
5 

h

46

130

130

130
170

130

55

40

55

40

55

40

55

40

55

25

55

170

46

46

58

58

58

MKK4

MKK4

pJNK

pJNK

pFAK

FAK

pP190

R
el

at
iv

e 
m

et
ab

ol
ic

 a
ct

iv
ity

 [%
]

120

100

80

60

40

20

0

FAK14 [μM]

NT 1 2 3 4 5 10

P190

JNK

JNK

Tubulin

Tubulin

Tubulin

pBim

FAK

P190

RhoA

FAK

P190

P

RhoA

ActiveInactive

***
*** ***

*

60

40

20

0A
nn

ex
in

-V
 p

os
iti

ve
 c

el
ls

 [%
]

50 μM FAK14

NT 1 h 4 h 6 h

***
***

**

2 
h

2 
h

4 
h

6 
h

30
′

30
′

1 
h

1 
h

N
T

N
T

2 
h

4 
h

6 
h

30
′

1 
h

N
T

a d

eb

fc

g h

i

Fig. 5 FAK and p190RhoGAP are inactivated by GT. a Western blot analysis of total extracts of BEAS-2B cells either untreated (NT) or treated with 1 µM
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BEAS-2B cells, they were in an active state as evidenced by RGD-
FAM (Fig. 6a) and anti-active integrin β1 staining (Supplemen-
tary Fig. 7C). This was however not the case on Jurkat cells where
integrin β1 was not detected with an anti-active integrin antibody
(Supplementary Fig. 7C). Moreover, while GT diminished surface
staining of integrins β3 (Fig. 6b) and β1 (Fig. 6c) on BEAS-2B and
MEF, respectively, none of the suspension cell lines showed such
an effect. To further substantiate the integrin-dependence of
GT for its pro-apoptotic action, we made use of K562 cells, which
also grow in suspension but express very little integrin β1 and
no integrin αV and β3 at all (Fig. 7e). Again, GT could not
trigger caspase-3 activity (Fig. 7b) or processing (Fig. 7e) in these
cells. However, when the cells were treated with 10 ng/ml phorbol
12-myristate 13-acetate (PMA), they largely upregulated active
integrins αV, β1 and β3 on their surface (Fig. 7c–e) and became
sensitive to GT-induced cell detachment (Fig. 7a), MKK4, JNK
and Bim phosphorylation and caspase-3 processing (Fig. 7e) and
activation (Fig. 7b). Similarly, BAF3 suspension cells made
adherent by plating them on fibronectin-coated plates overnight
displayed activated surface integrins as evidenced by RGD
staining (Supplementary Fig. 8B) and acquired sensitivity to GT-
induced detachment (Supplementary Fig. 8A), caspase-3 proces-
sing (Supplementary Fig. 8D), apoptosis (Supplementary Fig. 8C)
and activation of the same MKK4/JNK signalling pathway
(Supplementary Fig. 8D) as previously seen in BEAS-2B cells.
Hence GT exerts its cytotoxic activity primarily on adherent

cells expressing active integrins, which qualifies it as a bona fide
anoikis inducer.

Blocking αV/β3 integrins mimics GT-induced anoikis signal-
ling. If activation of the JNK/Bim-dependent anoikis pathway by
GT is a consequence of integrin inactivation, the same pathway
should be triggered by integrin inhibitory antibodies or drugs.
Cilengitide is an RGD-based compound that primarily blocks
integrins αVβ3 and αVβ5 at lower and β1 at higher concentra-
tions46. We first confirmed that BEAS-2B cells express αV, β3 and
β1 integrins (Supplementary Fig. 7D). When these cells were
exposed to 25 μg/ml Cilengitide, they exhibited cell detachment
(Supplementary Fig. 7E), FAK dephosphorylation and activation
of JNK1/2 with subsequent Bim phosphorylation at T112/S114
(Supplementary Fig 7F and 7G), activation and processing of
caspase-3 processing (Supplementary Fig. 7G and 7H) and cell
death (Supplementary Fig. 7I) within 6–24 h. However, in con-
trast to GT, the cells treated with Cilengitide detached in clusters
(instead of single cells) (Supplementary Fig. 7E), and FAK
dephoshorylation (Supplementary Fig. 7F) and subsequent
anoikis signalling were less pronounced and delayed (Supple-
mentary Fig 7G-I). This was also true when Cilengitide was
combined with an anti-integrin α5/β1 inhibitory antibody, which
was ineffective alone and did not further enhance Cilengitide-
induced anoikis (Supplementary Fig. 7I). This might be due to the
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fact that Cilengitide, even at a concentration where it also affects
integrin β1, does not inhibit all forms of integrins. Indeed,
Affymetrix Gene Array and RNAseq analysis of BEAS-2B cells
revealed the expression of at least 13 integrin genes with ITGB1
(integrin β1), ITGA3 (integrin α3) and ITGAV (integrin αV)
being expressed the highest (Supplementary Fig. 4C, 4D and 4E).
While GT induces maximal cell detachment and anoikis because
it targets cysteines in the RGD binding groove, which are con-
served among all integrins, we would need a combination of
several inhibitory integrin antibodies to achieve the same effect.

