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ABSTRACT 

lin-28 was first characterized as a developmental timing regulator in 

Caenorhabditis elegans. Loss of lin-28 function (lin-28(lf)) mutants skip the 

hypodermal cell fates specific to the 2nd larval stage. Here, we studied two aspects 

of lin-28 which had not yet been investigated. 

 First, we show that lin-28(lf) mutants exhibit reduced fertility associated with 

abnormal somatic gonadal morphology. In particular, the abnormal spermatheca-

uterine valve morphology of lin-28(lf) hermaphrodites traps embryos in the 

spermatheca, which disrupts ovulation and causes embryonic lethality. The same 

genes downstream of lin-28 in the regulation of hypodermal developmental timing 

also act downstream of lin-28 in somatic gonadal morphogenesis and fertility. 

Importantly, we find that hypodermal expression, but not somatic gonadal 

expression, of lin-28 is sufficient for restoring normal somatic gonadal morphology 

in lin-28(lf) mutants. We propose that the abnormal somatic gonadal 

morphogenesis of lin-28(lf) hermaphrodites results from temporal discoordination 

between the accelerated hypodermal development and normally timed somatic 

gonadal development. Thus, our findings exemplify how a cell-intrinsic 

developmental timing program can also control proper development of other 

interacting tissues, cell non-autonomously.  

We also investigated the expression patterns and functions of two lin-28 

isoforms in C. elegans. Our analysis of spatial expression patterns suggests that 

lin-28a and lin-28b are co-expressed in diverse tissues. Consistently, neither of 
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isoform specific knock-out mutant, lin-28a(lf) or lin-28b(lf), exhibits defects in 

hypodermal development, somatic gonad, or fertility, indicating functional 

redundancy of two isoforms. Our study will contribute to further investigation of lin-

28 isoforms by providing the mutants of each isoform as well as the primary 

analysis of their phenotypes. 
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PREFACE 

The work presented in Chapter II is based on the manuscript “The C. elegans 

heterochronic gene lin-28 coordinates the timing of hypodermal and somatic gonadal 

programs for hermaphrodite reproductive system morphogenesis” written by me and Dr. 

Victor Ambros, uploaded in bioRxiv server (https://www.biorxiv.org) as a preprint 

version. The manuscript is submitted as a research article to the journal of 

Development and is under review. Dr. Ambros and I designed the experiment and 

I performed all the experiments. Dr. Ambros and I wrote and reviewed the 

manuscripts. All the strain in this study were from Ambros Lab or the 

Caenorhabditis Genetics Center, except UN810 (donated by Dr. Erin Cram 

(Northeastern University)) and AG212 (donated by Dr.Anna Allen (Howard 

University)). 

 The work presented in Chapter III is unpublished. Dr. Ambros and I 

designed the experiment and I performed all the experiments. I wrote Chapter III 

which was reviewed by Dr. Ambros. The plasmid pWASR1 was donated by Dr. 

John Calarco (University of Toronto). 

The preliminary data presented in Chapter IV was generated by me. I used 

a strain containing Punc-47::mCherry (donated by Dr. Alexandra Byrne  (U Mass 

Medical School)) and a strain where GFP reporter is tagged at the 3’ end coding 

sequence of the endogenous lin-28 (generated by Orkan Ilbay, a PhD student in 

Ambros Lab) 

https://www.biorxiv.org/
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I-A. Heterochronic Genes as Developmental Timing Regulators during C. 

elegans Larval Stages 

In the context of evolution, the term “heterochrony” refers to modes of 

developmental alteration of an organism in which genetic changes lead to either 

accelerated or delayed development of certain body parts relative to others (Keyte 

and Smith, 2011; Klingenberg, 1998). Genetic mutations causing heterochrony in 

the nematode Caenorhabditis elegans revealed a gene regulatory network, the 

‘heterochronic pathway’, that governs the relative timing of developmental events 

during the four larval stages (L1-L4), particularly in the hypodermis (Ambros and 

Horvitz, 1984a; Ambros and Horvitz, 1987) (Fig 1.1). 

Mutation of each heterochronic gene can cause either precocious or 

retarded development. For example, loss-of-function (lf) mutations of lin-14 or lin-

28 result in precocious development via the skipping of hypodermal cell fates 

specific to one or more larval stages. In contrast, lin-4(lf) and let-7(lf) mutations 

prevent the normal progression of certain stage-specific cell fates, leading to 

abnormal repetition of larval stages (Ambros, 2011; Ambros and Horvitz, 1984b) 

lin-14 encodes a nuclear protein that specifies L1 hypodermal cell fates. 

Many lin-14(lf) alleles induce precocious hypodermal development, wherein L1-

specific cell fates are skipped (Ambros and Horvitz, 1987). LIN-14 protein 

expression is highest in the L1 stage and decreased from the L2 stage onward 

(Ruvkun and Giusto, 1989). This downregulation requires the 3ʹ untranslated 

region (UTR) of lin-14 mRNA, which contains a complementary sequence to lin-4 
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microRNA (Arasu et al., 1991; Lee et al., 1993; Wightman et al., 1991). Therefore, 

lin-4 microRNA is an essential component for progression from L1 to L2, and lin-

4(lf) mutants reiterate L1-specific larval stages (Chalfie et al., 1981).  

The transition from the L2 to L3 stage is regulated by multiple genes. 

Developmental down regulation of a transcription factor HBL-1, the homolog of 

Drosophila hunchback, is required for the transition (Abbott et al., 2005; Fay et al., 

1999; Vadla et al., 2012). let-7 family microRNAs (mir-48, mir-241, and mir-84) 

inhibit HBL-1 expression after the L2 stage. Thus, loss of these let-7 family 

microRNAs results in repetition of L2-specific cell fates (Abbott et al., 2005). In 

contrast, LIN-28 is an upstream factor required for maintaining the HBL-1 level 

during the L2 stage (Moss et al., 1997; Vadla et al., 2012). Thus, lin-28(lf) mutants 

skip the L2-specific cell division patterns, causing precocious development of later 

cell fates. The precocious developmental features of lin-28(lf) mutants are restored 

to those of wild-type by loss of lin-46 function (Pepper et al., 2004). lin-46 acts 

downstream of lin-28 and upstream of hbl-1 in parallel with let-7 family microRNAs. 

Both negative and positive regulation of hbl-1 depends on the 3’ UTR of its mRNA, 

which contains multiple let-7 complementary sites (Abrahante et al., 2003; Lin et 

al., 2002; Vadla et al., 2012) 

lin-29 is the most downstream of the heterochronic genes determining the 

transition timing from the 4th larval stage to the adult stage of C. elegans (Ambros, 

1989; Rougvie and Ambros, 1995). As a zinc finger transcription factor, LIN-29 

regulates many transcripts including col-7 and col-19, which encode adult-specific 
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collagens (Abete-Luzi and Eisenmann, 2018; Liu et al., 1995). lin-29(lf) mutants 

undergo an additional larval stage after the L4, rather than differentiating into 

adults. Similarly, loss of let-7 microRNA function causes retarded development, 

including a supernumerary larval stage after the 4th larval stage. let-7 

downregulates LIN-41 via let-7 complementary sequences in the lin-41 3’ UTR. 

LIN-41 is a member of the TRIM-NHL family protein, and LIN-41 negatively 

regulates lin-29 expression (Slack et al., 2000). HBL-1 is another target of let-7 

microRNA. Loss of hbl-1 function partially suppresses the retarded phenotype of 

let-7(lf) upstream of lin-29 (Lin et al., 2002). Therefore, let-7 microRNA functions 

to regulate the transition from L4 to adult via downregulation of LIN-41 and HBL-1. 

This reduction in the levels of LIN-41 and HBL-1 release their inhibition of lin-29, 

the downstream effector of the larval to adult switch (Figure 1.1).  

 In summary, protein coding genes, such as lin-14, hbl-1, and lin-29, control 

the transitions downstream of other heterochronic genes. Another important class 

of heterochronic genes are microRNAs, including lin-4, let-7, and the let-7-family 

microRNAs, mir-48, mir-84, and mir-241. MicroRNAs post-transcriptionally control 

the level of other heterochronic genes by targeting their mRNAs. Loss of one or 

more microRNA functions causes retarded larval development due to the failure of 

prompt downregulation of the corresponding target genes.  

      LIN-28 is a central regulator of the heterochronic pathway. lin-28 functions 

to specify the proper timing of L2-to-L3 cell fate transitions by promoting the 

expression of HBL-1, as mentioned above. In addition, LIN-28 also prevents 
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premature expression of mature let-7 microRNA and thus guards against 

precocious transition from L4 to adult  (Abbott et al., 2005; Vadla et al., 2012; Van 

Wynsberghe et al., 2011). The expression of LIN-28 protein is highest in the late 

embryo and L1 stages and decreases from the L2 stage onward, mediated by lin-

4 microRNA. The 3’ UTR of lin-28 mRNA contains not only a lin-4 binding site but 

also a let-7-family seed complementary binding site, and mutation of either site 

induces an increased level of lin-28, suggesting that lin-4, in combination with let-

7-family microRNAs, function to suppress LIN-28 (Morita and Han, 2006).  
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Figure 1.1 
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Figure 1.1. Heterochronic pathway in C. elegans larval development. 

Schematic representation of heterochronic pathway genes that govern 

developmental timing of the C. elegans hypodermis. lin-4, let-7, mir-48,mir-84, and 

mir-241 are microRNAs that negatively regulate other proteins.  
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I-B. Functions of lin-28 Homologs in Other Organisms 

Homologs of lin-28 are found in many organisms, including flies, zebrafish, 

mice, and humans (Moss and Tang, 2003). Moreover, the reciprocal negative 

regulation between let-7 and lin-28(See Fig 1.1), is also conserved in many 

organisms (Roush and Slack, 2008).  

In C. elegans, larval hypodermal seam cell lineages exhibit a series of 

asymmetric divisions at each larval stage, with a distinctive symmetric division 

specifically in the L2 (Fig 1.2). These division patterns are exemplary of the self-

renewing and proliferative behaviors typical of stem cells.  At the end of the L4 

stage, seam cells exit the cell cycle and differentiate, producing the adult-specific 

cuticular alae. In the absence of lin-28, the L2-specific proliferative division is 

omitted, and differentiation occurs precociously by one or two larval stages. 

(Ambros and Horvitz, 1984b; Reinhart et al., 2000; Vadla et al., 2012).  

Consistent with the function of C. elegans lin-28 in specifying early larval 

symmetric stem cell divisions, and opposing differentiation, mammalian embryonic 

stem cells express high levels of Lin28 (Moss and Tang, 2003). The pluripotency 

activity  of mammalian Lin28 was demonstrated  by the reprogramming of human 

fibroblasts into induced pluripotent stem cells (iPSCs) using Lin28, along with Oct4, 

Sox2, and Nanog (Yu et al., 2007). Many studies have shown that mammalian 

Lin28, directly or indirectly, interacts with other pluripotency factors such as Oct4 

or Sox2 (Cox et al., 2010; Jin et al., 2011; Marson et al., 2008; Qiu et al., 2010). 

One mechanism by which mammalian Lin28 contributes to pluripotency is by 
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inhibiting biogenesis of mature let-7, because genes important for maintaining 

stemness, such as Hgma2 and c-Myc, are targets of let-7 microRNA (Kim et al., 

2009; Lee and Dutta, 2007). Furthermore, additional studies suggest that Lin28 

regulates embryonic stem cell metabolism by binding to mitochondrial enzyme-

encoding mRNAs (Peng et al., 2011). Theses enzymes are involved in the 

synthesis of essential cellular metabolites for self-renewal of embryonic stem cells 

(Alexander et al., 2011; Wang et al., 2009). Overexpression of let-7 microRNA 

reduces the abundance of these metabolites, indicating that Lin28–mediated 

suppression of let-7 maturation is necessary to maintain their levels (Shyh-Chang 

et al., 2013). 

In humans, Lin28 is also implicated in tumorigenesis in various cancer types, 

including breast cancer, lung cancer, and hepatocellular carcinoma (Carmel-Gross 

et al., 2016; Jiang and Baltimore, 2016). High levels of Lin28 expression are 

detected in both patient samples and cancer cell lines. Lin28 regulates 

tumorigenesis by inhibiting biogenesis of mature let-7, which suppresses many 

oncogenes, including K-Ras, c-Myc, and other cyclins (Dong et al., 2010; Kim et 

al., 2009; Oh et al., 2010). Recent studies showed that mammalian Lin28 functions 

in the metastasis of colon cancer and breast cancer (Chen et al., 2015a; King et 

al., 2011; Liu et al., 2013).  

Finally, findings suggest that mammalian Lin28 is involved in the 

development of immune cells. Ectopic expression of mammalian Lin28 can 

reprogram (via repression of let-7) adult bone marrow cells into hematopoietic 
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stem cells, enabling the production of various immune cells including B cells, 

gamma/delta T cells, and natural killer cells (Lee et al., 2013; Yuan et al., 2012; 

Zhou et al., 2015)(Lee et al., 2013; Yuan et al., 2012; Zhou et al., 2015) 

Furthermore, Lin-28 overexpression leads to peripheral T-cell lymphoma in mouse 

thymus (Beachy et al., 2012).  

In Drosophila melanogaster, lin-28 loss-of-function mutations cause 

precocious fusion of the egg chamber in the early oogenesis of female files, 

resulting in reduced fertility. Ectopic expression of let-7 induces the same defects, 

implying that let-7 is involved in this process (Stratoulias et al., 2014). In addition, 

Drosophila lin-28 functions to maintain adult intestinal stem cell populations by 

binding directly to mRNAs of insulin receptors and promoting their expression 

independent of let-7 regulation (Chen et al., 2015b). fmr1, a Drosophila homolog 

of human fragile X mental retardation protein (FMRP), opposes the lin-28 functions 

of regulating insulin receptors and the expansion of adult intestinal progenitor cells, 

to control the population of intestinal stem cells depending on nutrient availability 

(Luhur et al., 2017). 

In zebrafish, heterochronic genes, including lin-28, let-7, lin-4, and lin-41, 

share a similar expression pattern with their homologs in C. elegans (Ouchi et al., 

2014). Zebrafish embryos express high levels of lin-28, and knockdown of lin-28 

in zebrafish causes embryonic defects in gastrulation and neural expansion (Ouchi 

et al., 2014). Zebrafish lin-28 induces proliferation of Muller glial cells, the source 

of retina stem cells. This proliferation is crucial for retina regeneration upon injury, 
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and wnt signaling activates lin-28 expression to abrogate let-7 function (Kaur et al., 

2018; Yao et al., 2016). 

 In Xenopus, lin-28 similarly affects embryonic development. lin-28 

knockdown embryos fail to form proper mesoderm independently of let-7 

microRNA (Faas et al., 2013). Interestingly, lin-28 promotes expression of 

Xenopus mir-17~92. (Warrander et al., 2015).  Mammalian mir-17~92 is  

implicated in diverse types of cancers, cardiovascular disease and 

neurodegenerative diseases.(Mogilyansky and Rigoutsos, 2013)   
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Figure 1.2. 
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Figure 1.2. Seam cell division pattern of wild type and lin-28(lf) mutants 

during C. elegans larval developments 

Division patterns of seam cell (V1-V4, V6), C. elegans hypodermal stem cell, 

of wild type (WT) or lin-28(lf) mutants are depicted. L2 specific proliferative cell 

division is skipped in lin-28(lf) mutants. Seam cells are finally differentiated into 

adult specific alae.   
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I-C. Molecular and Cellular Characteristics of LIN-28 

The LIN-28 protein contains two types of RNA-binding domains: one cold 

shock domain (CSD) in the amino terminal portion of the protein, and two C-

terminal zinc finger domains (ZFDs) (Moss et al., 1997). The CSD contain RNP1 

and RNP2 motifs, which are also present in bacterial cold shock proteins and the 

family of eukaryotic Y-Box proteins (Graumann and Marahiel, 1996; Landsman, 

1992). The two LIN-28 ZFDs contains CCHC (CysCysHisCys) zinc-knuckle type 

motifs initially identified in retroviruses (Gorelick et al., 1988; Pappalardo et al., 

1997). These two types of domains are highly conserved across diverse species 

(Moss and Tang, 2003), and their roles in LIN-28 function have been investigated 

extensively (Mayr et al., 2011; Nam et al., 2011; Triboulet et al., 2015; Wang et al., 

2017c).  

Mammalian Lin28 can inhibit maturation of let-7 by binding directly to the 

loop region of the let-7 precursor (pre-let-7) (Heo et al., 2008; Newman et al., 2008; 

Viswanathan et al., 2008). The conserved GGAG sequence in the pre-let-7 

terminal loop is required for recognition by LIN-28 (Heo et al., 2009). LIN-28 is 

reported to recruit TUTase4 to promote uridylation at the 3’ terminus of pre-let-7, 

causing degradation of pre-let-7 (Heo et al., 2008; Heo et al., 2009). 

 Structural analysis using crystallography revealed that both the CSD and 

ZFD of Lin28 interact with the loop region of pre-let-7 (Nam et al., 2011). Two 

CCHC motifs in the ZFD recognize GGAG sequences, and the CSD prefers to bind 

GNGAY sequences in the loop. Later, it was reported that binding of the CSD with 
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pre-let-7 causes a conformational change in the pre-let-7 structure, exposing the 

GAGG sequence (Mayr et al., 2011). Therefore, the CSD is essential for the 

change in pre-let-7 structure needed for the ZFD to recognize GGAG and trigger 

subsequent uridylation. Consistent with this finding, let-7a-3, a human let-7 family 

member, bypasses Lin28 regulation, because it does not bind the LIN-28 CSD 

domain. Switching the pre-loop region of let-7a-3 with that of other let-7 family 

members restores its interaction with Lin28 (Triboulet et al., 2015). Another study 

suggested that the ZFD is crucial for stabilizing the binding of Lin28 with pre-let-7. 

The dissociation rate was increased by either mutating the ZFD domain of Lin28 

or the GGAG sequence motif of pre-let-7 (Wang et al., 2017c).  

 The mammalian genome encodes two paralogs of Lin28: Lin28A and 

Lin28B. Both proteins are involved in a variety of cancers in a let-7–dependent 

manner (Viswanathan et al., 2009). Depending on cancer subtype, either Lin28A 

or Lin28B may be found to be overexpressed (Piskounova et al., 2011). 

Lin28A and Lin28B show ~70% homology with each other and contain both a CSD 

and ZFDs. Nonetheless, Lin28B inhibits let-7 biogenesis via a different mechanism 

than Lin28A (Piskounova et al., 2011). Lin28B localizes in the nucleus due to its 

functional nuclear localization signal. Thus, Lin28B does not recruit Terminal 

Uridylyl Transferase (TUTase) or uridylate pre-let-7 in the cytoplasm as does 

Lin28A. Instead, Lin28B directly binds to primary let-7 microRNA (pri-let-7) in the 

nucleus. Lin28B localizes to the nucleoli, where microRNA processors such as 

DGCR8 and Drosha are absent, implying that Lin28B sequesters pri-let-7 from 
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microprocessing.  

