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A Salmonella nanoparticle mimic overcomes
multidrug resistance in tumours
Regino Mercado-Lubo1, Yuanwei Zhang2, Liang Zhao2, Kyle Rossi1, Xiang Wu2, Yekui Zou2, Antonio Castillo1,

Jack Leonard1, Rita Bortell3, Dale L. Greiner3, Leonard D. Shultz4, Gang Han2 & Beth A. McCormick1

Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively

grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance

transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible

for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of

Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system

packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours

but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the

Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in

P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis

of our finding that the SipA Salmonella effector is fundamental for functionally decreasing

P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in

cancer cells and increases tumour sensitivity to conventional chemotherapeutics.
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B
acteria have been investigated as therapeutic agents for
tumours for over 150 years, when the German physicians
W. Busch and F. Fehleisen first observed regression of

tumours in cancer patients after accidental infections by
erysipelas1. Later, the America physician William B. Coley
injected Streptococcus pyogenes, as well as the heat-killed
organism into patients with inoperable bone and soft-tissue
sarcomas; these products became known as the Coley’s toxins2.
Although the mechanisms underlying these observations were
uncertain, it was known even then that bacteria exhibit
immunostimulatory properties. Moreover, it has been known
for over 60 years that anaerobic bacteria can selectively grow in
tumours, and the conditions that permit anaerobic bacterial
growth, such as impaired circulation and extensive necrosis, are
found in many tumours signifying that bacterial therapeutic
conduits may serve as a unique portal to a wide variety of
malignancies1.

Salmonella enterica serovar Typhimurium (S. Typhimurium) is
a facultative enteric pathogen that causes food poisoning in
humans resulting in gastroenteritis. However, this pathogen can
also selectively grow in tumours following systemic administra-
tion and is able to modulate numerous biochemical pathways
across a broad spectrum of cell types (that is, gut, kidney, lung
and macrophages)3–5. Therefore, the capacity to harness these
traits affords unique opportunities to overcome many of the
obstacles that hinder conventional chemotherapeutics. As an
example, employing Salmonella as a potential monotherapy has
been proposed in an emergent number of studies where this
pathogen has been broadly developed as a delivery vector for
cytokines, tumour antigens, and DNA-based vaccines6.
Furthermore, recent evidence supports the use S. Typhimurium
as an indirect activator of cytotoxic T cells against tumour
antigens7. Yet, despite such therapeutic potential, the
implementation of Salmonella as a viable treatment option has
been unsuccessful clinically8, and remains compromised due to
the risk of immune-mediated toxic responses at doses required
for therapeutic efficacy6. There are also additional affects
concerning genetic instability that could lead to possible failure
of therapy or systemic infections9. Therefore, overcoming these
principal limitations, particularly with respect to exploiting
bacterial proteins in therapy, are key to advancing novel cancer
treatment regimens.

S. Typhimurium initiates infection and controls the fate of the
host cells by invading enterocytes predominantly located within
the distal ileum, and has evolved the use of a needle-like structure,
known as the type III secretion system to guide its pathogenesis10.
By way of this sophisticated secretion system, numerous
Salmonella effector proteins are secreted from the bacterium
and then are translocated into the target cell cytosol. These
secreted effectors function in the modulation of numerous
signalling transduction pathways that are common targets in
the development of therapeutics for inflammatory diseases and
cancer5,10. Therefore, such secreted effectors have high potential
as therapeutic agents, because they have co-evolved with the host
and are extremely adept at interacting with host cell proteins.

We have recently uncovered a strong regulatory effect of the
enteric pathogen, S. Typhimurium, on the multidrug resistance
(MDR) transporter P-gp (P-glycoprotein). In particular, we found
that colonization of human colon cancer cell lines by
S. Typhimurium leads to a profound functional decrease and
loss of protein expression in P-gp11. This was the first observation
to link a microorganism that is targeted specifically to tumours
with the regulation of MDR transporters. P-gp is encoded by
MDR1, and is a MDR ATP-binding cassette membrane
transporter responsible for one aspect of the (MDR) phenotype
in cancer cells12. Recent reports have linked the overexpression of

P-gp to adverse treatment outcomes in many cancers, thereby
identifying this MDR phenotype as an important biologic target
for pharmacologic modulation12,13. The nexus of this observation
with reports documenting the ability of S. Typhimurium to target
and selectively grow in tumours4 has led to the question of
whether Salmonella or its products can be engineered to exploit
MDR transporters for the development of new cancer
therapeutics aimed at reversing drug resistance.

Herein, we reveal the S. Typhimurium type III secreted effector
protein SipA as the key virulence factor responsible for
modulating P-gp through a pathway involving caspase-3. Taking
advantage of this property, we describe a new technology
platform in which we construct a semi-synthetic ‘Salmonella
nanoparticle mimic’ by engineering a gold (Au) nanoparticle
scaffold loaded with a SipA corona that mimics the ability of
S. Typhimurium to reverse MDR. Using this technology, we
demonstrate that suppression of P-gp function can be achieved
within a solid tumour to enhance efficacy and cytotoxicity of a
non-targeted chemotherapeutic.

Results
SipA modulates the expression of P-gp. Since our prior study
revealed that S. Typhimurium SPI-1 is necessary to modulate the
expression of P-gp11, we began by screening S. Typhimurium type
III secreted effectors to determine whether any are altered in their
ability to modulate P-gp. We found that when HCT8 human
intestinal carcinoma cell monolayers were exposed to Salmonella
mutants of the type III secretion system translocon, DSipB or
DSipC, these mutants maintained the ability to modulate P-gp
(Fig. 1a). Phenotypically, the DSipB and DSipC translocon mutants
are able to secrete effectors out through the type III secretion
needle complex, but fail to translocate them into the host cells14.
Our findings therefore suggest that a Salmonella-secreted effector
could be modulating P-gp as a result of an extracellular interaction
rather than due to its direct delivery into epithelial cells. To
examine this possibility, HCT8 epithelial monolayers were exposed
to an extract of secreted proteins that were isolated from
S. Typhimurium (see Methods section). Since the treatment of
this protein extract alone is sufficient to trigger the modulation of
P-gp (Fig. 1b), we next examined individual S. Typhimurium type
III secreted effector mutants to establish whether any fail to
modulate P-gp. As shown in Fig. 1c, a S. Typhimurium DSipA
mutant strain (EE633) is markedly reduced in its ability to
modulate P-gp. The specificity of the DsipA mutant defect was
verified by demonstrating that a plasmid, which expresses the sipA
gene, restores the ability of the DsipA mutant to modulate P-gp to
the approximate levels elicited by the wild-type strain (Fig. 1c).