Discussion
Here we used GT, the major virulence factor of A. fumigatus, to
identify a novel anoikis signalling pathway. GT qualifies for an
anoikis inducer for the following reasons: (i) it induces rapid cell
detachment prior to apoptosis induction; (ii) it can directly modify
N-terminal cysteines of α and β chains of integrins thereby
interfering with their binding to extracellular matrix components;
and (iii) it cannot kill suspension cells of the hematopoietic system
and does not activate the anoikis signalling pathway in these cells.
Only when suspension cells are made adherent, i.e., either plated
on fibronectin or induced to express integrins on their surface,
they become sensitive to GT-induced anoikis via the same
signalling pathway as epithelial cells. Although we provide

compelling evidence that GT can directly target integrins by
modifying cysteines at the RGD binding interface, we cannot
exclude that it also modifies and disrupts binding domains in
other adhesion molecules, including inflammatory receptors or
cadherins. Indeed, we found that E-cadherin could be co-
immunoprecipitated with anti-GT antibodies. This may explain
why cells treated with GT detach as single cells while those treated
with integrin inhibitory antibodies or compounds detach as cell
sheets. Further studies are needed to identify the impact of GT on
signalling pathways regulated by cadherins.

Protection from anoikis was suggested to involve activation of
ERK/MAPK and PI3K/AKT signalling11–13. These pathways
should be turned off upon GT action, resulting in depho-
sphorylation of Bad and Bim and their release from 14-3-3
proteins21,22, the transcriptional upregulation of Bim, Puma and
Bmf by FOXO activation23,24 and the stabilisation of Bim due to
lack of proteasomal degradation25. However, as we previously
reported, neither Bad, Bmf nor Puma was required for GT-
induced apoptosis, and the ERK/MAPK and AKT signalling
pathways were still transiently activated after GT treatment30.
Moreover, although Bim was essential for GT-induced cytotoxi-
city it required JNK-mediated phosphorylation at S100/T112/
S114 rather than increased protein stability for effective Bax/Bak
activation30. This indicated that GT uses a JNK-dependent, but
ERK/AKT-independent pathway for anoikis signalling30.
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Previously, Stupack et al.47 reported that unligated integrins or
β-integrin tails recruit caspase-8 to the membrane and induce
apoptosis distinct from anoikis in death receptor-independent
manner. We therefore tested if caspase-8 was activated and
required for GT-induced apoptosis. However, while recombinant
FasL rapidly activated caspase-8 in BEAS-2B cells, we did not
detect any caspase-8 activation after GT treatment for up to 6 h
(Supplementary Fig. 9A). Moreover, knocking down caspase-8
expression did not affect the kinetics of GT-induced anoikis but it
blocked FasL-induced apoptosis (Supplementary Fig. 9B). Thus,
GT uses a JNK-dependent, but ERK/AKT- and caspase-8-
independent pathway for anoikis signalling.

JNK/c-Jun-induced transcription in response to lysopho-
sphatidic acid was previously shown to be mediated by RhoA-
ROCK-MKK4 signalling31. The same pathway was involved in
arsenic trioxide-induced apoptosis of chronic myelogenous
leukaemia cells48. However, in both cases it remained elusive
how RhoA was activated. Here we show that RhoA is activated

by dephosphorylation and inactivation of p190RhoGAP as a
result of GT-induced FAK inhibition. This is consistent with a
report showing FAK-induced downmodulation of RhoA activity
via p190RhoGAP36. The role of Rac or Cdc42 GTPases in med-
iating GT anoikis could be excluded because they do not activate
ROCK31,40 and have recently been shown to be inactivated by
GT49.