 Unlike in mammals, C. elegans contains one genomic location where LIN-

28 is encoded, although this genomic locus can encode two isoforms of LIN-28. 

The two isoforms differ only in the first exon, whereas they share the second and 

third exons, which include the CSD and ZFD coding sequences. Differences in 

their expression and function have not yet been investigated.  

 Interestingly, recent studies have indicated that C. elegans LIN-28 regulates 

pri-let-7 in the nucleus, as in the case of mammalian Lin28B. C. elegans LIN-28 

binds directly to pri-let-7 and inhibits microprocessing. Therefore, although pri-let-

7 is expressed from the L1 stage onward, neither pre-let-7 nor mature let-7 are 

detected until the L3 stage, when LIN-28 is depleted (Van Wynsberghe et al., 

2011). Furthermore, Crosslinking immunoprecipitation (CLIP)-sequencing (seq) 

data showed that the GGAG motif bound by LIN-28 is located in the C. elegans 

pri-let-7 outside of its terminal loop region (Stefani et al., 2015). However, another 

study suggested that LIN-28 can bind to pre-let-7 and the poly(U) polymerase 

(PUP)-2 uridylates pre-let-7, similar to mammalian Lin-28A and TUT4 (Lehrbach 

et al., 2009).  

 Although the role of LIN-28 in regulating let-7 microRNA is essential in 

various biological contexts, much evidence indicates that Lin28 also directly binds 

to and regulates mRNAs, such as those of insulin-like growth factor 2 (IGF2), 

OCT4, and bone morphogenetic protein 4 (BMP4) (Ma et al., 2013; Polesskaya et 

al., 2007; Qiu et al., 2010). Lin28A is localized in the processing body where mRNA 
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and microRNA are processed, or to stress granules where some non-translating 

mRNAs are temporarily stored (Balzer and Moss, 2007). During myoblast 

differentiation, Lin28 promotes translation of IGF2 independently of let-7. 

Biochemical analysis revealed that Lin28 binds to the translation initiation factor 

eukaryotic initiation factor 3 beta (eIF3β) and elongation factors (EFs) such as 

EF1-α and EF1-α2 in skeletal muscles (Polesskaya et al., 2007). It has been also 

suggested that Lin28 also recruits RNA helicase to target mRNA and enhance 

translation (Jin et al., 2011). Crosslinking immunoprecipitation (CLIP)-sequencing 

(seq) and photoactivatable ribonucleoside-enhanced (PAR)-CLIP data revealed 

that Lin28 binds to the mRNA that encodes itself, cell cycle regulators, and splicing 

factors, increasing their expression levels (Hafner et al., 2013; Wilbert et al., 2012). 

Thus, ectopic expression of Lin28 induces a wide range of alternative splicing 

events (Wilbert et al., 2012). In contrast, another study showed that LIN-28 

localizes in the periendoplasmic reticulum (ER) area and inhibits the expression of 

ER-associated mRNAs, which encode transmembrane proteins, ER and Golgi 

proteins, and secretory proteins (Cho et al., 2012). In C. elegans, CLIP-seq data 

suggest that LIN-28 can bind to mRNAs of proteins in the heterochronic pathway, 

such as LIN-46, LIN-14, and DIN-1 (Stefani et al., 2015).  

In summary, lin-28 has a wide range of functions in both vertebrates and 

invertebrates, although generally, these functions fit a theme wherein lin-28 

functions early in development to inhibit let-7-associated differentiation, and 

thereby promote proliferation and pluripotency.  While the lin-28/let-7 axis is 
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important in many contexts, there is evidence that lin-28 can also directly bind to 

and regulate mRNA independently of let-7. The mechanisms by which LIN-28 

regulates mRNA expression require further investigation. For example, further 

research is needed to understand how Lin28 functions as a translational activator 

(Polesskaya et al., 2007; Wilbert et al., 2012) or suppressor (Cho et al., 2012) 

depending on context. In addition, the functions of the CSD and ZFD in regulating 

mRNA expression are of particular interest. 

 

I-D Gonad Structure and Reproductive Processes in C. elegans 

Hermaphrodites  

The hermaphrodite gonad consists of germ cells, which originate from 

proliferation of two germline precursor cells (Z2 and Z3), and somatic gonadal 

tissues, which are derived from two somatic precursor cells (Z1 and Z4); Z1, Z2, 

Z3, and Z4 comprise within the gonadal primordium of L1 larvae (Kimble and Hirsh, 

1979). 

Germline precursors Z2 and Z3 originate from P4 cells in the embryo, which 

are characterized by the presence of P-granules and the expression of pie-1. 

Germline proliferation occurs from mid L1 to L3. From the L3 stage, mitotic division 

is restricted to the distal germline, and proximal germline nuclei (organized around 

the periphery of a tubular syncytium) begin to enter meiosis. Spermatogenesis 

occurs during L4 in hermaphrodites, and many genes have been identified that are 

required to produce mobile and fertile sperm (Chatterjee et al., 2005; Kroft et al., 
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2005; Nishimura and L’Hernault, 2008; Singson et al., 1998). Oogenesis occurs 

during young adulthood, characterized by an increase in volume of the oocyte 

cytosol. A subset of germline nuclei undergo apoptosis and are engulfed by 

surrounding gonad sheath cells (Gartner et al., 2008). 

Somatic gonadal development occurs during the L1–L4 larval stages and is 

characterized by stage-specific patterns of cell division, morphogenesis, and 

differentiation into tissues with specific functions, including distal tip cells (DTCs), 

gonadal sheath cells, spermatheca, the spermathecal-uterine valve (Sp-Ut valve), 

uterus, and uterine seam cell (utse) syncytium (Kimble and Hirsh, 1979; Newman 

and Sternberg, 1996). 

 DTCs are single, large somatic cells located in the most distal region of each 

gonad arm (Kimble and White, 1981). Directed migration of the two DTCs leads to 

elongation of the gonad arms during the larval stages in the anterior and posterior 

directions, respectively. Also, signals from DTCs regulate cell division, cell cycle, 

and entry into meiosis of the distal germline. Gonadal sheath cells enclose each 

gonad arm, covering the germline cells and syncytium, and form connections 

between germline and other somatic tissues. Yolk proteins are produced in the 

intestine and delivered to the oocytes through the gonadal sheath cell pores (Grant 

and Hirsh, 1999; Hall et al., 1999).   

The spermatheca is a sac structure where sperm cells are stored and 

fertilization occurs (Gissendanner et al., 2008; Kimble and Hirsh, 1979). The 

spermatheca first forms two narrow rows of 12 cells next to proximal oocytes 
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during the young adult stage. Spermathecal actomyosin network changes 

dynamically during stretching and contraction in the process of ovulation (Wirshing 

and Cram, 2017).  

 The Sp-Ut valve connects the spermatheca to the uterus in hermaphrodites. 

The Sp-Ut valve comprises two syncytia. The toroidal syncytium (sujn) results from 

the fusion of four cells and provides the pathway for fertilized embryos to the uterus. 

The core cell syncytium (sujc), which contains two nuclei, resides inside of the 

toroidal syncytium (Kimble and Hirsh, 1979). The core cell syncytium forms a 

dumbbell-like structure in wild-type young adult stages, with one arm in the 

spermathecal side and the other arm in the uterus (Palmer et al., 2002).  

 Fertilized embryos are held in the uterus before they are laid outside of 

animals. The adult hermaphrodite uterus is composed of eight syncytia, which 

each contain four or six nuclei. Uterine cells fuse after multiple rounds of division 

during the mid-L4 stage. As a result, the uterine lumen forms and extends during 

the mid-L4 stage in wild-type hermaphrodites (Newman et al., 1996). The uterus 

is structurally connected to the lateral seam cells, and this connection is mediated 

by the uterine seam (utse). Utse is formed by fusion of 8 cells of uterine lineage 

and the anchor cell by the mid-L4 stage (Newman et al., 1996). The eight cells are 

daughter cells of ventral uterine precursors, which require notch signals from the 

anchor cell. After forming the utse syncytium, the nuclei spread laterally during the 

L4 stage (Newman et al., 1995; Newman et al., 2000).  
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Oocyte meiotic maturation occurs before ovulation and fertilization in young 

adult hermaphrodites. Oocyte maturation requires major sperm protein (MSP) from 

sperm to antagonize VAB-1 receptor and CEH-18 transcription factor, which inhibit 

the maturation process via a MAPK-dependent pathway (Miller et al., 2001; Miller 

et al., 2003). In addition, the female germline expresses OMA-1 and OMA-2 

proteins, which redundantly regulate completion of oocyte maturation. Breakdown 

of the nuclear envelope and a cortical rearrangement are characteristics of oocyte 

maturation (Detwiler et al., 2001). 

Ovulation is the process wherein the mature oocytes one-by-one enter the 

spermatheca where hermaphrodite sperm reside. Contraction of gonadal sheath 

cells and dilation of the distal spermatheca region occur during ovulation and are 

modulated by the epidermal growth factor (EGF) signaling pathway including lin-3 

and let-23 as well as inositol trisphosphate (IP-3)–mediated calcium signaling 

(Clandinin et al., 1998; Kariya et al., 2004; Yin et al., 2003).   

 Ovulated oocytes are fertilized in the spermatheca. Many mutations have 

identified in spermathecal genes that are required for successful fertilization via 

the recognition of or fusion with the oocyte (Nishimura and L’Hernault, 2008). Right 

after fertilization, embryos rapidly establish an egg shell in the spermatheca. The 

egg shell consists of multiple layers, including the outermost vitelline membrane 

and chitin membrane, that form a protective barrier for the embryo (Johnston and 

Dennis, 2011). Many egg shell-defective mutants show multiple sperm cells in their 

fertilized embryo, indicating that the egg shell functions as a polyspermy barrier 
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(Johnston et al., 2010; Parry et al., 2009). Furthermore, some egg shell mutants 

fail to exhibit extrusion of the second polar body from the embryos, suggesting the 

abnormal cytokinesis (Johnston et al., 2006) .  

 The fertilized embryo exits from the spermatheca to the uterus via the 

contraction of spermathecal muscle. This process also requires induction of 

calcium signaling by a Phospholipase C (PLC-1), a cytoskeletal proteins such as 

structural filamin (FLN-1), and a gap junction subunit (INX-12) are involved in the 

release, oscillation, and propagation of calcium signaling (Kovacevic and Cram, 

2010; Kovacevic et al., 2013). Embryos are temporally stored in the uterus until 

they are expelled through the vulva into the outside world.  
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Figure 1.3.  
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Figure 1.3.  Reproductive system in C. elegans hermaphrodites 

(A)  C. elegans hermaphrodites contains both sperm and oocytes. Other than germ 

cells, somatic gonadal tissues including distal tip cells (DTCs), gonad sheath cells, 

spermatheca, spermathecal-uterine valve, and uterus are also crucial for 

reproductive process in hermaphrodites (Picture adapted from Kimble and 

Crittenden 2007). 

(B) Schematic representation of reproductive process in C. elegans 

hermaphrodites. The most proximal oocyte in gonadal sheath ovulates into 

spermatheca wherein oocytes is fertilized with sperm. Fertilized embryos exit to 

uterus via Sp-Ut valve, and they are held in the uterus until they are laid outside of 

the animal.  
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I-E Scope of This Thesis  

  The research presented in this thesis covers two separate topics, but all 

are related to investigating the functions of C. elegans lin-28. 

 In Chapter II, I present our findings regarding the roles of lin-28 in somatic 

gonadal development and how lin-28 affects the fertility of C. elegans 

hermaphrodites. This project began with the discovery that C. elegans lin-28(lf) 

mutants exhibit fertility defects. We asked why the mutants have fertility defects 

and how the defects are related to developmental timing regulation. To answer 

these questions, we investigated: 1) the physiological cause of the mutants’ fertility 

defects, 2) the correlation between fertility defects and developmental timing 

defects in lin-28(lf) mutants, and 3) the tissue-specific requirement of lin-28 for 

fertility. Our aim was to identify fertility problems that are specifically induced by 

developmental timing defects. 

 In the research presented in Chapter III, we examined the roles of each lin-

28 isoform in C. elegans mutants. 1) We first investigated the expression pattern 

of each isoform by differential fluorescent reporters. 2) Next, to determine the 

function of each isoform, we generated two individual knock-out mutants (lin-28a(lf) 

and lin-28b(lf)) using CRISPR-Cas9 technology. We determined whether each 

mutant exhibits the defects shown in lin-28(lf) mutants. 

 In Chapter IV, I summarize the presented findings and also discuss 

remaining questions and future directions regarding this research. 
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Chapter II. lin-28 Coordinates the Timing of 

Hypodermal and Somatic Gonadal Programs 

for Hermaphrodite Reproductive System 

morphogenesis 

- Abstract 

- Background and Significance 

- Results  

- Discussion 

- Material and Methods 
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Abstract 

C. elegans heterochronic genes determine the timing of expression of 

specific cell fates in particular stages of developing larva. However, their broader 

roles in coordinating developmental events across diverse tissues have been less 

well investigated. Here, we show that loss of lin-28, a central heterochronic 

regulator of hypodermal development, causes reduced fertility associated with 

abnormal somatic gonadal morphology. In particular, the abnormal spermatheca-

uterine valve morphology of lin-28(lf) hermaphrodites traps embryos in the 

spermatheca, which disrupts ovulation and causes embryonic lethality. The same 

genes that act downstream of lin-28 in the regulation of hypodermal developmental 

timing also act downstream of lin-28 in somatic gonadal morphogenesis and 

fertility. Importantly, we find that hypodermal expression, but not somatic gonadal 

expression, of lin-28 is sufficient for restoring normal somatic gonadal morphology 

in lin-28(lf) mutants. We propose that the abnormal somatic gonadal 

morphogenesis of lin-28(lf) hermaphrodites results from temporal discoordination 

between the accelerated hypodermal development and normally timed somatic 

gonadal development. Thus, our findings exemplify how a cell-intrinsic 

developmental timing program can also control proper development of other 

interacting tissues, presumably by cell non-autonomous signal(s). 
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Background and Significance 

Animal development is an intricate process which requires spatial and 

temporal regulation of diverse cell types. Spatial regulation such as that of the Hox 

gene family has been the subject of intense research (Mallo et al., 2010). Temporal 

control of cell-fate decision is another crucial feature for time appropriate 

developmental events such as organ morphogenesis and sexual maturation. 

Moreover, orchestrating developmental timing of complex tissues and constructing 

timely connections between them are essential to achieve normal development for 

the organism as a whole (Rougvie, 2001). 

Previous studies in C. elegans identified a gene regulatory network of 

“heterochronic genes” that govern hypodermal developmental timing (Ambros, 

2011). LIN-28 is one of the central heterochromatic gene which determines the L2 

hypodermal fates of the animals. Their roles in developmental timing and genetic 

relationship with other heterochronic genes have been the main focus of previous 

study (Ambros and Horvitz, 1984b; Moss et al., 1997; Pepper et al., 2004; 

Seggerson et al., 2002).  

Here, we investigated the role of lin-28 in maintaining fertility of C. elegans 

hermaphrodites. Our results show that certain aspects of somatic gonadal 

development are abnormal in lin-28(lf) hermaphrodites, reflected by abnormal 

morphology of the uterus, uterine seam, and Sp-Ut valve. These morphological 

defects, particularly the abnormal Sp-Ut, dramatically limit lin-28(lf) fertility. Our 
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results further indicate that the normal development of the somatic gonad relies on 

temporal coordination of hypodermal developmental events with somatic gonadal 

events, and that lin-28 acts in the hypodermis to specify a schedule of hypodermal 

events that is properly coordinated with a corresponding schedule of somatic 

gonadal developmental events. We demonstrate that the hypodermal function of 

lin-28 is sufficient to regulate somatic gonadal development non-autonomously, 

consistent with a role for lin-28, and downstream heterochronic genes, in 

controlling the hypodermal components of critical developmental signaling 

between the gonad and hypodermis. This study shows one example of 

physiological defects which stem from the failure to control developmental timing 

of different tissues 
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Results  

lin-28(lf) mutants exhibit defects in embryo production and embryo viability 

lin-28(n719) hermaphrodites produced dramatically fewer larval progeny 

than wild-type hermaphrodites (Fig 2.1A).  lin-28(n719) mutants are unable to lay 

eggs, due to precocious vulva development, which results in abnormal vulva 

morphogenesis (Euling and Ambros, 1996). Like other egg-laying defective 

mutants, lin-28(lf) hermaphrodites contain their entire brood of embryos trapped 

inside the limited space of the somatic gonad. To test whether the reduced number 

of progeny of lin-28(lf) hermaphrodites could be simply the result of their egg-laying 

defects, we compared the number of progeny of lin-28(n719) hermaphrodites with 

that of lin-2(e1309). lin-2(e1309) mutants exhibit defective egg-laying due to their 

vulvaless phenotype, which results from cell lineage defects not related to 

developmental timing (Hoskins et al., 1996). lin-28(n719) mutants produce 

substantially fewer progeny than lin-2(e1309) (Fig 2.1A), suggesting the reduced 

brood number of lin-28(n719) animals is not merely the result of an egg-laying 

defect. To test for reduced embryo production in lin-28(n719) hermaphrodites, we 

dissected mature, gravid hermaphrodites to count the embryos retained inside. lin-

28(n719) gravid adults contained fewer embryos than lin-2(e1039) animals (Fig 

2.1C and 2.1D), indicating that lin-28(n719) mutants are defective in embryo 

production. To test embryonic viability, we harvested embryos from dissected 

gravid adults and counted the number that hatched and developed into larva. 

Approximately 70% of lin-28(n719) embryos failed to develop, whereas essentially 
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all of the lin-2(e1309) embryos were viable (Fig 2.1B). These results suggest that 

reduced embryo production and embryonic lethality contribute to the reduced 

progeny number of lin-28(n719) mutants. lin-28(n719) mutants also displayed 

these same defects at 20°C, although at a somewhat reduced penetrance 

compared to 25°C (Fig 2.1).  We conducted all our subsequent experiments at 

25°C, where those defects are most prominent.  
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Figure 2.1. 
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Figure 2.1. Fertility phenotypes of lin-28(lf) mutants at 20°C and 25°C. 