Because normal intestinal epithelium display baseline expres-
sion of P-gp, we also assessed whether SipA could modulate the
expression of P-gp in healthy murine intestinal epithelium
in vivo. We evaluated the colonic expression of P-gp in BALB/c
mice infected orally with 107 CFU (colony-forming units) of
either a S. Typhimurium strain that overexpresses SipA (AJK63),
an isogenic DSipA mutant strain (EE633) or the parent wild-type
S. Typhimurium (SL1344) strain. After 48 h of infection, the
DSipA mutant failed to modulate the protein expression of P-gp
as compared with the profound decrease in the expression of P-gp
observed in the cohort of mice that were either infected with the
SipA over-expressing strain (AJK63) or mice infected with the
wild-type (Supplementary Fig. 1). Nevertheless, only modest
differences in intestinal colonization between the DSipA strain
(4.7 log10 CFU per mg of tissue±0.1 log10), as compared with
either AJK63 (5.5 log10 CFU per mg of tissue±0.14 log10) or the
wild-type (5.5 log10 CFU per mg of tissue±0.3) S. Typhimurium
strain were noted (results are presented as mean±s.d. n¼ 3).
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We next examined whether SipA alone could induce the
modulation of P-gp without the influence of Salmonella or its
type III effectors. Thus, affinity-purified hemagglutinin tagged
SipA (purified-SipA) was added to PBS buffer overlying washed
HCT8 cells. Exposure of cell monolayers to 80 or 160 mg ml� 1 of
purified-SipA over a period of 3 h resulted in a dose-dependent
ability to modulate P-gp to the same degree as wild-type
S. Typhimurium (Fig. 2a); this affect was not attributed to trace
the amounts of lipopolysaccharide (Fig. 2b). Moreover, to further
validate that SipA was responsible for the modulation of P-gp,
HCT8 cell monolayers were exposed to an extract of secreted
proteins isolated from the S. Typhimurium DSipA mutant (see
Methods section). This extract contained all S. Typhimurium
secreted effectors with the exception of SipA, and as shown in
Fig. 2c, failed to modulate P-gp. Cell monolayers were also
exposed to a secreted protein extract from the complemented
mutant (S. Typhimurium DSipA/pSipA), which was rescued in its
ability to modulate P-gp (Fig. 2c).

Mechanism of SipA action on P-gp. We have previously shown
that protein expression of P-gp is modulated in Salmonella-
infected epithelial cells without a corresponding decrease in P-gp
messenger RNA. This observation is consistent with a mechanism
of P-gp protein cleavage and/or rearrangement from the cell
membrane rather than the regulation of gene expression. Evi-
dence that cells are able to functionally modulate P-gp through a

mechanism involving protein cleavage/degradation involving
caspase-3 has been recently documented in human T-lympho-
blastoid CEM cells15. Moreover, we have previously shown that
the SipA effector protein is necessary and sufficient to promote
the activation of caspase-3 (CASP3)16 most likely through a
pathway involving the tetraspanning membrane protein PERP17.
Thus, we examined the protein expression of P-gp in HCT8 cells
following infection from S. Typhimurium in the absence and
presence of a pharmacological inhibitor of CASP3. As shown in
Fig. 3a, western blot analysis demonstrates that CASP3, but not
CASP1 inhibition (which was used as the negative control),
prevented S. Typhimurium from downregulating P-gp. A similar
outcome was also observed using HCT8 cells knocked down for
the expression of CASP3 (Fig. 3b).

Since in silico modelling of mouse P-gp (which is 89% identical
to the human P-gp) revealed two surface-exposed CASP3
cleavage motifs (DQGD and DVHD; Fig. 3c), we next performed
a P-gp degradation protocol (see Methods section) and found that
HCT-8 cells infected with S. Typhimurium showed a progressive
reduction in the expression of P-gp; this correlated with the
appearance of the predicted CASP3 cleavage products of P-gp
(90 kDa and B60 kDa), as calculated from the in silico model
(Fig. 3c,d). The lower 25-kDa band was not resolved most likely
due to lack of antibody recognition. Taken together, these
observations suggest that the ability of S. Typhimurium to
degrade P-gp via SipA depends on its ability to activate CASP3,
and is consistent with our previous findings showing that SipA
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Figure 1 | The S. Typhimurium effector protein SipA modulates the expression of P-gp by an extracellular effect. Western blot analysis showing P-gp

expression in whole-cell lysates of HCT8 intestinal epithelial cell monolayers exposed to wild-type (WT) S. Typhimurium SL1344, SL1344 type III secretion

system mutants, or wild-type SL1344-derived secreted protein extracts. GAPDH probing served as a loading control. Densitometries were analysed by

ImageJ and presented as relative to the untreated cells; data represent the mean± s.d. of three independent experiments. (a) HCT8 intestinal epithelial cell

monolayers were left untreated (� ) or infected with WT SL1344 or SL1344 type III secretion system translocon mutant strains (DsipB or DsipC)

for 5 h. (NS, not significant (Student’s t-test). (b) HCT8 cells were infected with wild type SL1344 or an SL1344 SPI-1-deficient mutant strain, or exposed

to WT SL1344-derived secreted protein extracts for 5 h, and then probed as in a. P¼0.0164 (Student’s t-test); significantly different compared with

negative controls. (c) HCT8 cells were infected with WT SL1344, SL1344DsopA or DsipA, or SL1344DSipA complemented with a vector expressing SipA

(DSipA/pSipA) for 5 h, and then probed as in a. *P¼0.0007 (Student’s t-test).
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activates CASP3 (refs 16,17). Since CASP3 is a frequently
activated death protease it is perhaps not surprising that we
also observed SipA to be an inducer of apoptosis, as shown for the
HCT8 colonic carcinoma cell line (Fig. 3e).

Because SipA contains a CASP3 cleavage recognition site that
also has the potential to be cleaved for functional processing16, we
next examined whether the ability of SipA to modulate P-gp
expression requires CASP3 cleavage. We created an isogenic SipA
strain (DSipA/pCSM-SipA)16, which harbours a point mutation
in the caspase-3 recognition motif, rendering this effector
insensitive to CASP3 cleavage, and found this strain still retains
the ability to effectively reduce P-gp protein expression in HCT8
cells (Fig. 4a). As these results indicate that SipA, itself, does not
depend on CASP3 cleavage to modulate P-gp, our future studies
will be directed at probing the precise domain on SipA
responsible for such P-gp regulation.

SipA potentiates the effect of cytotoxic drugs in vitro. Since
P-gp is as an important biological target for pharmacological
modulation12,13, and our data strongly infer that SipA promotes
P-gp degradation, we next evaluated whether SipA could improve
the cytotoxic activity of known chemotherapeutic drugs
(doxorubicin and vinblastine), which are also P-gp substrates.
We used a well-established colorimetric cell proliferation assay
(see Methods section) in which HCT8 cells were cultured in
media with or without purified-SipA along with doxorubicin or
vinblastine (ranging in concentration from 0.001 to 100 mM).