ROCK1 and 2 play essential roles in regulating cell morphol-
ogy, motility and cell fate31,40,50. Whether all these effects are
mediated through changes in the actin cytoskeleton is still
debated50. Ethanol, doxorubicin and serum starvation were found
to induce caspase-dependent apoptosis via RhoA-ROCK1-
mediated myosin light chain phosphorylation and subsequent
cytoskeletal rearrangements rather than JNK activation although
the link to caspase-3 activation was not provided50,51. In other
studies ROCK activated JNK but the result was stimulation of cell
migration rather than apoptosis52. Furthermore, ROCK was
shown to affect the membrane blebbing of apoptotic cells53.
However, in this case ROCK was activated by caspase-3-mediated
cleavage, which occurs downstream of cytochrome c release.
Although we cannot exclude a cytoskeletal involvement for GT-
induced, ROCK-mediated anoikis, our data show that ROCK
does not signal back to focal adhesions (FAK) but stimulates the
downstream phosphorylation/activation of MKK4 and MKK7
essential for anoikis. The precise mechanism of this activation is
not yet understood. It either occurs through intermediate kinases
such as MLK or ASK54,55 and/or the scaffold proteins hCNK56 or
JIP-357, which were shown to link ROCK to JNK activation. Once
activated MKK4 and MKK7 then phosphorylate different sites in
the activation loop of JNK54, and we indeed find that both kinases
are required for GT-induced JNK activation.

Anoikis has been mainly studied in an artificial system, where
cells are detached by trypsinization and prevented from
reattaching to polyHEMA-coated plates20. This form of anoikis
differs from that induced by GT because trypsin at least partially
degrades surface integrins. Therefore, we30 and others58 could
not confirm an earlier study59 that JNK was involved in
trypsinization-induced anoikis. By contrast, we show here for the
first time that not only GT but also FAK and integrin inhibition
trigger the same Rho-ROCK-MKK4/MKK7-JNK-mediated sig-
nalling pathway indicating that it represents a physiological way
to induce anoikis (Fig. 8).

The novel anoikis signalling pathway will increase our under-
standing of diseases caused by excessive cell detachment or the
resistance of detached cells to die. Overexpression of FAK has
been shown to promote tumour progression and metastasis60,
which can be counteracted by high levels of RhoA61. Moreover,
RhoA downregulation is associated with increased breast cancer
cell migration and invasion62. Thus, RhoA may act as a tumour
suppressor not only by restricting tumour cell motility but also by
inducing anoikis. Moreover, FAK is an attractive target for anti-
cancer therapy as it has recently been proposed for pancreatic
cancer63.

On the other hand, activation of FAK or integrins may render
lung epithelial cells less sensitive to GT-induced anoikis and
hence diminish increased epithelial cell permeability and sub-
sequent lung invasion during A. fumigatus infections. An even
better strategy is to develop GT inhibitors, which would prevent
integrin inactivation and thereby completely block lung epithelial
cell anoikis.

Methods
Reagents and inhibitors. The ROCK inhibitors Y-27632 (Rho Kinase inhibitor
VI) and H-1152 were obtained from EMD Millipore (Billerica, MA, USA); Q-VD-
OPh from MP Biomedicals (Eschwege, Germany); and GT from AppliChem
(Darmstadt, Germany). The CNFy toxin (150 ng/ml) from Yersinia
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Fig. 8 GT-induced anoikis signalling. FAK is recruited to focal adhesions via
paxillin and is active in healthy adhesion cells. Active FAK phosphorylates
p190RhoGAP. Phosphorylated p190RhoGAP stimulates the GTPase activity
of RhoA. RhoA and the downstream anoikis-inducing cascade is therefore
inactive (left). GT inactivates integrins, possibly by covalent binding to
cysteines in the N-terminal region of α and β chains and triggers the
disassembly of focal adhesions. Paxillin is degraded and FAK is inactivated,
resulting in inactive p190RhoGAP. RhoA is consequently active and induces
anoikis via a kinase cascade from ROCK to MKK4/MKK7 to JNK, resulting
in the pro-apoptotic triple phosphorylation of Bim (right). Inhibitory integrin
antibodies such as Cilengitide or FAK inhibitors such as FAK14 can induce
the same anoikis signalling pathway
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pseudotuberculosis and the C2I/C3 fusion toxin (Clostridium botulinum and
Clostridium Limosum, respectively) combined with the C2II toxin from
Clostridium botulinum (collectively termed C3 toxin) was produced and purified
as described33,34. C3 toxin is a binary toxin consisting of C2II (200 ng/ml) and
C2I/C3 (100 ng/ml) mixed in cell culture media. The FAK inhibitor 14 (FAK14)
was purchased from Tocris (Bristol, UK), and Cilengitide, a cyclic pentapeptide
RGD compound (cyclo-[RGDfN(Me)V])46, the RGD peptide, DTT and
iodocetamide were from Sigma (Taufkirchen, Germany).