(A)Total number of live larval progeny per animal for wild-type N2 animals(n=5), 

lin-2(e1309) mutants(n=17 for 25°C, n=16 for 20°C) and lin-28(n719) (n=19) 

mutants at 20°C and 25°C. (B) Embryonic lethality for lin-2(e1309) and lin-28(n719) 

mutants at 20°C and 25°C. (Number of animlals≥15 per each assay; number of 

independent replicate assays = 3) (C) The number of embryos produced at varying 

time points after feeding of synchronized L1 larvae, for lin-2(e1309) and lin-

28(n719) mutants at 20°C and 25°C. (n= 10,8,8 (lin-2(e1039), 12,15,13 (lin-

28(n719))  for 61hr, 69hr, and 77hr respectively at 20°C. n= 12,10,10, 0(lin-

2(e1039), 15,13,12,3 (lin-28(n719)) for 48hr, 53hr, 60hr and 69hr respectively at 

25°C.)  (A-C: Data are shown as mean ± SD. Unpaired t-test compared to lin-2(lf), 

****p<0.0001) 
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Defects in ovulation and the spermathecal exit cause reduced embryo 

production in lin-28(lf) mutants 

To investigate the cause of reduced embryo production in lin-28(n719) 

mutants, we checked whether ovulation and spermathecal exit proceed normally. 

We examined the spermatheca of lin-28(n719) mutants using the expression of a 

spermatheca reporter, fkh-6::GFP (Chang et al., 2004). Approximately 80% of lin-

28(n719) mutants contained embryos in their spermathecae, whereas less than 

10% of wild-type spermathecae contained embryos (Fig 2.2A,B). Unlike in the wild 

type, many embryos in lin-28(n719) hermaphrodites had undergone multiple 

rounds of cell division inside the spermathecae. This suggests that lin-28(n719) 

mutants have defects in the process of spermathecal exit. We used time-lapse 

video microscopy to monitor spermathecal exit. In wild type hermaphrodites, the 

process of ovulation, fertilization, and spermathecal exit of an individual embryo 

happens within less than 10 minutes (McCarter et al., 1999). In lin-28(n719) 

mutants however, an embryo was trapped in the spermatheca and unable to exit 

into the uterus at least for 40 minutes. 

Next, we addressed whether the process of ovulation is also defective in 

lin-28(n719) mutants. Endomitotically replicating DNA (Emo) oocytes is a 

characteristic of many ovulation mutants (Iwasaki et al., 1996), where oocytes 

undergo several DNA replications without ovulation and fertilization. Gonadal DAPI 

staining revealed that some lin-28(n719) hermaphrodites contain endomitotic 

oocytes (Fig 2.2D) in the oviducts. We speculate that the defective ovulation in lin-
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28(n719) mutants may result from impairment of the spermathecal exit process, 

wherein the presence of fertilized embryos trapped within the limited spermathecal 

space would prevent entry of mature oocytes.  We conclude that the poor fertility 

of lin-28(n719) mutants is the consequence of embryos becoming trapped in the 

spermathecae, stalling subsequent ovulation. 
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Figure 2.2. 
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Figure 2.2. lin-28(lf) hermaphrodites have defects in exit of embryos from the 

spermatheca, and defects in ovulation.  

(A, B) Spermatheca labeled by fkh-6:GFP of representative wild-type and 

lin-28(n719) adult hermaphrodites. (A) In the wild type, oocytes (Oocy) pass into 

the spermatheca (Sp), where they are fertilized, and rapidly exit as a one-cell 

embryo (Emb), and so most spermathecae are not observed to contain an embryo. 

(B) In a lin-28(n719) hermaphrodite, an embryo (around ~150 cells) was trapped 

in the spermatheca. (C, D) DAPI staining of oocytes in wild-type (C) and lin-

28(n719) hermaphrodites. (C) In the wild type, individual oocytes (Oocy) contained 

a haploid complement of condensed chromosomes (arrows). (D) In the lin-28(n719) 

mutant, endomitotic DNA was evidenced by an excessively bright DAPI signal, a 

characteristic of ovulation defective mutants. (Scale bar = 10 µm in this paper, 

except where noted). 
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Sp-Ut valve  core morphogenesis, uterine lumen formation, and utse 

migration are abnormal in lin-28(lf) mutants 

Spermathecae in C. elegans hermaphrodites consist of two rows of 12 cells 

forming a long tube structure at the young adult stage (Gissendanner et al., 2008; 

Kimble and Hirsh, 1979). Long spermathecal tube structures, labeled by fkh-6:GFP, 

are also observed in the lin-28(n719) mutants at the 4th stage (Fig 2.3B), which 

corresponds to L4 and adult stage in wild type (Fig 2.6C). Wild-type spermathecae 

become constricted horizontally as somatic gonadal tissues continue 

morphogenesis before the first ovulation. lin-28(n719) spermathecae exhibited a 

similar constricted and extended morphology as in the wild type (Fig 2.3A,B). 

Overall, we did not detect appreciable differences in spermathecal morphology 

between wild-type animals and lin-28(n719) mutants.  

The Sp-Ut valve connects the spermatheca to the uterus in wild type 

hermaphrodites, and serves as a portal through which fertilized embryos exit the 

spermatheca into the uterus (McCarter et al., 1999). The mature Sp-Ut valve 

consists of the toroidal syncytium and the core cell syncytium. We examined the 

structure of the Sp-Ut valve in lin-28(n719) mutants according to the expression of 

cog-1:GFP, which is expressed in the Sp-Ut valve core cell syncytium from the late 

L3 or early L4 stage (Palmer et al., 2002). In wild type animals, the core cell 

syncytium stretches during the L4 stage, and in young adults, the Sp-Ut valve core 

forms a dumbbell-like structure with one end in the spermatheca and the other end 

in the uterus (Fig 2.3C). Although we observed apparently normal expression of 
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cog-1:GFP in the Sp-Ut valve core cell region of lin-28(n719) mutants in late 3rd 

larval stage, the stretching of a core cell syncytium did not occur in the mutants 

and the Sp-Ut valve core cell remained as a single lobe structure in old 4th stage 

and later (Fig 2.3D).  
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Figure 2.3. 
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Figure 2.3. lin-28(lf) mutants show essentially normal spermathecal 

primordium structure, but display defects in spermathecal-uterine (Sp-Ut) 

valve core cell morphology.  

Spermathecal primordium visualized by fkh-6:GFP expression (A, B) and 

Sp-Ut valve core cell structure visualized by cog-1:GFP expression (C, D) in wild-

type and lin-28(n719) hermaphrodites at successive times in the advancement 

towards the first ovulation. In each panel, the upper images are of hermaphrodites 

at the L4 or early young adult stage, and the lower images are of hermaphrodites 

somewhat later in development, just before the time of first ovulation. (lin-28(n719) 

hermaphrodites skipped one larval stage; therefore, the “4th stage” corresponds 

to L4 and adult stage in wild-type [See Fig 2.6].) (A, B) In both wild type and lin-

28(n719) mutants, similar tube-shaped spermathecal primordia were detected, 

which contracted horizontally to form similar sac-like structures in older adults (A, 

B lower panels). (C, D) Sp-Ut valve core cell structure (Sp-Ut, dashed oval) labeled 

by cog-1:GFP at successive stages in L4-adult developmental progression of a 

wild type and lin-28(n719) hermaphrodite. (C) In wild type, the Sp-Ut valve core 

stretches to form a fully developed “dumbbell” structure, with one side residing in 

the spermatheca and the other side in the uterus. The distance between each side 

shown here was ~10 µm. (D) In lin-28(n719) mutants, the Sp-Ut valve core does 

not stretch and remained as “single lobe” structure, indicating an abnormal 

connection between the spermatheca and uterus in the mutants 
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This observation indicates that the Sp-Ut valve morphology is abnormal in 

lin-28(n719) mutants, suggesting the connection between the spermatheca and 

the uterus is also disrupted in the mutants. We conclude that the aberrant 

connection between the uterus and the spermatheca induced by the atypical 

morphology of the Sp-Ut valve causes the spermathecal exit defect in lin-28(lf) 

mutants. To assess whether the abnormal Sp-Ut valve morphology of lin-28(n719) 

could reflect somatic gonadal cell lineage defects analogous to the precocious 

hypodermal cell lineages exhibited by lin-28(n719)  (Ambros and Horvitz, 1984a), 

we investigated whether the Sp-Ut valve syncytium in the mutant contains a normal 

number of nuclei as in the wild-type. The Sp-Ut valve is derived from daughter cells 

of the dorsal uterus lineage, and the valve core syncytium is comprised of a fusion 

of two cells (Kimble and Hirsh, 1979). We used confocal microscopy to count the 

number of nuclei in the Sp-Ut valve core region based on labeling by cog-1:GFP. 

Two nuclei were present in Sp-Ut core cell of both wild-type and lin-28(n719) 

mutants, suggesting the morphological defect is not caused by abnormal cell 

division in the lineage generating the Sp-Ut valve core (Fig 2.4 A,B). 
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Figure 2.4. 
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Figure 2.4. Both wild type and lin-28(lf) mutants have two nuclei that 

comprise Sp-Ut valve core syncytium. 

Confocal microscopic images of Sp-Ut valve core syncytium labeled by 

cog-1:GFP. Both wild type animals (A) and lin-28(lf) mutants (B) exhibit two 

nuclei in their Sp-Ut valve core region (dashed oval), suggesting cell division in 

the Sp-Ut valve core occurs normally in lin-28(lf) mutants.   
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In addition to the abnormal Sp-Ut valve core morphology, other somatic 

gonadal defects were evident in lin-28(n719) mutants. In wild-type animals, the 

uteruine lumen forms between the dorsal and ventral uterus during the L4 stage 

when uterine toroidal cells fuse to generate a syncytium (Newman et al., 1996). In 

lin-28(n719) mutants at the 4th stage, we observed abnormally small, incompletely-

connected, and/or less elongated uterine luminal structures, compared to the wild 

type (Fig 2.5B,C). 
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Figure 2.5. 
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Figure 2.5 Defective formation of the uterine lumen in lin-28(lf) mutants is 

restored by the loss of function of lin-28 downstream genes, or post-dauer 

development, or hypodermal lin-28 expression.  

(A-C) Uterine lumen formation in wild type and lin-28(n719) mutants. (A) Wild-type 

animals form a long uterine lumen between the dorsal uterus and ventral uterus in 

the mid L4 stage (red dashed oval), whereas, (B) the majority of lin-28(n719) 

mutants at an analogous point in 4th stage development exhibit an immature, 

partially-formed lumen. (C) Some 4th stage lin-28(n719) mutants show a connected 

lumen, which is shorter and rounder than that in wild-type animals.  (D-F) Uterine 

lumen formation in lin-28(n719);let-7(mn112), lin-28(n719);lin-29(n836),and lin-

28(n719);lin-46(ma164) double mutants. (D) Lumen formation is restored in ~50% 

of lin-28(n719);let-7(mn112) mutants. (E) The majority of lin-28(n719);lin-29(n836) 

animals, and (F) the majority of lin-28(n719);lin-46(ma164) mutants show uterine 

lumen formation similar to the wild type. (G) lin-28(n719) mutants form an 

elongated uterine lumen similar to wild type after post-dauer development. (H-K) 

Rescue of lin-28(lf) uterine lumen phenotype by transgenes expressing LIN-28 

driven by specific promotors. Plin-28::lin-28:GFP;lin-28(n719) (H) and Pdpy-7::lin-

28:GFP;lin-28(n719) (I) show normal uterine lumen formation as wild-type animals. 

Pehn-3A::lin-28:GFP;lin-28(n719) show only partial uterine lumen (J) or shorter 

and rounder uterine lumen (K) similar to the defects exhibited by lin-28(n719) alone 

(B and C, respectively).  
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The uterine seam (utse) is a component of the hermaphrodite somatic 

gonad that mediates structural attachment between the hypodermis and uterine 

(Newman and Sternberg, 1996). The utse syncytium forms in the early L4 stage 

and extends laterally during progression to mid L4. The utse connects the uterus 

to the seam cells laterally and also to uv1 and the vulva. egl-13:GFP is expressed 

in the nuclei of π cell lineage, whose products includes the utse, from late L3 to L4 

stages (Ghosh and Sternberg, 2014). Utse labeled by egl-13:GFP migrated 

laterally in wild-type hermaphrodites (Fig 2.6A,B). However, the utse nuclei did not 

migrate during the 4th stage in lin-28(n719) mutants, although egl-13:GFP(+) cells 

were detected in the utse region (Fig 2.6C,D). 
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Figure 2.6. 
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Figure 2.6. Defective migration of uterine seam cell (utse) nuclei in lin-28(lf) 

mutants is rescued by loss of function of lin-28 downstream genes, or by 

post-dauer development, or by hypodermal lin-28 expression.   

(A-D) utse nuclei, labeled by egl-13:GFP, in wild type and lin-28(n719) mutants. 

egl-13:GFP expression in the utse region (dashed oval) is shown in early L4 (A) 

and mid-L4 (B) of the wild-type, and at analogous steps (C, D) of 4th stage lin-

28(n719) animals.  utse nuclei expressing egl-13:GFP migrate laterally during the 

early to mid L4 stage in wild type (A, B), but no such migration occurs in lin-28(n719) 

mutants (C, D). (E,F) utse migration defects of lin-28(n719) mutants are 

suppressed when the mutants develop via post-dauer stages. (G-J) Loss of 

function of let-7 or lin-46 can partially suppress the utse migration defects in lin-

28(lf) mutants. (G,H) lin-28(n719);let-7(mn112) mutants show a more normal 

migration of utse nuclei compared to lin-28(n719) mutants (C, D). (I,J) utse nuclei 

of lin-28(n719) mutants migrated laterally when lin-46 function was knocked down 

by RNAi. (K-P) Rescue of lin-28(lf) utse migration phenotype by transgenes 

expressing LIN-28 driven by specific promotors. lin-28 expression with lin-28 

endogenous promoter (Plin-28::lin-28:GFP;lin-28(n719);egl-13:GFP) restores utse 

migration as wild type (K, L). Hypodermal expression of lin-28 (Pdpy-7::lin-

28:GFP;lin-28(n719);egl-13:GFP) also rescues utse migration defects in lin-

28(n719) mutants (M, N), whereas lin-28 expression driven by early somatic 

gonadal promoter (Pehn3-A::lin-28:GFP;lin-28(n719);egl-13:GFP) does not 

rescue the phenotype (O, P). (Note: In these experiments (K-P), the promoter-
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driven lin-28 transgene is also tagged with GFP, but lin-28:GFP expression is not 

detectable at these stages, so all the GFP signal here corresponds to egl-13:GFP.) 
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lin-28(n719);lin-2(e1309) double mutants, which lack vulva formation, have 

the same somatic gonadal defects as lin-28(n719) mutants, indicating these 

defects are not indirect consequences of the abnormal vulva morphology in lin-

28(n719) mutants (Fig 2.7).  

Defects in uterine lumen formation and utse migration in lin-28(n719) 

mutants, together with Sp-Ut valve morphological defects, suggest that lin-28 

activity is required for multiple aspects of proper hermaphrodite somatic gonadal 

development. 

 

 

 

 

 

 

 

 

 

 

 



65 
 

Figure 2.7 
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Figure 2.7. Defective Sp-Ut valve morphogenesis, uterine lumen formation, 

and utse migration are not results of the abnormal vulva morphogenesis of 

lin-28(lf) animals. 

(A, B) Sp-Ut valve core structure (dashed oval) visualized by cog-1:GFP  in lin-

2(e1309) and lin-2(e1309);lin-28(n719) animals. (A) The “dumbbell” structure of 

Sp-Ut valve core cell is shown in lin-2(e1309) mutants like wild type animals (Fig 

2.3C). (B) lin-2(e1309); lin-28(n719) mutants exhibit the “single-lobe” structure of 

Sp-Ut valve core, similar to lin-28(n719) mutants (Fig 2.3D). (C, D) Uterine lumen 

formation (dashed oval) visualized by DIC in lin-2(e1309) and lin-2(e1309);lin-

28(n719) animals.  (C) fully extended and connected uterine lumen (red-dashed 

oval) is formed in lin-2(e1309) mutants like wild type animals (Fig S3A). (D) By 

contrast, lin-2(e1309);lin-28(n719) mutants form only partial uterine lumen, similar 

to lin-28(n719) (Fig 2.5B). (E, F) utse nuclei (surrounded by a dashed line) are 

labeled by egl-13:GFP in lin-2(e1309) and lin-2(e1309);lin-28(n719) animals. (E) 

utse migration appears normal in lin-2(e1309) (Fig 2.6B), whereas (F) utse nuclei 

remain tightly clustered in lin-2(e1309);lin-28(n719) animals, similar to lin-28(n719) 

(Fig 2.6D). 
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Eggshell integrity is compromised in lin-28(lf) mutant embryos 

To understand the cause of embryonic lethality in lin-28(n719) mutants, we 

first dissected and imaged the embryos produced by the mutants. The lin-28(n719) 

embryos displayed abnormal, irregular shapes (Fig 2.8A), reminiscent of the 

misshapen phenotypes exhibited egg-shell mutants (Johnston et al., 2006; 

Maruyama et al., 2007; Zhang et al., 2005). The C. elegans eggshell is formed 

rapidly after fertilization in the spermatheca and consists of chitin, lipid, and 

structural proteins, and functions as a protective barrier between the embryo and 

outside environment. Eggshell abnormalities often result in embryo lethality 

(Johnston et al., 2010).  

Chitin-binding domain-protein 1 (CBD-1) is a component of the eggshell 

cortex, and CBD-1::mCherry  expression marks the periphery of wild-type embryos. 

CBD-1::mCherry expression was evident surrounding embryos from lin-28(n719) 

hermaphrodites, indicating that an eggshell does form (Fig 2.8B). However, lin-

28(n719) embryos were abnormally permeable to the lipophilic dye FM 4-64. The 

wild-type eggshell prevents FM 4-64 from infiltrating the embryo (Johnston et al., 

2006). In our study, about 50% of lin-28(n719) embryos were permeable to FM4-

64, while around 10% of lin-2(e1309) embryos were permeable (Fig 2.8C).  

    This finding indicates that eggshell integrity is compromised in embryos 

produced by lin-28(n719) mutants. In support of this conclusion, lin-28(n719) 

embryos exhibited osmotic stress sensitivity. Wild-type embryos maintained their 
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oval shape upon exposure to 0, 150, and 300 mM KCl, whereas lin-28(n719) 

embryos swelled upon treatment with 0 or 150 mM KCl (Fig 2.8D).  

Interestingly, embryos of fln-1(tm545) mutants, which have defective 

spermathecal exit (Kovacevic and Cram, 2010), also exhibited permeability to 

FM4-64, suggesting an association of eggshell permeability with the spermathecal 

exit phenotype (Fig 2.8C). Delay in the spermathecal exit might decrease the 

physical integrity of eggshell in lin-28(lf) mutants (see Discussion). 

In summary, lin-28 is required for normal somatic gonadal development, 

including uterine lumen formation, utse morphogenesis, and proper Sp-Ut valve 

formation. The abnormal Sp-Ut valve structure in lin-28(n719) mutants causes 

defects in spermathecal exit and ovulation, resulting in reduced embryo production. 