Although the concentration of purified-SipA (80 mg ml� 1) was
not toxic to the cells (Fig. 4b), exposure of purified-SipA to either
doxorubicin or vinblastine induced a profound shift to the left in
the drug response curve (Fig. 4c). Specifically, the calculated drug
concentration required for 50% cell mortality (IC50) shifted from
5.05±0.71 to 0.85±0.14 mM for doxorubicin and from
0.35±0.24 to 0.037±0.008 mM for vinblastin. Conversely,
purified SipA did not change the IC50 of 5-fluorouracil, a
cytotoxic drug not effluxed by P-gp (Fig. 4c). Similarly, we
observed that SipA could prevent the extrusion of cytotoxic
compounds, such as doxorubicin, from HCT8 colon cancer cells
(Fig. 4d). Moreover, as shown in Fig. 4e, quantitative analysis of
the intracellular accumulation of doxorubicin in cells that were
incubated with SipA was as high, if not higher, as compared with
verapamil, a well-known competitive P-gp inhibitor. An
irrelevant S. Typhimurium secreted effector SiFA served as the
negative control.

Construction of Salmonella nanoparticle mimic. Capitalizing
on the ability of SipA to degrade P-gp and increase drug cyto-
toxicity, we next sought to build a Salmonella nanoparticle mimic
made by fusing a nanoparticle with a SipA corona to be applied as
an effective chemotherapeutic adjuvant. For this purpose, we
selected gold nanoparticles as a scaffold because these particles
are inert18,19, easily synthesized and modified, and stabilize
conjugated pharmaceutics (for example, proteins20 and small-
molecule drugs18). We fabricated 15-nm gold nanoparticles since
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Figure 2 | SipA downregulates P-gp expression in a dose-dependent manner. (a) HCT-8 cell monolayers were left untreated (� ), or infected with

wild-type SL1344, or exposed to 80mg ml� 1, or 160mg ml� 1 of purified SipA over a time course of 3 h. Normalized whole-cell lysates were then probed

with P-gp and GAPDH. (b) HCT8 cell monolayers were infected with wild type SL1344 or exposed to purified lipopolysaccharide (LPS) from S. Typhimurium

(0.1 to 100 mg ml� 1) for 3 h, and then probed as in a. (c) HCT8 cell monolayers were exposed to secreted protein extracts from SL1344 wild-type, DsipA or
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independently and the results shown are from one representative experiment.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12225

4 NATURE COMMUNICATIONS | 7:12225 | DOI: 10.1038/ncomms12225 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


nanoparticles that are o100 nm have a unique enhanced
permeation and retention effect, and can, therefore effectively
extravasate and remain within interstitial spaces, resulting in a
much higher payload concentration of SipA at tumour sites21–33.

Although substantial progress has been made in promoting the
use of AuNPs for genetic material and as small molecular drug-
delivery systems, the delivery of functional proteins with
retention or enhanced activity has been challenging due to
inadequate maintenance of protein recognition and structure
retention. To overcome this limitation, we designed surface
ligands for direct conjugation of SipA to the AuNP by inserting
biocompatible tetra(ethylene glycol) (TEG) spacers (see Methods
section, Fig. 5a). This adaptation reduces non-specific interactions
and absorption, and provides additional degrees of freedom and
polyvalency for enhancing the conjugated protein’s activity.
Moreover, the carboxylate terminus creates a platform for
subsequent SipA coupling. Last, we covalently attached SipA to
the carboxyl modified AuNP to avert protein dissociation or
aggregation (see Methods section, Fig. 5a).

To determine the ratio of AuNP to conjugated SipA proteins,
we next exposed the SipA-AuNP to sodium cyanide, which
decomposes the gold particle core. The remaining SipA in
solution was then dialysed for 2 days, and thereafter, concen-
trated, trypsin digested and measured with an Agilent Q-TOF
6538 mass spectrometer coupled with an Agilent HPLC 1200.
Peptide IPEPAAGPVPDGGK ([Mþ 2H]2þ , m/z 652.8505) from
the SipA protein was identified through MS/MS spectral match,
and chosen as a surrogate for protein quantification. On the basis

of mass spectrometry analysis, the binding ratio of AuNP:SipA is
1: 6 (Supplementary Fig. 2).

Subsequent in vitro testing of the SipA-conjugated AuNP with
colonic tumour cells revealed that the design of this novel
nanoparticle profoundly increases the stability of surface-bound
SipA protein and reduces P-gp expression in cancer cells at SipA
doses that are 4100 times lower than in free unbound SipA
(Fig. 5b). Such enhanced SipA functionality is most likely due to
the large surface (the volume ratio of AuNP), which markedly
stabilizes SipA proteins by preventing the conjugated proteins
from degradation. In addition, the polyvalency of SipA proteins
on the surface of single AuNP may afford a potentiation effect,
which does not exist in free-bound SipA.

Salmonella nanoparticle mimic improves efficacy in vivo. We
next sought to determine whether the design of the Salmonella
nanoparticle mimic improves the efficacy of doxorubicin, a
known chemotherapeutic drug, in vivo. We used a well-estab-
lished subcutaneous murine colon cancer model as a prototypical
model to study cancers that are known to overexpress P-gp34,35.
Disease in this model is induced by the subcutaneous injection of
CT26 colon cancer cells in B8-week-old BALB/c mice. The
formation of palpable tumours (B0.5 mm3 in size) denotes day 1
of the experiment. Mice were then intraperitonially (i.p.) injected
with 2.5 pmols per day of SipA-AuNP (containing 15 pmoles or
1.1 mg SipA) for 2 days before i.p. treatment of a single dose of
doxorubicin (10 mg kg� 1). Since the key objective is to assess
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with 160 or 320mg ml� 1 of purified SipA. Staurosporine treatment served as the positive control. Shown is the average of three independent experiments

with error bars indicating s.d.; *P¼0.0076, **P¼0.0009 (Student’s t-test).
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whether the SipA-AuNP itself is able to improve doxorubicin
efficacy, 10 mg kg� 1 identifies a concentration of the drug that
we determined displays a minimal effect on tumour size. This
treatment was followed by SipA-AuNP i.p. injections every 48 h
for 15 days, after which, doxorubicin efficacy was assessed by the
tumour volume in mm3. As shown in Fig. 5c, the tumour volume
following the combined treatment (SipA-AuNP bacterial
mimicþ doxorubicin) was significantly less than the tumour
volumes following either SipA-AuNP or doxorubicin treatment
performed alone. It is worth noting that the expression of P-gp in
tumours in which mice received only the SipA-AuNP treatment
was reduced modestly (B10%). It is likely that the different
microenvironments encountered by the stable dose of SipA-
AuNP accounts for these findings. For example, in the SipA-
AuNP and doxorubicin combination treatment group, the
potentiation effects of P-gp inhibition coupled with the
chemotherapeutic drug were marked by profound decreases in

both the tumour size and the number of cells, which enabled the
SipA-AuNP to further penetrate the tumour and act on cells at an
effective concentration. Yet, in contrast, the cohort receiving only
the SipA-AuNP regimen, encountered tumours with a high cell
proliferation rate, which might have diluted out the effect of the
SipA-AuNPs.