Plasmids. shRNA against ROCK1 (SHCLNG-NM_005406.1, shROCK1:
CCGGGCACCAGTTG TACCCGATTTACTCGAGTAAATCGGGTACAACT
GGTGCTTTTTG), hu-CASPASE-8 (SHCLNG-NM_033356.3, shCASP-8:
CCGGACATGAACCTGCTGGATATTTCTCGAGAAATATCCAGCAGGTTCA
TGTTTTTTG), hu-EGFR (SHCLNV NM_005228.3, shEGFR: CCGGGCCTATC
AAGTGGATGGCATTCTCGAGAATGCCATCCACTTGAT AGGCTTTTTTG)
and a control scrambled shRNA (SHC002 MISSION pLKO.1-puri, shCTRL:
CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTT
GTTGTTTT) were purchased from Sigma. These shRNA were provided in the
pLKO.1puro backbone for lentiviral transduction. Paxillin-pEGFP was a gift from
Rick Horwitz, University of Virginia, USA (Addgene plasmid # 15233). Lentiviral
pCDH-EF1a-MCS-T2A-copGFP-empty vector and WT FAK. (exo-FAK) and
myristoylated FAK (myrFAK) were kindly provided by Andrew Gilmore, Uni-
versity of Manchester, UK. The endosomal marker mRuby-Endo-14 was a gift
from Michael Davidson (Addgene plasmid # 55859).

Cells and cell treatments. 3T9 MEFs either deficient for Mkk4, Mkk7 or both as
well as control WT littermates were isolated from respective knockout mice64,65.
Human bronchial epithelial cells (BEAS-2B) were obtained from American Type
Culture Collection (ATCC® CRL-9609TM). Cells were cultured in Dulbecco’s
modified Eagle’s medium or RPMI supplemented with 10% foetal calf serum (FCS)
and 1% penicillin/streptomycin, respectively. BEAS-2B cells were kept subconfluent
and only used until passage number 20. Typically, 1 × 106 cells were seeded in
10 cm plates to reach a confluency of approximately 60–70% on the day of the
experiment. Murine suspension cells BAF3 (ACC300, DSZM Germany), FL5.12
(Thermo Fisher, Darmstadt, Germany) and human Jurkat T cells (Clone E61,
ATCC® TIB152TM) were maintained at cell densities lower than 500 000 cells/ml.
The former two cell lines were daily supplemented with 1 ng/ml interleukin-3
(Peprotech, Rocky Hill, NJ, USA). Human leukaemia K562 suspension cells
(ATCC® CCL243TM were kindly provided by Tilman Brummer (University of
Freiburg, Germany). In all, 3 × 105 cells/well were plated in six-well plates for
differentiation into megakaryocytes by the addition of 10 ng/ml PMA (Sigma) for
96 h. The medium was replaced daily with fresh medium containing PMA. Anoikis
was induced by treating BEAS-2B cells with 1 µM GT for 6 h or 10–50 µM FAK14
for 6–12 h. BEAS-2B cells were also treated with Fc-FasL (20 ng/ml, Adipogen,
Epalinges, Switzerland) for up to 4 h to induce extrinsic apoptosis signalling. All
cell lines were regularly tested for mycoplasma contamination using a PCR based
mycoplasma detection kit (e-MycoTM Mycoplasma PCR Detection Kit, iNtRON
Biotechnology Inc., Seongnam, South Korea).

Attachment of suspension cells. Human fibronectin (Advanced BioMatrix,
Carlsbad, CA, USA) was used for the attachment of BAF3 suspension cells. Twelve-
well plates were coated with 50 µg/ml fibronectin in phosphate-buffered saline
(PBS) overnight. On the next day, 100 000 cells were seeded per well and grown
overnight. Non-attached cells were removed by washing with PBS before GT
treatment or further analysis.