In addition, the embryos stalled in the spermatheca seem to suffer eggshell 

damage, resulting in embryonic lethality (Fig 2.8E). 
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Figure 2.8 
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Figure 2.8. lin-28(lf) embryos are misshapen and are defective in egg shell 

integrity.  

(A) DIC images of wild-type, lin-2(e1309) and lin-28(n719) embryos from 

dissected adult animals. Wild type and lin-2(e1309) mutants produce ovoid 

embryos, but lin-28(n719) embryos exhibit irregular shapes.  (B) cbd-1::mCherry 

expression indicates that egg shells were present in lin-28(n719) embryos 

despite their misshapen morphology (lower panels). (C) Egg shell permeability of 

embryos produced by lin-2(e1309), lin-28(n719), egg-1(tm1071), and fln-

1(tm545) hermaphrodites. Egg shell mutant egg-1(tm1071) served as a control. 

Embryos from lin-28(n719), fln-1(tm545), and egg-1(tm1071) were more 

permeable to the lipophilic dye FM 4-64 than lin-2(e1309) embryos. Like lin-

28(n719), fln-1(tm545) hermaphrodites exhibit defects in spermathecal exit. 

Permeability was calculated as the percentage of permeable embryos/total 

embryos from dissected adult animals (Number of animlals≥15 per each assay; 

number of independent replicate assays = 3 for each strain, Data are shown as 

mean ± SD. unpaired t-test compared to lin-2(e1309), *p<0.05).  (D) Morphology 

of embryos under different osmotic conditions. lin-28(n719) embryos were more 

sensitive than wild type to low salt conditions, indicating a lack of protection from 

osmotic stress. (E) Model for physiological causes of fertility defects in lin-28(lf) 

mutants. lin-28(lf) animals have abnormal Sp-Ut valve structure, which leads to 

defects in spermathecal exit and ovulation, and hence a reduced embryo 
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production. In addition, retention of embryos in the spermatheca compromises 

egg shell integrity, which causes embryonic lethality. 
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Embryonic lethality of lin-28(n719) mutant is rescued by maternal expression 

of lin-28  

We speculated that the lethality of embryos produced by lin-28(n719) 

hermaphrodites results from defects in maternal somatic gonadal morphology, 

rather than from an absence lin-28 function in the embryos. If so, then maternal 

expression of lin-28 should rescue the embryonic lethality of lin-28(n719) 

homozygous embryos. To test this, we crossed lin-28(n719) hermaphodites with 

wild-type males to obtain heterozygous mutants (lin-28(n719)/+), and then 

assessed the viability of lin-28(n719) homozygous self-progeny from these lin-

28(n719)/+ hermaphrodites. Viable lin-28(n719) homozygotes were identified by 

their characteristic egg-laying defective phenotype as adults. Amongst the self-

progeny of heterozygous (lin-28(n719)/+) hermaphrodites, we observed a ratio of 

wild type progeny (+/+ or lin-28(n719)/+) to egg-laying defective progeny (lin-

28(n719)/lin-28(n719)) of 2.89(±0.2):1 which is very close to the expected 3:1 ratio 

for complete maternal rescue of embryonic lethality (Table 2.1). This finding 

suggests that lin-28(n719) embryonic lethality reflects a requirement for lin-28 

activity in the mother to enable proper development of the somatic gonad, which 

is required for the production of viable embryos.    
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Table 2.1. Viability of embryos produced by lin-28(n719) heterozygous 

hermaphrodites 

Maternal  
Genotype 

(P0) 

Progeny 
Genotype 

(F1) 

Maternal or  
Zygotic 
LIN-28 

products 

Egg laying 
phenotype 

(F1) 

Zygotic effect Maternal effect Experimentally 
determind 

Ratio  
( egg laying vs 

egg laying 
defective)  

Expected 
Genotype  

ratio 

Expected 
Phenotype  

ratio 

Expected 
Genotype  

ratio 

Expected 
Phenotype  

ratio 

𝒍𝒊𝒏 − 𝟐𝟖(+)

𝒍𝒊𝒏 − 𝟐𝟖(−) 

 
𝒍𝒊𝒏−𝟐𝟖(+)

𝒍𝒊𝒏−𝟐𝟖(+) m+/z+ Egg laying 1 

10.3 

1 

3 2.89(±0.2)** 

 
𝒍𝒊𝒏−𝟐𝟖(+)

𝒍𝒊𝒏−𝟐𝟖(−) m+/z+ Egg laying 2 2 

 
𝒍𝒊𝒏−𝟐𝟖(−)

𝒍𝒊𝒏−𝟐𝟖(−) m+/z- 
Egg laying 
defective 

0.29* 1 1 1 1 

*Average embryo viability of lin-28(lf) mutants is 71% 

**Calculated by progeny from 8 individual lin-28(n719) heterozygotes 
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Genes downstream of lin-28 in developmental timing regulation also 

function downstream of lin-28 in somatic gonadal morphogenesis and 

fertility 

Functional interactions of lin-28 with other heterochronic genes for the 

control of C. elegans hypodermal cell lineage developmental timing have been 

described previously (Ambros, 2011; Resnick et al., 2010) (see Fig 2.9E). lin-28 

functions upstream of lin-46 and hbl-1 to control the timing of L2 to L3 fate 

transitions in hypodermal cell lineages, and lin-28 also acts via a pathway 

consisting of let-7, hbl-1, lin-41, and lin-29 to regulate the transition from L4 fates 

to adult fates in the hypodermis.  

We conducted RNAi knockdown experiments to determine whether these 

same heterochronic genes that act downstream of lin-28 for hypodermal cell fate 

timing are also involved in Sp-Ut valve morphogenesis downstream of lin-28. After 

treatment of cog-1:GFP hermaphrodites with lin-28 RNAi, 95% of the animals 

showed an abnormal Sp-Ut valve core morphology similar to that in lin-28(n719) 

mutants. However, around 70% of lin-28(RNAi)-treated let-7(mn112);cog-1:GFP 

hermaphrodites showed a normal Sp-Ut valve core. Also, genetic absence of lin-

46 or lin-29 abolished the Sp-Ut valve defects caused by lin-28(RNAi). Thus, lin-

46(lf), lin-29(lf) or let-7(lf) can fully or partially rescue the Sp-Ut valve defects in lin-

28(RNAi) animals (Fig 2.9A), supporting the idea that these heterochronic genes 

act downstream of lin-28 for somatic gonadal development. hbl-1(RNAi) 

phenocopied the fertility phenotypes of lin-28(n719) mutants, including abnormal 
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Sp-Ut valve core morphology (Fig 2.10A,B). Loss of lin-46 or let-7 function rarely 

affected the Sp-Ut valve core morphological defect in hbl-1(RNAi) animals, 

indicating hbl-1 is epistatic to these genes. Finally, approximately 70% of lin-

29(lf);cog-1:GFP animals showed the wild-type Sp-Ut valve core morphology when 

hbl-1 function was compromised (Fig  2.9A). 
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Figure 2.9 
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Figure 2.9. Genetic epistasis analysis of lin-28 and other heterochronic 

genes for effects on Sp-Ut valve core morphogenesis and fertility.  

(A) The percentage of animals with normal Sp-Ut valve core morphology, 

visualized by cog-1:GFP expression in wild type, let-7(mn112), lin-46(ma164) and 

lin-29(n836) mutants, treated with control RNAi (EV, empty vector strain L4440), 

lin-28(RNAi) or hbl-1(RNAi). Wild type, lin-46(ma164), and lin-29(n836) mutants 

treated with L4440 empty vector RNAi rarely showed Sp-Ut valve defects. let-

7(mn112) mutants with control RNAi showed less than 10% of Sp-Ut valve defects. 

lin-28(RNAi) treatment of wild type led to ~95% Sp-Ut valve defects, an effect that 

was partially or fully suppressed by let-7(mn112), lin-46(ma164) and lin-29(n836). 

hbl-1(RNAi) treatment of wild type also led to Sp-Ut valve defects that were rarely 

suppressed by let-7(mn112) and lin-46(ma164) and moderately suppressed 

(~70%) by lin-29(n836). (Number of animlals ≥12 per each assay; number of 

independent replicate assays = 5 for WT with hbl-1 RNAi, 4 for lin-46(ma164) or 

lin-29(n836) with hbl-1 RNAi, 3 for all other assays, Data are shown as mean ± SD, 

unpaired t-test, p-values denoted as asterisks or “NS” were calculated by each 

mutant compared to wild type in each RNAi set.  NS; not significant, 

**p<0.01,***p<0.001,****p<0.0001)   (B-D) Fertility phenotypes of lin-2(e1309), lin-

28(n719), lin-28(n719);let-7(mn112), lin-28(n719);lin-29(n836), lin-46(ma164);lin-

28(n719) mutants, post-dauer lin-28(n719), and wild type.  (B) Total number of 

viable larva progeny of lin-2(e1309) (n=16), lin-28(n719) (n=64), lin-28(n719);let-

7(mn112) (n=62), lin-28(n719);lin-29(n836) (n=41), lin-46(ma164);lin-28(n719) 
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(n=17) mutants, post-dauer lin-28(n719) (n=9), and wild type (n=4). (C) Embryo 

production of lin-2(e1309) (n=10), lin-28(n719) (n=12), lin-28(n719);let-7(mn112) 

(n=24), lin-28(n719);lin-29(n836) (n=15) mutants.(D) Embryonic viability of lin-

2(e1309), lin-28(n719), lin-28(n719);let-7(mn112), lin-28(n719);lin-29(n836), lin-

46(ma164);lin-28(n719) mutants, post-dauer lin-28(n719), and wild type. (Number 

of animlals≥15 per each assay; number of independent replicate assays = 11 for 

lin-28(n719), 4 for lin-2(e1309), 5 for lin-28(n719);let-7(mn112), and 3 for all other 

strains.)  The reduction in the number of progeny of lin-28(n719) mutants is 

increased by loss of let-7, lin-29 or lin-46. (B). Both embryo production (C) and 

embryo viability (D) are improved by loss of let-7, lin-29 or lin-46. Total number of 

progeny and embryonic viability of lin-28(lf) mutants are also improved by post-

dauer development (B,D). (B-D: Data are shown as mean ± SD, unpaired t-test 

compared to lin-28(lf), NS; not significant, **p<0.01,***p<0.001,****p<0.0001.)  (E) 

The genetic regulatory pathway model for somatic gonadal morphogenesis, 

derived from the results of epistasis experiments presented in Fig 5A–D, is highly 

similar to the model for temporal regulation of hypodermal cell fates derived from 

previous studies (Ambros, 2011; Resnik & Rougvie  2010, See Discussion for lin-

41 involvement in the somatic gonadal morphogenesis).   
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Figure 2.10 
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Figure 2.10. Sp-Ut valve core cell morphology of hbl-1(lf), lin-41(lf) and lin-

14(lf) mutants, and post-dauer suppression of lin-28(lf) morphological 

defects. 

(A-E) Sp-Ut valve core morphology is visualized by cog-1:GFP, shown alone (right 

panel), and overlaid with DIC (left panel).  (A) Animals treated with empty vector 

RNAi have normal Sp-Ut morphology. (B) hbl-1(RNAi) animals. (C) The Sp-Ut 

valve of lin-41(RNAi) animals appeared essentially WT in morphology, except for 

a somewhat reduced size. (D) lin-14(n179) exhibit abnormal Sp-Ut morphology. (E) 

Post-dauer development of lin-28(n719) mutants restored an Sp-Ut valve 

morphology similar to wild type animals.  
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In addition, a normal uterine lumen was observed in ~50% of lin-

28(n719);let-7(mn112) mutants (Fig 2.5D). Most lin-28(n719);lin-29(n836) and lin-

28(n719);lin-46(ma164) mutants showed complete uterine lumen formation (Fig 

2.5E,F). Utse migration defects of lin-28(lf) mutants were also partially suppressed 

by loss of either let-7 or lin-46 (Fig 2.6G-J).  

Consistent with the genetic epistasis observed above for somatic gonadal 

morphogenesis, lin-46(lf), let-7(lf) and lin-29(lf) were also epistatic to lin-28(lf) for 

fertility and embryonic viability. The total numbers of live progeny per animal 

produced by the lin-28(n719);let-7(mn112) and lin-28(n719);lin-29(n836) double 

mutants were significantly higher than that produced by the lin-28(n719) mutants 

(Fig 2.9B). Also, the number of live progeny of lin-28(n719);lin-46(ma164) was 

even greater than that of lin-2(e1309), because the loss of lin-46 rescued the vulva 

and egg-laying defects of lin-28(n719) mutants. lin-28(n719);let-7(mn112) and lin-

28(n719);lin-29(n836) mutants produced more embryos per animal than lin-

28(n719) mutants (Fig  2.9C), and embryonic viability was similarly suppressed in 

these double mutants, compared to lin-28(n719) (Fig 2.9D).  

Overall, our findings indicate that let-7, lin-46, hbl-1, and lin-29 act 

downstream of lin-28 for somatic gonadal development in a network configuration 

essentially identical to that previously-described for the control of hypodermal cell 

fate timing by these same genes (Fig 2.9E).  

To further investigate the relationship between hypodermal developmental 

timing and somatic gonadal morphogenesis, we examined whether post-dauer 
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development can rescue the somatic gonadal defects in lin-28(n719) mutants. A 

previous study showed that the hypodermal heterochronic developmental defects 

of lin-28(n719) mutants, (including precocious vulva, precocious adult cuticle, and 

altered seam cell number) are efficiently suppressed if the mutants develop 

through the dauer larva (an alternative, temporarily arrested, third larval stage) 

followed by “post-dauer” developmental stages (Euling and Ambros VR, 1995; Liu 

and Ambros, 1991). We observed that after post-dauer development, lin-28(n719) 

adults exhibited restored fertility and embryo viability, normal morphology of the 

Sp-Ut valve core cell, uterine lumen, and normal utse migration (Fig 2.9B, 2.9D, 

2.10E, 2.5G, 2.6E, and 2.6F). This suppression of somatic gonadal defects in lin-

28(n719) animals by post-dauer development supports the supposition that lin-28 

acts indirectly, via downstream genes and events, to mediate normal somatic 

gonadal morphogenesis. 
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Heterochronic development between hypodermal tissue and somatic 

gonadal tissues in lin-28(lf) mutants 

Based on the above observations indicating parallels between the control 

of hypodermal developmental timing and somatic gonadal morphogenesis by lin-

28 mutants, we investigated whether the stage-specificity of somatic gonadal 

developmental events might be altered in lin-28(n719) hermaphrodites, in analogy 

to their precocious hypodermal development. As a marker to monitor the 

expression of stage-specific programs in the somatic gonad and hypodermis, we 

employed cog-1:GFP (Palmer et al., 2002), which is expressed in the wild type 

dorsal uterus and Sp-Ut valve core, beginning from late-L3/early-L4 stage (Fig 

2.11A). cog-1:GFP is also expressed in the ventral hypodermis (vulval cell lineages) 

beginning in the mid L4 stage, which is after the onset of cog-1:GFP somatic 

gonadal expression (Fig 2.11B). Thus in the wild type, the somatic gonadal 

expression of cog-1:GFP appears first (late-L3/early-L4 stage) followed later (mid 

L4) by vulval expression.  

We examined whether the normal relative order of cog-1:GFP expression 

in the somatic gonad and vulva is altered in lin-28(n719) mutants. In lin-28(n719) 

hermaphrodites, cog-1:GFP  expression in the vulva was observed precociously 

in the mid-3rd larval stage (Fig 2.11D), consistent with the previously-described 

precocious vulva cell divisions of lin-28(lf) mutants (Euling and Ambros, 1996). 

However, the onset of somatic gonadal expression of cog-1:GFP was normal, 

beginning from the late 3rd larval stage in both lin-28(n719) and in the wild type 
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(Fig 2.11E). Thus, the expression of cog-1:GFP in the vulva precedes the 

expression in somatic gonads in lin-28(n719) mutants. These data suggest that 

the somatic gonadal development, at least as reflected by cog-1::GFP expression, 

is not precocious in lin-28(n719). Therefore, developmental events in hypodermal 

tissues and somatic gonadal tissues are temporally discoordinated in lin-28(n719) 

mutants (Fig 2.11F). We hypothesize that this discord, between the precociously-

developing hypodermis, and normally-timed somatic gonad, causes abnormal 

somatic gonadal morphogenesis. 
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Figure 2.11 
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Figure 2.11. Heterochronic development of the hypodermis, relative to the 

somatic gonad, in lin-28(lf) hermaphrodites.  

(A,B,D,E) cog-1:GFP expression patterns in wild type and lin-28(n719) 

hermaphrodites at indicated developmental stages. The temporal order of the 

onset of cog-1:GFP expression in the somatic gonad and vulva is reversed in lin-

28(lf) compared to the wild type. cog-1:GFP is expressed in both somatic gonadal 

tissues (uterus and Sp-Ut valve) and hypodermal tissue (vulva). The timing of 

expression in wild type and lin-28(n719) mutants is summarized in (C).  In wild 

type, cog-1:GFP is expressed in somatic gonadal tissues at the late 3rd larval stage 

(A) and in the vulva in the middle of the 4th larval stage (B). In lin-28(n719) mutants, 

vulva expression of cog-1:GFP occurs precociously in the middle of the L3 stages 

(D), while somatic gonadal expression of cog-1:GFP  starts at the normal time, in 

the late 3rd larval stage (E).  Both vulval and somatic gonadal expression are 

detected at 3rd lethargus (E).  (F) Model for the importance of lin-28 activity for 

somatic gonadal development: In wild type animals, timing of hypodermis 

development and somatic gonadal development are synchronized. In lin-28(lf) 

mutants, hypodermal development happens precociously while somatic gonadal 

development does not, resulting in heterochronic development between two 

tissues. This heterochrony causes somatic gonadal morphogenesis defects. 
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Hypodermal expression, but not somatic gonadal expression, of lin-28 

rescues abnormal somatic gonadal development, and embryonic lethality in 

lin-28(n719) hermaphrodites 

If the somatic gonadal morphological defects of lin-28(n719) mutants 

originate from discoordination between the timing of hypodermal and somatic 

gonadal development, suppressing the precocious hypodermal development in lin-

28(n719) mutants should also rescue the somatic gonadal phenotypes. To test 

whether lin-28 expression specifically in the hypodermis could rescue the Sp-Ut 

morphological defects of lin-28(n719), we employed Mos1-mediated single copy 

insertion (MosSCI) transformation to generate transgenic worms expressing lin-

28:GFP::lin-28 3’ UTR driven by tissue-specific promotors; these included lin-28 

endogenous promoter sequences, a dpy-7 hypodermal promoter (Gilleard et al., 

1997), and an ehn-3A early somatic gonadal promoter (Large and Mathies, 2010). 