On examining the toxicity and biodistribution, we further
noted that mice treated with the Salmonella nanoparticle mimic
did not exhibit signs of toxicity as monitored through their
behaviour, such as fatigue, loss of appetite (weight loss), or
changes in fur texture. Liver enzymes and blood chemistries were
also found within normal limits throughout the duration of the
experiment (Supplementary Fig. 3). In addition, no significant
histological changes were detected in major organs (that is, brain,
heart, kidney, ling and liver; Supplementary Fig. 4). However,
P-gp expression is significantly diminished in tumours in which
mice received the SipA-AuNP and doxorubicin combination
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served as a loading control. The data represent a western blot analysis from an individual experiment performed at least three times. (b) HCT8 cells were

treated with purified SipA (80mg ml� 1), doxorubicin (5mM) or vinblastine (5mM) for 72 h. Cytotoxicity was measured using a colorimetric cell proliferation
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described in the Methods section. Red colour intensity represents intracellular doxorubicin accumulation. (e) The level of doxorubicin staining was quantified
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regimen (Fig. 5d). This is consistent with our observation that Au
was found at higher density in tumours of the mice that were
treated with the SipA-AuNP/doxorubicin combination therapy
(Fig. 5e), and were preferentially located in the center of the
tumour. By contrast, in mice treated with either the SipA-AuNP
or the AuNP alone, the tumours exhibited a diffuse distribution
of the Au. Such findings were also confirmed by biodistribution
assessment of the Salmonella nanoparticle mimic, in which
accumulation of Au within the tumour in addition to major
organs, was measured by elemental analysis (Fig. 5f; Elemental
Analysis Inc., Lexington KY). Collectively, these observations
reveal considerable penetration of the Salmonella nanoparticle
mimic in the subcutaneous tumour, highlighting the ability of the
bacterial nanoparticle mimic to effectively accumulate in
tumours.

Affects of SipA are broad spectrum. Because P-gp expression is
documented to be upregulated in several types of malignancies,
and contributes to their poor prognosis12,13, we assessed whether
the ability of SipA to modulate P-gp is broad spectrum. Similar to
colonic cancer cell lines, purified-SipA was exposed to cell
monolayers of different cancer cell types of epithelial origin that
are also known to overexpress P-gp, such as MCF-7 (breast
adenocarcinoma) and UM-UC-3 (human bladder carcinoma).
Compared with the buffer control, the exposure of purified-SipA
to MCF-7 and UM-UC-3 cells also reduced the expression of
P-gp in a dose-dependent manner demonstrating 82% and 99%
reduction, respectively (Fig. 6). Analogous to the colon carcinoma
cell lines, SipA markedly enhanced the cytotoxic activity of
P-gp substrates, such doxorubicin and vinblastine in breast
adenocarcinoma (MCF-7) and human bladder carcinoma
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accumulation±s.d. (n¼6). ANOVA, analysis of variance.
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(UM-UC-3) in vitro (Supplementary Fig. 5). The ability of SipA
to modulate P-gp is additionally not restricted to tumour cells of
epithelial origin given that SipA modulates the expression of P-gp
in tumour cells originating from lymphoid tissues, as well
(Fig. 6c).

Because breast cancers also express high levels of P-gp, and
since we have validated that SipA enhances the cytotoxic activity
of breast adenocarcinoma cells (above), we next assessed the
broad-spectrum capabilities of the SipA nanoparticle mimic in a
humanized mouse model36,37 of primary human breast cancer.
Disease in this model is induced by xenograft implantation of
human primary breast tumours into the mammary fat pad of
B8-week-old immunodeficient NOD-Rag1null IL2rgnull (NRG)
mice. We employed a similar treatment strategy as above for the
colon carcinoma model, but because NRG mice exhibit an
elevated sensitivity to doxorubicin (as compared with the murine
subcutaneous colon cancer model) the dose of the drug was
reduced to 2 mg kg� 1 every 2 weeks (see Methods section). This
treatment was followed by SipA-AuNP i.p. injections every 48 h
for 33 days, after which, doxorubicin efficacy was assessed by the
tumour volume in mm3. As shown in Fig. 7, assessment over 33
days showed that the tumour volume following the combined
treatment (SipA-AuNP bacterial mimicþ doxorubicin) was
profoundly less than the tumour volumes of either SipA-AuNP
or doxorubicin treatment alone (Fig. 7a,b). In addition, a 70%
reduction in P-gp protein expression was observed in tumours in

which mice received the SipA-AuNP and doxorubicin
combination regimen, as compared with untreated controls
(Fig. 7c). Liver enzymes and indicators of renal health were
found within normal limits throughout the duration of the
experiment (Supplementary Fig. 6).

Discussion
P-gp belongs to the ATP-binding cassette family and functions as
a transmembrane efflux pump that translocates its substrates
from an intracellular to an extracellular domain. Together with
xenobiotic-metabolizing enzymes, constitutive P-gp expression in
normal healthy tissues is believed to be an important protective
mechanism against potentially toxic xenobiotics. However, during
disease states, such as cancer, P-gp is recognized as a major
barrier to the effective cytotoxic effect of systemically adminis-
tered anti-neoplastic drugs, and as a consequence, resistance to
chemotherapy remains an obstacle to the successful treatment of
certain cancers. Therefore, formulating novel P-gp modulators as
a way to revert MDR in human cancers remains a principal area
of investigation38.

While advances in cell biology have strengthened the
fundamental understanding of how malignant cells survive toxic
insults and become resistant to antineoplastics, these investiga-
tions also yield evidence that P-gp’s substrate specificity and
mechanism of export is more sophisticated than first realized; this
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efflux transporter contributes to anti-neoplastic resistance by
active drug extrusion, and elevation of the cellular apoptotic
threshold. Efforts to effect a more durable suppression of P-gp
function have focused on the downregulation of MDR1 (the gene
encoding P-gp) expression through various RNA interference
strategies38–40, such as hammerhead ribozymes, RNA antisense,
and siRNA. While effective in vitro, these genetic methods have
been met with complications in in vivo delivery approaches and
accompanied off-target effects, which, to date, has hindered their
clinical translation41. Despite 420 years of effort, a large number
of clinical trials with Pgp-modulating agents have been
conducted, so far with poor success, as these drugs were either
vastly ineffective or only effective at toxic doses38.

We have recently uncovered a strong regulatory effect of the
enteric pathogen, S. Typhimurium, on the MDR transporter Pgp.
In particular, we found that colonization of human colon cancer
cell lines by S. Typhimurium leads to a profound functional
decrease and loss of protein expression in P-gp. This was the first
observation to link a microorganism that is targeted specifically to
tumours with the regulation of MDR transporters.

In the current report, we now identify the S. Typhimurium
type III secreted effector protein SipA as the key virulence factor
responsible for functionally downregulating Pgp, and further
exploit this virulence determinant in the development of a new
strategy aimed at reversing MDR.