Immunoblotting and antibodies. Cell pellets were lysed on ice for 15 min in
50–100 µl whole-cell lysis buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM
EDTA (pH 8.0), 5 mM Na-pyrophosphate, 1 mM Na3VO4, 20 mM NaH2PO4, pH
7.6, 3 mM β-glycerophosphate, 10 mM NaF, 1% phosphatase inhibitor cocktail
1 and 2 (Sigma), 1× protease inhibitor cocktail complete (Roche, Mannheim,
Germany) and 20 µM MG-132 (Merck Millipore, Darmstadt, Germany))
containing 1% Triton-X-100. A unit of 40–60 µg of the protein lysate was separated
by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and the proteins were
transferred onto nitrocellulose membranes by wet blotting (GE Healthcare Europe,
Freiburg, Germany). Membranes were probed for the proteins of interest using
the following antibodies: FAK D2R2E (#13009); phospho FAK (pFAK Tyr397)
(#8556); paxillin D9G12 (#12065); phospho paxillin (pPaxillin Tyr118) (#2541);
MKK4 (#9152); phospho MKK4 (pMKK4 Ser257/Thr261) (#9156); MKK7
(#4172); phospho MKK7 (pMKK7 Ser271/Thr275) (#4171); JNK (#9252); phospho
JNK (pJNK Thr183/Tyr185) (#9251); Bim C34C5 (#2933); cleaved caspase-3
Asp175 (#9661); human caspase-8 (D35G2, #4790); PARP (#9542); MYPT1 D6C1
(#8574); phospho MYPT1 (pMYPT1 Thr696) (#5163); integrin β3 (#4702);
integrin αV D2N5H (#60896); integrin β1 D6S1W (#34971); P130Cas E1L9H
(#13846); and phospho P130Cas (pP130Cas Tyr410) (#4011) (all used at dilutions
1:1000) were bought from Cell Signalling Technology (Danvers, MA, USA). Anti-
p190RhoGAP (NB100-88154) and anti-phospho p190RhoGAP (pP190RhoGAP
Tyr1105) (NB100-92688) (both 1:1000) were obtained from Novus Biologicals
(Littleton, CO, USA); anti-E-cadherin (clone 36/E, 1:2000) from BD Biosciences

(Heidelberg, Germany); anti-human EGFR (AF231, 1:2000) from R&D Systems
(Wiesbaden, Germany); and mouse monoclonal IgG1 isotype control antibodies
(1:1000) from Sigma. Anti-RhoA 26C4 (sc-418, 1:1000) was purchased from Santa
Cruz Biotechnology (Dallas, TX, USA). Rat monoclonal anti-tubulin clone YL1/2
(#MCA77G, 1:20000) was obtained from Bio-Rad AbD Serotec (Puchheim,
Germany) and mouse monoclonal anti-actin clone C4 (#691000, 1:40000) was
purchased from MP Biomedicals SARL (Illkirch-Graffenstaden, France). Polyclonal
rabbit antibodies against phospho Bim (pBim) were custom made against a
peptide phosphorylated at T112/S11430, affinity purified and used at 1:500.
Peroxidase-conjugated secondary antibodies against mouse, rabbit or rat IgG
(Jackson ImmunoResearch Europe, Suffolk UK) were used for immunodetection
(each at 1:2000) using Enhanced Chemiluminescence (Pierce, Rockford, IL, USA)
for development. For protein quantitation blots were developed on FusionSL
Vilber Lourmat (PeqLab, Erlangen, Germany) and quantified using the FusionCapt
Advance Solo 4 (V.16.08) software. Uncropped scans of the western blots are
presented in Supplementary Fig. 10.

Generation of monoclonal anti-GT antibodies. Monoclonal mouse antibodies
(mAb) were generated against a fusion protein between GT and the outer surface
protein C (OspC) from Borrelia burgdorferi. A unit of 100 μg GT was incubated
with 3 mg p-maleimidophenyl isocyanate (Thermo Fisher) in 500 μl dimethyl
sulphoxide for 1 h at room temperature. In parallel 1 mg OspC was allowed to react
with 100 μg N-succinimidyl S-acetylthioacetate (Thermo Fisher) in 500 μl of buffer
A (50 mM sodium phosphate, 150 mM NaCl and 1 mM EDTA, pH 7.8). The two
solutions were combined, 1.5 ml of buffer A (pH 6.8) was added and the mixture
was incubated for another 2 h at room temperature, then buffered to pH 7.3 in PBS.
Eight- to 12-week-old Balb/c mice were intraperitoneally immunised three times
(every 3–4 weeks) with 20–50 μg GT-OspC antigen emulsified in 200 μl ABM-S
complete adjuvans A313 (Linaris, Wertheim-Bettingen, Germany). The fourth
immunisation was performed with 50 μg antigen in 200 μl PBS. Three days later
mice were sacrificed and the spleen was removed. Spleen cells were isolated and
fused with PAI mouse plasma myeloma cells in a ratio 6:1 using polyethylene glycol
1500 (Roche Diagnostics, Risch, Switzerland) before adding 80% RPMI 1640/20%
Medium 199, 2 mM L-glutamine and 10% FCS Myoclone plus. The resulting
hybridoma cells were distributed in 96 microtiter culture plates and selected on
105/ml thymocyte feeder cells in RPMI/Medium 199 supplemented with hypox-
anthine/thymidine (Sigma). The cells were screened for specific IgG production
between 2 and 3 weeks post fusion by enzyme-linked immunosorbent assay.
Identification of antibody subclasses was performed using a Mouse Monoclonal
Antibody Isotyping Kit (Southern Biotech, Birmingham AL, USA). For large-scale
mAb production hybridoma cell lines were cultured in a bioreactor (Miniperm,
Sarstedt, Nümbrecht, Germany). MAbs were purified by affinity chromatography
using protein G Sepharose (GE Healthcare Life Sciences, Freiburg, Germany).