The endogenous lin-28 promoter drives lin-28:GFP expression in neurons and 

hypodermis, where lin-28 is known to be expressed (Moss et al., 1997). Using 

spinning disk microscopy we also detected Plin-28::lin-28::GFP expression in Z1 

and Z4 cells, which are precursors of somatic gonadal tissues, (Fig 2.12A,B). 

Pdpy-7:lin-28:GFP was expressed in the hypodermis during the embryonic and L1 

stages, and Pehn-3A::lin-28:GFP expression was strongest in Z1 and Z4 from the 

late embryo to L1 stages (Fig 2.12C,D). lin-28:GFP levels decreased from the L2 

stage in all three strains, presumably due to repression mediated by the lin-28 3’ 

UTR.  
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Figure 2.12 
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Figure 2.12. Both lin-28 endogenous promoter and ehn-3A promoter drives 

early somatic gonadal expression of lin-28:GFP. 

(A,B) Two Plin-28::lin-28:GFP L1 larvae where GFP expression was detected in 

Z1 and Z4 cell by spinning disk microscopy. (C,D) Z1 and Z4 expression of lin-

28:GFP driven by early somatic gonadal promoter (Pehn-3A::lin-28:GFP). GFP 

expression in Z1 and Z4 cells were detected by fluorescence microscopy 

beginning in late embryogenesis (C) also L1 larvae (D).  
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We next crossed those MosSCI strains with lin-28(n719);cog-1:GFP 

hermaphrodites to assess the relative timing of somatic gonadal and hypodermal 

cog-1:GFP expression. cog-1:GFP was expressed in somatic gonadal tissues prior 

to the vulva in wild-type animals, whereas cog-1:GFP expression in the vulva was 

precocious in the lin-28(n719) mutants (Fig 2.11, 2.13A,2.13B). lin-28 expression 

via its endogenous promoter (Plin-28::lin-28:GFP:lin-28 3’UTR) restored the 

normal relative timing of somatic gonadal and hypodermal cog-1:GFP expression 

in lin-28(n719) mutants (Fig 2.13C). Similarly, in Pdpy-7::lin-28:GFP;lin-

28(n719);cog-1:GFP animals, cog-1:GFP expression in the vulva occurred at the 

normal time, following somatic gonadal expression. Thus, hypodermal expression 

of lin-28 efficiently rescues precocious hypodermal development of lin-28(n719) 

(Fig 2.13D). By contrast, somatic gonadal expression of lin-28 via the Pehn-3A::lin-

28:GFP transgene did not rescue the precocious expression of hypodermal cog-

1:GFP in lin-28(n719) mutants (Fig 2.13E). These results are consistent with cell-

intrinsic activity of lin-28 in the hypodermis to control hypodermal developmental 

timing. 

Does hypodermal expression of lin-28 also rescue the somatic gonadal 

morphogenesis defects of lin-28(n719) hermaphrodites? Indeed, Pdpy-7::lin-

28:GFP did rescue wild-type morphology of the Sp-Ut valve core cell in lin-

28(n719), (Fig 2.13F, H and I), normal uterine lumen formation (Fig 2.5I), and 

normal utse migration (Fig 2.6M,N). By contrast, somatic gonadal lin-28 expression 
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did not rescue lin-28(n719) somatic gonadal defects (Fig 2.13G, 2.13J, 2.5J,2.5K, 

2.6O and 2.6P).  
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Figure 2.13 
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Figure 2.13. Hypodermal expression of lin-28 can rescue developmental 

timing defects and Sp-Ut valve core cell morphogenesis in lin-28(lf) mutants.  

cog-1:GFP expression in the somatic gonad and vulva in late 3rd or early 4th 

larval stage hermaphrodites (A-E), or in the Sp-Ut valve core cell in adult or 4th 

stage hermaphrodites (F-J), of the wild type (A, F), lin-28(lf) (B, G), and lin-28(f) 

with lin-28 expression driven by various promoters (C-E, H-J). Pdpy-7 (D, I) is a 

hypodermal-specific promoter (Gilleard et al., 1997) and Pehn-3A (E, J) is an early 

somatic gonadal-specific promoter  (Large and Mathies, 2010) . Note: In these 

experiments, the promoter-driven lin-28 transgene (C-E, H-J) is also tagged with 

GFP, but lin-28:GFP expression is not detectable at these stages, so all the GFP 

signal shown here corresponds to cog-1:GFP. Plin-28::lin-28:GFP;lin-28(n719) (C) 

and Pdpy-7::lin-28:GFP;lin-28(n719) (D) expresses cog-1:GFP in the somatic 

gonad earlier than in the vulva, as in wild type (A). In contrast, both lin-28(n719) 

mutants (B) and Pehn-3A::lin-28:GFP;lin-28(n719) (E) expresses cog-1:GFP 

precociously in the vulva. Plin-28::lin-28:GFP;lin-28(n719) (H) and Pdpy-7::lin-

28:GFP;lin-28(n719) (I) restores the Sp-Ut core dumbbell structure observed in 

wild type (F). However, the Sp-Ut valve core structure remains as a single lobe 

shape in both Pehn-3A::lin-28:GFP;lin-28(n719) (J) and lin-28(n719) (G).  These 

data suggest that hypodermal expression of lin-28 is sufficient to rescue 

heterochronic development (A-E) and abnormal Sp-Ut valve core morphogenesis 

(F-J) in lin-28(n719) mutants, but somatic gonadal expression of lin-28 cannot 

rescue either defect 
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Because the hypodermal expression of lin-28 suppresses the 

morphological defects of the somatic gonad in lin-28(n719) mutants, we 

investigated whether it also rescues the embryonic lethality and fertility defects of 

these mutants. Expression of either Plin-28::lin-28::GFP or Pdpy-7::lin-28::GFP 

restored the embryo viability of lin-28(n719) progeny, whereas Pehn-3A::lin-

28:GFP expression did not restore viability of lin-28(n719) progeny (Fig 2.14A). 

The total number of live progeny was greater for the Pdpy-7::lin-28:GFP;lin-

28(n719) strain that for the lin-28(n719) mutants. However, only ~15% of animals 

had numbers of progeny comparable with wild-type values, and the other ~85% of 

animals produced fewer than 20 progeny at 25°C (Fig 2.14B). In addition, Pdpy-

7::lin-28:GFP insertional strains in the wild-type background led to a similar 

number of progeny, indicating that the expression of Pdpy-7::lin-28:GFP 

intrinsically induces the fertility defects. We found that egg-laying is defective for 

Pdpy-7::lin-28:GFP;lin-28(n719) and Pdpy-7::lin-28:GFP hermaphrodites (Fig 

2.14C). Vulval functions for egg-laying in those strains were intact, because the 

animals were able to lay eggs occasionally. In contrast, somatic gonadal promoter-

driven lin-28:GFP expression did not affect the total number of progeny in lin-

28(n719) animals (Fig 2.14B). 
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Figure 2.14 
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Figure 2.14. Hypodermal expression of lin-28 enhances fertility of lin-28(lf) 

mutants.  

(A) Embryonic viability of Plin-28::lin-28:GFP;lin-28(n719) and Pdpy-7::lin-

28:GFP;lin-28(n719) are restored to a level similar to that in wild type or lin-

2(e1309) mutants. However, expression of Pehn-3A::lin-28:GFP does not enhance 

the viability of lin-28(n719) embryos. (Number of animlals≥15 per each assay; 

number of independent replicate assays = 4 for lin-28(n719), 3 for all other strains.) 

(B) The number of live larva progeny is increased in Plin-28::lin-28:GFP;lin-

28(n719) (n=36) and slightly enhanced in Pdpy-7::lin-28:GFP;lin-28(n719) (n=53) 

compared to lin-28(n719) mutants (n=25). Progeny numbers for Pdpy-7:lin-

28::GFP insertional lines without lin-28(n719) (n=11) are similar to those of Pdpy-

7::lin-28:GFP;lin-28(n719) (p value=0.80), suggesting that expression of Pdpy-

7:lin-28::GFP  induces fertility defects regardless of lin-28(n719). Progeny 

numbers for Pehn-3A::lin-28:GFP;lin-28(n719) (n=40) are similar to those of lin-

28(n719) mutants. (A,B: Unpaired t-test compared to lin-28(lf), NS; not significant, 

*p<0.05,,****p<0.0001) (C) Embryos of Pdpy-7::lin-28:GFP (upper panel) and 

Pdpy-7::lin-28:GFP;lin-28(n719) (lower panel) are trapped inside adult 

hermaphrodites, indicating that defective egg laying is a cause of the reduced 

fertility in these animals. (Scale bar = 100 µm). 
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Discussion 

C. elegans lin-28(lf) hermaphrodites exhibit a dramatic reduction in fertility, 

in excess of what would be expected as a simple consequence of their vulval 

morphogenesis defects. In principle, it was possible that lin-28 could promote 

fertility entirely via a germline-specific activity, analogous to the demonstrated role 

of mammalian Lin28 in promoting pluripotency and stem cell proliferation (Yu et 

al., 2007; Zhang et al., 2016). Indeed, lin-28 has been reported to regulate the 

germ cell pool size in mice and in C. elegans hermaphrodites (Shinoda et al., 2013; 

Wang et al., 2017a). However, the reported effects on germ cell pool size in C. 

elegans, after germline knockdown of lin-28, did not include substantially reduced 

fertility (Wang et al., 2017a). We performed tissue-specific RNAi experiments using 

rrf-1(lf) and ppw-1(lf), and observed that somatic knockdown of lin-28 caused 

greater reduction of live progeny number than did germline knockdown of lin-28 

(Fig 2.15). This suggests that the dramatically reduced reproduction of lin-28(lf) 

hermaphrodites is caused by fertility-promoting activities of lin-28 outside of the 

germline, that is, within somatic cell lineages of the gonad and/or other tissues. 

Other examples in which lin-28 controls the development of reproductive tissues 

other than germ cells have been reported in flies and mice. The Drosophila egg 

chamber is fused abnormally early in lin-28 null mutants, and the development of 

mice vaginal openings is delayed in lin-28a transgenic mice (Stratoulias et al., 

2014; Zhu et al., 2010).  

 



98 
 

Figure 2.15 
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Figure 2.15. Reduction of lin-28 function in the soma decreases fertility of 

hermaphrodites more than does reduction of lin-28 function in the germline. 

Wild type, rrf-1(pk1417) mutants, and ppw-1(pk2505) mutants were fed with 

lin-28 RNAi and empty vector RNAi, and the number of progeny produced by each 

animal was determined. ppw-1(pk2505) lin-28(RNAi) animals all exhibited reduced 

fertility, similar to lin-28(RNAi) animals. However, rrf-1(pk1417) lin-28(RNAi) 

animals were, overall, less affected by lin-28(RNAi), with only a minority of animals 

exhibiting reduced fertility. (Error bar shows standard deviation. unpaired t-test, 

each strain with lin-28(RNAi) was compared to corresponding strain with empty 

vector (RNAi). NS; not significant, ****p<0.0001.) 
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Here we investigated the somatic function of lin-28 in promoting C. elegans 

hermaphrodite fertility. Our results show that lin-28 is required for the completion 

of certain somatic gonadal morphogenetic events, specifically, the enlargement of 

the uterine lumen, the migration of utse nuclei, and extension of the Sp-Ut valve 

core, and that these somatic gonadal morphogenesis defects likely underlie the 

reduced fertility of lin-28(lf) hermaphrodites. In particular, the abnormal Sp-Ut valve 

of lin-28(lf) animals has a potent impact on fertility by preventing fertilized embryos 

from entering the uterus, thereby inhibiting ovulation and resulting in reduced 

embryo production.  

We found that egg shell integrity is also compromised in lin-28(lf) mutants, 

which negatively affects embryonic viability, similarly to other egg shell defective 

mutants (Johnston et al., 2006; Johnston et al., 2010; Maruyama et al., 2007). 

Moreover, we found that another spermathecal exit mutant fln-1(lf) has egg shell-

defective phenotypes similar to lin-28(lf) (Fig  2.8C), suggesting a causal link 

between spermathecal retention and egg shell integrity. We speculate that physical 

damage to the egg shells may occur when the embryos are trapped in the 

spermatheca. Interestingly, deficiency of cbd-1, an essential component of C. 

elegans egg shell, leads to pinched off embryos reflecting incomplete 

spermathecal exit (Johnston et al., 2010). This suggests that damage to the egg 

shell of embryos lingering too long in the spermatheca could further aggravate an 

underlying spermathecal exit defect. Further research is needed to clarify the 

relationship between spermathecal exit and egg shell integrity. 
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Our results point to a close coupling between the hypodermal and somatic 

gonadal phenotypes in lin-28(lf) mutants. First, we found that a very similar 

configuration of the known heterochronic genes mediates the effects of lin-28(lf) 

on hypodermal developmental timing and on somatic gonadal morphogenesis (Fig 

2.9E). The exception is lin-41; we could not find evidence that lin-41, a downstream 

target of let-7 for hypodermal developmental timing (Slack et al., 2000), is involved 

in Sp-Ut valve core morphogenesis. The lin-41(RNAi) animals displayed a 

superficially normal dumbbell-shaped Sp-Ut valve, albeit somewhat smaller than 

the wild-type valve (Fig 2.10C). This result may reflect either an insufficient 

knockdown of lin-41 by RNAi in these experiments, or that lin-41 does not 

participate in somatic gonadal development. In the latter case, hbl-1 would appear 

to function as a main downstream target of let-7 in somatic gonadal 

morphogenesis. 

Our second finding indicating a linkage between lin-28(lf) hypodermal and 

somatic gonadal phenotypes, is that post-dauer development suppresses both the 

hypodermal and the somatic gonadal developmental defects of lin-28(lf) 

hermaphrodites. This result in particular accentuates that the somatic gonadal 

defects of lin-28(lf) do not reflect a direct role of lin-28 in somatic gonadal 

development, per se; rather, that somatic gonadal morphogenesis fails in lin-28 

mutants as an indirect consequence of precocious development. Consistent with 

this idea, another precocious mutant, lin-14(lf) (Ambros and Horvitz, 1984a), 

showed similar Sp-Ut valve defects to lin-28(lf) mutants (Fig 2.10D). 
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Importantly, we did not find evidence for precocious development of somatic 

gonadal events in lin-28(lf). In particular, we observed that the timing of the onset 

of expression of certain fluorescent markers of L3 and L4 somatic gonadal 

developmental events was not altered in lin-28(lf), even though subsequent 

morphogenesis failed. Assuming that the somatic gonad and the hypodermis each 

has its own developmental clock, it would appear that the hypodermal 

developmental clock of lin-28(lf) mutants is accelerated, while the somatic gonadal 

developmental clock runs normally, resulting in discoordination of developmental 

timing between the two tissues during the L3 and L4 stages (Fig 2.11F). We 

propose that it is this temporal discord between the accelerated hypodermis, and 

the normally-scheduled somatic gonad, that results in failure of somatic gonadal 

morphogenesis.  

The apparent absence of precocious development of the somatic gonad of 

lin-28(lf) animals suggests that lin-28 may affect somatic gonadal morphogenesis 

cell non-autonomously, by controlling one or more signals from the hypodermis to 

the somatic gonad. In strong support for this model, we found that expression of 

lin-28 specifically in the hypodermis could rescue the somatic gonadal 

developmental defects of lin-28(lf) mutants. Conversely, expression of lin-28 

specifically in the somatic gonadal precursor lineage did not rescue any lin-28(lf) 

phenotypes. Based on these observations, we propose that the principle function 

of lin-28 with regards to somatic gonadal development is to act within the 

hypodermis to specify a schedule of hypodermal events that is properly 
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coordinated with a corresponding schedule of somatic gonadal developmental 

events. Accordingly, normal somatic gonadal morphogenesis is proposed to 

require a coordinated agenda of signaling between the hypodermis and the 

somatic gonad during the L3 and/or L4 stages.  

Then, by what mechanisms could hypodermal activity of lin-28 regulate the 

development of a different tissue? There are precedents in C. elegans for cell non-

autonomous developmental signals originating from the hypodermis. A recent 

study showed that heterochronic genes acting in the hypodermis can modulate 

mTOR signaling in the intestine (Dowen et al., 2016). This signaling requires the 

mTORC2 complex specifically and its downstream factors including rict-1/rictor, 

sinh-1/sin, and sgk-1/sgk1 in the intestine. However, it is unlikely that somatic 

gonadal development is related to mTORC2 signaling, because we found that rict-

1 (RNAi) in lin-28(lf) mutants did not induce or suppress Sp-Ut valve defects (data 

not shown). In another example, it has been reported that migration of the 

hermaphrodite-specific neurons and arborization of sensory neurons are regulated 

by hypodermal expression of the microRNA mir-79 and MNR-1/menorin, 

respectively (Pedersen et al., 2013; Salzberg et al., 2013). Hypodermal 

glycosylated cell surface molecules or signaling cell adhesion molecules are key 

downstream factors for neuronal morphogenesis in each case, implying this 

nonautonomous signaling may require physical contact with other tissues. 

Indeed, seam cells in the hypodermis become physically connected to the 

utse (uterine seam cell) of C. elegans hermaphrodites. The connection between 
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these two tissues is thought to be formed during the mid to late L4 stages in wild-

type animals (Newman et al., 1996). The precocious hypodermal maturation in lin-

28(lf) animals might cause this connection to be formed aberrantly, or not at all. 

Alternatively, the reduced number of seam cells in lin-28(lf) mutants may alter 

positioning of seam cells in the hypodermis, disrupting the normal connection 

between seam cells and utse. However, there is evidence that utse defects may 

not necessarily be associated with Sp-Ut abnormality. lin-29 expression in the 

anchor cell induces signals for utse precursor cells to adopt utse fates, and lin-

29(lf) mutants do not form a proper utse  (Newman et al., 2000). However, loss of 

lin-29 does not cause any detectable abnormality in Sp-Ut valve core morphology 

(Fig 2.9A). Moreover, it has been reported that anchor cell invasion genes (fos-1, 

mig-10, egl-43, cdh-3, and zmp-1) are involved in utse development (Ghosh and 

Sternberg, 2014), but we did not observe any abnormality in the Sp-Ut valve upon 

RNAi knockdown of these genes (data not shown). Nevertheless, it will be 

interesting to examine whether the physical connection between the hypodermal 

seam and gonadal utse is formed properly in lin-28(lf) hermaphrodites. 

It is striking that lin-28(lf) mutants exhibit coordinated defects in the final 

stages of morphogenesis in at least three distinct somatic gonadal structures: 

extension of the Sp-Ut valve core, positioning of the uterine seam cell nuclei, and 

expansion of the lumen of the uterus. Since all three of these defects are highly 

penetrant in lin-28(lf), and are coordinately rescued by appropriate lin-28-

expressing transgenes, we were not able to determine if these defects are 
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expressed independently, or whether for example, one of them is the primary 

defect that is linked to hypodermal developmental timing, and the other defects are 

secondarily precipitated by the first.  Further research is needed to identify any 

cause-effect relationships between utse migration, Sp-Ut valve morphogenesis, 

and uterine lumen formation.  