The main reason for failure of MDR-reversing agents is
thought to be the pharmacokinetic interaction with the anticancer
agents40. Typically, a poor bioavailability profile results from high
metabolism and high serum protein binding, which considerably
reduces the concentration of drug available for action and
increases the demand for higher doses to be administered. A key

biochemical feature that prompted the concept of the Salmonella
nanoparticle mimic was the finding that SipA could markedly
improve the efficacy of commonly used chemotherapeutic drugs,
such as doxorubicin and vinblastine through a mechanism that
apparently involves CASP3 cleavage, which degrades P-gp.
Assessment of the P-gp cleavage products requires the P-gp
mAb C494 clone15, which binds to a common epitope in both the
third and the sixth extracellular loops of P-gp, allowing detection
of the two cleavage products. Evidence this model has been
documented in human T-lymphoblastoid CEM cells15 and is
consistent with our observation that SipA robustly induces the
intracellular accumulation of doxorubicin in colonic cancer cells.

We therefore have taken the first steps in engineering a novel
SipA-AuNP conjugate to combat MDR by engineering a SipA
conjugated nanoparticle system that capitalizes on the unique
chemical and physical properties of Au-NPs, the biochemical
functional activities of SipA, and pharmaceutical effectiveness of
an FDA approved chemotherapeutic agent, such as doxorubicin.
Although substantial progress has been made in promoting the
use of AuNPs for genetic material and small molecular drug-
delivery systems, the delivery of functional proteins with
retention or enhanced activity remains difficult due to the
complexity of protein recognition and structure retention on
nanoparticle surface. To circumvent this problem, we inserted a
biocompatible TEG spacer between the SipA protein and the
surface of the AuNP. Applying this design, we found that AuNP-
conjugated SipA can reduce P-gp expression at a SipA dose 4100
times lower than free unbound SipA. Such enhanced SipA
functionality is most likely due to the large surface:volume ratio
of nanoparticle, which markedly stabilizes SipA proteins by
preventing the conjugated proteins from degradation. In addition,
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Figure 7 | SipA-AuNP combined exogenous doxorubicin treatment prevents tumour growth in a NRG humanized model of primary breast cancer.

(a) Primary breast cancer tumour growth curves after 33 days of i.p. treatments (described in the Methods section) with AuNP alone (black square), SipA-

AuNPs (green square), doxorubicin (blue triangle), AuNP in combination with DOX (black circle), SipA-AuNP in combination with DOX (black dot) or left

untreated (red dot). Results represent mean±s.d. (n¼ 3) tumour volume mm3; *P¼0.0241, **P¼0.0002 (one-way ANOVA). (b) Primary breast cancer

tumours volumes at day 33 after i.p. treatments as mentioned above. Results represent mean±s.d.; (n of at least five mice per group). (c) P-gp expression

in the tumours shown in a was evaluated by western blot. Tumours were homogenized and lysed, and whole-cell lysates were normalized for protein levels

and probed for P-gp. Levels of P-gp were quantified by densitometry using ImageJ. Results are presented as relative to the untreated cells. Data represent

means±s.d. *P¼0.0171 (Student’s t-test). ANOVA, analysis of variance.
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polyvalency of SipA proteins on the surface of single AuNP may
offer a unique potentiation effect, which does not exist in free-
bound SipA.

To demonstrate proof of principle of this semi-synthetic
Salmonella nanoparticle mimic, we employed a colorectal
carcinoma model since this type of cancer is known to be one
of the tumours with the highest expression of the MDR1 gene
(encoding for P-gp)42 and in addition, acquires high expression of
P-gp in the course of carcinogenesis. This well-established
subcutaneous murine colon cancer model also complements the
full spectrum of tumour development with generation of viable
tumours within 2 weeks after implantation, and exhibits a low
rate of metastasis. Although this model fails to replicate the
original anatomical site, as compared with orthotopic (in situ)
models, such features are sufficient to assess key functional
parameters of tumourigenesis in response to our drug
formulation. In addition, proof of principle was further
demonstrated using a humanized mouse model of primary
breast cancer. This model is based on the inability of the
immunodeficient NRG mice to generate mature T and B cells, as
well as natural killer cells, and thus enable the adequate
engraftment of tissues of human origin. Furthermore, reports
suggesting the induction of P-gp over-expression in breast
cancers following treatment with P-gp substrate-containing
regimens, make breast cancer cells an ideal candidate for our
studies43.

Utilizing both of these distinct models, we observed that the
semi-synthetic Salmonella nanoparticle mimic profoundly
increases the efficacy of the chemotherapeutic drug, doxorubicin,
as a way of reducing the required dose of this agent. It is notable
that the doxorubicin dose administered in the humanized mouse
model of primary breast cancer was fivefold lower than the dose
delivered in the murine model colorectal carcinoma. In addition,
the semi-synthetic Salmonella nanoparticle mimic targets to
tumours, may not require access to the cytoplasm for efficacy, and
induces functional suppression of P-gp by activation of a caspase-
3-dependent degradation pathway (for this efflux pump; see
model depicted in Fig. 8, and Hallstrom KN et al.17). Since the
semi-synthetic Salmonella nanoparticle mimic attacks two
different targets that are independently defined as major
properties of cancer cells required to achieve sustain growth,
such properties may offer an advantage over conventional
therapeutic approaches. Repeated treatments of the semi-
synthetic Salmonella nanoparticle mimic could also potentially

trigger an untoward immune response, and current investigations
are focused on determining the precise SipA domain responsible
for the modulation of P-gp.

Our findings represent an important step forward in
demonstrating the potential of this strategy as a ‘stand alone’
approach to increase cancer cell sensitivity to conventional
chemotherapeutics. Indeed, a fundamental observation driving
the initiative to develop a semi-synthetic Salmonella nanoparticle
mimic is the observation that SipA appears to be broad spectrum
since this effector protein is able to modulate P-gp expression in
several cancers that are known to over-express P-gp (for example,
colon, kidney, breast and lymphoma). Our observations showing
that SipA downregulates the expression of P-gp in diffuse large
B-cell lymphoma are especially significant, given that over-
expression of this efflux transporter severely limits the use of
numerous first-line anticancer drugs, such as doxorubicin
currently used in the treatment of DLBCL. It is also tempting
to speculate that SipA might offer an advantage with respect to
previously developed small molecule entities that target MDR
because this virulence determinant is a stable molecule that has
co-evolved with the human host, and thus may coopt host
machinery not attainable by other drug-based methods. In
summary, engineering of this semi-synthetic Salmonella nano-
particle mimic introduces a new platform technology that can
also be applied to various chemotherapeutic drugs to overcome
MDR in tumours.