Anti-GT immunoprecipitations. A volume of 500 µl (1 mg) of a TX-solubilized
whole-cell extract from BEAS-2B cells treated with GT for 30 min was pre-cleared
with 100 µl of a 50% slurry of Protein G SepharoseTM 4 Fast Flow recombinant
protein G beads (GE Healthcare Life Sciences) on a turning wheel at 4 °C for 1 h.
After incubating the supernatants with 100 µl of purified mouse mAb anti-GT
antibodies (100 µg, clone GT-2.2, IgG1) for 1 h, 50 µl of 50% Protein G Sepharose
beads were added and the mixture rotated at 4 °C for 2 h. All beads were cen-
trifuged at 8200 × g, 4 °C for 3 min, washed three times with lysis buffer and
immune complexes eluted by boiling in Lämmli buffer. The eluted samples were
run on non-reducing SDS-PAGE and subjected to anti-integrin αV D2N5H
(#60896, 1:1000), anti-integrin β1 D6S1W (#34971, 1:1000), anti-E-cadherin
(clone 36/E, 1:2000) or anti-EGFR (AF231, 1:2000) western blot analysis. The
following controls were run in parallel: (i) an IP with anti-IgG1 isotype control
antibodies instead of anti-GT; (ii) BEAS-2B cells detached in enzyme-free Cell
Dissociation Buffer, treated with 150 μM of RGD peptide for 30 min before
adding GT, cell lysis and anti-GT IP; and (iii) total extracts from GT-treated cells,
incubated 5 mM DTT for 30 min at 37 °C followed by an incubation with 14 mM
iodoacetamide at room temperature before subjecting them to anti-GT IP.

Cell death assays. Cells were treated with 1 µM GT for 6 h, if not stated otherwise.
Both detached and attached cells were harvested and used to quantify apoptosis. If
pharmacological inhibitors were used, cells were treated for 30 min with the
inhibitors prior to GT treatment. For annexin V-fluorescein isothiocyanate (FITC)
staining, cells were washed in annexin V binding buffer (10 mM HEPES, 140 mM
NaCl and 2.5 mM CaCl2), re-suspended in annexin V binding buffer containing
annexin V-FITC and incubated for at least 15 min in the dark. The percentage of
apoptotic cells was analysed on a Calibur or LSRII equipment (BD Biosciences).
Metabolic activity was measured using the Cell Proliferation Kit 2 (XTT, Sigma)
according to the manufacturer’s instructions. Briefly, 6 × 103 BEAS-2B cells were
plated in 96-well plates, treated on the next day as indicated and incubated
with XTT solution for 4 h at 37 °C before analysis in the Tecan infinite M200
microplate reader. For caspase activity assay, 6 µM Ac-DEVD-AMC fluorogenic
caspase-3/-7 substrate (Enzo Life Sciences, Lausen, Switzerland) was added to 10 µl
of 20–30 µg lysate and 90 µl caspase activity buffer (100 mM HEPES (pH 7.5) and
10 mM DTT) and immediately measured using the Tecan infinite M200 microplate
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reader (Männedorf, Switzerland). Increasing fluorescence due to substrate cleavage
was monitored in intervals of 2 min for 30 min. The slope of the linear regression
was used to determine the relative caspase activity.

Rhotekin pulldown. GST-Rhotekin-RBD beads (Cytoskeleton Inc., Denver, CO,
USA) were used to pull down active Rho-GTP from whole-cell lysates32. Samples
were adjusted to the same cell numbers and lysed in GST-Fish buffer (10% (v/v)
glycerol, 50 mM Tris-HCl (pH 7.4), 100 mM NaCl, 1% (v/v) NP-40, 2 mM MgCl2
and 1 mM phenylmethylsulfonyl fluoride). Lysates were incubated with Rhotekin
beads for 45 min at 4 °C on an overhead shaker. After washing, the samples were
boiled in SDS sample buffer and RhoA was detected on western blots.