Overall, our studies of lin-28 in the context of C. elegans reproductive 

system development provides an informative model for exploring fundamental 

principles of multicellular development, including how the generation of organized 

cellular complexity requires precise temporal coordination of events across 

interacting tissues. Our findings exemplify how a cell-intrinsic developmental 

timing program can be required not only cell-autonomously to specify temporal cell 

fates, but also to control cell-nonautonomous signaling that is critical for proper 

development of interacting tissues. Our identification of cell-nonautonomous 

hypodermis-to-gonad developmental signaling controlled by lin-28 and the 

heterochronic pathway should set the stage for future studies addressing the 

identity and potential evolutionary conservation of the molecular components of 

the downstream signal(s).  
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Material and Methods  

Culture of C. elegans strains  

C. elegans wild type (Strain N2) and mutant strains (listed in Table 2.2) were 

grown and maintained (at 25oC unless otherwise noted) on nematode growth 

media (NGM) agar plates seeded with E. coli (strain HB101). A list of genotyping 

primers for allele confirmation can be found in Table 2.3. Synchronized populations 

of larvae at defined developmental stages were obtained as previously described 

(Stiernagle, 2006). Briefly, embryos were collected using sodium hypochlorite and 

5N NaOH, washed with M9 buffer, and incubated in M9 buffer overnight at 20℃, 

placed on NGM plates seeded with HB101, incubated for defined lengths of time 

at 20℃ or 25℃, and developmental stage was assessed by DIC microscopy of a 

sample of worms from the population (Byerly et al., 1976). 
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Table 2.2. C. elegans strains used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strain Name Genotype

N2

VT2932 lin-28(n719)I 

CB1309 lin-2(e1309)X

PS3662 syIs63[cog-1::GFP + unc-119(+)]

DZ325 ezIs2[fkh-6::GFP + unc-119(+)]; III; him-8(e1489) IV

VT2929 lin-28(n719)I;syIs63

VT2930 lin-28(n719)I;ezIs2

VT866 lin-28(n719)I;let-7(mn112) unc-3(e151) X

MT2001 lin-28(n719)I;lin-29(n333) II.

VT937 lin-28(n719)I;lin-46(ma164) V

AG212 unc-119(ed3); avIs143 [pDNL10 (unc-119(+) + cbd-1 prom::CBD-1::mCherry::cbd-1 3′UTR)]

VT3454 lin-28(n719);avIs143

UN0810 fln-1 (tm545)

VT3660 lin-14(n179);syIs63

VT3730 let-7(mn112);mnDP1;syIs63

VT3580 lin-29(n836);syIs63

VT3581 lin-46(ma164) maIs105 [col-19:GFP]; syIs63

MH1319 kuIs29 [egl-13p::GFP+unc-119(+)]

VT3661 lin-28(n719);kuIs29

VT3731 lin-28(n719);let-7(mn112);kuIs29

VT3665 lin-2(e1309);syIs63

VT3664 lin-2(e1309);lin-28(n719);syIs63

VT3733 lin-2(e1309);kuIs29

VT3732 lin-2(e1309);lin-28(n719);kuIs29

EG4322 ttTi5605 II; unc-119(ed3) III;

WM186 avr-14(ad1302) I; ttTi5605 II; unc-119(ed3) III; avr-15(ad1051) glc-1(pk54) V

VT3392 avr-14(ad1302) I;maIs402[unc-119(+);pehn-3A:ln-28:GFP:lin-28 3'UTR];unc-119(ed3) III;avr-15(ad1051) glc-1(pk54) V

VT3486 avr-14(ad1302) I;maIs403[unc-119(+);plin-28:ln-28:GFP:lin-28 3'UTR];unc-119(ed3) III;avr-15(ad1051) glc-1(pk54) V

VT3702 maIs409[unc-119(+); pdpy-7:ln-28:GFP:lin-28 3'UTR]II;unc-119(ed3) III

VT3517 lin-28(n719);maIs402;syIs63

VT3516 lin-28(n719);maIs403;syIs63

VT3703 lin-28(n719);maIs409;syIs63

VT3734 lin-28(n719);maIs402;kuIs29

VT3735 lin-28(n719);maIs403;kuIs29

VT3736 lin-28(n719);maIs409;kuIs29

NL2098 rrf-1(pk1417)

NL2550 ppw-1(pk2505)
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Table 2.3. Primer sequences used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primers Sequences

1 lin-28(n719) genotyping F ttataaataaaagtcggag 

2 lin-28(n719) genotyping R cctttcagtccttgtccttctac

3 let-7(mn112) genotyping F gataccatggaggacgacgg

4 let-7(mn112) genotyping R gtagaaaattgcatagttca

5 lin-29(n836) genotyping F ggcttatcagtttgatggca

6 lin-29(n836) genotyping R cccgcaaatttccggaatc

7 lin-46(ma164) genotyping F gaacttcaagattcctactgtag

8 lin-46(ma164) genotyping R gaaatcacgacaattgtagacattg

9 lin-14(n179) genotyping F gaaacagctccaccactc

10 lin-14(n179) genotyping R gttctgacactggtcgg

11 attB4+ lin-28 promoter F ggggcaactttgtatagaaaagttggatttcggtaaaactcttcaagc

12 attB1r+ lin-28 pormoter R ggggctgcttttttgtacaaacttgtcctgaaaaagatttttaaaattttt

13 attB4+ dpy-7 promoter F ggggcaactttgtatagaaaagttgga aatctcattccacgatttct

14 attB1r + dpy-7 promoter R ggggctgcttttttgtacaaacttgt ttatctggaacaaaatgta

15 attB4+ehn-3 promoter F ggggcaactttgtatagaaaagttggactaatctagaaaaatacgaca

16 attB1r+ ehn-3 promoter R ggggctgcttttttgtacaaacttgttttgtaatttggaagctgg

17 attB1+lin-28 gene F ggggacaagtttgtacaaaaagcaggcttcgttcagcaatgcttttaatta

18 lin-28 1st exon 3'(overlapping) aggtgttggtgacgggagcctctcgaaggaag

19 lin-28 2nd exon 5'(overlapping) gaggctcccgtcaccaacacctcgatactttgg

20 lin-28 100bp of 5' upstream gttcagcaatgcttttaatta

21 Primer  for GFP fusionF ggcgcgcctctagaggatc

22 Primer  for GFP fusion R(Overaping) cggggatcctctagaggcgcgccttcatcagaggaattactattcttttc

23 GFP R ctatttgtatagttcatccatgcca

24 attB2+lin-28::GFP gene R ggggaccactttgtacaagaaagctgggtt ctatttgtatagttcatccatgcca

25 attB2r+lin28_3UTR(5) ggggcagctttcttgtacaaagtggga aatcatctagacactgagaata

26 attB3 +lin-28_3UTR(3) ggggcaactttgtataataaagttgt gccaacttgttgaggattgttaa

27 ttTi5605 genotyping F tgacattgtcgaaatgtcctc

28 ttTi5605 genotyping R gttatacagaagaccgttacg

29 ttTi5605 genotyping 2F tctggctctgcttcttcgtt

30 ttTi5605 genotyping 2R caattcatcccggtttctgt

ttTi5605: 1411bp

 transgene inserted: 7kb<

ttTi5605: 0bp

transgene inserted: 1772bp 

lin-28 3'UTR:PCR ampliifed,

follwed by BP reaction with pDONR P2R-P3

100bp+lin-28:GFP (P:Primer, T:template, PCR 

product:A~D) 

1. A: (P) 20/18, (T) gDNA

2. B:  (P) 19/22, (T)  gDNA 

3. C:  (P)20/22   (T) A,B  -> Removal of the first 

exon 

4. D:  (P) 21/23, (T) XW12 (Wei et al., 2012)

5. E :  (P) 17/24  (T) C,D  ->GFP fusion

6.  BP reaction E with pDONR 221

sequencing to 

confirm n719

WT :476 bp

mn112: 263 bp

WT:273bp

n836: 200bp

sequencing to 

confirm ma164

sequencing to 

confirm n179

lin-28 Promoter:PCR ampliifed,

followed by BP reaction with pDONR P4P1r

dpy-7 promoter: PCR ampliifed,

followed by BP reaction with pDONR P4P1r

enh-3A promoter:PCR ampliifed,

follwed by BP reaction with pDONR P4P1r
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Microscopy 

For DIC and fluorescence microscopy, worms were anesthetized with 0.2 

mM levamisol and mounted on 2% agarose pads. All images except the following 

were obtained with a ZEISS Axiocam 503 mono: Figure 2.4. (Leica DM 5500Q 

confocal microscopy), Figure 2.12 (3i (Intelligent imaging Innovations) Everest 

spinning disk confocal microscopy). The videos were taken with a Zeiss Axioplan2. 

For gonad DAPI staining, hermaphrodites were cut with a syringe needle and the 

extruded gonads were fixed with 95% ethanol. After washing twice with M9, the 

dissected gonads were incubated with 4’6’-diamidino-2-phenylindole solution (100 

ng/ml) for 10 min in a humidified chamber and washed again with M9 (Modified 

from (Shaham, 2004)).  

RNAi  

RNAi by feeding worms with E. coli expressing double-stranded RNA was 

conducted as previously described (Conte et al., 2015). HT115 bacterial RNAi 

strains  (lin-28, hbl-1, lin-29, lin-46, rict-1, fos-1, mig-10, egl-43, cdh-3, zmp-1) and 

an empty vector strain (L4440) from the Ahringer library were used (Kamath and 

Ahringer, 2003). 

Analysis of fertility and embryonic lethality  

Individual young adult hermaphrodites were placed, one per plate, on a 

NGM plates seeded with HB101, and the number of live progeny from each 

hermaphrodite was counted 3~4 days later. To determine embryo viability, gravid 
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adult hermaphrodites were dissected with a syringe, the released embryos were 

collected, and transferred to NGM plates seeded with HB101. The total number of 

embryos was counted immediately, and after 36 hrs incubation at 25 ℃, the 

number of live animals was counted.  Viability was calculated as (Number of live 

animals / Total number of embryos seeded) X 100%.  

Egg shell integrity  

Egg shell permeability was accessed using FM 4-64 dye (Sigma,T13320), 

as described (Johnston et al., 2006). Briefly, embryos were dissected from gravid 

hermaphrodites in 150 mM KCl with 30 µM of FM4-64, and the proportion of 

embryos infiltrated by FM4-64 was measured using fluorescence microscopy.  

Construction of plasmids 

To generate transgenic strains containing tissue specific promoters driving 

lin-28:GFP, we removed the sequence between the first exon and second exon 

(I:8409341-I:8410415) of lin-28a to prevent the sequence from serving as an 

endogenous promoter (Moss et al., 1997). GFP sequences  were adapted  from 

XW12 (Wei et al., 2012) and were fused in frame to the carboxy terminus of  lin-

28 coding sequence. The primers used for the overlapping PCRs for these 

procedures are listed in Table 2.3. We used Gateway®  Technology (Invitrogen, 

cat 12535-019) to construct transgenic vectors. lin-28:GFP was cloned into the 

gateway entry vector pDONR P2P3 by BP reaction.  Also, the promoter regions of 

enh-3A, lin-28, and dpy-7 were cloned into pDONR P4P1r by BP reaction. lin-28 
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3’UTR was cloned into pDONR P2rP3. LR reactions of these three entry vectors 

with pCJF150 yielded final vectors containing the following transgenes for injection: 

pSW40(plin-28), pSW42(pehn-3A), and pSW43(pdpy-7). The sequences for all 

primers used in this procedure can be found in Table 2.3 and the maps of pSW40, 

pSW42, and pSW43 can be found in Figure 2.16. 
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Figure 2.16. Vector maps of pSW40, pSW42, and pSW43 injected to make 

transgenic animals.  
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Generation of MosSCI transgenic lines  

MosSCI single-copy insertions (into the ttTi5605 Mos1 allele, near the 

center of chromosome II) were obtained using the protocol previously described 

on the “wormbuilder” website (http://www.wormbuilder.org/). For each plasmid 

construct, MosSCI transformation was generally conducted using the direct 

injection approach (Frøkjæ r-Jensen et al., 2012), and also using the approach 

employing extrachromosomal array intermediates and ivermectin selection for 

insertion (Shirayama et al., 2012). To prepare plasmids for injection, the following 

plasmids were purified using a midiprep kit (Qiagen, Cat.12143): pSW40, pSW42, 

PSW43, pCFJ601 (Peft-3::transposase), pMA122 (Phsp::peel-1), pGH8 (Prab-

3::mCherry),  pCFJ90 (Pmyo-2::mCherry), pCFJ104(Pmyo-3::mCherry), 

pJL44(Phsp-16.48∷MosTase∷glh-2 3’UTR), pCCM416(Pmyo-2::avr-15), and 

pRF4(rol-6(su1006)). For the direct injection method, injection mixtures consisted 

of pCFJ601(50 ng/µl), pMA122(10 ng/µl), pGH8(10 ng/µl), pCFJ90(2.5 ng/µl), 

pCFJ104 (5 ng/ul), and one of the transgene-containing plasmids (pSW40, pSW42, 

or pSW43(25 ng/ul); the mixture was injected into EG4322 hermaphrodites and 

injected animals were placed singly onto NGM plates seeded with HB101. 

Following 7~10 days of incubation at 25 ℃, cultures were heat-shocked (35 ℃, 1hr) 

to kill any worms with an extrachromosomal array and surviving animals were 

cloned. After allowing them to produce progeny, worms are genotyped to identify 

single copy transgene inserted strains. For the approach using ivermectin selection, 

we injected a mixture of pJL44(50 ng/µl), pCCM416(50 ng/µl), and pRF4(50 ng/µl) 

http://www.wormbuilder.org/
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with one of pSW40, pSW42, or pSW43(15 ng/ul) into WM186 hermaphrodites. 

After allowing the progeny of injected animals to grow for multiple generations, 

they were heat-shocked (35 ℃, 1 hr) to induce heat shock promoter driven 

transposase expression from extra chromosomal arrays, and single single-copy 

transgene inserted strains were selected by invermectin resistance (10 ng/ml) 

against extrachromosomal arrays. We obtained VT3702 by the direct injection 

method, and VT3486 and VT3392 by the extrachromosomal array intermediate 

method. We crossed those strains to VT2929 to obtain VT3703, VT3517 and 

VT3516 (Table 2.2). 
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Chapter III. Characterization of C. elegans lin-28 

Isoforms and Their Functions 

-Abstract 

-Background and Significance 

-Results 
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Abstract 

The C. elegans genome encodes two isoforms of lin-28, lin-28a and lin-28b, 

which differ in their first exons, but have identical second and third exons. Here we 

investigated the expression patterns and functions of each isoform in 

hermaphrodites. Only lin-28a mRNA is trans-spliced with the spliced leader 1 (SL1) 

sequence, potentially causing differences in subsequent mRNA regulation relative 

to lin-28b. Our analysis of expression patterns suggests that lin-28a and lin-28b 

are co-expressed in the hypodermis, neurons, and muscle. To determine the 

function of each isoform, we generated two individual knock-out mutants, lin-28a(lf) 

and lin-28b(lf), using CRISPR-Cas9 technology. We found that lin-28a and lin-28b 

function essentially redundantly. Single-isoform knockout mutations of either 

isoform do not show defects in fertility, embryonic viability, or somatic gonadal 

development. However, our findings indicate a slightly lesser contribution of lin-

28b compared to lin-28a in the context of seam cell fate progression.  
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Background and Significance 

The C. elegans genome encodes two isoforms of lin-28, lin-28a and lin-28b, 

which differ in their first exons. The function of lin-28 in developmental timing has 

been investigated extensively, and most studies have used lin-28(n719), a putative 

null mutation. The n719 allele contains a point mutation at the splicing donor 

sequence right after the second exon. Because lin-28a and lin-28b share second 

and third exons, the n719 mutation leads to loss of function of both isoforms. 

In the present study, we examined the expression and function of individual 

lin-28 isoforms. For this purpose, we constructed a reporter strain that can 

distinguish between the spatial expression patterns of the two isoforms. We also 

generated selective isoform-specific knock-out mutations using CRISPR-cas9 

technology. Our results suggest overall functional redundancy of lin-28a and lin-

28b, consistent with their overlapping expression in diverse tissues. In addition, 

our study established reporter strains and genetic mutants that can be employed 

to further characterize the two lin-28 isoforms in other biological contexts, for 

example under stress conditions or sensitized genetic backgrounds. 

 

 

 

 



118 
 

Results  

Genomic structure of C. elegans lin-28  

The two isoforms of LIN-28 differ in their first exons (Fig 3.1A). The genomic 

locus of lin-28 spans from chromosome I:8407802~8412955, which includes four 

different exons. The first exons of each isoform encode 47-amino-acids and 16-

amino-acids, respectively. The second and third exons, which are shared by the 

two isoforms, encode two RNA-binding domains, the CSD and the ZFD. Therefore, 

both isoforms contain the conserved RNA binding domains of LIN-28. Although the 

first exons of the two isoforms do not contain any recognizable functional domains, 

both are well conserved among other nematodes including C. brenneri, C. 

briggsae, and C. tropicalis suggesting they might have conserved functions (Fig 

3.1B,C). 
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Figure 3.1 

A 
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Figure 3.1. Structure of C. elegans genes encoding LIN-28 and sequence 

conservation of first exon of lin-28 isoforms among nematode species 

 (A) The first exon differs between lin-28a and lin-28b. The second and third exons 

are shared by the two isoforms and encode the cold shock domain (CSD) and zinc 

finger domain (ZFD), respectively. Red triangles show the locations of the spliced 

leader 1 (SL1) trans-splicing donor sequence (TTTCAG) upstream of each first 

exon. The expected protein sizes of each isoform were calculated. (B,C) Homology 

of peptides encoded by the first exon in different nematode species. The 

sequences were obtained from the UCSC genome browser 

(https://genome.ucsc.edu/cgi-bin/hgGateway), and amino acids were aligned 

using the T-coffee program (http://www.tcoffee.org/Projects/tcoffee/). The 

homology scores compared to C. elegans are shown in parentheses.  
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Expression patterns of lin-28a and lin-28b 

We speculated that the two isoforms might be expressed differently for 

several reasons. First, they appear to potentially use different promoters for 

transcription. In the 5’ direction upstream of lin-28, the closest coding sequence of 

another gene is 2488 bp away from the start of the first exon of lin-28a, and thus, 

the promoter region of lin-28a could be located between these sequences (Fig 

3.1A). The first exon of lin-28b is 931 bp downstream from the end of the first exon 

of lin-28a, and a sequence in this region might function as the promoter region of 

lin-28b (Fig 3.1A). Nonetheless, we cannot exclude the possibility that lin-28a and 

lin-28b are spliced from the same transcript via alternative splicing events. The 

levels of their cDNAs are likely also affected by the individual splicing efficiency 

between the first exon of lin-28a and lin-28b with their second exons. High-

throughput RNA sequencing presented in wormbase homepage showed the 

expression level of the first exon of lin-28a was higher than that of lin-28b (Fig 

3.2A).  