Methods
Chemicals. Anti-P-gp mouse mAb C219 and C494 were purchased from
CalBiochem (La Jolla, CA). The CASP3 inhibitor (SC-3075) and CASP1
inhibitor (SC-3071) were purchased from Santa Cruz Biothechnology (Santa
Cruz, CA). The Anti-HA affinity matrix and HA peptide were purchased from
Roche Applied Science (Mannhein, Germany). Except where noted, all the
chemicals for gold nanoparticles and ligand synthesis were purchased from
Sigma-Aldrich.

Cell culture. The human intestinal adenocarcinoma cell line HCT8 was obtained
from ATTC and maintained in accordance with ref. 11. The human breast
adenocarcinoma cell line MCF-7, the human bladder transitional cell carcinoma
cell line UM-UC-3, and the CT26 murine colon carcinoma cell line, were
purchased from ATCC and were all maintained in DMEM F-12 containing a 10%
fetal bovine serum, 100 U ml� 1 penicillin, and 10 mg ml� 1 streptomycin at 37 �C
in 90% relative humidity and 5% CO2. Diffuse large B-cell lymphoma cell line
SU10 was obtained from ATTC and maintained in RPMI 1640 containing a 10%
fetal bovine serum, 100 U ml� 1 penicillin, and 10 mg ml� 1 streptomycin at 37 �C
in 90% relative humidity and 5% CO2.
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Bacterial strains and plasmids. S. Typhimurium DSipA, DSipB, DSipC and
DSopB are derived from SL1344 (refs 14,16). The AKJ63 strain has been previously
described44. Briefly, the sipA-hemagglutinin (HA) gene fusion was constructed by
using the pBH vector (Boehringer Mannheim). A HindIII–EcoRI DNA fragment
containing the entire sipA ORF was prepared by PCR amplification. The sipA
fragment was first cloned into pBluescript SK (Stratagene) to generate pAK62A.
The sipA fragment then was subcloned into pBH to generate pAK68C. Plasmids
were passaged through the r� mþ S. Typhimurium strain LB5000 before being
transformed into SL1344 to generate AJK63 (ref. 44).

Isolation of S. Typhimurium-secreted proteins. Nonagitated microaerophilic
cultures of wild-type S. Typhimurium SL1344 or its isogenic mutant derivatives
were prepared by inoculating 30 ml of LB broth with 0.03 ml of a stationary-phase
culture, followed by overnight incubation at 37 �C with ampicillin (50 mg ml� 1)
added to the cultures. The culture supernatants were collected and filtered through
a 0.22-mm filtre (MIllipore). The proteins from the supernatants were precipitated
with 15% (vol/vol) trichloroacetic acid, solubilized in 1 ml of 100% acetone, and
then centrifuged at 15,000 r.p.m. for 5 min. The protein pellets are dried and then
resuspended in PBS buffer.

The purification of SipA-HA fusions protein. The purification of SipA was
performed in accordance with the work of Lee et al.44 with minor modifications.
Brifely, nonagitated microaerophilic cultures of the AJK63 strain were prepared by
inoculating 30 ml of LB broth with 0.03 ml of a stationary-phase culture, followed
by overnight incubation at 37 �C with ampicillin (50 mg ml� 1) added to bacterial
culture media. The culture supernatants were collected and filtered through a
0.22-mm filtre (Millipore). The SipA-HA recombinant fusion protein was purified
by passing the supernatant through a 0.5 ml HA-affinity matrix column (Roche,
Mannhein, Germany). To elute the bound protein, 1 mg of the HA peptide was
dissolved in 1 ml of the column buffer and was subsequently passed through the
column.

Cell lysates and P-gp western blot analysis. Cell lysates were collected from
either S. Typhimurium-infected or purified-SipA exposed to HCT8 cells, as pre-
viously described11. Proteins were normalized to 30mg, separated by SDS/PAGE
(4� 12% gradient; Biorad, Hercules, CA), and transferred to nitrocellulose (Bio-
Rad; 0.45 m membrane). Immunoblots were performed using the murine
monoclonal P-gp C219 antibody (Calbiochem Cat. No. 5173310) diluted at 1:100.
Glycaraldehyde-3-phosphate dehydrogenase (1:1,000; Millipore, Temecula, CA)
was used as a loading control. A goat anti-mouse IgG labelled with horseradish
peroxidase (Santa Cruz, CA) diluted at 1:10,000 was used to detect the bands,
which were visualized by enhanced chemiluminescence using a super signal West
pico kit (Thermo, Rockford, IL). Uncropped scans of the western blots images
related to Figs 1a,c; 2a and 3b,d are found in the Supplementary Information
(Supplementary Fig. 17).

In vitro P-gp cleavage. To assess in vitro P-gp cleavage, we followed the method of
Mantovani, et al.15. Briefly, HCT8 cells were infected, as previously described11.
Following infection, the cells were washed twice in PBS, containing the complete
protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN) and the
phosphatase inhibitor cocktail (1 mM Na3VO4, 2.5 mM Na pyrophosphate, 1 mM
2-glycerolphosphate, 25 mM NaF). Cells were then lysed in boiling electrophoresis
sample buffer containing the protease and phosphatase inhibitor cocktails. Lysates
were sonicated to shear DNA and reduce viscosity, and boiled for 5 min to
solubilize proteins. Samples were separated by SDS/PAGE (4–12% gradient;
Biorad, Hercules, CA), and transferred to nitrocellulose (Bio-Rad; 0.45-mm
membrane). Immuno-blots were performed using the murine monoclonal P-gp
C494 antibody (Calbiochem Cat. No. 517312) diluted at 1:1,000. A goat anti-mouse
IgG labelled with horseradish peroxidase (Santa Cruz, CA ) diluted at 1:10,000 was
used to detect the bands, which were visualized by enhanced chemiluminescence
using a super signal West pico kit (Thermo, Rockford, IL).

Cell proliferation assays. Cytotoxicity assays were performed as described pre-
viously45 with minor modifications. HCT8 cells (2,500 per well) were plated in
96-well Cellbind plates (Corning, Tewksbury, MA) in 100 ml of growth media. After
overnight attachment, cells were incubated for 72 h with doxorubicin (1 mg ml� 1)
and purified SipA (100 mg ml� 1), alone and in combination. Verapamil (20 mM)
was used as a positive control, alone and in combination with doxorubicin. After
treatment, the number of viable cells was determined by a colorimetric cell
proliferation assay (CellTiter96 Aqueous One solution; Promega, Madison, WI)
according to the manufacturer’s instructions. All studies were conducted in
triplicate and performed at least three times independently.

Drug response curves. Cytotoxicity assays were performed as described
previously45–47 with minor modifications. HCT8 cells (2,500 per well) were
plated in 96-well Cellbind plates (Corning, Tewksbury, MA) in 100 ml of growth
media. After overnight attachment, the culture medium was replaced with

media containing different concentrations of doxorubicin, vinblastine, or
5-FU—ranging from 0.001 to 100 mM—with or without purified-SipA
(80 mg ml� 1) and incubated for 72 h. After treatment, cell viability was
determined by a colorimetric cell proliferation assay (CellTiter96 Aqueous One
solution; Promega, Madison, WI) according to the manufacturer’s instructions.
Dose–response curves were plotted as percentages of the control cell absorbance
(wells without doxorubicin). IC50 values were calculated from dose–response
curves obtained from at least three independent experiments using the GraphPad
Prism (GraphPad Software).