Kinase assays. The KinaseSTAR JNK Activity Assay Kit (BioVision, Milpitas, CA,
USA) was used to measure JNK activity after GT treatment. The kit was used as
stated in the manufacturer’s protocol. In brief, JNK was pulled down from cell
lysates and incubated with recombinant c-Jun. Phosphorylation of c-Jun was
quantified by western blots. ROCK activity was determinded by quantifying the
phosphorylation of its substrate MYPT1 after anti-phospho MYPT1
immunoblotting.

Site-directed mutagenesis of FAK. To generate superFAK and myr-superFAK,
which are activated forms of FAK mutated in their kinase activation loop (K578E/
K581E)39, we performed site-directed mutagenesis on the lentiviral WT FAK and
myrFAK plasmids obtained from Andrew Gilmore38 using the QuikChange II XL
site-directed mutagenesis kit (Agilent, Santa Clara, USA). The following primers
were designed using the Agilent QuikChange Primer Design Tool: FAK K578/
581E_fwd: CCATCCATTTAATAGGTAATTTTCCCTC GGAAGCCTCATAG
TAAGTACTGTCTTCCATATATCGAGATAA; FAK K578/581E_rev: TTATCTC
GATATATGGAAGACAGTACTTACTATGAGGCTTCCGAGGGAAAATTACC
TATTAAATGGATGG.

Lentiviral and retroviral transductions. In all, 2 × 106 HEK 293T cells were
transfected with 3 µg of the plasmid of interest, 3 µg envelope vector pMD2G
and 3 µg packing vector pSPAX using Attractene Transfection Reagent (Qiagen,
Hilden, Germany). After 12 h protein biosynthesis was augmented using 5 mM
butyrate (Sigma). Butyrate was removed after 8 h and replaced with 4 ml full
medium. Lentiviruses were harvested on the next morning and supplemented with
5 µg/ml polybrene (Sigma). Target cells were spinfected with fresh virus for 10 min
at 450 × g. Cells were selected with 4 µg/ml puromycin in case of shRNA-mediated
knockdown or used without selection for the overexpression of WT (exo-) FAK,
myrFAK, superFAK and myr-superFAK.

Integrin detection by FACS analysis. Cells were harvested in PBS-EDTA by
scraping and passed through a 40 µm nylon cell strainer (BD Falcon, Heidelberg,
Germany) to yield single cells. After washing in FACS buffer (PBS, 5 mM EDTA
and 3% FCS) the cells were stained. For the analysis of integrin expression, cells
were incubated for 15 min in 100 µl FACS buffer with the following integrin
antibodies (1:100 each): anti CD62-FITC (integrin β3) clone VI-PL2 (#336403);
FITC mouse IgG control (#400109) (Bio Legend, Fell, Germany); anti-mouse
CD29-FITC (integrin β1, # MCA2298F); anti-active integrin β1 12G10 (Alexa
Fluor® 488, ab202641); or hamster IgG negative control-FITC (# MCA2356F)
(Bio-Rad AbD Serotec).

Cyclo-RGD-5-FAM (#65160) (AnaSpec, MoBiTech, Göttingen, Germany) was
used to assess integrin ligand-binding activity. The RGD peptide represents the
integrin-binding motif in fibronectin and vitronectin. Active integrins can therefore
bind to the fluorescently labelled peptide and be quantified. Collected cells were
washed in FACS buffer and subsequently stained with 2.5 µM Cyclo-RGD-5-FAM
in 200 µl FACS buffer for 15 min before analysis.

Integrin inhibition. BEAS-2B cells were detached in Cell Dissociation Buffer,
enzyme-free (Thermo Fisher Scientific) to prevent degradation of surface mole-
cules. Cells were either suspended in medium alone, medium containing 25 µg/ml
Cilengitide (Sigma) or medium containing 100 µg/ml of the inhibitory anti-integrin
β1 (clone P4C10, MAB1987Z, Merck Millipore) or 25 µg/ml of the inhibitory anti-
integrin α5β1 (clone JBS5, MAB1969, Merck Millipore) antibodies or both and
incubated for 0–24 h. At different time points cells or cellular extracts were sub-
jected to survival (metabolic) and caspase-3 activity assay, western blot analysis or
phase contrast microscopy analysis.