To investigate the spatial expression pattern of each isoform, we generated 

a lin-28 transcriptional reporter strain with differential fluorescent protein tagging 

of the two isoforms. We generated a “minigene,” which contained the sequence I: 

8409314~8412955 of lin-28. The minigene included 2488 bp upstream of lin-28a 

up to another coding sequence of F02.E9.7, the first exon of lin-28a, the first exon 

of lin-28b, and the first 27 bp of their second exon (Fig 3.2B). Because lin-28a and 

lin-28b have the same frame to encode their peptides, splicing with common 
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second and third exons, we artificially added one base pair inside the first exon of 

lin-28b to change its frame. We added the green fluorescent protein (GFP) coding 

sequence in the frame with the lin-28a coding sequence and the mCherry coding 

sequence in the frame with the lin-28b coding sequence. Therefore, this reporter 

expresses GFP if lin-28a is transcribed and spliced and mCherry if lin-28b is 

transcribed and spliced (Fig 3.2B). Extrachromosomal arrays with this construct 

showed that GFP and mCherry were co-expressed in neurons, hypodermis, and 

muscle tissues, indicating that both lin-28a and lin-28b are expressed in these 

tissues (Fig 3.2 C-E). Thus, the spatial expression patterns of lin-28a and lin-28b 

isoforms appear to be largely identical. 
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Figure 3.2 

A    lin-28 RNA-seq data uploaded in worm base homepage(www.wormbase.org) 

 

B      Isoform dependent differential expression reporter system  
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Figure 3.2. Expression patterns of lin-28a and lin-28b  

(A) RNA-seq data presented in wormbase shows that expression of the first exon 

of lin-28a was higher than that of lin-28b.(B) “Minigene” structure with expression 

of GFP or mcherry depending on expression of lin-28a or lin-28b, respectively. 

One base pair was added inside the lin-28b sequence to make lin-28b in frame 

with mCherry but not GFP. (C-E) Extrachromosomal array expression patterns 

using “minigene” containing vector in (B). GFP and mCherry expression 

overlapped in hypodermis (C,E, depicted by **), neural cells (D), and muscle cells 

(C,E), indicating spatial co-expression of LIN-28 isoforms. 
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Only lin-28a is trans-spliced by SL1 sequence 

 More than half of C. elegans mRNAs are trans-spliced with the 22 nt spliced 

leader sequence 1 (SL1). Spliceosomes catalyze this trans-splicing, connecting 

the 5’ splice leader of the 100-bp SL1 RNA to a 5’ exon of the pre-mRNA,  and in 

the process removing 5’ (“outtron”) sequences from the pre-mRNA (Blumenthal, 

2012) (Fig 3.3A). The sequence  TTTCAG, which can be transcribed to the 3’ splice 

splice acceptor sequence UUUCAG (Conrad et al., 1991; Conrad et al., 1993), is 

found 1 bp upstream of the first codon of lin-28a and 705 bp upstream of the first 

codon of lin-28b in the C. elegans genome (Fig 3.1A). To determine whether either 

of the lin-28 isoforms is trans-spliced by SL1, we conducted reverse transcription 

polymerase chain reaction (RT-PCR) experiments. We generated cDNA pools 

from mixed stage C. elegans hermaphrodites. PCR using the SL1 sequence-

specific primer and a primer specific to each isoform showed that cDNA was 

amplified with the lin-28a specific primer, but not with the lin-28b specific primer 

(Fig 3.3B). We confirmed that the sequence of the amplified product was matched 

to SL1 spliced lin-28a as expected by Sanger sequencing. This result indicates 

that only lin-28a is trans-spliced by the SL1 sequence. The 5’ cap of the SL1 leader 

sequence is tri-methylated rather than mono-methylated (Hastings, 2005). Thus, 

only lin-28a mRNA may contain a tri-methyl guanosine cap, which may induce a 

subsequent translational process that differs from those of lin-28b mRNA. 
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Figure 3.3 

A 

 

B 
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Figure 3.3. lin-28a transcripts are SL-1 trans-spliced. 

(A) Schematic representation of SL-1 trans-splicing process. More than half of C. 

elegans transcripts are trans-spliced with the SL1 leader sequences, which contain 

a tri-methylated 5’ cap. (B) RT-PCR results using cDNA of wild-type C. elegans 

hermaphrodites. PCR was performed with primer binding to the SL1 leader 

sequence and each isoform-specific primer. PCR band is only amplified with the 

SL1 primer/lin-28a specific primer set (**). This band was purified and confirmed 

by Sanger sequencing.  
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Construction of lin-28a(lf) and lin-28b(lf) mutants 

To investigate the functions of lin-28a and lin-28b, we generated loss of 

function mutants of each isoform, lin-28a(lf) and lin-28b(lf), using CRISPR-Cas9 

technology. We obtained a mutant with a 4-bp deletion (ma289) in the coding 

sequence of the first lin-28a-specific exon and a mutant with a 4-bp deletion 

(ma331) in the coding sequence of the first lin-28b-specific exon (Fig 3.4A). 

 The ma289 and ma331 4 bp deletions are expected to express frame-

shifted peptides of LIN-28A or LIN-28B respectively, leading to isoform-specific 

early translational termination. We performed western blotting of mixed stage 

animals using LIN-28 anti-serum to assess expression of lin-28a and lin-28b in the 

mutants. The western blot pattern of LIN-28 in wild-type C. elegans consisted of 

two bands, an upper band between 26 kD and 37 kD and a lower band between 

19 kD and 26 kD. This pattern is consistent with immunoblots obtained using LIN-

28 antibody in previous studies (Morita and Han, 2006; Seggerson et al., 2002). 

The predicted molecular weights of LIN-28a and LIN-28b are 25.47 kD and 21.79 

kD, respectively (Fig 3.1A), suggesting that the faster-running band on the western 

blot (“B” in Fig 3.1A) corresponds to LIN-28B, and the slower running band 

corresponds to LIN-28A (apparently running slower than expected for unknown 

reasons). These assignments appear to be correct, as the upper band is absent in 

lin-28a(ma289), and the lower band is absent in lin-28b(ma331).   
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Figure 3.4 

A 

 

B 
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Figure 3.4. Generation of isoform-specific knockout mutants 

 (A) lin-28a(ma289) and lin-28b(ma331) mutants were obtained using CRISPR-

Cas9 technology. The 4-bp deleted sequences are shown and were expected to 

cause a frame shift mutation in each isoform (wt=wild type). (B) Western blot 

analysis of wild-type, lin-28a(ma289), lin-28b(ma331), and lin-28(n719) using anti-

LIN-28 antiserum. Wild-type showed two major bands (A,B), whereas each isoform 

mutant had only one major band (A or B). lin-28(n719) putative null mutant was 

used as a negative control. Two non-specific bands (* and **) were present for the 

null mutant control.  

 

 

 

 

 

 

 

 

 

 



131 
 

Heterochronic phenotypes of lin-28a(lf) and lin-28b(lf) mutants 

 We investigated whether the lin-28a(lf) and/or lin-28b(lf) mutants exhibited 

the developmental timing defects found in lin-28(lf) mutants. Both ventral and 

lateral hypodermal tissues exhibit developmental defects in lin-28(0) mutants(lin-

28(0) stands for the null mutant lin-28(n719)) due to the skipping of the L2 larval 

stage. lin-28(0) mutants do not develop a proper vulva, resulting in complete 

inability to lay eggs (Euling and Ambros, 1996). The lin-28(0) vulva protrudes 

outside, which is a morphological characteristic of the mutants. Both lin-28a(lf) and 

lin-28b(lf) mutants developed a normal vulva and laid embryos as efficiently as 

wild-type (Fig 3.5). Next, we tested whether one wild type copy of either isoform is 

sufficient for the development of a functional vulva (Fig 3.6A). To determine this, 

we first crossed lin-28(0) with wild type to obtain heterozygous (lin-28(0)/+) males. 

Then, the heterozygous males were crossed with lin-28(0), or lin-28a(lf), or lin-

28b(lf) homozygous mutants. From these crosses, we obtained lin-28(0)/+, lin-

28a(lf)/lin-28(0), and lin-28b(lf)/lin-28(0) F1 progeny with a normal vulva and 

cloned individual animals. We selected F1 heterozygote mutants with a lin-28(0) 

copy, based on their producing lin-28(0) homozygous F2s with protruding vulvae 

(Fig 3.6A). The ratios of animals with a normal vulva to those with a protruding 

vulva were calculated among F2 self-progeny from individual F1 heterozygotes. If 

any population of heterozygous F2 (lin-28(0)/+, lin-28a(lf)/lin-280f), or lin-

28b(lf)/lin-28(0)) developed a protruding vulva, the percentage of animals with a 

protruding vulva was expected to be more than 25% among all F2 animals. 
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However, the percentages of animals with a protruding vulva among F2s from all 

three heterozygous F1s were not greater than 25%. This result suggests 

essentially all of the heterozygous animals (lin-28(0)/+, lin-28a(lf)/lin-28(0), or lin-

28b(lf)/lin-28(0)) develop a normal vulva and lay embryos, indicating that one copy 

of either lin-28 isoform is sufficient for vulval development (Fig 3.6B). 
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Figure 3.5 
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Figure 3.5 Vulval morphology of lin-28 isoform mutants 

Vulval morphology of (A) wild type, (B) lin-28(0) mutant, (C) lin-28a(lf) 

mutant, and (D) lin-28b(lf) mutant. lin-28 isoform mutants (C,D) did not show the 

same vulval defects that the lin-28(lf) mutant did (B).  

 (lin-28(0) stands for the null mutant lin-28(n719), lin-28a(lf) for lin-28a(ma289) 

and lin-28b(lf) for lin-28b(ma331))  
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Figure 3.6 
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Figure 3.6 Experiments for testing haploinsufficiency of lin-28 isoforms for 

vulval development and seam cell division 

(A) Schematic representation of genetic strategy to obtain heterozygous mutants 

of lin-28 isoforms. Homozygous mutants of lin-28 and its isoform mutants were 

crossed with lin-28 heterozygous males to obtain heterozygous F1. We selected 

heterozygous strains with the lin-28(0) allele based on their F2 phenotypes for 

isoform mutants. (B) To determine whether either isoform showed 

haploinsufficiency for vulval development, individual F1s were cloned and their 

number of progeny based on their vulva phenotype was counted. The percentage 

of F2 animals with a protruding vulva was not more than 25% for all heterozygotes. 

(C) For seam cell division, individual F2 animals of F1 heterozygous mutants were 

cloned and their seam cell numbers were counted. Their genotypes were 

determined based on their F3 vulva phenotypes. 
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Seam cells are specialized hypodermal structures, which are embedded in 

hyp7 syncytium, and they are connected to the hypodermis. When an animal 

hatches,10 seam cells are located laterally on each side of the animal. After the 

cell divisions that occur during the larval stages, 16 seam cells reside in each side 

of the L4 animal. lin-28(0) mutants skip the L2-specific hypodermal cell division 

that includes a proliferative cell division of 5 seam cells (See Fig 1.2). As a result, 

the mutants show a reduced number of seam cells at the adult stages (Ambros 

and Horvitz, 1984c). We counted the seam cell numbers in lin-28a(lf) and lin-28b(lf) 

mutants at the L4 stage using the SCM:GFP reporter, which was expressed in 

seam cells. At 20°C, both lin-28a(lf) and lin-28b(lf) mutants showed an average of 

16 seam cells, identical to the wild type. The average seam cell number in the lin-

28(0) mutant at the adult stage by SCM:GFP was 11, as previously reported (Fig 

3.7A). We also investigated the seam cell number at 25°C and found that neither 

the lin-28a(lf) or lin-28b(lf) mutants showed a reduction in seam cell number (Fig 

3.7B). 

To test for haploinsufficiency for seam cell division, we generated 

heterozygous mutants of lin-28(0) and each isoform (lin-28(0)/+, lin-28a(lf)/lin-

28(0), and lin-28b(lf)/lin-28(0)) as described above with SCM:GFP reporters (Fig 

3.6A,C). We counted seam cell numbers in individual F2s at their L4 stages and 

later determined their genotype by progeny test. Wild type, lin-28a(lf), and lin-28b(lf) 

homozygotes contained 16 seam cells on average as expected, while an average 

of 12 seam cells were detected in lin-28(0) homozygous mutants. Both lin-28(0)/+ 
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and lin-28b(lf)/lin-28(0) heterozygotes had an average of 16 seam cells. However, 

the average seam cell number in the lin-28a(lf)/lin-28(0) mutant was 14, which was 

mildly but still significantly lower than that in wild type (Fig 3.7C). In summary, 

these results suggest that one copy of the lin-28a isoform is sufficient to execute 

the seam cell divisions that occur in wild type. However, one copy of lin-28b is not 

sufficient for robustly normal seam cell division patterns, although two copies of 

lin-28b can substitute for normal lin-28 function. This result shows that lin-28b is 

haplo-insufficient for proper stage-specific seam cell division patterns.  
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Figure 3.7 
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Figure 3.7. Seam cell numbers in lin-28(0), lin-28a(lf), and lin-28b(lf) mutants 

as well as their heterozygous mutants 

(A,B) Seam cell numbers in lin-28(0), lin-28a(lf), and lin-28b(lf) homozygous 

mutants were counted at 20°C (A) and 25°C (B). Both isoform mutants exhibited 

an average of 16 seam cells, similar to wild type. (C) Seam cell numbers of 

heterozygous mutants of lin-28 and its isoforms were counted at 20°C as shown 

in Fig 3.6. Mutants of all genotypes had seam cell numbers comparable to wild 

type, except for lin-28b(lf) heterozygotes (lin-28b(lf)/lin-28(0)) and the lin-28(lf) 

homozygous mutant. (unpaired t-test compared to wild type (WT), NS: not 

significant, ****p<0.001) 
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Redundant functions of lin-28 isoforms in fertility, embryonic phenotype, 

and somatic gonadal development 

 In addition to heterochronic defects, lin-28(0) mutants also exhibited defects 

in fertility, embryonic lethality, and somatic gonadal development (Chapter II). We 

investigated whether either isoform-specific mutant shows these defects. Both lin-

28a(lf) and lin-28b(lf) produced similar numbers of progeny compared with wild 

type at 25°C, suggesting both isoforms are redundant for fertility function (Fig 3.8A). 

Also, both lin-28a(lf) and lin-28b(lf) embryos were oval-shaped similar to wild type 

and differing from the irregular misshapen lin-28(lf) embryos (Fig 3.8B). Consistent 

with this observation, the embryonic viability of each mutant was comparable to 

wild type at 25°C (Fig 3.8C). These data suggest that each isoform is sufficient for 

embryonic morphogenesis and viability. 

 We also examined the formation of the uterine lumen in isoform mutants 

(Fig 3.9). The defect in uterine lumen formation is an example of a somatic gonadal 

abnormality in lin-28(0) mutants. However, both the lin-28a(lf) and lin-28b(lf) 

mutants formed a normally connected lumen during the L4 stage, implying 

redundant function of lin-28a and lin-28b in somatic gonadal development.  
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Figure 3.8 
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Figure 3.8. Fertility and embryonic phenotypes of isoform mutants   

(A) Total number of progeny of lin-28 and its isoform mutants at 25°C (unpaired t-

test compared to wild type, ns: not significant, ****p<0.001). (B) Embryonic 

morphology of isoform mutants (images of wild type and lin-28(lf) mutant 

embryos were adapted from Figure 2.8A). (C) Embryonic lethality of lin-28(lf) 

mutant and the isoform mutants (number of animals ≥15 per each assay; number 

of independent replicate assays = 3, unpaired t-test compared to wild type(WT), 

****p<0.001). 
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Figure 3.9 
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Figure 3.9. Uterine lumen formation in isoform mutants  

Uterine lumen formation of (A) wild type (mid L4 stage), (B,C) lin-28(lf) mutant 

(L4 stage, see Figure 2.11 for stages of lin-28(lf) mutants), (D) lin-28a(lf) mutants 

(mid L4 stage), and (E) lin-28b(lf) mutants (mid L4 stage). ((A-C) are adapted 

from Figure 2.5 for comparison with (D, E).) 
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Discussion 

 Two mammalian paralogs of Lin-28 regulate let-7 expression by distinct 

mechanisms, and each paralog is also highly expressed in different subtypes of 

cancer cell lines (Piskounova et al., 2011). Although C. elegans do not have 

paralogs of lin-28, they express two isoforms of LIN-28 from the same locus, and 

the potential differences in expression and function those isoforms have not been 

investigated previously. Here, we constructed differential reporter strains for the 

isoforms and generated isoform knockout mutants using CRISPR-Cas9 to study 

the expression and function of each isoform. 

 Our analysis of lin-28a and lin-28b expression patterns showed that the two 

isoforms are co-expressed in the hypodermis, neurons, and muscles, indicating 

that their spatial expression patterns are not appreciably distinct, consistent with 

our finding that they function redundantly in the hypodermis. The lin-28a(lf) and lin-

28b(lf) mutants did not show defects of vulval morphogenesis or egg-laying 

capacity. In addition, the seam cell number in each mutant was comparable to that 

in wild type, not to the lin-28(lf) mutants. However, our results suggest that 

expression of one copy of lin-28b is not sufficient to produce the number of seam 

cells found in wild type. This might imply that the function of lin-28b, not lin-28a, 

cannot fully substitute the function of wild-type lin-28 to execute seam cell division. 

Another possibility is that this result simply reflects a lower level of lin-28b 

expression compared with lin-28a. RNA sequencing data from a previous study 

shows that lin-28b expression is lower than lin-28a expression (Fig 3.2A). 
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Intriguingly, our western blot analysis showed that the LIN-28B protein level was 

decreased in lin-28a(lf) mutants (Fig 3.4B). The effects of a 4-bp deletion in the 

first exon of lin-28a on the expression of lin-28b should be further investigated. 

Nonetheless, it is evident that the two isoforms function almost redundantly in 

seam cell division. The average number of seam cells in lin-28b heterozygous 

mutant (lin-28b(lf)/lin-28(0)) was approximately 14, which is significantly higher 

than that in lin-28(0) homozygous (lin-28(lf)/lin-28(lf)) mutants. The two isoform 

mutants did not show apparent defects in fertility, embryo viability, or somatic 

gonadal development. 