Intracellular doxorubicin accumulation. HCT8 cells were seeded on 12-mm glass
slides at B3� 104 and kept in standard 24-well plates (Corning, Corning, NY).
Approximately 18 h after seeding, the culture medium was replaced by medium
containing doxorubicin (0.01 mg ml� 1), purified-SipA (80 mg ml� 1) combined
with doxorubicin (0.01 mg ml� 1), purified-SiFA (80 mg ml� 1) combined with
doxorubicin (0.01 mg ml� 1), verapamil (20 mM) combined with doxorubicin
(0.01 mg ml� 1) or left in culture medium. After 24 h, the glass slides were washed
in 1% PBS, fixed with 1% paraformaldehyde (PFA) in PBS for 15 min, quenched
with NH4Cl in PBS for 15 min, and then washed again in 1% PBS. Imaging was
performed with a Nikon A1 confocal microscope using a � 60 objective with a
pinhole size of 0.9 a.u. resulting in a 0.36-mm depth of field. Due to the fluorescence
nature of doxorubicin, excitation was carried out with the 488-nm laser line and
emission was detected between 565 and 630 nm using the TRITC filtre cube. DIC
images were also simultaneously acquired. All imaging settings were kept con-
sistent across all samples in an experiment.

Syntheses of the ligand (dithiolated TEG carboxylic acid). Detailed synthesis
scheme was illustrated in Supplementary fig. 7. Here compound 1 (Undec-l-en-11-
yl-tetra (ethy1ene glycol)) and 2 (ethyl 3,6,9,12,15-pentaoxahexacos-25-en-1-oate)
were synthesized according to the literatures, respectively48,49. To make the
compound 3, at 0 �C, bromine (0.28 mmol) was added to a solution of ethyl
3,6,9,12,15-pentaoxahexacos-25-en-1-oate 2 (compound 2; 0.10 g, 0.23 mmol) in
dry DCM (10 ml). The reaction mixture was stirred at 0 �C for 2 h in dark.
Thereafter, the product was washed with saturated Na2SO3 solution and extracted
with DCM. The organic layer was combined and subject for rotary evaporation.
Further purification by silica chromatography give 0.138 g colourless oil, yield 95%.
1H NMR (400 MHz, CDCl3) d¼ 1.22–1.38 (m, 13H), 1.49–1.61 (m, 4H), 1.71–1.80
(m, 1H), 2.12–2.28 (m, 1H), 3.42–3.47 (t, 2H), 3.58–3.77 (m, 18H), 3.81–4.87
(m, 1H), 4.17 (s, 2H), 4.19–4.22 (m, 2H). 13C NMR (100 MHz, CDCl3) d¼ 170.45,
70.62, 70.60, 70.58, 70.54, 70.03, 68.70, 60.79, 53.15, 36.37, 35.98, 29.43, 29.41,
29.30, 28.77, 26.72, 26.05, 14.21. MS (ESI-MS) calculated for C23H44Br2O7 592.4,
found 593.0 [MþH]þ .

A solution of dibromine (compound 3; 100 mg, 0.17 mmol) and K2CO3

(117 mg, 0.85 mmol) in acetone (10 ml) was added thioacetic acid (129 mg,
1.7 mmol). The reaction mixture was stirred at room temperature overnight. The
solvent was removed by using a slight vacuum and then the product was purified
by chromatography on silica gel (eluent: ethyl acetate/hexane) to give 22.6 mg ethyl
25-(acetylthio)-28-oxo-3,6,9,12,15-pentaoxa-27-thianonacosan -1-oate (compound
4) as light yellow oil, yield 21%. 1H NMR (400 MHz, CDCl3) d¼ 1.09–1.35
(m, 13H), 1.48–1.68 (m, 4H), 1.93–2.01 (m, 2H), 2.32 (s, 6H), 3.39–3.50 (m, 4H),
3.55–3.78 (m, 17H), 4.15 (s, 2H), 4.18–4.24 (m, 2H). 13C NMR (100 MHz, CDCl3)
d¼ 195.56, 170.46, 71.51, 70.86, 70.62, 70.60, 70.58, 70.53, 70.02, 68.70, 60.80,
32.22, 30.51, 29.60, 29.40, 29.38, 29.02, 26.05, 14.21. MS (ESI-MS) calculated for
C27H50O9S2 582.3, found 600.4 [MþH3O]þ .

The solution of 10 mg diactyl-OEt (compound 4) in 2 ml ethanol was then
added with concentrated hydrochloric acid (0.5 ml, 6 M) and stirred overnight. The
solvent was removed by using a slight vacuum and dried to give 8 mg (dithiolated
TEG carboxylic acid) (compound 5), yield 96%. 1H NMR (400 MHz, CDCl3)
d¼ 1.18–1.38 (m, 15H), 1.49–1.61 (m, 2H), 3.36–3.42 (t, 2H), 3.55–3.77 (m, 18H),
4.17 (m, 2H), 4.61–4.78 (br, 2H). 13C NMR (100 MHz, CDCl3) d¼ 170.56, 71.53,
70.81, 70.55, 70.51, 70.47, 69.98, 68.67, 60.87, 58.39, 29.59, 29.46, 26.07, 18.37. MS
(ESI-MS) calculated for C21H42O7S2 471.2, found 473.4 [MþH]þ .

For NMR and MS analysis of the compounds (3–5), see Supplementary Figs 8–16.

Syntheses of the Salmonella nanoparticle mimic. Fifteen-nanometre sized
AuNPs were first synthesized using citrate as a reducing agent and stabilizer.
HAuCl4 (10 mg) was dissolved in 90 ml of water, and the solution was heated to the
boiling point. Sodium citrate solution (500 ml of 250 mM) was added to the boiling
solution and stirred for 30 min until the colour turned to wine red. The resulting
AuNP was then centrifuged and washed three times. The concentration of afforded
nanoparticle was estimated according to the method described in the literature by
using the diameter of the gold nanoparticles and absorption at 450 nm (ref. 50).
Five milligram of the dithiolated TEG carboxylic acid (compound 5) was
subsequently mixed with 10 pmoles of AuNPs in 5 ml of water, leading to an
overnight ligand change reaction. The afforded Au-COOH nanoparticles were
dialyzed in deionized (DI) water using a Slide-A-Lyzer MINI dialysis unit
(COMW¼ 10,000) for 2 days. We then conjugated and characterized the SipA
AuNPs.
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Typically, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 10 mg and
N-hydroxysuccinimide 10 mg were added to the solution of Au-COOH
(10 pmoles). The resultant mix was stirred at room temperature. After 1 h, the
solution was centrifuged, washed three times with DI water, and concentrated to
2 ml. Following, 200ml (540.7 mg ml� 1) of SipA-HA mix was added to this solution
and stirred at 4 �C for12 h. After this period, the solution was centrifuged, washed
three times with DI water, and the SipA-AuNP stock solution was concentrated to
0.5 ml of DI water and was then dialysed with Slide-A-Lyzer dialysis unit
(COMW¼ 100,000) in PBS buffer overnight. The stability of the Salmonella
nanoparticle mimic was evaluated by monitoring aggregation. Suspensions of the
SipA-AuNP in DI water were placed in clear microcentrifuge tubes and stored at
5 �C, and no observable aggregation was detected at two different time points
following conjugation (7 and 15 days); a time frame consistent with the duration of
the in vivo experiments.