Microscopy and immunofluorescence analysis. Brightfield micrographs were
taken with the Nikon eclipse TS100 inverted microscope (Düsseldorf, Germany),
equipped with DS-L3 controller for image acquisition. For live cell imaging, 6 × 104

BEAS-2B cells were seeded in glass-bottom dishes (Greiner Bio One, Frick-
enhausen, Germany) and transfected with 5 µg GFP-paxillin and mRuby-Endo-14
using Lipofectamine 2000 reagent (Thermo Fisher Scientific). Cells were analysed
12 h post transfection.

For immunfluorescence analysis, 5 × 103 BEAS-2B cells per well were
seeded on IBIDIµ eight-well glass-bottom slides and treated with 1 µM GT on

the following day for the indicated time points. The cells were immediately fixed in
the well by adding 4% paraformaldehyde (final concentration) and stained as
described in Alonko et al.66 using anti-pFAK-Y397 (clone 44–624 G, Life
Technologies, used 1:150) and anti-EEA1 (clone 14/EEA1, BD Biosciences,
#610457, used 1:100) antibodies. The secondary antibodies were goat anti-rabbit
Alexa 568-conjugated for pFAK and goat anti-mouse Alexa 488-conjugated for
EEA1 (both 1:400 of a 2 mg/ml stock from Invitrogen, Darmstadt, Germany).
Confocal fluorescence microscopy was performed with an inverted microscope
(Axiovert 200M; Carl Zeiss, Jena, Germany) equipped with a spinning-disk
head (Yokogawa, Tokio, Japan) with emission filters, and solid-state laser lines
(405, 488 and 561 nm). Fluorescence images were collected with a CoolSNAP-
HQ2 digital camera (Roper Scientific, Munich, Germany) driven by VisiView
imaging software (Visitron Systems, Puchheim, Germany). Glass-bottom dishes
were incubated in a humidified atmosphere (6.5% CO2 and 9% O2) at 37 °C.
Images were processed with Metamorph software (Universal Imaging,
New York, USA).

Mass spectrometry. MS was performed to analyse the covalent modification of
integrins by GT. Human recombinant αVβ3 integrin (5 µg) was mixed with 5 µg
bovine serum albumin as an internal control in 50mM HEPES, pH 7.5,
incubated with 100 μM to 1mM GT at room temperature for up to 6 h and
then denatured in 0.1% RapiGest (Waters, Eschborn, Germany) for 45min at 70 °C.
Peptides were generated by digestion with 0.2 µg trypsin overnight at 37 °C and then
purified using C18 STAGE solid phase extraction columns (Varian, Palo Alto, CA,
USA). A Q-Exactive Plus Hybrid Quadrupole-Orbitrap system (Thermo Scientific,
Darmstadt, Germany) was used for mass spectrometry and operated in the data-
dependent mode67. Peptide sequences were identified by X! TANDEM (Version
2013.09.01) in conjunction with PeptideProphet using the reviewed canonical
human (20272 protein sequences) and bovine (5994 proteins) combined sequence
database, downloaded from Uniprot on 26.11.2013 and 15.07.2015 respectively,
together with an equal number of randomised decoy sequences, generated by
DBtoolkit. The PeptideProphet minimum probability threshold was set to 0.05. The
GT modification of cysteines was calculated as an adduct with a variable mod-
ification with a mass difference of 326.0395Da. Only peptides with a probability
score > 0.99 were taken into consideration. Identified peptides were mapped on the
protein sequence using the software Proteator.

Integrin Affymetrix microarray and RNAseq analyses. To quantify the
expression of integrin genes, raw data of the transcriptome of untreated Beas-2B
cells from three high-throughput experiments, one microarray and two RNAseq
assays data were downloaded from Gene Expression Omnibus and Array Express
with respective series/sample IDs GSE24025/GSM591439 as well as E-MTAB-
4729/ERR1406031 and ERR1406032.

Affymetrix Human Gene 1.0 ST microarray was normalised using Single-
Channel Array68 and exon expression was summarised to the gene level
using the R/Bioconductor package pd.hugene.1.0.st.v1 (version 3.14.1).
Transcripts were considered to be present in the cell if they have an absolute
expression value > 0. RNAseq data were pseudoaligned to the cDNA transcript
sequences Ensembl version 87 and quantified using kallisto (Version 0.43.1)69.
Transcripts abundance was summarised to the gene level via the R library
tximport70. Genes were considered to be expressed, if they have a minimal
transcript per million value > 1.

Data availability
All data supporting the findings of this study are available within the article and its
supplementary information files or from the corresponding author upon reasonable
request
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