  Despite the overall redundancy of the lin-28 isoforms, several aspects of 

the lin-28 isoforms deserve further investigation. First, it will be interesting to study 

the functions of the different isoforms under various stress conditions. Alternative 

splicing often occurs under oxidative stress and heat-shock in mammals and plants 

(Ding et al., 2014; Takechi et al., 1994; Takeo et al., 2009). In addition, the 

subcellular locations of the isoforms have not been determined yet. The 

mammalian Lin-28 paralogs have different subcellular locations, although both 

contain CSD and ZKD in common (Piskounova et al., 2011). This is due to the 

functional nuclear localization signal in Lin-28B, which neither C. elegans lin-28 

isoform possesses. However, either one or both of the isoforms are expected to 

be located in the nucleus, based on their nuclear function of inhibiting let-7 (Van 

Wynsberghe et al., 2011). Through these studies, the physiological roles and the 

molecular characteristics of each isoform will be further elucidated.  
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Material and Methods  

Construction of differential reporter strain  

To construct the “minigene” which contains differential reporter, we first amplified 

I: 8411465~8412955 of C. elegans genome using primer SW136, SW137, SW138, 

SW139 (Sequences are in Table 3.1.). SW136 contains sequences 

complementary to the 1st exon of lin-28a with XhoI site, and SW137 contains 

sequences complementary to first 27bp of the 2nd exon of lin-28 with NotI site. 

SW138 and SW139 contains sequences complementary to the 1st exon of lin-28b 

of opposite strands, but each contains C(SW138) and G(SW139) inside the 1st 

exon of lin-28b. PCRs were performed with SW136/SW139 (Fragment A), and 

SW138/SW137 (Fragment B) using genomic DNA as a template. Then overlapping 

PCR was performed with SW136/SW137 using prior PCR products (Fragment A 

and Fragment B) as templates. Then this overlapped PCR product was subcloned 

into pWASR1 (Gift from John Calarco, University of Toronto) using XhoI and NotI 

(pSW24). Finally, we performed LR reaction using Gateway®  Technology 

(Invitrogen, cat 12535-019) with 1) pSW24 (attL1-minigene-attL2), 2) pSW33 

(attL4-lin-28 2.5kb promoter-attR1), and 3) the vector containing unc-54 3’UTR 

(attR2-unc-54 ’3 UTR-attL3) to construct pSW41 (Fig 3.10). After construction, we 

injected mixture of 50µg/µl of pSW41 and 50µg/µl of pRF4(rol-6(su1006)) and 

screened for extrachromosomal array containing strains which are roller with GFP 

and mCherry expression.  
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Table 3.1 List of primers and sequences used in this study 

Primers  Sequences 

SW136 XhoI+ lin-28 gene-Nterm ggctcgag tcgacggtagtatcggagg 

SW137 NotI + lin-28 2nd exon truncated-Cterm gggcggccgc tgagccaaagtatcgaggtg 

SW138 lin-28 1st alternative exon overlapping F attgaagccgctttgg c agaatccggtgcccatc 

SW139 lin-28 1st alternative exon overlapping R caccggattct g ccaaagcggcttcaatcat 

SW181 lin-28a specific primer R  Tgttggtgacgggagcc 

SW182 lin-28b specific primer R  Gtgttggtgacaattgaga 

SW183 SL1 specific primer F Ggtttaattacccaagtttgag 

SW188  lin-28 RT primer  Ctaccttttccattcgatcgctc 
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Figure 3.10. Plasmid map of pSW41  
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Generation of mutants using CRISPR-Cas9 

To generate the lin-28a and lin-28b mutants, we designed guide sequences as 

follows: “cgacggtagtatcggaggga” for targeting lin-28a and “gggcaccggattctccaaag” 

for targeting lin-28b. We cloned the vector which expresses these guide RNAs 

using protocol in (Friedland et al., 2013). We used the dpy-10 guide expression 

vector (Arribere et al., 2014) or unc-22 guide expression vector as a co-CRISPR 

markers (Kim et al., 2014). We injected 1) Peft-3::Cas-9 expression vector 

(50ug/ul), 2) unc-22 or dpy-10 guide RNA expression vector (50ug/ul), 3) lin-28a 

or lin-28b guide RNA expression vector (50ug/ul),  and 4) sur-5:GFP expression 

marker as injection marker (15ug/ul). And we screened F1 animals which have 

roller/ twitcher (unc-22(lf)) or dumpy (dpy-10(lf)) phenotypes and clone them to 

produce F2s. We obtained 10 dumpy F2 animals (from 3 F1s) from P0 injected 

with dpy-10 targeting guide and lin-28a targeting guide, and among them lin-

28a(ma289) was identified by Sanger sequencing.  We obtained 15 twitcher F2 

animals (from 2 F1s) from P0 injected with unc-22 targeting guide and lin-28b 

targeting guide, and among them lin-28b(ma331) was identified by Sanger 

sequencing. 

 

Culture of C. elegans strains  

C. elegans wild type (Strain N2) and mutant and reporter strains (lin-28(n719), lin-

28(ma289), lin-28(ma331), lin-28(n719);SCMp:GFP, lin-28(ma289);SCMp:GFP, 
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lin-28(ma331);SCMp:GFP) were grown and maintained (at 20 oC or 25oC) on 

nematode growth media (NGM) agar plates seeded with E. coli (strain HB101). 

Synchronized populations of larvae at defined developmental stages were 

obtained as described in Chapter II. 

 

RT-PCR 

RNA samples are extracted using mixed-stage N2 animals using TRIzol 

(Invitrogen Cat No. 15596026), then reverse transcription was done using 

SuperScript II (Invitrogen,Cat No.18064)  following their protocols. lin-28 specific 

reverse primer (SW188) was used as a RT-primer The PCR was performed with a 

SL-1 specific primer (SW183) with either lin-28a specific primer (SW181) or lin-

28b specific primer (SW182). 

 

Western Blot  

Lysates of mixed staged animals of wild type, lin-28a(ma289), lin-28b(ma331), and 

lin-28(n719) mutants were obtained using lysis buffer composed of 1% NP40, 

150mM Nacl, 50mM Tris-Cl(pH8.0), 5mM EDTA, 0.1% of 1M Dithiothreitol, 

phosphatase inhibitor cocktail (“PhosSTOP“, Roche, Cat No.04906 845 001), and 

protease inhibitor cocktail (“Complete”, Roche, Cat No. 11 697 489 001). One of 

each inhibitor cocktail was added for 5ml of lysis buffer. 2X volume of lysis buffer 
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was added and sonicated. Samples were boiled and loaded on a 15% SDS-

polyacrylamide gel. After electrophoresis for 2 hr at 100V, the gel is transferred to 

PDVF membrane (Thermo science, LC2005). For anti-LIN-28, LIN-28 antisera 

(used in (Seggerson et al., 2002)) and anti-rabbit antibody (Sigma, Cat. GENA934) 

were used for primary and secondary antibody. For tubulin, anti-tubulin antibody 

(Sigma, Cat No.T9822) and anti-mouse antibody(Biorad, Cat 172-1011) were used 

for primary and secondary antibody.  

 

Microscopy 

For DIC and fluorescence microscopy, worms were anesthetized with 0.2mM 

levamisol and mounted on 2% agarose pads. All images were obtained with a 

ZEISS Axiocam 503 mono. 
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Chapter IV. Discussion  

- Summary  

- Future Directions  

1) Remaining questions (Regarding Chapter II & Chapter III)  

2) Role of lin-28 in remodeling Dorsal-D type neurons of C. elegans  

3) In vivo functions of two RNA binding domains in LIN-28 
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Summary  

We investigated two aspects of lin-28 regulation of C. elegans development.  

First, we examined how lin-28 regulates somatic gonadal development and 

fertility in C. elegans hermaphrodites. We demonstrate that lin-28(lf) mutants 

exhibit fertility defects caused by the abnormality of somatic gonadal development 

including Sp-Ut valve core cell morphogenesis. lin-28(lf) mutants also show 

embryonic lethality. We found evidence that the lack of egg shell integrity of lin-

28(lf) embryos contributes the embryonic lethality and its association with the 

defects of spermathecal exit process. 

However, the timing of somatic gonadal development in lin-28(lf) mutants is 

essentially normal, despite precocious hypodermal development in the mutants. 

This discrepancy of developmental timing is an example of “heterochrony” 

between somatic gonad and hypodermis. Moreover, abnormal morphology of lin-

28(lf) mutants is restored to normal not by somatic gonadal expression, but by 

hypodermal expression of lin-28. Consistently, the genes downstream of lin-28 in 

the regulation of hypodermal developmental timing, including let-7, hbl-1, lin-46, 

and lin-29 are also involved in somatic gonadal development. Therefore, our study 

presents a phenomenon where normal development of one tissue requires 

properly timed development of other interacting tissues.  

Our second project was to characterize expression and the roles of two 

isoforms of lin-28 in C. elegans. Our study showed that two isoforms have similar 
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spatial expression patterns. We also confirmed that only lin-28a is trans-spliced 

with SL1 leader sequence. Next, we generated lin-28a and lin-28b knock out 

mutants to investigate their phenotypes. Neither isoform mutant exhibit apparent 

defects in vulva morphology, seam cell division, fertility or somatic gonadal 

development found in lin-28(lf) mutant. This finding indicates the redundant 

function of lin-28a and lin-28b in these phenotypes, in line with their overlapped 

spatial expression patterns. However, lin-28b, not lin-28a, displayed a partial 

haplo-insufficiency with regard to specification of the L2-specific seam cell 

symmetric division. This result reflects either minor functional difference of two 

isoforms or merely different levels of expression. 
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Future Directions  

1) Remaining questions (Regarding Chapter II & Chapter III)  

We do not understand the mechanism by which hypodermal development 

of C. elegans affects somatic gonadal development. Although the utse is the tissue 

which physically connects hypodermal seam cells to somatic gonads, our data 

suggest that the absence of utse does not appear to affect Sp-Ut valve core cell 

morphogenesis (see Discussion in Chapter 2). Nonetheless, it will be still worth to 

examine the timing and execution of physical connections between the seam cell 

and somatic gonad in lin-28(lf) mutants compared to the wild type, using electron 

microscopy of precisely-staged fourth stage animals.  

Factors involved in the signaling between hypodermis and somatic gonad 

may be identified by genetic screens. We can generate pools of candidate mutants 

by treating lin-28(lf) mutants with ethyl methanesulfonate (EMS) or N-ethyl-N-

nitrosourea (ENU), then screen the animals which show normal Sp-Ut valve core 

cell morphology. One caveat of this suppressor screening is that many alleles of 

known lin-28 downstream genes in heterochronic pathway such as lin-46, let-7, or 

lin-29 will be also identified as the results of the screening. However, it is possible 

that unknown signaling factors can be uncovered as a result of this screening, 

which will elucidate the communication process between different tissues.  

Two lin-28 isoforms of C. elegans can be further investigated in their 

expression patterns and physiological roles. First, we can examine their temporal 
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expression patterns during larval development. Levels of lin-28 transcripts are 

consistent during all larval stages, whereas LIN-28 protein level decreases 

drastically from the 2nd larval stage (Seggerson et al., 2002). It is still unknown 

whether the two isoforms have similar expression profiles or exhibit distinct 

patterns of temporal expression. In addition, subcellular location of each isoform 

has not been investigated. For this purpose, the separation of cytoplasm and 

nucleus followed by western blot analysis can be done with lin-28(lf), lin-28a(lf), 

lin-28b(lf) mutants, and wild type animals. Previous reporter analysis showed that 

LIN-28:GFP localizes predominantly to the cytoplasm (Lehrbach et al., 2009; Moss 

et al., 1997), however it has also been suggested that LIN-28 binds to and 

regulates pri-let-7 in the nucleus (Stefani et al., 2015; Van Wynsberghe et al., 

2011). 

How the ma289 mutation leads to decrease in LIN-28B protein level (Fig 

3.4B) requires further explanations. The western blot analysis should be repeated 

several times for quantification of LIN-28B levels in lin-28(ma289) mutants 

compared to wild type. We can quantify RNA levels of lin-28b in parallel, to 

determine if the ma289 mutation causes transcriptional or post-transcriptional 

change of LIN-28 expression.  

It will be also interesting to investigate roles of each lin-28 isoform under 

diverse stress conditions, although we concluded that two isoforms function lin-

28(RNAi) treated animals were more sensitive to UV, oxidative stress and heat 

stress than control(RNAi) (Wang et al., 2017b), which we can confirm with the lin-
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28(lf) genetic mutants. At the same time, the roles of each isoform under stress 

can be addressed using lin-28a(lf) and lin-28b(lf) mutants. Also, LIN-28 is required 

for the maintenance of LIN-14 levels during L1 stage (Arasu et al., 1991). We can 

determine whether LIN-28A and/or LIN-28B is sufficient for this function. These 

works will provide a comprehensive understanding about characteristics and roles 

of lin-28 isoforms. 

2) Role of lin-28 in remodeling Dorsal-D type neurons of C. elegans  

 C. elegans embryos and early L1 hermaphrodites contain only three types 

of motor neurons among all eight types of motor neurons. Another five types of 

motor neuron are born post-embryonically (Sulston et al., 1983; White et al., 1978; 

White et al., 1986). GABAergic ventral D type (VD) neurons are the one of five 

types of motor neurons that are not born until the early L2 stage. The function of 

VD neurons in adult animals is to receive synaptic inputs from cholinergic neurons 

from dorsal sides, and GABAergic dorsal D type (DD) neurons substitute for VD 

neurons during the L1 stage as they are born in early L1 by forming synapses in 

ventral sides of the animal. During late L1 and early L2 stages, six DD neurons 

undergo remodeling by switching their synaptic location to the dorsal side of 

animals and then onwards the DD neurons begin to receive inputs from ventrally 

innervating cholinergic neurons (White et al., 1978). DD neuronal remodeling is an 

example of neural circuit plasticity, which occurs post-embryonically.   

DD neuronal remodeling starts from ~12 hours after the embryo hatches 

and is completed 10 hours later when animals are in the early L2 stage. Many 
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genes regulate the timing of neuronal remodeling. Among them, the 

heterochronic gene lin-14 is the first identified regulator (Hallam and Jin, 1998). 

lin-14(lf) mutants exhibit a precocious DD neuronal remodeling with 5~6 hours 

earlier initiation compared to the wild type animals. This is in accordance with 

the role of LIN-14 in determining the timing of transition between L1 and L2 

hypodermal cell fates, in that hypodermal development are also precocious in 

lin-14(lf) mutants due to skipping of L1 specific cell division.  A later study 

suggested that LIN-14, together with UNC-30, maintains the expression of 

immunoglobulin domain protein OIG-1 in DD neurons to inhibit their remodeling 

during L1 stage (Howell et al., 2015). In VD neurons, the nuclear hormone 

receptor UNC-55 is expressed to prevent remodeling. Therefore unc-55(lf) 

mutants show remodeling of VD neurons which does not occur in wild type (Shan 

et al., 2005; Walthall and Plunkett, 1995; Zhou and Walthall, 1998). UNC-55 is 

not expressed in DD neurons in wild type, but the ectopic expression of UNC-55 

in DD neurons blocks their remodeling with their synapses in the ventral side 

even after the L1 stage (Shan et al., 2005). UNC-55 suppress another 

heterochronic gene hbl-1 in VD neuron to prevent remodeling (Thompson-Peer 

et al., 2012). HBL-1 is required for completion the synapse remodeling in D-type 

neurons. hbl-1(lf) mutants shows a delay in the completion of DD neuronal 

remodeling. mir-84, one of let-7 family microRNA which suppresses hbl-1 in 

hypodermal cells in order to regulate developmental timing, also suppresses hbl-

1 in DD neuronal remodeling.  Therefore, mir-84(lf) mutants show earlier 
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completion of DD neuronal remodeling (Thompson-Peer et al., 2012). 

 In accordance with heterochronic genes determining the transition timing 

of the hypodermal cell fate, lin-14, hbl-1, and mir-84 are involved in timing of the 

DD neuronal remodeling. While LIN-14 prevents the precocious DD neuronal 

remodeling as just as it prevents precocious hypodermal cell fates, HBL-1 

promotes completion of DD neuronal remodeling. Previous studies has shown 

that LIN-28 positively regulates the level of HBL-1 and also forms a positive 

feedback loop with LIN-14 in regard to determination of hypodermal cell fates 

(Arasu et al., 1991; Pepper et al., 2004; Tsialikas et al., 2017).  

Our preliminary data suggests that LIN-28 is expressed in Dorsal D-type 

neuron. We used a reporter that expresses mCherry under an unc-47 promoter 

in order to label GABAergic motor neurons. This reporter strain was crossed with 

a strain containing a GFP tag fused at the 3’ end coding sequence of the 

endogenous lin-28 (Generated by Orkan Ilbay). We observed that LIN-28:GFP 

is expressed along the ventral neurons, is especially brightly expressed in the 

DD neuron in L1 larva (Fig 4.1). We confirmed the expression of LIN-28 in DD 

neuron by merging GFP and mCherry images (Fig 4.1). It will be intriguing to 

investigate LIN-28 function in DD neuronal remodeling, particularly because the 

roles in LIN-28 in C. elegans neurons has not been understood despite its 

neuronal expression. One prediction would be that lin-28 could function 

upstream of hbl-1 to promote completion of DD remodeling. Alternatively, lin-28 

could function upstream of lin-14 to inhibit precocious DD remodeling. To explore 
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these possibilities, we can generate lin-28(lf) mutants with the Punc-25::UNC-

57:GFP reporter for monitoring DD neuronal remodeling (Thompson-Peer et al., 

2012) and determine relative timing of the remodeling compared to wild type.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



163 
 

Figure 4.1 
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Figure 4.1. LIN-28 is expressed in DD motor neuron  

GFP and mCherry images of three animals expressing lin-28:GFP and Punc-47::mCherry 

The GFP images in left panels show expression of LIN-28 in neurons and other regions. 

The positions of DD neuron (based on Punc-47::mCherry) are depicted as arrows. 
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3) In vivo functions of two RNA binding domains in LIN-28 

Roles of the cold shock domain (CSD) and zinc-finger domain (ZFD) in 

mammalian Lin-28 have been studied in vitro using cell culture system or 

crystallography (Mayr et al., 2011; Nam et al., 2011; Triboulet et al., 2015; Wang 

et al., 2017c). These studies mainly focused on the function of the two domains in 

the regulation of let-7 microRNA. 

Using CRISPR-Cas9, it will be possible to generate C. elegans mutants 

which contain mutations in essential amino acids of each domain. Exploring the 

phenotypes of these mutants will allow us to understand the in vivo functions of 

each domain. In addition, we can analyze the RNA sequences bound to either wild 

type or mutated LIN-28 using CLIP-seq. Through these analyses, we can validate 

the RNA sequence motifs important for the recognition by CSD or ZFD, which is 

previously reported as GNGAY and GGAG respectively (Nam et al., 2011).  In 

addition, the analyses will uncover mRNAs, and pri- or pre- forms of microRNAs 

that could be affected by domain specific mutation of LIN-28. Thus, these data 

could enable us to identify the domains that are essential for binding or regulating 

specific RNAs.  
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