The subcutaneous tumour model. Eight- to 10-week-old female BALB/c mice
(n¼ 6 per group) were purchased from Jackson Laboratory (Bar Harbor, ME) and
allowed to acclimatize for 4 days. CT26 cells were collected by trypsin treatment,
washed twice in PBS buffer, and resuspended in PBS. CT26 cells (5� 105) were
inoculated in 100 ml subcutaneously into the right flank34. Mice were randomly
assigned to the control group or the treatment groups. After several days, the mice
harboured tumours with volumes of B0.5 mm3, and were i.p. injected with
2.5 pmoles per day of SipA-AuNP (200 ml, containing 1.1 mg SipA) for 2 days. The
following day, the mice received a one-time drug treatment of doxorubicin
(10 mg kg� 1) delivered by i.p. injection, followed by 2.5 pmoles per day of SipA-
AuNP (i.p.) every 48 h for 15 days. Two weeks post drug delivery the mice were
killed and the tumours were extracted for analysis, in regard to tumour size and
expression of P-gp. tumour size was measured using calipers and volumes were
estimated using the formula 0.5� length� (width)2. The care of these animals was
in accordance with University of Massachusetts Medical School institutional
guidelines under protocol number: 2046-12. Statistical analysis was performed
using Prism software (GraphPad).

Mouse infections. Mouse infections were performed as previously described14.
Briefly, 8–10-week-old female BALB/c mice (n¼ 6) were purchased from Jackson
Laboratory (Bar Harbor, ME) and allowed to acclimatize for 4 days. Before
infection, mice were given 3.75 mg of streptomycin intragastrically. The following
day, water and food were withdrawn for 4 h before oral inoculation with 5� 107

CFU of S. Typhimurium SL1344 or its isogenic mutant derivatives.

Apoptosis assay (Annexin V). HCT-8 cells grown on 6-well plates (Costar) were
either treated with the apoptosis inducer staurosporine (0.5 mg ml� 1) or treated
with either 160mg or 320 mg ml� 1 of SipA-HA for 3 h at 37 �C. The plates were
subsequently treated with 0.05% trypsin for 10 min at 37 �C. Cells were then
removed from plates, washed with cold PBS and 2� 106 cells from each sample
were prepared for FACS analysis using the Annexin V-FITC apoptosis detection kit
(Santa Cruz Biotechnology, Dallas, TX).

Biodistribution. Eight- to 10-week-old female BALB/c mice (n¼ 6) were pur-
chased from Jackson Laboratory (Bar Harbor, ME) and allowed to acclimatize for 4
days. CT26 colon carcinoma cells were implanted as described above for the
subcutaneous tumour model. BALB/c mice bearing subcutaneous CT26 tumours
(mean tumour volumes of B0.5 mm3) received i.p. treatments of the SipA-AuNP
every 48 h for 15 days. At necropsy, brain, spleen, heart, kidney, lung, liver and
tumour tissues were collected and snap-frozen into liquid nitrogen. Tissue samples
were subjected to elemental analysis (Elemental Analysis Inc., Lexington KY.

SEM and X-ray microanalysis of histological sections. Hemotoxylin and eosin
stained sections of tumours, provided by the University of Massachusetts’ Histo-
pathology Core facility were soaked in xylene to remove the coverslips. Once the
coverslips were removed, the slides were transferred through three changes of 100%
ethanol to remove the xylene, and then transferred to N-amyl acetate for 30 min
and allowed to air dry. Now, the dry tumour sections were mounted onto scanning
electron microscopic (SEM) stubs with carbon conductive tape and grounded to
the stubs with strips of pure copper tape. The mounted slides were then carbon
coated (3 nm) in a Denton High Vacuum evaporator. The sections of tumour were
imaged on a FEI Quanta 200 FESEM equipped with an Oxford-Link EDS (energy
dispersive spectrometer) for X-ray analysis and X-ray mapping. All X-ray maps
were collected using 10 kV accelerating voltage and imaged at � 100 magnification
with the X-ray emission window set at 2.1205 keV (the energy window for the Au,
Ma1 emission line). X-ray maps were collected and averaged over 10 sequential
scans using Oxford-Link INCA software and displayed as Cameo composite images
(X-ray map overlay on the SEM image) with the intensity of the X-ray emission
displayed as an intensity map (blue to red-white).

Humanized model of primary breast carcinoma. Eight- to 10-week-old female
immunodeficient NOD-Rag1Tm1Mom IL2rgTm1Wjl/Sz (NRG) mice were supplied
by Jackson Laboratory (Bar Harbor, ME) and allowed to acclimatize for 4 days

(n¼ 6 per group). Primary breast cancer tumours were provided by The UMass
Cancer Avatar Institute (IRB ID: H00004721). Tumour fragments of B1 mm3 were
implanted into the mammary fat pad using a 10-gauge sterile trocar. Mice were
randomly assigned to the control group or the treatment groups. Within 1–2
weeks, the mice harboured tumours with volumes of B3 mm3, and were i.p.
injected with 2.5 pmoles per day of SipA-AuNP (200 ml, containing 1.1 mg SipA) for
2 days. The following day, the mice received a one-time drug treatment of dox-
orubicin (2 mg kg� 1) delivered by i.p. injection, followed by 2.5 pmoles per day of
SipA-AuNP (i.p.) every 48 h for 33 days. Two weeks post drug delivery the mice
were killed and the tumours were extracted for analysis, in regards to tumour size
and expression of P-gp. Tumour size was measured using calipers and volumes
were estimated using the formula 0.5� length� (width)2. The care of these ani-
mals was in accordance with University of Massachusetts Medical School institu-
tional guidelines under protocol number: 2046-12. Statistical analysis was
performed using Prism software (GraphPad).

Statistical analysis. Western blots are presented as one representative of at least
three experiments showing reproducible results. Densitometry was analysed by
ImageJ and presented as relative to the untreated cells (mean±s.d.). P values were
calculated using the Student’s t-test, and values of o0.05 were considered statis-
tically significant. All other quantitative results were analysed by one-way analysis
of variance and presented as means±s.d. For all comparisons, a P value ofo0.05
was considered significant.
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